[go: up one dir, main page]

JP2005174644A - Fuel reforming system - Google Patents

Fuel reforming system Download PDF

Info

Publication number
JP2005174644A
JP2005174644A JP2003410444A JP2003410444A JP2005174644A JP 2005174644 A JP2005174644 A JP 2005174644A JP 2003410444 A JP2003410444 A JP 2003410444A JP 2003410444 A JP2003410444 A JP 2003410444A JP 2005174644 A JP2005174644 A JP 2005174644A
Authority
JP
Japan
Prior art keywords
temperature
water
catalyst layer
water injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410444A
Other languages
Japanese (ja)
Inventor
Motokata Ishihara
基固 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003410444A priority Critical patent/JP2005174644A/en
Publication of JP2005174644A publication Critical patent/JP2005174644A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which can prevent a catalyst layer from excessive rise in temperature with superior responsiveness in the case the entrance gas composition may be deviated from a prescribed control range and the catalyst layer is in danger of excessive rise of temperature. <P>SOLUTION: In a fuel reforming system which is provided with a fuel reforming reactor that can reform a fuel gas into a reformed gas rich in hydrogen, a temperature measuring means 18 that either detects or estimates the temperature of a catalyst layer 12 of the reforming reactor 1 and a water injection means 15 that injects water onto the catalyst layer 12 are provided, and in the case the temperature of the catalyst layer exceeds or is estimated to exceed a prescribed value, water is injected to the catalyst layer by the water injection means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、改質反応器を備えた燃料改質システムに関するものである。   The present invention relates to a fuel reforming system provided with a reforming reactor.

燃料を改質して水素リッチな改質ガスを得る燃料改質システムにおいては、一般に触媒反応器での化学反応によって燃料からの水素の生成や一酸化炭素の除去等を行っている。
これらの反応器は、その触媒層温度によって出口のガス組成が変化し、また過度に温度が上昇すると触媒が劣化するため、触媒層をある温度範囲に保つ必要がある。またこの触媒層温度は反応熱によって大きく影響を受けるため、これを左右する流入するガス組成を適切に制御することが重要となる。
In a fuel reforming system that reforms a fuel to obtain a hydrogen-rich reformed gas, generation of hydrogen from the fuel, removal of carbon monoxide, and the like are generally performed by a chemical reaction in a catalytic reactor.
In these reactors, the gas composition at the outlet changes depending on the temperature of the catalyst layer, and when the temperature rises excessively, the catalyst deteriorates. Therefore, it is necessary to keep the catalyst layer in a certain temperature range. In addition, since the catalyst layer temperature is greatly affected by the heat of reaction, it is important to appropriately control the inflowing gas composition that affects the catalyst layer temperature.

このため従来は、入口のガス組成、特に酸素濃度を検出・制御し、これによって触媒層の温度制御を行っていた(特許文献1参照)。   For this reason, conventionally, the gas composition at the inlet, particularly the oxygen concentration, is detected and controlled, thereby controlling the temperature of the catalyst layer (see Patent Document 1).

例えば、触媒反応器の一例であるガソリン改質反応器は、適切な比率・温度で混合されたガソリン蒸気、水蒸気、空気から触媒作用によって水素リッチな改質ガスを生成する。このとき改質反応器内ではガソリン蒸気と空気による部分酸化反応(発熱反応)と、ガソリン蒸気と水蒸気による水蒸気改質反応(吸熱反応)が生じており、双方の反応の熱収支を釣り合わせることで温度を制御している。   For example, a gasoline reforming reactor, which is an example of a catalytic reactor, generates hydrogen-rich reformed gas by catalytic action from gasoline vapor, water vapor, and air mixed at an appropriate ratio and temperature. At this time, partial oxidation reaction (exothermic reaction) with gasoline vapor and air and steam reforming reaction (endothermic reaction) with gasoline vapor and steam occur in the reforming reactor, and balance the heat balance of both reactions. The temperature is controlled by.

触媒層温度によって反応器の反応は影響を受け、反応器の出口ガス組成が変化するため、所望の組成の改質ガスを得るためには触媒層全体を一定温度範囲に保つ必要があり、また特に高温側は過度に上昇すると触媒が劣化するという問題を生じるため、最大温度を改質触媒の許容温度以下に抑える必要がある。このため、通常はこの触媒層温度を一定範囲に保つ様にガソリン蒸気、水蒸気、空気を一定の比率に制御している。
特開2002−179405公報
The reaction of the reactor is affected by the temperature of the catalyst layer, and the outlet gas composition of the reactor changes. Therefore, in order to obtain a reformed gas having a desired composition, it is necessary to keep the entire catalyst layer within a certain temperature range. In particular, if the temperature rises excessively, the problem arises that the catalyst deteriorates. Therefore, it is necessary to keep the maximum temperature below the allowable temperature of the reforming catalyst. For this reason, usually, gasoline vapor, water vapor, and air are controlled at a certain ratio so as to keep the catalyst layer temperature within a certain range.
JP 2002-179405 A

しかしながら、この入口ガス組成により触媒層温度を制御する方法は、定常運転時等のガス組成が比較的安定し易い場合には制御可能であるものの、過渡的な負荷変動に応じて改質ガス流量を変化させる場合に、過渡的に空気量が増加し、制御範囲を外れた場合にはこの比率を常に一定範囲に保つのは難しく、上流側での流量調節に基づきこれを補正しても、それが触媒層に到達するまでの間は、制御範囲を外れた組成のガスが流入し続けることになる。   However, although the method of controlling the catalyst layer temperature by this inlet gas composition can be controlled when the gas composition is relatively stable during steady operation or the like, the reformed gas flow rate can be controlled according to transient load fluctuations. When the air flow is changed, it is difficult to keep this ratio constant within a constant range when the air volume increases transiently and is outside the control range. Even if this is corrected based on the flow rate adjustment on the upstream side, Until it reaches the catalyst layer, a gas having a composition out of the control range continues to flow.

ここで、主に触媒層温度を左右する酸化反応は反応速度が速く、短時間でも酸素を過剰に供給すると急激に温度が上昇する。更に燃料改質システムに使用する触媒反応器は、前述の様に一定以上に過昇温するとその性能が劣化するという問題があり、一旦劣化を生じると反応器自体を交換する必要が生じ、燃料改質システムの効率低下や維持管理費の上昇を招くことになる。   Here, the oxidation reaction mainly affecting the temperature of the catalyst layer has a high reaction rate, and the temperature rapidly increases when oxygen is supplied excessively even for a short time. Furthermore, as described above, the catalytic reactor used in the fuel reforming system has a problem that its performance deteriorates when the temperature rises above a certain level, and once the deterioration occurs, the reactor itself needs to be replaced. The efficiency of the reforming system will be reduced and the maintenance cost will be increased.

本発明の目的は、入口ガス組成が制御範囲を外れ、触媒層の過昇温が生じる恐れがある場合に、応答性良く触媒層の過昇温を防止する燃料電池システムを提供することである。   An object of the present invention is to provide a fuel cell system that prevents overheating of a catalyst layer with good responsiveness when an inlet gas composition is out of a control range and there is a risk of overheating of the catalyst layer. .

本発明は、燃料ガスを触媒層により改質して水素リッチな改質ガスを生成する改質反応器を備えた燃料改質システムにおいて、前記改質反応器の触媒層の温度を検出/推定する温度検出手段と、前記触媒層に水を噴射する水噴射手段とを備え、前記触媒層の温度が所定値を超えた場合、もしくは、所定値を超えると推定した場合に、前記水噴射手段により水を触媒層に噴射する。   The present invention provides a fuel reforming system including a reforming reactor that generates a hydrogen-rich reformed gas by reforming a fuel gas with a catalyst layer, and detects / estimates the temperature of the catalyst layer of the reforming reactor. And a water injection means for injecting water into the catalyst layer, and when the temperature of the catalyst layer exceeds a predetermined value or when it is estimated that the temperature exceeds a predetermined value, the water injection means To inject water into the catalyst layer.

本発明においては、触媒層の温度が水の気化により効率的かつ応答性良く触媒層を冷却し、過渡時における触媒層の過昇温を防止し、過熱による触媒の劣化を防止することができる。   In the present invention, the temperature of the catalyst layer cools the catalyst layer efficiently and responsively by vaporization of water, prevents overheating of the catalyst layer during a transient, and prevents deterioration of the catalyst due to overheating. .

本実施例の触媒反応器は、燃料としてガソリンを改質して燃料電池での発電に使用するための水素リッチな改質ガスを得る燃料改質システムにおいて、その構成要素の中でも特に高温となるガソリン改質反応器を例としている。なお、メタノールやエタノール、メタン等の他の燃料を用いた改質反応器及びその改質反応器を備えた改質システムに適用してもよい。   The catalytic reactor of the present embodiment has a particularly high temperature among the components in a fuel reforming system that reforms gasoline as a fuel to obtain a hydrogen-rich reformed gas for use in power generation in a fuel cell. A gasoline reforming reactor is taken as an example. In addition, you may apply to the reforming system provided with the reforming reactor using the other fuels, such as methanol, ethanol, methane, and the reforming reactor.

図1に本発明を適用したガソリン改質反応器の構造を示す。   FIG. 1 shows the structure of a gasoline reforming reactor to which the present invention is applied.

ガソリン改質反応器1は、内部にガソリン蒸気等から改質ガスを生成させる触媒層12を収納する円筒容器11を備えており、その両端には、フランジ部13及び14が設けられている。フランジ部13、14は、ガソリン蒸気を供給する、または改質ガスを排出するための図示しないダクトと接続する。また、内部に収納された触媒層12は、入口部12aから所定の距離Lの位置で2つの触媒(上流触媒層12b、下流触媒層12c)に分割されており、分割された触媒層12b、12cの間に、触媒層12に温度調整のために水を噴霧する水噴射管15が設置されている。   The gasoline reforming reactor 1 includes a cylindrical container 11 that houses a catalyst layer 12 that generates reformed gas from gasoline vapor or the like, and flange portions 13 and 14 are provided at both ends thereof. The flange portions 13 and 14 are connected to a duct (not shown) for supplying gasoline vapor or discharging reformed gas. The catalyst layer 12 housed inside is divided into two catalysts (upstream catalyst layer 12b and downstream catalyst layer 12c) at a predetermined distance L from the inlet 12a, and the divided catalyst layer 12b, Between 12c, the water injection pipe 15 which sprays water on the catalyst layer 12 for temperature adjustment is installed.

ここで、距離Lは図5において触媒層の温度が、改質反応器1の過渡運転時に最大温度となる位置に相当する。実際には最大温度となる位置はガソリン流量等により前後するため、水噴射管15は最高温度となる範囲の中央付近に設置するのが望ましい。なお、触媒層12の最高温度となる領域は、触媒層上流からの反応ガス(ガソリン蒸気)が、触媒層に流入後、触媒との接触により反応を開始し始める付近下流の、反応ガス(ガソリン蒸気)の反応が安定的に行われ始める場所付近であり、触媒層上流側端からわずか所定距離下流側の付近であるが、予め実験等により確認しておく。   Here, the distance L corresponds to the position where the temperature of the catalyst layer becomes the maximum temperature during the transient operation of the reforming reactor 1 in FIG. Actually, the position where the maximum temperature is reached fluctuates depending on the gasoline flow rate or the like, so it is desirable to install the water injection pipe 15 near the center of the range where the maximum temperature is reached. It should be noted that the region where the maximum temperature of the catalyst layer 12 is reached is the reaction gas (gasoline) in the vicinity of the downstream where the reaction gas (gasoline vapor) from the upstream of the catalyst layer starts to start reaction upon contact with the catalyst after flowing into the catalyst layer. It is in the vicinity of the place where the reaction of the vapor) starts to be carried out stably, and is only a predetermined distance downstream from the upstream end of the catalyst layer.

水噴射管15は、改質反応器1内のガスの流れに面して配置され、渦巻き状に構成される。さらに、水噴射管15には複数の水噴射孔16がガスの流れ方向に平行に貫通して設けられる。水噴射孔16は、触媒層断面に均一に水が噴射できるように配置される。なお、この触媒層温度が最大となる位置の近傍には固定部材17を介して触媒層12の温度を検出する温度検出手段18が設置され、触媒層12の温度を検出する。   The water injection pipe 15 is arranged facing the gas flow in the reforming reactor 1 and is formed in a spiral shape. Further, the water injection pipe 15 is provided with a plurality of water injection holes 16 penetrating in parallel with the gas flow direction. The water injection holes 16 are arranged so that water can be uniformly injected onto the cross section of the catalyst layer. In the vicinity of the position where the catalyst layer temperature becomes maximum, a temperature detecting means 18 for detecting the temperature of the catalyst layer 12 is installed via the fixing member 17 to detect the temperature of the catalyst layer 12.

改質反応器1の上流側からガソリン蒸気、水蒸気及び空気が加熱、混合された状態で改質反応器1内に供給され、触媒層12内を通過しながら触媒反応によって水素リッチな改質ガスとなって下流へと排出される。一方、改質システム内の図示しない純水タンクからポンプ20を介して水噴射管15の一端に水が供給され、管内を通過して他端より排出される。このとき、水噴射孔16は常時開口しているため通過する水は、触媒層12に向けて流出されうるが、定常運転時は、絞り弁9が開かれ、水噴射管15内部を流通する水を特に加圧しないため触媒層12との圧力差が小さく、供給された水は触媒層12側に流出し難く、その大部分は管内を通過して他端より排出される。またこのとき、反応器上流側から供給する水蒸気の量を、改質反応に必要な量に対して水噴射管15から触媒層12へ流出する水量分だけ少なく設定する。これによりトータルの水供給量を従来の改質反応器と同等に抑えることが出来るため、水量増に伴うポンプ等の補機類の容量増加を避けることが出来る。   Gasoline vapor, water vapor, and air are heated and mixed from the upstream side of the reforming reactor 1 and supplied into the reforming reactor 1, and the hydrogen-rich reformed gas is generated by catalytic reaction while passing through the catalyst layer 12. And discharged downstream. On the other hand, water is supplied from a pure water tank (not shown) in the reforming system to one end of the water injection pipe 15 via the pump 20, passes through the pipe, and is discharged from the other end. At this time, since the water injection hole 16 is always open, the water passing therethrough can flow out toward the catalyst layer 12, but the throttle valve 9 is opened and flows through the water injection pipe 15 during steady operation. Since water is not particularly pressurized, the pressure difference with the catalyst layer 12 is small, and the supplied water hardly flows out to the catalyst layer 12 side, most of which passes through the pipe and is discharged from the other end. At this time, the amount of water vapor supplied from the upstream side of the reactor is set smaller than the amount required for the reforming reaction by the amount of water flowing out from the water injection pipe 15 to the catalyst layer 12. As a result, the total water supply amount can be suppressed to the same level as that of the conventional reforming reactor, so that an increase in the capacity of auxiliary equipment such as a pump accompanying an increase in the water amount can be avoided.

また、水噴射管15に供給する水量と管の長さ及び管の直径の関係は、供給される水が管内を通過する際に改質ガスから受ける熱量によって水の温度が沸点まで上昇しない様に設定する。これは常に全ての水噴出孔16から水を噴射出来る様に管内を液状の水で満たしておく必要があるためである。   Further, the relationship between the amount of water supplied to the water injection pipe 15, the length of the pipe, and the diameter of the pipe is such that the temperature of the water does not rise to the boiling point due to the amount of heat received from the reformed gas when the supplied water passes through the pipe. Set to. This is because it is necessary to always fill the pipe with liquid water so that water can be ejected from all the water ejection holes 16.

本実施例では触媒層12を前後に分割して一定の空間を設け、この空間に水噴射管15を設置しているが、この空間を詰めて水噴射管15に前後の触媒層12を接触させることも可能である。この様にすると水の噴霧が広がり難くなるという欠点は生じるものの、噴霧が直接かからない部分も熱伝達によりある程度の冷却効果は得られ、反応器をよりコンパクトにする事が出来る。更に触媒層12の担体に発泡金属を使用する場合等は、この発泡金属を成形する際に水噴射管15を鋳込むことによって、よりスペース効率を上げてコンパクト化することも出来る。   In this embodiment, the catalyst layer 12 is divided into the front and the back to provide a certain space, and the water injection pipe 15 is installed in this space. The space is filled and the front and rear catalyst layers 12 are brought into contact with the water injection pipe 15. It is also possible to make it. In this way, although there is a disadvantage that spraying of water is difficult to spread, a certain cooling effect can be obtained by heat transfer even in a portion where the spray is not directly applied, and the reactor can be made more compact. Furthermore, when using a foam metal for the support | carrier of the catalyst layer 12, the space efficiency can be improved more compactly by casting the water injection pipe 15 when shape | molding this foam metal.

図2は、本発明を適用したガソリン改質システムの構成図である。   FIG. 2 is a configuration diagram of a gasoline reforming system to which the present invention is applied.

改質システムには、上流側から改質反応器1、シフト反応器2、及び一酸化炭素除去反応器3の3種類の反応器が備えられている。改質反応器1にはガソリン蒸気とともに、水噴射管15及び熱交換器4を通過した水蒸気及び熱交換器4を通過した空気が供給され、触媒層12による改質反応により水素リッチな改質ガスが生成される。燃料改質器1の水噴射管15に供給される水は、水ポンプ20によって水噴射管15に圧送され、その水量は、水流路10に設置された流量制御弁7及び絞り弁9により制御される。   The reforming system includes three types of reactors, that is, a reforming reactor 1, a shift reactor 2, and a carbon monoxide removal reactor 3 from the upstream side. The reforming reactor 1 is supplied with steam that has passed through the water injection pipe 15 and the heat exchanger 4 and air that has passed through the heat exchanger 4 together with gasoline vapor. Gas is generated. Water supplied to the water injection pipe 15 of the fuel reformer 1 is pumped to the water injection pipe 15 by a water pump 20, and the amount of water is controlled by a flow control valve 7 and a throttle valve 9 installed in the water flow path 10. Is done.

また、熱交換器4及びCO除去反応器3に供給される空気はそれぞれ、空気流路に設置された流量制御弁5、6により制御される。また、シフト反応器2に供給される水は、水流路10に設置された流量制御弁8により制御される。これら制御弁5〜9及び水ポンプ20は、図示しないコントローラにより制御される。なお、コントローラには、前述の触媒層12の温度を検出する温度検出手段18の検出信号が入力される。   The air supplied to the heat exchanger 4 and the CO removal reactor 3 is controlled by flow control valves 5 and 6 installed in the air flow path, respectively. The water supplied to the shift reactor 2 is controlled by a flow control valve 8 installed in the water flow path 10. These control valves 5 to 9 and the water pump 20 are controlled by a controller (not shown). Note that the controller receives a detection signal from the temperature detection means 18 for detecting the temperature of the catalyst layer 12 described above.

改質反応器1を流出した改質ガスは、高濃度の一酸化炭素(以下、COと示す)を含むため、シフト反応器2において、改質ガスに水を加えてシフト反応により水素と二酸化炭素に変換する。その下流では更に改質ガスに空気を加え、CO除去反応器3により残ったCOを酸化させて二酸化炭素に変換し、改質ガス中のCO濃度を所定濃度以下に低減し、たとえば、図示しない燃料電池に供給する。   The reformed gas that has flowed out of the reforming reactor 1 contains high-concentration carbon monoxide (hereinafter referred to as CO). Therefore, in the shift reactor 2, water is added to the reformed gas and hydrogen and carbon dioxide are formed by the shift reaction. Convert to carbon. Downstream of that, air is further added to the reformed gas, and the remaining CO is oxidized by the CO removal reactor 3 to be converted into carbon dioxide, and the CO concentration in the reformed gas is reduced to a predetermined concentration or lower, for example, not shown. Supply to the fuel cell.

ここで、改質反応器1に供給する水蒸気は、通常、純水タンクからの水を熱交換器4により加熱して発生させるが、本実施例においては、図示しない純水タンクからの水を一旦、改質反応器1内の水噴射管15に供給し、これを通過させた後に熱交換器4にて蒸発させ、水流路21を通じて改質反応器1に供給する。なお、このとき供給される水量は、前述のように水噴射管15からの漏洩分を考慮して、噴射される。   Here, the steam supplied to the reforming reactor 1 is usually generated by heating water from the pure water tank by the heat exchanger 4, but in this embodiment, water from a pure water tank (not shown) is used. The water is once supplied to the water injection pipe 15 in the reforming reactor 1, passed through the water injection pipe 15, evaporated in the heat exchanger 4, and supplied to the reforming reactor 1 through the water channel 21. In addition, the amount of water supplied at this time is jetted in consideration of the leakage from the water jet pipe 15 as described above.

このため、熱交換器4に供給される水の温度は、改質反応器1内で加熱された分だけ高くなり、その熱量分だけ改質反応器1の入口での水蒸気の温度も高くなる。しかし、これは水蒸気が水噴射管15と接する際に奪われる熱分と相殺されるため、出口温度は変わらないことになる。また、熱収支的には改質ガスから水噴射管15内を通過する水に移動した熱は、熱交換器を介して改質反応器1の入口に還流されるため、熱損失による改質システムの効率低下を防ぐことが出来る。   For this reason, the temperature of the water supplied to the heat exchanger 4 is increased by the amount heated in the reforming reactor 1, and the temperature of water vapor at the inlet of the reforming reactor 1 is also increased by the amount of heat. . However, since this is offset by the heat lost when the water vapor contacts the water injection pipe 15, the outlet temperature does not change. In terms of heat balance, the heat transferred from the reformed gas to the water passing through the water injection pipe 15 is returned to the inlet of the reforming reactor 1 through the heat exchanger. System efficiency can be prevented from decreasing.

一方、前述の様に水噴射管15内を通過する水量は、水が通過する際の温度上昇により水が沸騰しない流量に設定され、通常水温は50〜60℃程度となる。このため、改質反応器1の入口部におけるガソリン蒸気・水蒸気・空気の混合流体の比熱及び熱容量を考慮すると、混合流体による改質反応器1の入口温度の上昇代は10〜20℃程度であり、触媒耐熱温度と定常運転時の最高温度との余裕代(200℃程度)に大きく影響することはない。   On the other hand, as described above, the amount of water passing through the water injection pipe 15 is set to a flow rate at which water does not boil due to a temperature rise when water passes, and the normal water temperature is about 50 to 60 ° C. For this reason, in consideration of the specific heat and heat capacity of the mixed fluid of gasoline vapor / steam / air at the inlet of the reforming reactor 1, the allowance for increasing the inlet temperature of the reforming reactor 1 by the mixed fluid is about 10 to 20 ° C. There is no significant influence on the margin of allowance (about 200 ° C.) between the heat resistant temperature of the catalyst and the maximum temperature during steady operation.

次に燃料改質器1の触媒層温度が上昇した場合の水噴射管15の作動方法について図3のフローチャートを用いて説明する。この制御はコントローラにより所定間隔で実施される。   Next, an operation method of the water injection pipe 15 when the catalyst layer temperature of the fuel reformer 1 rises will be described with reference to the flowchart of FIG. This control is performed at predetermined intervals by the controller.

まずステップ1でシステムが定常運転状態かどうかを判定し、定常運転状態であればステップ2に進み、水噴射管15の出口側の水流路10に設けられた絞り弁9を全開にして制御を終了する。一方、過渡状態であればステップ3に進む。   First, in step 1, it is determined whether the system is in a steady operation state. If the system is in a steady operation state, the process proceeds to step 2, and the throttle valve 9 provided in the water flow path 10 on the outlet side of the water injection pipe 15 is fully opened to perform control. finish. On the other hand, if it is in a transient state, the process proceeds to Step 3.

続くステップ3で、温度検出手段18を用いて触媒層12の温度を検出して、触媒層12の最高温度となる部位の近傍の温度4を読み込むとともに、温度変化率ΔTを算出する。ステップ4で読み込んだ温度Tの絶対値が第1所定値T1℃以上で、かつその変化率ΔTが一定値ΔT1℃/秒以上かどうかを判定し、この条件が成立する場合には、ステップ5で絞り弁9を絞る。この条件では、ある温度T1時点での温度変化率がΔT1以上であれば、触媒層12に劣化が生じる温度(第2所定値T2)以上になると推定されるため、水噴射を実施する。なお、絞り弁9を絞る条件として、触媒層12の検出温度の絶対値がT1より更に高い第2所定値T2℃以上となった場合に絞るようにしてもよい。   In the subsequent step 3, the temperature of the catalyst layer 12 is detected by using the temperature detecting means 18, the temperature 4 in the vicinity of the portion where the maximum temperature of the catalyst layer 12 is read, and the temperature change rate ΔT is calculated. When the absolute value of the temperature T read in step 4 is not less than the first predetermined value T1 ° C. and the rate of change ΔT is not less than a constant value ΔT1 ° C./second, if this condition is satisfied, step 5 The throttle valve 9 is throttled. Under this condition, if the rate of change in temperature at a certain temperature T1 is equal to or greater than ΔT1, it is estimated that the temperature is such that the catalyst layer 12 is deteriorated (second predetermined value T2). Therefore, water injection is performed. The throttle valve 9 may be throttled when the absolute value of the detected temperature of the catalyst layer 12 is equal to or higher than a second predetermined value T2 ° C. that is higher than T1.

絞り弁9を絞ることによって、水噴射管15内の圧力が上昇して触媒層12へ水が噴射され、その気化熱により触媒層12の温度の上昇を抑え、過昇温による触媒層12の劣化を防止する。また同時に流量制御弁5を閉じ、改質反応器1への空気供給量を減少させ、発熱を抑制するようにしてもよい。そしてステップ4に戻り、再び触媒層12の温度判定を繰り返す。また、ステップ4で、検出した温度Tが前述の条件を満たさない場合には、ステップ1に戻り、温度検出を繰り返す。   By restricting the throttle valve 9, the pressure in the water injection pipe 15 is increased and water is injected into the catalyst layer 12, and the increase in the temperature of the catalyst layer 12 is suppressed by the heat of vaporization. Prevent deterioration. At the same time, the flow control valve 5 may be closed to reduce the amount of air supplied to the reforming reactor 1 to suppress heat generation. Then, returning to step 4, the temperature determination of the catalyst layer 12 is repeated again. On the other hand, if the detected temperature T does not satisfy the above condition in step 4, the process returns to step 1 to repeat the temperature detection.

このような制御により、触媒層12の過昇温を抑え、触媒層12の劣化を防ぐことが出来る。また、水を噴射する時に触媒層温度や改質ガス流量に応じて絞り弁9の開度を調節すると、噴射量を必要最小限とすることが出来るので、触媒層12を過度に冷却することによる改質効率の悪化を抑制することが出来る。また逆に、触媒層12の過冷却が許容出来る場合には絞り弁9をより簡素な開閉弁に置き換えることにより、開度調節が不要となり制御を簡素化することが出来る。なお、本制御は、非定常(過渡)時を想定しているが、定常時であっても、触媒層12の温度が過昇温となる恐れがある時には絞り弁9を絞り、水噴射管15より水を触媒層12に噴射するようにしてもよい。   By such control, it is possible to suppress overheating of the catalyst layer 12 and prevent the catalyst layer 12 from deteriorating. Further, when the opening of the throttle valve 9 is adjusted according to the catalyst layer temperature and the reformed gas flow rate when water is injected, the injection amount can be minimized, so that the catalyst layer 12 is excessively cooled. It is possible to suppress the deterioration of the reforming efficiency due to. On the contrary, when the overcooling of the catalyst layer 12 can be allowed, the opening degree adjustment is not necessary and the control can be simplified by replacing the throttle valve 9 with a simpler on-off valve. Note that this control assumes an unsteady (transient) time, but even in the steady state, when the temperature of the catalyst layer 12 may be excessively increased, the throttle valve 9 is throttled and the water injection pipe is Water may be sprayed from 15 to the catalyst layer 12.

本実施例では、水噴射管15を通過した水を改質反応器1に供給しているが、図4に示す様にこれをシフト反応器2に供給することも可能である。更に、本発明は、改質反応器1以外にCO除去反応器3にも適用することが出来る。この場合にもCO除去反応器3内に設置した水噴射管15を通過した水は改質反応器1又はシフト反応器2に供給することが出来る。   In the present embodiment, the water that has passed through the water injection pipe 15 is supplied to the reforming reactor 1, but it is also possible to supply this to the shift reactor 2 as shown in FIG. Further, the present invention can be applied to the CO removal reactor 3 in addition to the reforming reactor 1. Also in this case, the water that has passed through the water injection pipe 15 installed in the CO removal reactor 3 can be supplied to the reforming reactor 1 or the shift reactor 2.

したがって、本発明によれば、触媒反応器1の触媒層12の温度を検出または推定する温度検出手段18と、前記触媒層に水を噴射する水噴射手段15とを備え、触媒層12の温度が所定値を超えた場合、もしくは、所定値を超えると推定した場合に、水噴射手段15により水を触媒層に噴射するので、水の気化により効率的かつ応答性良く触媒層を冷却することが出来る。   Therefore, according to the present invention, the temperature detection means 18 for detecting or estimating the temperature of the catalyst layer 12 of the catalyst reactor 1 and the water injection means 15 for injecting water to the catalyst layer are provided, and the temperature of the catalyst layer 12 is provided. When water exceeds a predetermined value, or when it is estimated that it exceeds the predetermined value, water is injected into the catalyst layer by the water injection means 15, so that the catalyst layer can be cooled efficiently and responsively by vaporization of water. I can do it.

また、触媒層12は、所定位置で分割された複数の触媒層12b、12cからなり、水噴射手段は、触媒層12の最も高温になる部位を直接冷却するので、効率的かつ応答性良く触媒層を冷却することが出来る。   Further, the catalyst layer 12 is composed of a plurality of catalyst layers 12b and 12c divided at predetermined positions, and the water injection means directly cools the highest temperature portion of the catalyst layer 12, so that the catalyst layer is efficient and responsive. The layer can be cooled.

また、温度検出手段18を設置する位置は、触媒層12の温度が最も高温になる部位近傍であるので、触媒反応器1の触媒層内に水噴射手段15を設置するための空間を確保する必要がないので、触媒反応器1の容積の増大を抑えることが出来る。   Moreover, since the position where the temperature detection means 18 is installed is in the vicinity of the portion where the temperature of the catalyst layer 12 becomes the highest temperature, a space for installing the water injection means 15 in the catalyst layer of the catalyst reactor 1 is secured. Since it is not necessary, an increase in the volume of the catalytic reactor 1 can be suppressed.

水噴射手段15は、燃料ガス流れに面して複数の孔16を設けた管状部材からなるため、多数の水噴射孔16から触媒層12に水を噴射するので、広範囲に水を噴射するために通常の噴射弁の様に噴霧を広げる広い空間を確保する必要がなく、反応器容積の拡大を抑えることが出来る。また、触媒層12に到達するまでの噴霧の飛距離を短く出来るため、噴霧が触媒層12に到達する前に気化して冷却効果が低下するのを抑えることが出来る。   Since the water injection means 15 is composed of a tubular member having a plurality of holes 16 facing the fuel gas flow, water is injected from the many water injection holes 16 into the catalyst layer 12, so that water can be injected over a wide range. In addition, it is not necessary to secure a wide space for spreading the spray unlike a normal injection valve, and the expansion of the reactor volume can be suppressed. In addition, since the spray distance until reaching the catalyst layer 12 can be shortened, it is possible to suppress the vaporization before the spray reaches the catalyst layer 12 to reduce the cooling effect.

温度検出手段18は、前記触媒反応器の最高温度となる領域近傍に設置され、その検出された温度が第1所定温度T1以上で、かつ検出温度の変化率が所定値ΔT1以上の場合に、または、その検出された温度が第2所定温度T2(>T1)以上の場合に、水噴射手段15が水を触媒層12に噴射するため、最高温度領域の温度を検出でき、正確な水噴射の制御を行うことができる。さらに触媒の絶対温度と温度変化率とを組み合わせて水噴射の必要性を判断することで、より正確に触媒の過昇温を防止できる。   The temperature detection means 18 is installed in the vicinity of the region where the maximum temperature of the catalytic reactor is reached, and when the detected temperature is the first predetermined temperature T1 or more and the change rate of the detected temperature is the predetermined value ΔT1 or more, Alternatively, when the detected temperature is equal to or higher than the second predetermined temperature T2 (> T1), the water injection means 15 injects water onto the catalyst layer 12, so that the temperature in the maximum temperature region can be detected and accurate water injection is performed. Can be controlled. Furthermore, by determining the necessity of water injection by combining the absolute temperature of the catalyst and the temperature change rate, it is possible to prevent the catalyst from being overheated more accurately.

水噴射手段15に水を供給するポンプ20と、水噴射手段15の下流側に水の流通を制御する制御弁9とを設け、触媒層12の温度が所定値T2を超えた場合、もしくは、超えると推定した場合に制御弁9を閉じるため、簡素な構成で応答性良く多数の水噴出孔16より触媒層12に水を噴出させることが出来る。また、定常的に水を流通させることにより管内での水の気化を抑えることが可能となり、常に管内を液体の水で満たしておけるので、必要に応じて応答良く噴射することが出来る。   A pump 20 for supplying water to the water injection means 15 and a control valve 9 for controlling the flow of water downstream of the water injection means 15 are provided, and when the temperature of the catalyst layer 12 exceeds a predetermined value T2, or Since the control valve 9 is closed when estimated to exceed, water can be ejected from the large number of water ejection holes 16 to the catalyst layer 12 with a simple structure and good response. Further, by constantly flowing water, it becomes possible to suppress the vaporization of water in the pipe, and since the inside of the pipe can be always filled with liquid water, it is possible to inject with good response as necessary.

水噴射手段15から流出した水を触媒反応器1に供給する水供給手段21を備えたため、管状の水噴射手段15を通過する水が改質ガスから奪う熱によって、改質原燃料を加熱し、再び反応に利用することが出来るので、システムの効率低下を避けることが出来る。   Since the water supply means 21 for supplying the water flowing out from the water injection means 15 to the catalytic reactor 1 is provided, the reforming raw fuel is heated by the heat taken from the reformed gas by the water passing through the tubular water injection means 15. Since it can be used again for the reaction, it is possible to avoid a decrease in the efficiency of the system.

水供給手段21は、触媒反応器1の負荷に応じて設定される改質反応原燃料量と、システム定常時に水噴射手段15から触媒層内に流出させる水量との差分を、触媒反応器1に供給するため、改質反応に必要な最適な水量を改質反応器1に供給することが出来るので、過剰な水供給に伴うポンプ等補機類の容量増の必要がない。   The water supply means 21 calculates the difference between the reforming reaction raw fuel amount set according to the load of the catalyst reactor 1 and the amount of water that flows out from the water injection means 15 into the catalyst layer when the system is steady. Therefore, it is possible to supply the optimum amount of water necessary for the reforming reaction to the reforming reactor 1, so that it is not necessary to increase the capacity of auxiliary equipment such as a pump accompanying excessive water supply.

制御弁9は、オン/オフ弁であるため、専用の流量調節手段が不要となるので、簡素な構成で制御出来る。   Since the control valve 9 is an on / off valve, a dedicated flow rate adjusting means is not required, and can be controlled with a simple configuration.

制御弁9は、流量を調節可能な流量制御弁としたため、触媒層12の温度上昇の度合いに応じて水噴射量を必要最小限として、過度に触媒層12を冷却することによる改質効率の悪化を抑制することが出来る。   Since the control valve 9 is a flow rate control valve capable of adjusting the flow rate, the amount of water injection is minimized according to the degree of temperature rise of the catalyst layer 12, and the reforming efficiency by excessively cooling the catalyst layer 12 is improved. Deterioration can be suppressed.

本発明を適用した改質反応器は、改質反応器の触媒の劣化を防止でき、燃料改質型燃料電池システムに有用である。   The reforming reactor to which the present invention is applied can prevent deterioration of the catalyst of the reforming reactor, and is useful for a fuel reforming fuel cell system.

本発明を適用したガソリン改質反応器の構造図である。1 is a structural diagram of a gasoline reforming reactor to which the present invention is applied. 燃料改質の構成を説明する図である。It is a figure explaining the structure of fuel reforming. 本発明の制御内容を説明するフローチャートである。It is a flowchart explaining the control content of this invention. 本発明を適用したガソリン改質システムの他の構成図である。It is another block diagram of the gasoline reforming system to which this invention is applied. ガソリン改質反応器の温度分布を示す図である。It is a figure which shows the temperature distribution of a gasoline reforming reactor.

符号の説明Explanation of symbols

1:改質反応器
2:シフト反応器
3:CO除去反応器
4:熱交換器
5:空気流量調節弁
6:空気流量調節弁
7:水流量調節弁
8:水流量調節弁
9:絞り弁
10:水流路
11:円筒容器
12:触媒層
13:フランジ部
14:フランジ部
15:水噴射管
16:水噴射孔
17:固定部材
18:温度検出手段
1: Reforming reactor 2: Shift reactor 3: CO removal reactor 4: Heat exchanger 5: Air flow control valve 6: Air flow control valve 7: Water flow control valve 8: Water flow control valve 9: Throttle valve 10: water flow path 11: cylindrical container 12: catalyst layer 13: flange part 14: flange part 15: water injection pipe 16: water injection hole 17: fixing member 18: temperature detection means

Claims (11)

燃料ガスを改質して水素リッチな改質ガスを得る改質反応器を備えた燃料改質システムにおいて、
前記改質反応器の触媒層の温度を検出もしくは推定する温度検出手段と、
前記触媒層に水を噴射する水噴射手段とを有し、
前記触媒層の温度が所定値を超えた場合もしくは所定値を超えると推定した場合に、前記水噴射手段により水を触媒層に噴射することを特徴とする燃料改質システム。
In a fuel reforming system including a reforming reactor that reforms a fuel gas to obtain a hydrogen-rich reformed gas,
Temperature detecting means for detecting or estimating the temperature of the catalyst layer of the reforming reactor;
Water injection means for injecting water to the catalyst layer,
When the temperature of the catalyst layer exceeds a predetermined value or when it is estimated that the temperature exceeds a predetermined value, water is injected into the catalyst layer by the water injection means.
前記触媒層は、所定位置で分割された複数の触媒層からなり、前記水噴射手段は、前記複数の触媒層の間に設けられたことを特徴とする請求項1に記載の燃料改質システム。   2. The fuel reforming system according to claim 1, wherein the catalyst layer includes a plurality of catalyst layers divided at predetermined positions, and the water injection unit is provided between the plurality of catalyst layers. . 前記所定位置は、前記触媒層の温度が最も高温になる部位近傍であることを特徴とする請求項2に記載の燃料改質システム。   The fuel reforming system according to claim 2, wherein the predetermined position is near a portion where the temperature of the catalyst layer is the highest. 前記水噴射手段は、燃料ガス流れに平行に複数の孔を設けた管状部材からなることを特徴とする請求項1から3のいずれか一つに記載の燃料改質システム。   The fuel reforming system according to any one of claims 1 to 3, wherein the water injection means is formed of a tubular member provided with a plurality of holes parallel to the fuel gas flow. 前記温度検出手段は、前記改質反応器の最高温度となる領域近傍に設置され、その検出された温度が第1所定温度以上で、かつ検出温度の上昇変化率が所定値以上の場合に、前記水噴射手段が水を噴射することを特徴とする請求項1に記載の燃料改質システム。   The temperature detecting means is installed in the vicinity of the region where the maximum temperature of the reforming reactor is reached, and when the detected temperature is equal to or higher than the first predetermined temperature and the rising change rate of the detected temperature is equal to or higher than a predetermined value, The fuel reforming system according to claim 1, wherein the water injection unit injects water. 前記温度検出手段は、前記改質反応器の最高温度となる領域近傍に設置され、その検出された温度が前記触媒層の劣化が生じる第2所定温度以上の場合に、前記水噴射手段が水を噴射することを特徴とする請求項1に記載の燃料改質システム。   The temperature detection means is installed in the vicinity of the region where the maximum temperature of the reforming reactor is reached, and when the detected temperature is equal to or higher than a second predetermined temperature at which the catalyst layer deteriorates, the water injection means The fuel reforming system according to claim 1, wherein the fuel is reformed. 前記水噴射手段に水を供給するポンプと、
前記水噴射手段の下流側に水の流通を制御する制御弁とを設け、
前記触媒層の温度が所定値を超えた場合もしくは超えると推定した場合に前記制御弁を閉じることを特徴とする請求項1または2に記載の燃料改質システム。
A pump for supplying water to the water injection means;
A control valve for controlling the flow of water on the downstream side of the water injection means,
3. The fuel reforming system according to claim 1, wherein the control valve is closed when the temperature of the catalyst layer exceeds or is estimated to exceed a predetermined value. 4.
前記水噴射手段から流出した水を前記改質反応器に供給する水供給手段を備えたことを特徴とする請求項2に記載の燃料改質システム。   The fuel reforming system according to claim 2, further comprising water supply means for supplying water flowing out from the water injection means to the reforming reactor. 前記水供給手段は、前記改質反応器の負荷に応じて設定される水量と、システム定常時に前記水噴射手段から触媒層内に漏洩する水量との差分を前記改質反応器に供給することを特徴とする請求項8の燃料改質システム。   The water supply means supplies the reforming reactor with a difference between the amount of water set according to the load of the reforming reactor and the amount of water leaking into the catalyst layer from the water injection means when the system is stationary. The fuel reforming system according to claim 8. 前記制御弁は、オン/オフ弁であることを特徴とする請求項7に記載の燃料改質システム。   The fuel reforming system according to claim 7, wherein the control valve is an on / off valve. 前記制御弁は、流量を調節可能な流量制御弁とする請求項7に記載の燃料改質システム。
The fuel reforming system according to claim 7, wherein the control valve is a flow rate control valve capable of adjusting a flow rate.
JP2003410444A 2003-12-09 2003-12-09 Fuel reforming system Pending JP2005174644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410444A JP2005174644A (en) 2003-12-09 2003-12-09 Fuel reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410444A JP2005174644A (en) 2003-12-09 2003-12-09 Fuel reforming system

Publications (1)

Publication Number Publication Date
JP2005174644A true JP2005174644A (en) 2005-06-30

Family

ID=34731540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410444A Pending JP2005174644A (en) 2003-12-09 2003-12-09 Fuel reforming system

Country Status (1)

Country Link
JP (1) JP2005174644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263055A (en) * 2006-03-29 2007-10-11 Mitsubishi Motors Corp Exhaust purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263055A (en) * 2006-03-29 2007-10-11 Mitsubishi Motors Corp Exhaust purification device

Similar Documents

Publication Publication Date Title
KR101199133B1 (en) Fuel Cell System and Operation Method thereof
JP4000888B2 (en) Reforming fuel cell system
US20050069741A1 (en) Fuel cell system
US20050129997A1 (en) Hydrogen generator, method of operating hydrogen generator, and fuel cell system
US7172638B2 (en) Staged air autothermal reformer for improved startup and operation
JP2007506244A (en) Fuel cell shutdown and start purge using a stoichiometric stage combustor
JPWO2006088018A1 (en) Hydrogen generator, operating method thereof, and fuel cell system
US6797418B1 (en) Fuel processor for fuel cell
JP2008303128A (en) Fuel reformer
JP2012520234A (en) Fuel injection apparatus and method for fuel reformer
US20110067303A1 (en) Reforming device
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP2005174644A (en) Fuel reforming system
US7160341B2 (en) System for controlling front and back end temperatures of a shift reactor
US20050037302A1 (en) System and method for starting a catalytic reactor
US7163566B2 (en) Method of operating a gas generating system and a gas generating system
EP1369946A1 (en) Warm-up device for catalytic reactor
JP2007519205A (en) Coolant conditioning system and method for a fuel processing subsystem
KR20180004664A (en) Heat and hydrogen generation device
JP2005314180A (en) Method for stopping auto-oxidizable internal heating reformer
JP2006327904A (en) Hydrogen manufacturing apparatus and fuel cell system provided with the hydrogen manufacturing apparatus
JP3927310B2 (en) Carbon monoxide remover
JP2008074688A (en) Reformer
WO2024075400A1 (en) Generation device and generation method
JPH08190925A (en) Cooling system of fuel cell power generating equipment