[go: up one dir, main page]

JP2005198600A - Recombinant theaceous tree and method for preparing the same tree - Google Patents

Recombinant theaceous tree and method for preparing the same tree Download PDF

Info

Publication number
JP2005198600A
JP2005198600A JP2004009649A JP2004009649A JP2005198600A JP 2005198600 A JP2005198600 A JP 2005198600A JP 2004009649 A JP2004009649 A JP 2004009649A JP 2004009649 A JP2004009649 A JP 2004009649A JP 2005198600 A JP2005198600 A JP 2005198600A
Authority
JP
Japan
Prior art keywords
tree
recombinant
gene
fluorescent protein
camellia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009649A
Other languages
Japanese (ja)
Inventor
Yasuo Niwa
康夫 丹羽
Michiyo Kato
美知代 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2004009649A priority Critical patent/JP2005198600A/en
Publication of JP2005198600A publication Critical patent/JP2005198600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient preparation method for a recombinant in a theaceous tree, particularly tea tree in which preparation of a recombinant by a conventional method was difficult, and to provide the recombinant tree and to provide a method for selecting the recombinant. <P>SOLUTION: The method for preparing the recombinant theaceous tree comprises introducing a gene, particularly a gene containing a gene encoding a fluorescent protein localized in an organelle into an embryo callus of the theaceous tree. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ツバキ科樹木、特にチャ樹における胚カルスを利用した遺伝子組換え樹木作製方法及び遺伝子組換えツバキ科樹木に関する。また、本発明は、細胞小器官に局在化させて蛍光たんぱく質を細胞非破壊的に測定する形質転換体の選択工程を含む遺伝子組換えツバキ科樹木の作製方法及び遺伝子組換えツバキ科樹木に関する。   The present invention relates to a method for producing a genetically modified tree using embryo callus in a camellia tree, particularly a tea tree, and a genetically modified camellia tree. The present invention also relates to a method for producing a genetically modified camellia tree and a genetically modified camellia family tree, including a transformant selection step for non-destructively measuring a fluorescent protein localized in an organelle. .

オオムギ、ムギ、イネ、タバコなどの草本植物に遺伝子組換え的手法により新しい形質を供与した遺伝子組換え植物の作製は一般に行われており、また、ポプラのような樹木においても同様な方法で遺伝子組換え樹木の作製が報告されている。しかしながら、経済植物として有用でありながらチャ樹においての遺伝子組換え植物の作製はこれまで2001年にインドのMondal等のグループが子葉を用い、アグロバクテリア法を用い遺伝子導入を行い、GUS(β−グルクロニダーゼ)の系で形質転換植物の選択を行なった報告(非特許文献1)のみである。チャ樹における形質転換が少ないのは、効率的な遺伝子組換え植物の作製に必要な遺伝子導入に適し、分化誘導能を備えた植物培養細胞やその後の効率的な形質転換植物の選択方法が不十分なためと考えられる。Mondal等のグループは、子葉を用いて遺伝子導入している。しかし、チャ樹おける子葉は1つの種子より2個しか得ることが出来ず、決して効率的な遺伝子組換え体作製方法とは言い難い。   In general, transgenic plants in which new traits have been given to herbaceous plants such as barley, wheat, rice, tobacco, etc. by genetic recombination techniques have been prepared. Production of recombinant trees has been reported. However, the production of genetically modified plants in tea trees while being useful as economic plants has so far been conducted in 2001 by a group such as Mondal of India using cotyledons and gene introduction using the Agrobacterium method, and GUS (β- This is only a report (Non-Patent Document 1) in which a transformed plant was selected using a glucuronidase) system. Less transformation in the tea tree is suitable for gene transfer necessary for the production of efficient genetically modified plants, and there is no way to select plant culture cells with differentiation-inducing ability and subsequent efficient transformation plants. This is considered to be sufficient. The group of Mondal et al. Introduces genes using cotyledons. However, only two cotyledons in a tea tree can be obtained from one seed, which is never an efficient method for producing a genetic recombinant.

1996年に加藤は、従来の組織片ではなく芽より誘導した胚カルスで発芽を誘導できたこと報告(非特許文献2)しているが、これまでこの胚カルスを用いた遺伝子組換えの報告はない。さらに、効率的に遺伝子組換え体を得るには、形質転換体の選択方法が簡便であり、選択後にそのまま分化誘導できることが望ましい。Mondal等のグループの組換え体の作製は、GUS(β−グルクロニダーゼ)レポーターシステムを形質転換体の選択方法としているが、これは細胞の固定化を必要とするためその後の発芽への誘導には使用できず効率的な遺伝子組換え体の取得方法とは言い難い。一般に、簡便で細胞非破壊的な形質転換体の選択方法としてオワンクラゲ由来の緑色蛍光たんぱく質GFPを蛍光マーカーとして使用する形質転換体の選択方法が良く知られている(非特許文献3)。しかし、チャ樹等のツバキ科樹木にはGFPの蛍光波長と重なる自家蛍光があり、一般的に使用されている方法ではGFPをマーカーとして使用できないことが明らかとなった(図2)。
T. K. Mondal, A. Bhattacharya, P. S. Ahuja and P.K. Chand, (2001) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 20: 712-720. M. Kato, (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep 15: 920-923. M.-J.Cho, H.W.Choi, D.Okamoto, S.Zhang and P.G.Lemaux, (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant cell Rep 21:467―474. Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H. (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 18:455 -463.
In 1996, Kato reported that germination could be induced with embryo callus derived from buds instead of conventional tissue fragments (Non-patent Document 2), but so far, genetic recombination using this embryo callus has been reported. There is no. Furthermore, in order to obtain a gene recombinant efficiently, it is desirable that a method for selecting a transformant is simple and differentiation can be induced as it is after selection. The creation of recombinants such as Mondal et al. Uses the GUS (β-glucuronidase) reporter system as a method for selecting transformants, but this requires cell immobilization and is therefore used for induction into subsequent germination. It cannot be used, and it is difficult to say that it is an efficient method for obtaining a genetic recombinant. In general, a method for selecting a transformant using a green fluorescent protein GFP derived from Aequorea jellyfish as a fluorescent marker is well known as a simple and non-destructive method for selecting a transformant (Non-patent Document 3). However, camellia trees such as tea trees have autofluorescence that overlaps with the fluorescence wavelength of GFP, and it has been clarified that GFP cannot be used as a marker by a commonly used method (FIG. 2).
TK Mondal, A. Bhattacharya, PS Ahuja and PK Chand, (2001) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos.Plant Cell Rep 20: 712 -720. M. Kato, (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots.Plant Cell Rep 15: 920-923. M.-J.Cho, HWChoi, D.Okamoto, S.Zhang and PGLemaux, (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures.Plant cell Rep 21: 467-474. Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H. (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants.Plant J. 18: 455 -463.

本発明は、遺伝子組換えが困難であった従来技術の上記問題点を解決し、ツバキ科樹木、特にチャ樹における遺伝子組換え樹木の効率的な作製方法及び遺伝子組換えツバキ科樹木を提供するものである。また、蛍光たんぱく質をマーカーとして用いる遺伝子組換えツバキ科樹木の選択が行えなかった従来技術の問題を解決し、効率的な選択方法を提供するものである。   The present invention solves the above-mentioned problems of the prior art in which genetic recombination has been difficult, and provides an efficient method for producing genetically modified trees in camellia trees, particularly tea trees, and genetically modified camellia trees Is. In addition, the present invention solves the problems of the prior art in which a genetically modified camellia tree that uses a fluorescent protein as a marker could not be selected, and provides an efficient selection method.

本発明は、ツバキ科樹木の胚カルスに遺伝子導入することを特徴とする遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree, characterized by introducing a gene into embryo callus of the camellia tree.

本発明は、ツバキ科樹木が、チャ樹である遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree in which the camellia tree is a tea tree.

本発明は、胚カルスが、芽の培養にて生じる葉の先端及び中助の部分より発生する胚カルスである遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree, wherein the embryo callus is an embryo callus that is generated from the tip of a leaf generated by bud culture and from the middle assistant part.

本発明は、遺伝子が蛍光たんぱく質をコードする遺伝子を含む遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree, the gene of which comprises a gene that encodes a fluorescent protein.

本発明は、蛍光たんぱく質がオワンクラゲ由来の緑色蛍光たんぱく質GFP又はその変異体sGFP(S65T)である遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree in which the fluorescent protein is the green fluorescent protein GFP derived from Aequorea or its mutant sGFP (S65T).

本発明は、蛍光たんぱく質をツバキ科樹木の細胞小器官に局在化させる遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree in which a fluorescent protein is localized in the organelles of the camellia tree.

本発明は、細胞小器官がミトコンドリア及び色素体である遺伝子組換えツバキ科樹木の作製方法に関する。   The present invention relates to a method for producing a genetically modified camellia tree in which organelles are mitochondria and plastids.

本発明は、従来の技術では困難であったツバキ科樹木、特にチャ樹における効率的な遺伝子組換えツバキ科樹木の作製を可能とする。また、本発明では、従来の技術では困難である遺伝子組換えツバキ科樹木の効率的な選択を可能とする。   The present invention makes it possible to produce an efficient genetically modified camellia tree in a camellia tree, particularly a tea tree, which has been difficult with the prior art. In addition, the present invention enables efficient selection of genetically modified camellia trees, which is difficult with conventional techniques.

本発明におけるツバキ科樹木は、ツバキ、サザンカ、チャなどが挙げられるが、特にチャ樹が好ましい。   Examples of camellia trees in the present invention include camellia, sasanqua, tea, and the like, and tea trees are particularly preferable.

本発明における胚カルスは、根、茎、葉、花等の成体組織片より生じるカルスとは異なり、芽の培養にて生じる葉の先端及び中助の部分より作製できる。ツバキ科樹木の胚カルスは、一般に自家蛍光を伴う。   The embryo callus according to the present invention can be prepared from the tip of the leaf and the middle part produced by culturing the bud, unlike the callus generated from adult tissue pieces such as roots, stems, leaves and flowers. Embryonic callus of camellia trees generally accompanies autofluorescence.

本発明において胚カルスの導入に使用する遺伝子は、例えば、プラスミド、バイナリーベクター、薬剤耐性遺伝子、遺伝子の発現制御に関わる遺伝子、選択マーカーに関わる遺伝子などの一般の遺伝子組換え手法において使用される遺伝子、及びその他に耐寒性、抗菌性、耐病性、カテキン含量などに関わる遺伝子などが挙げられるが、プラスミド、バイナリーベクター、抗生物質耐性遺伝子、プロモーター遺伝子、ポリアデニン付加シグナル配列遺伝子、細胞小器官標的化シグナル配列、蛍光たんぱく質マーカー遺伝子等の有用遺伝子が好ましい。   Genes used for the introduction of embryo callus in the present invention are, for example, genes used in general gene recombination techniques such as plasmids, binary vectors, drug resistance genes, genes involved in gene expression control, genes involved in selection markers, etc. And other genes related to cold resistance, antibacterial resistance, disease resistance, catechin content, etc. include plasmids, binary vectors, antibiotic resistance genes, promoter genes, polyadenine addition signal sequence genes, organelle targeting signals Useful genes such as sequences and fluorescent protein marker genes are preferred.

本発明において薬剤耐性遺伝子には、アンピシリン耐性遺伝子、クロラムフェニコール耐性遺伝子などがあるが、カナマイシン耐性遺伝子、カルベニシリン耐性遺伝子及びハイグロマイシン耐性遺伝子が好ましい。   In the present invention, the drug resistance gene includes an ampicillin resistance gene, a chloramphenicol resistance gene and the like, and a kanamycin resistance gene, a carbenicillin resistance gene and a hygromycin resistance gene are preferable.

本発明において遺伝子の発現制御に関わるプロモーターには、カリフラワーモザイクウイルス35Sプロモーター、ノパリン合成酵素遺伝子のプロモーター、イネのアクチンプロモーター、シロイヌナズナCAB2、シロイヌナズナRD29Aプロモーター、タバコEF1αプロモーターなどがあり、またポリアデニン付加シグナル配列には、ノパリン合成酵素遺伝子のポリアデニン付加シグナル配列、カリフラワーモザイクウイルスのポリアデニン付加シグナル配列などがあるが、カリフラワーモザイクウイルス35Sプロモーターおよびノパリン合成酵素遺伝子のポリアデニン付加シグナル配列が好ましい。   In the present invention, promoters involved in gene expression control include cauliflower mosaic virus 35S promoter, nopaline synthase gene promoter, rice actin promoter, Arabidopsis thaliana CAB2, Arabidopsis thaliana RD29A promoter, tobacco EF1α promoter, and polyadenine addition signal sequence. Include a polyadenine addition signal sequence of nopaline synthase gene, a polyadenine addition signal sequence of cauliflower mosaic virus, and the like, and a cauliflower mosaic virus 35S promoter and a polyadenine addition signal sequence of nopaline synthase gene are preferable.

本発明において蛍光たんぱく質マーカー遺伝子は、GFP,CFP,YFP,RFPなどがあるが、sGFP(S65T)が好ましい。   In the present invention, examples of the fluorescent protein marker gene include GFP, CFP, YFP, and RFP, and sGFP (S65T) is preferable.

本発明において細胞内で蛍光たんぱく質が局在化する細胞小器官は、細胞膜、細胞壁、核小体、滑面小胞体、粗面小胞体、液胞、ペルオキシソーム、リボソーム、核、ゴルジ小胞、リソソーム、ゴルジ、タンパク質顆粒、小胞体、ミトコンドリア又は色素体などが挙げられるが、ミトコンドリア又は色素体であることが好ましい。蛍光たんぱく質を細胞小器官に局在化させるには、例えば、蛍光たんぱく質に細胞小器官標的化シグナル配列を周知の遺伝子組換え手法で付加させる方法がある。   In the present invention, organelles in which fluorescent proteins are localized in cells include cell membrane, cell wall, nucleolus, smooth endoplasmic reticulum, rough endoplasmic reticulum, vacuole, peroxisome, ribosome, nucleus, Golgi vesicle, lysosome , Golgi, protein granule, endoplasmic reticulum, mitochondria or plastid, and the like, preferably mitochondrion or plastid. In order to localize the fluorescent protein to the organelle, for example, there is a method of adding an organelle targeting signal sequence to the fluorescent protein by a well-known gene recombination technique.

本発明において蛍光タンパク質マーカーがミトコンドリア又は色素体で局在化するために使用する細胞小器官標的化シグナル配列は、これには限定されないが、ミトコンドリア標的化にはシロイヌナズナのF1ATPaseガンマ−サブユニットのN末端78アミノ酸残基、色素体標的化にはリブロース1,5二リン酸カルボキシラーゼ/オキシゲナーゼ小−サブユニットのトランジットペプチドが好ましい。   The organelle targeting signal sequence used to localize fluorescent protein markers in the mitochondria or plastids in the present invention is not limited to this, but for mitochondria targeting, the N of F1 ATPase gamma-subunit of Arabidopsis thaliana A terminal 78 amino acid residue, ribulose 1,5 diphosphate carboxylase / oxygenase small-subunit transit peptide is preferred for plastid targeting.

本発明における蛍光たんぱく質マーカー発現のためのプロモーター遺伝子、ポリアデニン付加シグナル配列遺伝子、細胞小器官標的化シグナル配列、蛍光たんぱく質マーカー遺伝子等の有用遺伝子の再構成は、実施例に記載の35Ω−sGFP(S65T)プラスミドにおいて実施するのが好ましいが、市販の適当なプラスミドpBR322、pUC、pBluesciptなどで実施してもよい。   In the present invention, useful genes such as a promoter gene for expressing a fluorescent protein marker, a polyadenine addition signal sequence gene, an organelle targeting signal sequence, and a fluorescent protein marker gene are reconstructed using 35Ω-sGFP (S65T described in Examples). ) It is preferably carried out in a plasmid, but it may also be carried out with a suitable commercially available plasmid such as pBR322, pUC, pBluescript, etc.

本発明におけるプロモーター遺伝子、ポリアデニン付加シグナル配列遺伝子、蛍光たんぱく質マーカー遺伝子等の有用遺伝子は、市販のEGFP(クロンテック)、カリフラワーモザイクウイルス35Sプロモーター(クロンテック)、ノパリン合成酵素遺伝子のポリアデニン付加シグナル配列(クロンテック)をPCRなどにより改変して使用してもよい。   In the present invention, useful genes such as promoter gene, polyadenine addition signal sequence gene, fluorescent protein marker gene, etc. are commercially available EGFP (Clontech), cauliflower mosaic virus 35S promoter (Clontech), nopaline synthase gene polyadenine addition signal sequence (Clontech) May be used after being modified by PCR or the like.

本発明において再構成した有用遺伝子を胚カルスへ導入するのに使用するバイナリ−ベクターは、植物細胞への感染力を有する遺伝子(T−DNA)を有し、適切な制限酵素部位及び薬剤耐性遺伝子を有したバイナリーベクターであればよく、pGAバイナリ−ベクター、pBI121バイナリ−ベクターなどがあるが、pIG121HMバイナリーベクター、pBCH1バイナリーベクターが好ましい。   The binary vector used for introducing the useful gene reconstituted in the present invention into embryo callus has a gene (T-DNA) capable of infecting plant cells, an appropriate restriction enzyme site and a drug resistance gene Any binary vector may be used, such as pGA binary vector and pBI121 binary vector, and pIG121HM binary vector and pBCH1 binary vector are preferred.

本発明においてバイナリ−ベクターの胚カルス細胞への遺伝子導入法は、これに限定されないが、アグロバクテリア法又はパーティクルガン法によることが好ましく、アグロバクテリア法は、例えば、アグロバクテリアEHA105株と胚カルスを共培養することで、パーティクルガン法は、例えばBIO−RAD社のパーティクルガン(PDS−1000/He)を使用することで実施できる。   In the present invention, the method for introducing a gene into an embryonic callus cell of a binary vector is not limited to this, but is preferably an Agrobacterium method or a particle gun method, and the Agrobacterium method includes, for example, Agrobacterium EHA105 strain and embryo callus. By co-culturing, the particle gun method can be carried out by using, for example, a particle gun (PDS-1000 / He) manufactured by BIO-RAD.

本発明の遺伝子組換えツバキ科樹木の作製方法において、一般的な遺伝子組換え手法で使用される導入した抗生物質耐性遺伝子に基づく抗生物質による選択を行うことが好ましく、抗生物質としては、これに限定されないが、カナマイシン、カルベニシリン及びハイグロマイシンが好ましく、抗生物質耐遺伝子導入細胞をカナマイシン、カルベニシリン及びハイグロマイシンを含有した培地で培養することで実施できる。   In the method for producing a genetically modified camellia tree of the present invention, it is preferable to perform selection by an antibiotic based on the introduced antibiotic resistance gene used in a general genetic recombination technique. Although not limited, kanamycin, carbenicillin and hygromycin are preferable, and it can be carried out by culturing antibiotic-resistant gene-transferred cells in a medium containing kanamycin, carbenicillin and hygromycin.

本発明における、遺伝子組換え樹木の選択は、生きたままの細胞中の蛍光たんぱく質マーカーの存在を確認することができ、蛍光スペクトル分解可能なスペクトラルイメージングシステム、例えばApplied Spectral Imaging 社のSpectral Unmixing を備えたSpectral Imaging Inc.社のSPECTRAVIEW等を使用することによりツバキ科チャ樹胚カルスの自家蛍光と区別して確認できる。また、細胞小器官に蛍光たんぱく質を局在化する態様の本発明の組換えツバキ科樹木の作製方法においては、細胞小器官への蛍光たんぱく質の局在化による蛍光の増強を共焦点レーザー顕微鏡(例えば、バイオラッド社のMRC1024)を使用して測定することによりツバキ科チャ樹胚カルスの自家蛍光と区別して組換えツバキ科樹木の選択を行うことも出来る。   In the present invention, the selection of genetically modified trees is possible with the presence of fluorescent protein markers in living cells and is equipped with a spectral imaging system capable of resolving fluorescence spectra, such as Spectral Unmixing from Applied Spectral Imaging. By using SPECTRAVIEW of Spectral Imaging Inc., etc., it can be confirmed separately from autofluorescence of camellia tea tree callus callus. In the method for producing the recombinant camellia tree of the present invention in which the fluorescent protein is localized in the organelle, the fluorescence is enhanced by confocal laser microscopy (localization of the fluorescent protein in the organelle) ( For example, it is possible to select a recombinant camellia tree by distinguishing it from the autofluorescence of the camellia tea tree callus callus by measuring using MRC1024) of Biorad.

本発明の遺伝子組換えツバキ科樹木の作製方法において、植物ホルモンによる分化誘導を行うことが好ましく、植物ホルモンとしてIBA(インドール−3−ブチル酸)BA(N6−ベンジルアデニン)及びGA(ジベレリン)が好ましく、後述の実施例に記載のようにIBA、BA、及びGAを含有した培地で遺伝子導入細胞を培養することで実施できる。   In the method for producing a genetically modified camellia tree of the present invention, differentiation induction by a plant hormone is preferably performed, and IBA (indole-3-butyric acid) BA (N6-benzyladenine) and GA (gibberellin) are used as plant hormones. Preferably, it can be carried out by culturing the gene-transferred cells in a medium containing IBA, BA, and GA as described in Examples below.

ミトコンドリア、色素体局在化用sGFP(S65T)バイナリーベクターの構築
DNA断片の加工やDNA断片相互の結合、DNA断片のクローニング、DNA配列の確認、大腸菌等の処理(形質転換、培養、プラスミドの抽出等)などの一般的操作の手順は、特に記載のない限り、Molecular Cloning 3rd edition, Cold Spring Harbor Laboratory Press等に記載されている方法に従って行った。
Construction of sGFP (S65T) binary vector for mitochondria and plastid localization Processing of DNA fragments and binding of DNA fragments, cloning of DNA fragments, confirmation of DNA sequence, treatment of Escherichia coli etc. (transformation, culture, extraction of plasmid) Etc.) were performed according to the method described in Molecular Cloning 3rd edition, Cold Spring Harbor Laboratory Press, etc. unless otherwise specified.

ミトコンドリア用sGFP(S65T)は、シロイヌナズナのF1ATPaseガンマ−サブユニットcDNAを、制限酵素HaeIIIで消化後、N末端78アミノ酸残基を含むDNA断片(MAMAVFRREG RRLLPSIAAR PIAAIRSPLS SDQEEGLLGV RSISTQVVRN RMKSVKNIQK ITKAMKMVAA SKLRAVQG;配列番号4)を、SalI,NcoI消化後、平滑末端化処理をしたカリフラワーモザイクウイルス35Sプロモーター、sGFP(S65T)遺伝子およびノパリン合成酵素遺伝子のポリアデニン付加シグナル配列を含有した35Ω−sGFP(S65T)プラスミド(Chui et al.)に導入した(Niwa et al.)。   Mitochondrial sGFP (S65T) was obtained by digesting Arabidopsis thaliana F1 ATPase gamma-subunit cDNA with the restriction enzyme HaeIII, and then containing a DNA fragment (MAMAFRFRREG RRLLPSIAAR PIAAIRSPLS SDQEEGLLGV RSITQKKVVRMRMKVVRM 35Ω-sGFP (S65T) plasmid (Chui et al.) Containing a cauliflower mosaic virus 35S promoter digested with SalI and NcoI, blunt-ended, sGFP (S65T) gene, and polyadenine addition signal sequence of nopaline synthase gene (Niwa et al.).

得られたプラスミドから、シロイヌナズナのF1ATPaseガンマ−サブユニットのN末端78アミノ酸残基とsGFP(S65T)の融合遺伝子そしてノパリン合成酵素遺伝子のポリアデニン付加シグナル配列からなるキメラ遺伝子をEcoRI消化後、平滑末端化、さらにXbaI消化して50ngのDNA断片として得た。これと制限酵素XbaIおよびSmaIで消化した100ngのバイナリーベクターpBCH1(Ito et al. これはpIG121HM(Ohta et al.,)のGUS遺伝子をXbaI,SacIで切り出した後、SacI,XbaI,SpeI,SmaI,XhoI,KpnI認識配列を含むリンカーDNAを挿入することにより構築されたバイナリーベクター)とをライゲーション反応にて結合させた後、大腸菌に形質転換し目的のミトコンドリア用sGFP(S65T)バイナリーベクターを作成した。   From the obtained plasmid, a chimeric gene comprising an N-terminal 78 amino acid residue of F1 ATPase gamma-subunit of Arabidopsis thaliana, a fusion gene of sGFP (S65T) and a polyadenine addition signal sequence of nopaline synthase gene was digested with EcoRI and then blunt-ended. Further, XbaI digestion was performed to obtain a 50 ng DNA fragment. This was digested with the restriction enzymes XbaI and SmaI and 100 ng of the binary vector pBCH1 (Ito et al. This was obtained by excising the GUS gene of pIG121HM (Ohta et al.,) With XbaI, SacI, A ligation reaction was performed to bind a binary vector containing a linker DNA containing XhoI and KpnI recognition sequences, followed by transformation into Escherichia coli to prepare the target sGFP (S65T) binary vector for mitochondria.

色素体用sGFP(S65T)は、シロイヌナズナのリブロース1,5二リン酸カボキシラーゼ/オキシゲナーゼ小−サブユニット1A遺伝子を含むプラスミドから、トランジットペプチド領域(MASSMLSSAT MVASPAQATM VAPFNGLKSS AAFPATRKAN NDITSITSNG GRVNC;配列番号5)を含むDNA断片をBfaI, SphIで切り出し、平滑末端化処理をへて、SalI,NcoI消化後、平滑末端化処理をした35Ω−sGFP(S65T)プラスミドに導入した(Chui et al.)。   The plastid sGFP (S65T) is derived from a plasmid containing the Arabidopsis ribulose 1,5 diphosphate carboxyxylase / oxygenase small-subunit 1A gene, including a transit peptide region (MASSMLGSSAT MVASPAQAM VAPFNGLKSS AAFPATRKAN NDITSITSNG GRVNC sequence; The fragment was excised with BfaI, SphI, blunt-ended, introduced into 35Ω-sGFP (S65T) plasmid that had been blunt-ended after digestion with SalI, NcoI (Chui et al.).

得られたプラスミドから、カリフラワーモザイクウイルス35Sプロモーター、シロイヌナズナのリブロース1,5二リン酸カルボキシラーゼ/オキシゲナーゼ小−サブユニット1AのトランジットペプチドとsGFP(S65T)の融合遺伝子そしてノパリン合成酵素遺伝子のポリアデニン付加シグナル配列からなるキメラ遺伝子を、EcoRI消化後平滑末端化さらにXbaI消化して50ngのDNA断片として得た。これと、制限酵素XbaIおよびSmaIで消化した100ngのバイナリーベクターpBCH1(Ito et al.)とをライゲーション反応にて結合させた後、大腸菌に形質転換し目的の色素体用sGFP(S65T)バイナリーベクターを作成した(図1)。   From the resulting plasmid, the cauliflower mosaic virus 35S promoter, the Arabidopsis ribulose 1,5-diphosphate carboxylase / oxygenase small-subunit 1A transit peptide and sGFP (S65T) fusion gene and the nopaline synthase gene polyadenine addition signal sequence The chimeric gene consisting of was digested with EcoRI, blunt-ended, and further digested with XbaI to obtain a 50 ng DNA fragment. This was combined with a 100 ng binary vector pBCH1 (Ito et al.) Digested with restriction enzymes XbaI and SmaI by a ligation reaction, transformed into Escherichia coli, and the target sGFP (S65T) binary vector for plastids was obtained. Created (FIG. 1).

大腸菌からのミトコンドリア及び色素体用sGFP(S65T)バイナリーベクターの精製は、QIAfilter Plasmid Midi Kit(Qiagen)により実施した。   Purification of the sGFP (S65T) binary vector for mitochondria and plastids from E. coli was performed with the QIAfilter Plasmid Midi Kit (Qiagen).

バイナリーベクターpBCH1は譲渡を受けたものである。   The binary vector pBCH1 has been transferred.

アグロバクテリアへのバイナリーベクターの導入
ミトコンドリア及び色素体用sGFP(S65T)バイナリーベクターはアグロバクテリアEHA105株へエレクトロポレーション法により導入した。エレクトロポレーション用に調製されたアグロバクテリア懸濁液(アグロバクテリアEHA105株は、LB液体培地100mL中でOD600が0.7になるまで30℃で培養後、氷上で冷却。遠心にて集菌後、滅菌水で1回、10%グリセリン液で2回洗浄。最後に0.5mLの10%グリセリン液に懸濁して調整)40μLと上記のように構築調製されたミトコンドリア及び色素体用sGFP(S65T)バイナリーベクターDNA;10ngとをエレクトロポレーション用セルに入れた後、氷冷下で電圧;1.8kV,コンデンサー;25μF、抵抗;200Ωの条件で成された。エレクトロポレーション後、アグロバクテリアEHA105株は、ハイグロマイシン50mg/Lを含むLB培地上でのハイグロマイシン耐性により選択された。ハイグロマイシン耐性アグロバクテリアEHA105株は、その後のチャ樹カルスとの共培養のためにハイグロマイシン50mg/Lを含むLB培地で培養された。
Introduction of binary vector into Agrobacterium The sGFP (S65T) binary vector for mitochondria and plastids was introduced into Agrobacterium EHA105 strain by electroporation. Agrobacterium suspension prepared for electroporation (Agrobacterium EHA105 strain was cultured at 30 ° C. in 100 mL of LB liquid medium until OD600 was 0.7, cooled on ice, and collected by centrifugation. Washed once with sterile water and twice with 10% glycerin solution and finally suspended in 0.5 mL of 10% glycerin solution and adjusted to 40 μL and sGFP for mitochondria and plastids prepared as described above (S65T ) After placing 10 ng of binary vector DNA in an electroporation cell, it was made under conditions of voltage; 1.8 kV, condenser; 25 μF, resistance; 200Ω under ice cooling. After electroporation, Agrobacterium EHA105 strain was selected by hygromycin resistance on LB medium containing 50 mg / L hygromycin. Hygromycin resistant Agrobacterium strain EHA105 was cultured in LB medium containing 50 mg / L of hygromycin for subsequent co-culture with tea tree callus.

チャ樹カルスの形質転換
インドの紅茶種の実生より芽約0.02gを取り、BA4mg/l,IBA2mg/l添加のMS培地30mlで培養すると、芽は増殖するとともに、葉の先端や中助の部分より不定胚が分化する。これらの不定胚0.001gを同じ培地にて培養し、胚カルスにする。これを材料とした(Kato, 1996)。
Transformation of tea tree callus About 0.02 g of buds from Indian black tea seedlings were taken and cultured in 30 ml of MS medium supplemented with 4 mg / l of BA and 2 mg / l of IBA. Somatic embryos differentiate from the part. These somatic embryos (0.001 g) are cultured in the same medium to obtain embryo callus. This was used as a material (Kato, 1996).

この胚カルス0.1gを5−10分間、ハイグロマイシン耐性アグロバクテリウム菌0.001gを含むMS液体培地30mlに浸漬した。その後BA4mg/l,IBA2mg/lを添加したMS培地の入った9cmのシャーレに移し、3日間共存培養のため、25℃で暗黒条件においた。   0.1 g of this embryo callus was immersed in 30 ml of MS liquid medium containing 0.001 g of hygromycin-resistant Agrobacterium for 5-10 minutes. Thereafter, the cells were transferred to a 9 cm petri dish containing MS medium supplemented with 4 mg / l BA and 2 mg / l IBA, and placed in dark conditions at 25 ° C. for 3 days for co-culture.

パーティクルガンによる遺伝子導入には、BA4mg/l,IBA2mg/l添加のMS培地上に胚カルス0.005gを直径約2cmに一様に広げ、0.5μgのミトコンドリア及び色素体用sGFP(S65T)バイナリーベクターDNAをPDS−1000/He,BIO−RAD(金粒子:1マイクロm、ラプチャーディスク:1100psi、真空度:28インチHg、胚カルスまでの距離:6cm)で導入した。   For gene transfer by particle gun, 0.005 g of embryo callus is uniformly spread to about 2 cm in diameter on MS medium supplemented with BA 4 mg / l and IBA 2 mg / l, and 0.5 μg of sGFP (S65T) binary for mitochondrion and plastid Vector DNA was introduced at PDS-1000 / He, BIO-RAD (gold particles: 1 μm, rupture disk: 1100 psi, vacuum: 28 inches Hg, distance to embryo callus: 6 cm).

形質転換チャ樹カルスの選択プロトコール
アグロバクテリウム法では、共存培養後、BA4mg/l,IBA2mg/l,カナマイシン25μg/ml,カルベニシリン300μg/ml添加のMS培地30mlで8週間培養し、BA0.4mg/l,IBA2mg/l,カナマイシン25μg/ml,カルベニシリン300μg/ml添加のMS培地30mlにて胚を育て、芽を得た。又は5mg/l GA3、3mg/l BA、0.5mg/l IBA、カナマイシン25μg/ml,カルベニシリン300μg/ml添加した培地においても培養を行った。
Protocol for selection of transformed tea tree callus In the Agrobacterium method, after co-cultivation, the cells were cultured for 8 weeks in 30 ml of MS medium supplemented with BA 4 mg / l, IBA 2 mg / l, kanamycin 25 μg / ml, carbenicillin 300 μg / ml, Embryos were grown in 30 ml of MS medium supplemented with 0.4 mg / l BA, 2 mg / l IBA, 25 μg / ml kanamycin, and 300 μg / ml carbenicillin to obtain buds. Alternatively, culture was also performed in a medium supplemented with 5 mg / l GA3, 3 mg / l BA, 0.5 mg / l IBA, 25 μg / ml kanamycin, and 300 μg / ml carbenicillin.

パーティクルガン法では、遺伝子導入後の胚カルス0.005gは、2週間、光条件、25℃で培養した後、BA4mg/l,IBA2mg/l,カナマイシン25μg/ml,カルベニシリン300μg/ml添加のMS培地30mlに移した。その後の経過は、アグロバクテリウムと同様である。   In the particle gun method, 0.005 g of embryo callus after gene introduction is cultured at 25 ° C. for 2 weeks in light conditions, and then MS medium supplemented with BA 4 mg / l, IBA 2 mg / l, kanamycin 25 μg / ml, carbenicillin 300 μg / ml Transfer to 30 ml. The subsequent course is similar to Agrobacterium.

GFPモニターリング
GFP蛍光の測定は、遺伝子導入した胚カルス細胞0.05g及び葉0.005g、対照として遺伝子導入していない胚カルス細胞0.05g及び葉0.005gをスペクトルイメージングシステム SPECTRAVIEW(Spectral Imaging Inc.)上に乗せ、Spectral Unmixing(Applied Spectral Imaging)により個々の蛍光をスペクトル分解することでチャ樹の自家蛍光を消去した遺伝子導入した発現GFPの蛍光だけが測定された。また、ミトコンドリア、色素体でのGFP蛍光の観察は、同様に遺伝子導入した胚カルス細胞0.05g及び葉0.005gと対照として遺伝子導入していない胚カルス細胞0.05g及び葉0.005gを共焦点レーザー顕微鏡(励起光:488nmのKr/Arレーザー光、蛍光:506−538nmのバンドパスフィルター、バイオラッドMRC1024)に乗せ、観察した。
GFP monitoring GFP fluorescence was measured using a spectral imaging system SPECTRAVIEW (Spectral Imaging) with 0.05 g of embryonic callus cells and 0.005 g of transgenic embryos and 0.05 g of embryo callus cells and 0.005 g of nontransfected embryos as controls. Inc.), and only the fluorescence of the expressed GFP introduced by eliminating the autofluorescence of the tea tree by spectrally resolving individual fluorescence by spectral unmixing (Applied Spectral Imaging) was measured. In addition, observation of GFP fluorescence in mitochondria and plastids was similarly performed by using 0.05 g of embryo callus cells and 0.005 g of transgenic embryo cells and 0.05 g of embryo callus cells and 0.005 g of leaves not transfected as a control. The sample was placed on a confocal laser microscope (excitation light: 488 nm Kr / Ar laser light, fluorescence: 506-538 nm bandpass filter, Bio-Rad MRC1024) and observed.

PCR及びRT−PCR
ゲノムDNA及び全RNAは形質転換胚カルスの細胞及び葉より抽出した。mRNAは、OligotexTM-dT30Super mRNA Purification Kit(タカラ、日本)を使用して得られた。ゲノムへのsGFP(S65T)cDNAの挿入及び発現は、PCR及びRT−PCRにより確認した。sGFP(S65T)(配列番号1)の配列より化学的に合成したオリゴヌクレオチドプライマーGFP1;5’AAGCTGACCCTGAAGTTCATC3’(配列番号1の配列の第130番目〜150番目、配列番号2)及びGFP2;5’TTTACTTGTACAGCTCGTCCA3’(配列番号1の配列の第707番目〜727番目の相補鎖、配列番号3)をPCR及びRT−PCRのために使用した。PCRは、1μgのゲノムDNA及び5.0μMプライマー、1サイクルが94℃、30秒の変性、60℃、1分のアニーリング、70℃、1分の伸長反応の35サイクル反応で行った。sGFP(S65T)cDNAのmRNAは、2μgのmRNA、5.0μMプライマー、mix reaction Qiagen onestep RT-PCR(Qiagen)を使用し、逆転写反応(50℃、30分間)、最初のPCR活性化ステップ(95℃、15分)と、94℃、1分の変性、50℃、1分のアニーリング、70℃、1分の伸長反応の30サイクル反応で行った。増幅DNAの確認はアガロース電気泳動で分離し、エチジュウムブロマイド染色で行った。
PCR and RT-PCR
Genomic DNA and total RNA were extracted from cells and leaves of transformed embryo callus. mRNA was obtained using Oligotex ™ -dT30Super mRNA Purification Kit (Takara, Japan). Insertion and expression of sGFP (S65T) cDNA into the genome was confirmed by PCR and RT-PCR. Oligonucleotide primer GFP1 chemically synthesized from the sequence of sGFP (S65T) (SEQ ID NO: 1); 5′AAGCTGACCCTGAAGTTCATC3 ′ (130th to 150th sequence of SEQ ID NO: 1, SEQ ID NO: 2) and GFP2; 5′TTTACTTGTTACAGCTCGTCCA3 '(The 707th to 727th complementary strand of the sequence of SEQ ID NO: 1, SEQ ID NO: 3) was used for PCR and RT-PCR. PCR was performed in 35 cycles of 1 μg genomic DNA and 5.0 μM primer, 1 cycle 94 ° C., 30 seconds denaturation, 60 ° C., 1 minute annealing, 70 ° C., 1 minute extension reaction. The mRNA of sGFP (S65T) cDNA was 2 μg of mRNA, 5.0 μM primer, mix reaction Qiagen onestep RT-PCR (Qiagen), reverse transcription reaction (50 ° C., 30 minutes), first PCR activation step ( 95 ° C., 15 minutes), 94 cycles, 1 minute denaturation, 50 ° C., 1 minute annealing, 70 ° C., 1 minute extension reaction. The amplified DNA was confirmed by agarose electrophoresis and stained with ethidium bromide.

結果
図2は非組換えおよびミトコンドリア局在型GFP組み換え茶葉の蛍光画像を示す。葉の中心部分(葉脈)で強い蛍光シグナル(黒く表示)が見られ、この蛍光シグナルは一見組み換え茶葉の方が強く見えるが、単に葉脈の太さの違いに起因するものであり、両者で顕著な違いはみられない。
Results FIG. 2 shows fluorescence images of non-recombinant and mitochondrial localized GFP recombinant tea leaves. A strong fluorescent signal (shown in black) can be seen in the central part of the leaf (leaf vein). This fluorescent signal appears to be stronger in the recombinant tea leaves at first glance, but it is simply due to the difference in the thickness of the leaf veins. There is no difference.

表1は、アグロバクテリウム法(A)、はパーティクルガン法(B)で行ったチャ樹の胚の組換え結果を示す。アグロバクテリウム法及びパーティクルガン法供にミトコンドリア局在化用GFPで形質転換された胚は、効率的に2次胚形成が見られ、sGFP(S65T)のミトコンドリアへの局在化が2次胚形成に影響のないことが示された。また、色素体への局在化sGFP(S65T)はパーティクルガン法において影響のないことが示された。   Table 1 shows the results of recombination of tea tree embryos performed by the Agrobacterium method (A) and the particle gun method (B). Embryos transformed with GFP for mitochondrial localization by the Agrobacterium method and particle gun method show efficient secondary embryo formation, and localization of sGFP (S65T) to the mitochondria It was shown that the formation was not affected. It was also shown that localized sGFP (S65T) on the plastid has no effect in the particle gun method.

表2は、異なる培地上での胚の生長状況を示す。BA0.4mg/l,IBA2mg/lで培養したとき、少ないけれども発芽するものが認められた。そして、5mg/l GA3、3mg/l BA、0.5mg/l IBAで培養したとき、より多くで発芽が認められ、形質転換チャ樹胚カルスからの発芽への分化誘導が示された。   Table 2 shows the growth of embryos on different media. When cultured at BA 0.4 mg / l and IBA 2 mg / l, a small amount of germination was observed. When cultured at 5 mg / l GA3, 3 mg / l BA, 0.5 mg / l IBA, germination was observed at higher levels, indicating differentiation induction from transformed tea tree callus calligraphy.

図3は、スペクトルイメージングシステム(SPECTRAVIEW(Spectral Imaging Inc.)、Spectral Unmixing(Applied Spectral Imaging))を使用した、非形質転換チャ樹胚カルス(A)、およびアグロバクテリウム法又はパーティクルガン法による形質転換チャ樹カルス(B)並びに形質転換チャ樹カルスからの発芽(C)の写真である。sGFP(S65T)の緑色蛍光が自家蛍光に紛れることなく形質転換体でのみ観察される。さらに、共焦点レーザー顕微鏡によりミトコンドリアに局在化した蛍光が認められた。   FIG. 3 shows a non-transformed tea tree embryo callus (A) using a spectral imaging system (SPECTRAVIEW (Spectral Imaging Inc.), Spectral Unmixing (Applied Spectral Imaging)), and a trait by Agrobacterium method or particle gun method. It is the photograph of germination (C) from a conversion tea tree callus (B) and a transformation tea tree callus. The green fluorescence of sGFP (S65T) is observed only in the transformant without being lost to autofluorescence. Furthermore, fluorescence confined to mitochondria was observed by a confocal laser scanning microscope.

また、チャ樹胚ゲノムへのsGFP(S65T)の組込み及び組換え茶葉での発現を確認(598bpのサイズ断片)するためにPCR及びRT−PCRを実施した。パーティクルガン法による組換えチャ樹胚での増幅は弱かった(図4、レーン3,4,5)が、アグロバクテリウム法よる組換えチャ樹胚での増幅は非常に強く、ゲノムへの組込みが確認された。さらに、組換え茶葉での発現がrt−PCR(図5、レーン3)により確認された。   In addition, PCR and RT-PCR were performed in order to confirm the integration of sGFP (S65T) into the tea tree embryo genome and the expression in the recombinant tea leaves (598 bp size fragment). Amplification in recombinant tea tree embryos by particle gun method was weak (Fig. 4, lanes 3, 4 and 5), but amplification in recombinant tea tree embryos by Agrobacterium method was very strong and integrated into the genome Was confirmed. Furthermore, expression in the recombinant tea leaves was confirmed by rt-PCR (FIG. 5, lane 3).

図6は、本発明により作製された組換えチャ樹胚から再生された芽の写真である。   FIG. 6 is a photograph of a bud regenerated from a recombinant tea tree embryo produced according to the present invention.

本発明によれば、遺伝子組換えツバキ科樹木を効率的に作製できる。また、本発明によれば、遺伝子組換えツバキ科樹木を効率的に選択できる。その結果、遺伝子組換え的にツバキ科樹木、好ましくはチャ樹へ耐寒性、抗菌性、耐病性、カテキン含量等の有用な特性の付与を目的とした品種改良を行う場合に、本発明を使用することにより効率的にツバキ科樹木の新品種の開発が可能となる。   According to the present invention, a genetically modified camellia tree can be efficiently produced. Moreover, according to the present invention, genetically modified camellia trees can be selected efficiently. As a result, the present invention is used in the case of breeding for the purpose of imparting useful properties such as cold resistance, antibacterial activity, disease resistance, catechin content to genetically modified camellia trees, preferably tea trees. This makes it possible to efficiently develop new varieties of camellia trees.

参照文献
・Y. Niwa, T. Hirano, K. Yoshimoto, M. Shimizu, and H. Kobayashi : Non-invasive quantitative detection and applications of nontoxic-, S65T-type green fluorescent protein in living plants. Plant J. (1999) 18 : 455-463.
・Yukihiro Ito, Mitsugu Eiguchi, Nori Kurata. (2001) KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice. Genesis 30:231-238
・Ohta S, Mita S, Hattori T, Nakamura K. (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31:805-813.
・W-I. Chiu, Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi, and J. Sheen : Engineered GFP as a vital reporter in plants. Current Biology (1996) 6, 325-330.
・M. Kato, (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep 15: 920-923.
References・ Y. Niwa, T. Hirano, K. Yoshimoto, M. Shimizu, and H. Kobayashi: Non-invasive quantitative detection and applications of nontoxic-, S65T-type green fluorescent protein in living plants.Plant J. (1999 ) 18: 455-463.
・ Yukihiro Ito, Mitsugu Eiguchi, Nori Kurata. (2001) KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice.Genesis 30: 231-238
・ Ohta S, Mita S, Hattori T, Nakamura K. (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence.Plant Cell Physiol. 31: 805-813.
・ WI. Chiu, Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi, and J. Sheen: Engineered GFP as a vital reporter in plants.Current Biology (1996) 6, 325-330.
・ M. Kato, (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots.Plant Cell Rep 15: 920-923.

ミトコンドリア、色素体用sGFP(S65T)発現ベクターのT−DNA領域図。T-DNA region diagram of sGFP (S65T) expression vector for mitochondria and plastids. 非組み換えおよびミトコンドリア局在型GFP組み換え茶葉の蛍光画像。左:非組み換え茶葉、右:ミトコンドリア局在型GFP組み換え茶葉。蛍光画像の取り込みはFluorImager(アマシャム ファルマシア バイオテック)による。取り込み条件は、励起光:488nm、検出条件:530 DF30(515−545nm)フィルター使用、ピクセルサイズ;200マイクロン、デジタル解像度;8ビット、検出感度:ノーマル、PMT;800V。Fluorescent image of non-recombinant and mitochondrial localized GFP recombinant tea leaves. Left: non-recombinant tea leaves, right: mitochondrial localized GFP recombinant tea leaves. Fluorescence image capture is by FluorImager (Amersham Pharmacia Biotech). Uptake conditions: excitation light: 488 nm, detection condition: 530 DF30 (515-545 nm) filter used, pixel size: 200 microns, digital resolution: 8 bits, detection sensitivity: normal, PMT: 800V. スペクトルイメージングシステム SPECTRAVIEW(Spectral Imaging Inc.)による非形質転換チャ樹胚カルス(A)及び形質転換チャ樹カルス(B)および形質転換チャ樹カルスからの発芽の写真。バーは、10μmを示す。Photographs of germination from untransformed tea tree callus (A) and transformed tea tree callus (B) and transformed tea tree callus by spectral imaging system SPECTRAVIEW (Spectral Imaging Inc.). Bar indicates 10 μm. パーティクルガンによる組換えチャ樹とアグロバクテリウム感染による組換えチャ樹の胚のゲノムのPCR。レーン1:分子量マーカー(TaKaRa、λHindIII)、レーン2:(プラスミド)、レーン3:(パーティクルガン組換え胚)、レーン4:(パーティクルガン組換え胚)、レーン5:(パーティクルガン組換え胚)、レーン6:(アグロバクテリウム組換え胚)、レーン7:(アグロバクテリウム組換え胚)、レーン8:(アグロバクテリウム組換え胚)。目的の598bpのサイズのバンドを示す。PCR of genomes of recombinant tea tree by particle gun and recombinant tea tree by Agrobacterium infection. Lane 1: molecular weight markers (TaKaRa, λHindIII), lane 2: (plasmid), lane 3: (particle gun recombinant embryo), lane 4: (particle gun recombinant embryo), lane 5: (particle gun recombinant embryo) Lane 6: (Agrobacterium recombinant embryo), Lane 7: (Agrobacterium recombinant embryo), Lane 8: (Agrobacterium recombinant embryo). The target 598 bp size band is shown. 組換え茶葉のRT−PCR。レーン1:分子量マーカー(TaKaRa、λHindIII)、レーン2:GFPのプラスミド、レーン3:組換え茶葉抽出RNAをRT−PCR、レーン4:組換え茶葉抽出RNAをPCR。RT-PCR of recombinant tea leaves. Lane 1: molecular weight markers (TaKaRa, λHindIII), lane 2: GFP plasmid, lane 3: recombinant tea leaf extracted RNA RT-PCR, lane 4: recombinant tea leaf extracted RNA PCR. 組換えチャ樹胚から再生された芽の写真。Photograph of buds regenerated from recombinant tea tree embryos.

Claims (12)

ツバキ科樹木の胚カルスに遺伝子導入することを特徴とする遺伝子組換えツバキ科樹木の作製方法。   A method for producing a genetically modified camellia tree, characterized by introducing a gene into an embryo callus of a camellia tree. ツバキ科樹木が、チャ樹である請求項1に記載の作製方法。   The production method according to claim 1, wherein the camellia tree is a tea tree. 胚カルスが、芽の培養にて生じる葉の先端及び中助の部分より発生する胚カルスである請求項1又は2に記載の作製方法。   The production method according to claim 1 or 2, wherein the embryo callus is an embryo callus that is generated from a tip of a leaf generated by culturing of a bud and a middle assistant part. 遺伝子が蛍光たんぱく質をコードする遺伝子を含む請求項1、2又は3に記載の作製方法。   The production method according to claim 1, 2 or 3, wherein the gene contains a gene encoding a fluorescent protein. 蛍光たんぱく質がオワンクラゲ由来の緑色蛍光たんぱく質GFP又はその変異体sGFP(S65T)である請求項4に記載の作製方法。   The production method according to claim 4, wherein the fluorescent protein is a green fluorescent protein GFP derived from Aequorea or its mutant sGFP (S65T). 蛍光たんぱく質をツバキ科樹木の細胞小器官に局在化させる請求項5に記載の作製方法。   The production method according to claim 5, wherein the fluorescent protein is localized in the organelle of a camellia tree. 細胞小器官がミトコンドリア及び色素体である請求項6項に記載の作製方法。   The preparation method according to claim 6, wherein the organelles are mitochondria and plastids. 請求項1〜7のいずれか1項に記載の方法により作製された遺伝子組換えツバキ科樹木。   A genetically modified camellia tree produced by the method according to any one of claims 1 to 7. 蛍光たんぱく質をコードする遺伝子を導入した遺伝子組換えツバキ科樹木。   A genetically modified camellia tree introduced with a gene encoding a fluorescent protein. ツバキ科樹木が、チャ樹である請求項9に記載のツバキ科樹木。   The camellia tree according to claim 9, wherein the camellia tree is a tea tree. 蛍光たんぱく質を細胞小器官に局在化させた請求項9又は10に記載のツバキ科樹木。   The camellia tree according to claim 9 or 10, wherein the fluorescent protein is localized in an organelle. 細胞小器官がミトコンドリア及び色素体である請求項11に記載のツバキ科樹木。   The camellia tree according to claim 11, wherein the organelles are mitochondria and plastids.
JP2004009649A 2004-01-16 2004-01-16 Recombinant theaceous tree and method for preparing the same tree Pending JP2005198600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009649A JP2005198600A (en) 2004-01-16 2004-01-16 Recombinant theaceous tree and method for preparing the same tree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009649A JP2005198600A (en) 2004-01-16 2004-01-16 Recombinant theaceous tree and method for preparing the same tree

Publications (1)

Publication Number Publication Date
JP2005198600A true JP2005198600A (en) 2005-07-28

Family

ID=34822622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009649A Pending JP2005198600A (en) 2004-01-16 2004-01-16 Recombinant theaceous tree and method for preparing the same tree

Country Status (1)

Country Link
JP (1) JP2005198600A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102613089A (en) * 2012-04-25 2012-08-01 江苏省林业科学研究院 High-efficient in-vitro propagation method of 20-year-old schima superba big tree
CN105918120A (en) * 2016-04-26 2016-09-07 江苏碧云天农林科技有限公司 Breeding method of fast-growing and cold-resisting new variety of Schima superba
CN111896506A (en) * 2020-06-29 2020-11-06 贵州省水稻研究所 Method for rapidly identifying transgenic arabidopsis positive plants
CN113201555A (en) * 2021-04-01 2021-08-03 云南师范大学 Construction method of binary vector containing eGFP marker and hygromycin resistance
CN118147276A (en) * 2024-03-26 2024-06-07 云南省农业科学院茶叶研究所 Molecular marking method for identifying tea tree germplasm

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102613089A (en) * 2012-04-25 2012-08-01 江苏省林业科学研究院 High-efficient in-vitro propagation method of 20-year-old schima superba big tree
CN105918120A (en) * 2016-04-26 2016-09-07 江苏碧云天农林科技有限公司 Breeding method of fast-growing and cold-resisting new variety of Schima superba
CN111896506A (en) * 2020-06-29 2020-11-06 贵州省水稻研究所 Method for rapidly identifying transgenic arabidopsis positive plants
CN113201555A (en) * 2021-04-01 2021-08-03 云南师范大学 Construction method of binary vector containing eGFP marker and hygromycin resistance
CN118147276A (en) * 2024-03-26 2024-06-07 云南省农业科学院茶叶研究所 Molecular marking method for identifying tea tree germplasm

Similar Documents

Publication Publication Date Title
JP5938444B2 (en) How to increase rice production
CA2680742A1 (en) Improving cold- and salt-tolerant performance of plants with transcription factor gene snac2 from rice
CN110857316B (en) Anthocyanin synthesis related protein and application thereof in regulating and controlling plant anthocyanin content
JP2023544016A (en) Rapid transformation of monocot explants
Yamchi et al. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress
WO2009094704A1 (en) Seed specific expression in plants
CA2350186A1 (en) Promoters for gene expression in the roots of plants
US20100269215A1 (en) Tfla gene which can degrade toxoflavin and its chemical derivatives and transgenic organisms expressing tfla gene
CN103421801B (en) A kind of regulate and control gene and the application thereof of rice class setting percentage
US7592507B2 (en) Method to modify cell number, architecture and yield of plants by overexpressing the E2F transcription factor
AU2003221803B2 (en) Identification and characterization of an anthocyanin mutant (ANT1) in tomato
JP2005198600A (en) Recombinant theaceous tree and method for preparing the same tree
Li et al. An oleosin-fusion protein driven by the CaMV35S promoter is accumulated in Arabidopsis (Brassicaceae) seeds and correctly targeted to oil bodies
EP1566443A1 (en) Improved transformation of brassica species
CN103937799B (en) A kind of endosperm specific expression promoter
US20250154522A1 (en) Improved genetic transformation by improving de-novo shoot regeneration in adult plants and during in-vitro tissue culture
US8569580B2 (en) Transformed plants or algae with highly expressed chloroplast protein BPG2
CN101113452B (en) Plant Flower Specific Promoter and Its Application
CN110862973B (en) Rice thioredoxase gene OsNDU, protein, vector, host cell, molecular marker method and application
Kim et al. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes
CN101245349B (en) Plants leaf all-level vein and tillering base section special expression promoter and application
CA2343652C (en) Plant promoters and plant terminators
Tsuwamoto et al. Identification of a cis-regulatory element that acts in companion cell-specific expression of AtMT2B promoter through the use of Brassica vasculature and gene-gun-mediated transient assay
JP4505626B2 (en) Promoter with pollen-specific expression activity
JPH10248570A (en) Metallothionein gene promoter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407