[go: up one dir, main page]

JP2005172646A - Drying characteristic detection method and its device - Google Patents

Drying characteristic detection method and its device Download PDF

Info

Publication number
JP2005172646A
JP2005172646A JP2003414165A JP2003414165A JP2005172646A JP 2005172646 A JP2005172646 A JP 2005172646A JP 2003414165 A JP2003414165 A JP 2003414165A JP 2003414165 A JP2003414165 A JP 2003414165A JP 2005172646 A JP2005172646 A JP 2005172646A
Authority
JP
Japan
Prior art keywords
measured
infrared
electromagnetic wave
drying
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414165A
Other languages
Japanese (ja)
Inventor
Yuji Noda
勇次 野田
Toshikazu Hamao
俊和 浜尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003414165A priority Critical patent/JP2005172646A/en
Publication of JP2005172646A publication Critical patent/JP2005172646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of measuring a drying characteristic of a paint film directly and accurately in a noncontact way, and shortening a drying time. <P>SOLUTION: This drying characteristic detection device is equipped with an electromagnetic wave irradiation means for irradiating the paint film to be measured with an electromagnetic wave, an electromagnetic wave detection means for detecting the electromagnetic wave reflected from the paint film to be measured, an operation means 4 for operating the detected electromagnetic wave characteristic, and a display means 6 for displaying an operation result. In the device for evaluating the drying characteristic of the paint film to be measured, the electromagnetic wave irradiation means is used as an infrared light source 1, and a storage device 5 for storing a calibration curve between the infrared absorbance and the solvent content of various solvents measured beforehand is provided, and the infrared absorbance of an infrared ray reflected or transmitted from the paint film to be measured is measured by using the electromagnetic wave detection means as an infrared spectral analyzer 3, and the operation means operates by collating the measured infrared absorbance with the calibration curve stored in the storage device 5, and calculates the solvent content in the paint film to be measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塗料、接着剤などの乾燥特性を、乾燥度が進行するにつれて減少していく物質の赤外線吸収スペクトルからその含有量を算出して塗膜の乾燥特性を算出する乾燥特性検出装置に関する。   The present invention relates to a drying characteristic detection device for calculating the drying characteristics of a coating film by calculating the content of the drying characteristics of a paint, an adhesive, etc. from the infrared absorption spectrum of a substance that decreases as the degree of drying progresses. .

従来、塗膜や接着剤などのなどの乾燥特性を評価するため、鉛筆硬度試験にて膜の硬度を観測し、乾燥特性を見る方法や、膜をガーゼで被いその上から重りを乗せその後ガーゼの膜への付着具合から乾燥特性を見る方法などJIS規格によるものや、指触による評価法などがある。
しかし、これらJIS規格による乾燥特性の評価方法では、塗膜の破れや試験後に痕がのこる。また塗膜の特性によっては乾燥、未乾燥状態で差が顕著に現れず、乾燥終了のタイミングが明確に分からないなどの不具合がある。これらの評価をおこなう上で装置の設定や時間経過の観察をする時には、その間にも乾燥が進行していくので信頼性の高い評価ができない。
そこで、乾燥状態の時間変化が顕著に現れ、しかも塗膜表面に痕跡を残さない評価方法として上記評価方法の代わりに、モニタ材に塗布した塗膜の重量減少量の時間変化より、減少率がある規定値に到達した時点で乾燥終了の判断をするという方法が考えられる。 図8はモニタ材として、塩化ビニル樹脂系エナメル塗料をアルミ箔に塗布後、その重量減少率の時間変化を示したものである。完全に乾燥させたとき、この塗料の重量は初期重量の60%程度に減少する。サンプル1、サンプル2ともに同じ塗料で温度、湿度条件はすべて同じであるが、初期重量が正確に測定できないため、重量減少率に差が見られた。
また、モニタ材を用いる代わりに、非接触で乾燥状態を評価する方法として、塗膜に電磁波である赤外線を照射し、平面度による反射波の光強度を測定する方法も提案されている(例えば、特許文献1)。
特開2002−39723
Conventionally, in order to evaluate the drying characteristics of coatings, adhesives, etc., the hardness of the film is observed by a pencil hardness test, and the drying characteristics are observed, or the film is covered with gauze, and then a weight is placed on it. There are methods based on JIS standards, such as a method of checking the drying characteristics based on how gauze adheres to the film, and evaluation methods using finger touch.
However, in these methods for evaluating drying characteristics according to JIS standards, the coating film is torn and marks remain after the test. Further, depending on the properties of the coating film, there is a problem that the difference between the dried and undried states does not appear remarkably and the timing of completion of drying is not clearly understood. In making these evaluations, when setting the apparatus and observing the passage of time, drying progresses during that time, and thus highly reliable evaluation cannot be performed.
Therefore, the time change in the dry state appears prominently, and instead of the above evaluation method as an evaluation method that does not leave a trace on the coating film surface, the reduction rate is due to the time change of the weight reduction amount of the coating film applied to the monitor material. A method of determining the end of drying when a certain specified value is reached can be considered. FIG. 8 shows the time change of the weight reduction rate after applying a vinyl chloride resin-based enamel paint on an aluminum foil as a monitor material. When completely dried, the weight of the paint is reduced to about 60% of the initial weight. Sample 1 and sample 2 were the same paint, and the temperature and humidity conditions were all the same, but the initial weight could not be measured accurately, so there was a difference in the weight loss rate.
As a method for evaluating the dry state in a non-contact manner instead of using a monitor material, a method of irradiating the coating film with infrared rays, which are electromagnetic waves, and measuring the light intensity of the reflected wave due to the flatness has been proposed (for example, Patent Document 1).
JP 2002-39723 A

ところが、従来、塗布作業や接着作業など乾燥を要する工程において、これらの材料を乾燥させる際、その乾燥作業を終了させるタイミングが明確ではなく、完全に乾燥を完了させるため過剰に時間をかけて乾燥させていた。乾燥作業に時間を費やす間、作業は停止するため生産の効率は悪く、乾燥特性を知り、乾燥時間を管理する方法が要求されている。
しかし、乾燥特性の評価をするため、膜の重量減少量の時間変化を追っていく方法は一般的に塗膜の重量がワークに比べ非常に小さいので、膜のみの重量を正確に測定することができない。したがって軽重量の代替モニタ材に塗布したもので実験的に評価することしかできない。
また、揮発性の高い溶剤の蒸発速度は塗布直後が最も速く、塗膜の初期重量は測定中でも減少し測定値に誤差が生じるので、この方法により算出される重量減少量にも数%程度の誤差が生じる。乾燥終盤での塗膜の特性は溶剤含有量の微妙な差によって異なるため、初期重量に対する減少率から塗膜の溶剤含有量を算出した値には誤差を含んでおり、塗膜の特性を得ることはできなかった。
また、赤外線を照射し、平面度による反射波の光強度を測定しで乾燥状態を評価する方法では、種々の色彩をもつ塗膜に対しては、光の反射強度が異なり正確な乾燥度を測定することができない。
そこで、本発明は塗膜の乾燥特性を非接触で直接かつ、正確に測定でき、乾燥時間を短縮できる方法および装置を提供することを目的とする。
However, in the past, when drying these materials in processes that require drying, such as coating work and bonding work, the timing for ending the drying work is not clear, and drying takes excessive time to complete the drying completely. I was letting. Since the operation is stopped while spending time in the drying operation, the production efficiency is poor, and a method for knowing the drying characteristics and managing the drying time is required.
However, in order to evaluate the drying characteristics, the method of following the change over time of the weight reduction amount of the film is generally very small compared to the workpiece, so it is possible to accurately measure the weight of only the film. Can not. Therefore, it can only be experimentally evaluated by applying it to a light weight alternative monitor material.
In addition, the evaporation rate of a highly volatile solvent is the fastest immediately after coating, and the initial weight of the coating film is reduced during measurement, resulting in an error in the measured value. Therefore, the weight loss calculated by this method is about several percent. An error occurs. Since the properties of the coating film at the end of drying differ depending on the subtle difference in the solvent content, the value calculated from the reduction rate relative to the initial weight contains an error, and the coating properties are obtained. I couldn't.
Also, in the method of evaluating the dry state by irradiating infrared rays and measuring the light intensity of the reflected wave according to the flatness, the coating film with various colors has a different light reflection intensity and has an accurate dryness. It cannot be measured.
Therefore, an object of the present invention is to provide a method and an apparatus that can directly and accurately measure the drying characteristics of a coating film in a non-contact manner and can shorten the drying time.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、被測定塗膜に電磁波を照射し、反射した電磁波を検出して前記被測定塗膜の乾燥特性を評価する乾燥特性検出方法において、前記電磁波を赤外線とし、予め測定した各種溶剤の赤外線吸光度と溶剤含有量との検量線を記憶しておき、つぎに前記被測定塗膜から反射または透過した赤外線の赤外線吸光度を測定し、前記測定した赤外線吸光度を前記記憶した検量線と照合して前記被測定塗膜中の溶剤含有量を算出するものである。
また請求項2に記載の発明は、被測定塗膜に電磁波を照射する電磁波照射手段と、前記被測定塗膜から反射した電磁波を検出する電磁波検出手段と、前記検出した電磁波特性を演算する演算手段と、前記演算結果を表示する表示手段とを備え前記被測定塗膜の乾燥特性を評価する乾燥特性検出装置において、前記電磁波照射手段を赤外線光源とし、予め測定した各種溶剤の赤外線吸光度と溶剤含有量の検量線を記憶する記憶装置を設け、前記電磁波検出手段を赤外線分光分析器として前記被測定塗膜から反射または透過した赤外線の赤外線吸光度を測定し、前記演算手段は前記測定した赤外線吸光度を前記記憶装置に記憶した検量線に照合して演算し前記被測定塗膜中の溶剤含有量を算出するものである。
また請求項3に記載の発明は、前記赤外線分光分析装置は、被測定塗膜の形状に応じた可動式の透過型または反射型のプローブを備えたものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a drying property detection method for irradiating an electromagnetic wave to a film to be measured and detecting the reflected electromagnetic wave to evaluate the drying characteristic of the film to be measured. A calibration curve of the measured infrared absorbance and solvent content of various solvents was stored, and then the infrared absorbance of infrared reflected or transmitted from the coating film to be measured was measured, and the measured infrared absorbance was stored. The solvent content in the coating film to be measured is calculated by collating with a calibration curve.
According to a second aspect of the present invention, there is provided an electromagnetic wave irradiation means for irradiating the film to be measured with an electromagnetic wave, an electromagnetic wave detection means for detecting the electromagnetic wave reflected from the film to be measured, and an operation for calculating the detected electromagnetic wave characteristics. And a drying means for evaluating the drying characteristics of the coating film to be measured, wherein the electromagnetic wave irradiation means is an infrared light source, and the infrared absorbances and solvents of various solvents measured in advance are used. A storage device for storing a calibration curve of the content is provided, and the infrared ray reflected or transmitted from the coating film to be measured is measured using the electromagnetic wave detecting means as an infrared spectroscopic analyzer, and the calculating means measures the infrared absorbance measured. Is calculated by comparing with a calibration curve stored in the storage device to calculate the solvent content in the coating film to be measured.
According to a third aspect of the present invention, the infrared spectroscopic analyzer includes a movable transmission type or reflection type probe corresponding to the shape of the coating film to be measured.

請求項1、2に記載の発明によると、赤外線吸収スペクトルを検出し塗膜中の各物質の含有量を算出するので、その時の材料組成比を算出することができ、塗膜の乾燥特性を直接知ることができ、その乾燥特性により乾燥終了の判断ができる。
請求項3に記載の発明によると、可動式の透過型または反射型のプローブを備えたので、試料の形状、特性に応じ多種少量のワークを取り扱う生産ラインでも利用することができる。ワークに塗布した塗膜の乾燥特性を直接得ることができるので、過度に乾燥させる必要がなくなり、乾燥時間を短縮させることができる。
According to the first and second aspects of the invention, since the infrared absorption spectrum is detected and the content of each substance in the coating film is calculated, the material composition ratio at that time can be calculated, and the drying characteristics of the coating film can be calculated. It is possible to know directly and the end of drying can be judged by the drying characteristics.
According to the third aspect of the invention, since the movable transmission type or reflection type probe is provided, it can be used in a production line that handles a small amount of workpieces according to the shape and characteristics of the sample. Since the drying characteristics of the coating applied to the workpiece can be obtained directly, it is not necessary to dry excessively, and the drying time can be shortened.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1による乾燥特性検出装置の構成図で、1は赤外線光源、2は赤外線受光部、3はフーリエ変換型の赤外線分光分析装置である。5は検量線のデータを記憶させておくための記憶装置で、4は塗膜溶剤の含有量を計算し塗膜乾燥特性の判断をする演算装置である。また、演算装置4により算出された塗膜の乾燥特性は表示部6により随時確認できる。   FIG. 1 is a configuration diagram of a drying characteristic detection apparatus according to a first embodiment of the present invention, in which 1 is an infrared light source, 2 is an infrared light receiving unit, and 3 is a Fourier transform infrared spectroscopy analyzer. Reference numeral 5 denotes a storage device for storing calibration curve data, and reference numeral 4 denotes an arithmetic unit for calculating the content of the coating film solvent and determining the coating film drying characteristics. Further, the drying characteristics of the coating film calculated by the arithmetic device 4 can be confirmed at any time by the display unit 6.

次に、本発明の実施例の動作について図2を用いて説明する。
図2は、本発明の乾燥特性検出装置による乾燥度検出のプロセスを示すフローである。(ST1)まず、検量線を作成する。
ガスクロマトグラフ分析装置と該赤外線分光分析装置3により標準試料における溶剤濃度と赤外線吸光度との検量線求める。
(ST2)つぎに、求めた検量線データを記憶装置5に記憶させる。
(ST3)塗膜に赤外線光源1から赤外線を照射し、受光部2で反射赤外線を受光する。
(ST4)受光した赤外線吸収スペクトルをフーリエ変換型の赤外線分光分析装置3にて赤外線吸光度を測定する。
図3は、本発明の実施例2による乾燥特性検出装置のフーリエ変換赤外線分光分析装置2が検出した塗膜の赤外線吸収スペクトルの模式図で、ここではA、B、C3種類の溶剤と乾燥度に影響を受けない官能基Aのそれぞれに起因するスペクトルが検出されている。
なお、官能基Aは塩化ビニール、溶剤A、B、Cはそれぞれトルエン、アセトン、メタノールからなる物質とした。
(ST5)溶剤の含有量を演算装置4により演算する。
記憶装置5のデータと検出された赤外線吸収スペクトルより、演算装置4にて塗膜溶剤の含有量を計算する。図4は溶剤A、B、C濃度と各溶剤の官能基Aとの吸光度比を示す検量線の模式図で、赤外線吸収スペクトルより得られた吸光度比をこの検量線に当てはめることにより、各溶剤の濃度を正確に知ることができる。
(ST6)乾燥度を演算装置4により演算する。
塗膜中の各物質の含有量を算出することにより、その時の材料組成比を算出し、塗膜の乾燥特性を演算する。図5は、測定した溶剤A、B、C濃度の時間変化を表す図である。図のように時間が経つにつれ各溶剤濃度は減少し、それら濃度がある値を下回ったとき塗膜の乾燥が完了する。
(ST7)演算結果を表示部6に表示する。
表示部6は、塗膜溶剤の含有量から塗膜の乾燥特性を判断した結果などを表示する。
Next, the operation of the embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a flow showing a process of dryness detection by the dry characteristic detection apparatus of the present invention. (ST1) First, a calibration curve is created.
A calibration curve between the solvent concentration and the infrared absorbance of the standard sample is obtained by the gas chromatograph analyzer and the infrared spectroscopic analyzer 3.
(ST2) Next, the obtained calibration curve data is stored in the storage device 5.
(ST3) The coating film is irradiated with infrared light from the infrared light source 1 and the light receiving unit 2 receives reflected infrared light.
(ST4) The infrared absorption spectrum of the received infrared absorption spectrum is measured by a Fourier transform infrared spectroscopy analyzer 3.
FIG. 3 is a schematic diagram of the infrared absorption spectrum of the coating film detected by the Fourier transform infrared spectroscopic analyzer 2 of the drying characteristic detector according to Example 2 of the present invention. Here, the three types of solvents A, B, and C and the dryness are shown. Spectra caused by each of the functional groups A that are not affected by are detected.
The functional group A was vinyl chloride, and the solvents A, B, and C were substances made of toluene, acetone, and methanol, respectively.
(ST5) The content of the solvent is calculated by the calculation device 4.
From the data in the storage device 5 and the detected infrared absorption spectrum, the content of the coating film solvent is calculated by the arithmetic device 4. FIG. 4 is a schematic diagram of a calibration curve showing the absorbance ratio of the solvent A, B, C concentration and the functional group A of each solvent. By applying the absorbance ratio obtained from the infrared absorption spectrum to this calibration curve, The concentration of can be accurately known.
(ST6) The dryness is calculated by the calculation device 4.
By calculating the content of each substance in the coating film, the material composition ratio at that time is calculated, and the drying characteristics of the coating film are calculated. FIG. 5 is a diagram showing the change over time of the measured solvent A, B, and C concentrations. As shown in the figure, the concentration of each solvent decreases with time, and when the concentration falls below a certain value, the drying of the coating film is completed.
(ST7) The calculation result is displayed on the display unit 6.
The display unit 6 displays the result of determining the drying characteristics of the coating film from the content of the coating film solvent.

このように、赤外線吸収スペクトルを検出し各物質の含有量を算出することにより、溶剤濃度を知ることができ、乾燥終了の判断ができる。従来例のように過度に乾燥させる必要がなくなるので、筐体に塗装を施す作業において、作業時間を大幅に短縮させることができた。   Thus, by detecting the infrared absorption spectrum and calculating the content of each substance, it is possible to know the solvent concentration and determine the end of drying. Since it is not necessary to dry excessively as in the conventional example, the work time can be greatly shortened in the work of painting the casing.

図6は本発明の実施例3による乾燥特性検出装置の構成図である。光源1と受光部2の間に塗装を施したモニタ材を設置し、光源1からの赤外線をモニタ材に透過させた後、受光部2にて検出する。また、演算装置4により算出された塗膜の乾燥特性は表示部6により随時確認できる。透過赤外線より塗膜内部での赤外線吸収スペクトルを検出することができ、塗膜内部での各物質の含有量を算出することができる。したがって50μm程度の厚さの塗膜で表面と内部で乾燥挙動に違いが見られる場合でも溶剤の濃度を知ることができ、乾燥終了の判断ができるので過度に乾燥させる必要がなくなり、乾燥時間を短縮させることができる。   FIG. 6 is a block diagram of a drying characteristic detection apparatus according to Embodiment 3 of the present invention. A coated monitor material is installed between the light source 1 and the light receiving unit 2, and infrared rays from the light source 1 are transmitted through the monitor material, and then detected by the light receiving unit 2. Further, the drying characteristics of the coating film calculated by the arithmetic device 4 can be confirmed at any time by the display unit 6. The infrared absorption spectrum inside the coating film can be detected from the transmitted infrared ray, and the content of each substance inside the coating film can be calculated. Therefore, even if there is a difference in the drying behavior between the surface and the inside of the coating film with a thickness of about 50 μm, it is possible to know the concentration of the solvent and judge the end of drying, so there is no need to dry excessively, and the drying time is reduced. It can be shortened.

本実施例は、図7に示すように、プローブが光源1と受光部2ともに可動になっており、赤外線の照射方向を調節することができる。したがってワークの形状に関らず赤外線吸収スペクトルを測定することができるので、図7のような凸状の曲面を持つワークに塗布された塗膜の乾燥特性も検出することができる。ワークの形状に応じて任意にプローブを設置することができるので多種少量のワークを取り扱う生産ラインでも利用することができ、ワークに塗布した塗膜の乾燥特性を代替試料からではなく直接得ることができる。
また、光源1と受光部2のプローブは脱着可能になっており、測定条件、環境に応じて、反射型または透過型、あるいはそれぞれを拡大する顕微型など、種々のプローブを装着できるので、試料の形状、特性に応じてプローブの交換ができる。
In this embodiment, as shown in FIG. 7, both the light source 1 and the light receiving unit 2 are movable, and the irradiation direction of infrared rays can be adjusted. Therefore, since the infrared absorption spectrum can be measured regardless of the shape of the workpiece, the drying characteristics of the coating film applied to the workpiece having a convex curved surface as shown in FIG. 7 can also be detected. Since the probe can be installed arbitrarily according to the shape of the workpiece, it can also be used in production lines that handle a small amount of workpieces, and the drying characteristics of the coating applied to the workpiece can be obtained directly from the substitute sample it can.
In addition, the probe of the light source 1 and the light receiving unit 2 can be attached and detached, and various types of probes such as a reflection type, a transmission type, or a microscopic type that expands each can be attached depending on the measurement conditions and environment. The probe can be exchanged according to the shape and characteristics.

赤外線吸収スペクトルから試料を構成する材料の含有量を検出することができるので、塗料、接着剤などの乾燥特性を評価するという用途に適用できる。   Since the content of the material constituting the sample can be detected from the infrared absorption spectrum, it can be applied to the use of evaluating the drying characteristics of paints, adhesives and the like.

本発明の第1実施例を示す乾燥特性検出装置の構成図1 is a configuration diagram of a drying characteristic detection apparatus showing a first embodiment of the present invention. 本発明の第1実施例の乾燥特性検出プロセスを示すフロー図The flowchart which shows the drying characteristic detection process of 1st Example of this invention. 本発明の第1実施例を示す赤外線吸収スペクトルの模式図Schematic diagram of infrared absorption spectrum showing the first embodiment of the present invention 本発明の第1実施例における溶剤の濃度と吸光度との関係を示す検量線の模式図Schematic diagram of a calibration curve showing the relationship between solvent concentration and absorbance in the first embodiment of the present invention 本発明の第1実施例における溶剤含有量の時間変化を表すグラフThe graph showing the time change of the solvent content in 1st Example of this invention 本発明の第2実施例を示す乾燥特性検出装置の構成図The block diagram of the drying characteristic detection apparatus which shows 2nd Example of this invention. 本発明の第3実施例を示す乾燥特性検出装置の可動式赤外線プローブの模式図Schematic diagram of a movable infrared probe of a drying characteristic detection apparatus showing a third embodiment of the present invention 従来の塗膜の初期重量からの重量減少率の時間変化を示すグラフ。The graph which shows the time change of the weight decreasing rate from the initial weight of the conventional coating film.

符号の説明Explanation of symbols

1 赤外線光源
2 赤外線受光部
3 赤外線分光分析装置(フーリエ変換型)
4 演算装置
5 記憶装置
6 表示部
DESCRIPTION OF SYMBOLS 1 Infrared light source 2 Infrared light-receiving part 3 Infrared spectroscopy analyzer (Fourier transform type)
4 arithmetic device 5 storage device 6 display unit

Claims (3)

被測定塗膜に電磁波を照射し、反射した電磁波を検出して前記被測定塗膜の乾燥特性を評価する乾燥特性検出方法において、
前記電磁波を赤外線とし、予め測定した各種溶剤の赤外線吸光度と溶剤含有量との検量線を記憶しておき、つぎに前記被測定塗膜から反射または透過した赤外線の赤外線吸光度を測定し、前記測定した赤外線吸光度を前記記憶した検量線と照合して前記被測定塗膜中の溶剤含有量を算出することを特徴とする乾燥特性検出方法。
In the drying characteristic detection method for irradiating the film to be measured with electromagnetic waves, detecting the reflected electromagnetic waves and evaluating the drying characteristics of the film to be measured,
The electromagnetic wave is an infrared ray, a calibration curve of the infrared absorbance and solvent content of various solvents measured in advance is stored, and then the infrared absorbance of infrared rays reflected or transmitted from the coating film to be measured is measured. A method for detecting a drying characteristic, comprising: comparing the measured infrared absorbance with the stored calibration curve to calculate a solvent content in the coating film to be measured.
被測定塗膜に電磁波を照射する電磁波照射手段と、前記被測定塗膜から反射した電磁波を検出する電磁波検出手段と、前記検出した電磁波特性を演算する演算手段と、前記演算結果を表示する表示手段とを備え、前記被測定塗膜の乾燥特性を評価する乾燥特性検出装置において、
前記電磁波照射手段を赤外線光源とし、予め測定した各種溶剤の赤外線吸光度と溶剤含有量の検量線を記憶する記憶装置を設け、前記電磁波検出手段を赤外線分光分析器として前記被測定塗膜から反射または透過した赤外線の赤外線吸光度を測定し、前記演算手段は前記測定した赤外線吸光度を前記記憶装置に記憶した検量線に照合して演算し前記被測定塗膜中の溶剤含有量を算出することを特徴とする乾燥特性検出装置。
Electromagnetic wave irradiation means for irradiating the film to be measured with electromagnetic waves, electromagnetic wave detection means for detecting electromagnetic waves reflected from the film to be measured, calculation means for calculating the detected electromagnetic wave characteristics, and display for displaying the calculation result A drying characteristic detecting device for evaluating the drying characteristic of the coating film to be measured.
The electromagnetic wave irradiation means is an infrared light source, and a storage device is provided for storing a calibration curve of the infrared absorbance and solvent content of various solvents measured in advance, and the electromagnetic wave detection means is reflected from the measured coating film as an infrared spectroscopic analyzer. The infrared absorbance of the transmitted infrared is measured, and the calculation means calculates the solvent content in the film to be measured by calculating and comparing the measured infrared absorbance with a calibration curve stored in the storage device. Drying characteristic detection device.
前記赤外線分光分析装置は、被測定塗膜の形状に応じた可動式の透過型または反射型のプローブを備えたことを特徴とする請求項2記載の乾燥特性検出装置。   3. The drying characteristic detection apparatus according to claim 2, wherein the infrared spectroscopic analysis apparatus includes a movable transmission type or reflection type probe according to the shape of the coating film to be measured.
JP2003414165A 2003-12-12 2003-12-12 Drying characteristic detection method and its device Pending JP2005172646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414165A JP2005172646A (en) 2003-12-12 2003-12-12 Drying characteristic detection method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414165A JP2005172646A (en) 2003-12-12 2003-12-12 Drying characteristic detection method and its device

Publications (1)

Publication Number Publication Date
JP2005172646A true JP2005172646A (en) 2005-06-30

Family

ID=34734049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414165A Pending JP2005172646A (en) 2003-12-12 2003-12-12 Drying characteristic detection method and its device

Country Status (1)

Country Link
JP (1) JP2005172646A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146997A (en) * 2006-12-08 2008-06-26 Pioneer Electronic Corp Manufacturing method of display panel
KR100935915B1 (en) 2007-12-31 2010-01-06 동부제철 주식회사 Automatic Control of Drying Operation Using Near Infrared in Continuous Color Steel Production Line
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
DE102008041052A1 (en) * 2008-08-06 2010-02-11 Airbus Deutschland Gmbh Device for contactless determination of the degree of drying of a lacquer layer and method
WO2019135508A1 (en) * 2018-01-08 2019-07-11 주식회사 엘지화학 Method and apparatus for monitoring dry state of electrode substrate
JP2019184510A (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Corrosion testing method and corrosion testing device
JP2020139880A (en) * 2019-02-28 2020-09-03 株式会社リコー Analysis method, analyzer, printer, and printing system
JP2021120198A (en) * 2020-01-30 2021-08-19 株式会社リコー Analysis method, analysis device, printer, and printing system
JP2021120199A (en) * 2020-01-30 2021-08-19 株式会社リコー Analysis method, analysis device, printer, and printing system
WO2021210818A1 (en) * 2020-04-13 2021-10-21 주식회사 엘지에너지솔루션 Method for evaluating quality of electrode and method for manufacturing electrode
WO2023106844A1 (en) * 2021-12-07 2023-06-15 주식회사 토바 High-speed roll-to-roll metal coating system and optimal high-speed drying method for metal coating using same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146997A (en) * 2006-12-08 2008-06-26 Pioneer Electronic Corp Manufacturing method of display panel
KR100935915B1 (en) 2007-12-31 2010-01-06 동부제철 주식회사 Automatic Control of Drying Operation Using Near Infrared in Continuous Color Steel Production Line
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
DE102008041052A1 (en) * 2008-08-06 2010-02-11 Airbus Deutschland Gmbh Device for contactless determination of the degree of drying of a lacquer layer and method
DE102008041052B4 (en) * 2008-08-06 2010-04-15 Airbus Deutschland Gmbh Device for contactless determination of the degree of drying of a lacquer layer and method
US8674705B2 (en) 2008-08-06 2014-03-18 Airbus Operations Gmbh Device for the contact-less detection of the degree of dryness of a coat of varnish, and method for the same
EP2310783B1 (en) * 2008-08-06 2016-03-30 Airbus Operations GmbH Method for the contact-less detection of the degree of dryness of a coat of varnish on the exterior skin of an aircraft
KR20190084470A (en) * 2018-01-08 2019-07-17 주식회사 엘지화학 Method and apparatus for monitering of dry condition of electrode substrate
WO2019135508A1 (en) * 2018-01-08 2019-07-11 주식회사 엘지화학 Method and apparatus for monitoring dry state of electrode substrate
CN110418956A (en) * 2018-01-08 2019-11-05 株式会社Lg化学 Apparatus and method for monitoring dry state of electrode substrate
KR102245127B1 (en) * 2018-01-08 2021-04-28 주식회사 엘지화학 Method and apparatus for monitering of dry condition of electrode substrate
CN110418956B (en) * 2018-01-08 2022-03-11 株式会社Lg化学 Apparatus and method for monitoring dry state of electrode substrate
US11448597B2 (en) 2018-01-08 2022-09-20 Lg Energy Solution, Ltd. Method for monitoring dry state of electrode substrate
JP2019184510A (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Corrosion testing method and corrosion testing device
JP2020139880A (en) * 2019-02-28 2020-09-03 株式会社リコー Analysis method, analyzer, printer, and printing system
JP2021120198A (en) * 2020-01-30 2021-08-19 株式会社リコー Analysis method, analysis device, printer, and printing system
JP2021120199A (en) * 2020-01-30 2021-08-19 株式会社リコー Analysis method, analysis device, printer, and printing system
WO2021210818A1 (en) * 2020-04-13 2021-10-21 주식회사 엘지에너지솔루션 Method for evaluating quality of electrode and method for manufacturing electrode
WO2023106844A1 (en) * 2021-12-07 2023-06-15 주식회사 토바 High-speed roll-to-roll metal coating system and optimal high-speed drying method for metal coating using same

Similar Documents

Publication Publication Date Title
US8026499B2 (en) Method of calibrating a wavelength-modulation spectroscopy apparatus using a first, second and third gas to determine temperature and pressure values to calculate concentrations of analytes in a gas
US6184528B1 (en) Method of spectral nondestructive evaluation
JP2005172646A (en) Drying characteristic detection method and its device
CN103175822B (en) Eliminate the method for table difference of Raman spectrometer
CN104198432B (en) The method of application near-infrared spectrum technique Undamaged determination fire-resistant coating for steel structure brand
CN106932015B (en) Real-time characterization of coated drug tablets using raman spectroscopy
US11333600B2 (en) Analysis method, analysis apparatus, printer, and print system
US7800069B2 (en) Method for performing IR spectroscopy measurements to determine coating weight/amount for metal conversion coatings
CN105066889A (en) A portable thin film thickness measuring device and a film thickness measuring method thereof
Duncan et al. Techniques for characterising the wetting, coating and spreading of adhesives on surface.
JP2008122170A (en) Weatherable deterioration diagnosing method of facing member
WO2008070411A2 (en) Coating thickness measurement using a near infrared absorbance technique and a light diffuser
US6144454A (en) Method for the characterization of lacquer coated plastic surfaces
US8363213B2 (en) Method for detecting impurities on a surface
GB2425835A (en) Fluorescent metal ion chelating agent probe for the detection of corrosion
US11680791B2 (en) Methods and systems for real-time, in-process measurement of coatings on substrates of aerospace components
KR20100074600A (en) Method for measuring concentration of a component of mixed solution
US20110222055A1 (en) Determination of the salt concentration of an aqueous solution
JP2021120198A (en) Analysis method, analysis device, printer, and printing system
US8983787B1 (en) Method of evaluating data quality
Mitsuo et al. Application of pressure-sensitive paint to low-speed wind tunnel testing at Japan Aerospace eXploration Agency
US8600703B1 (en) Method of evaluating data quality
US8072616B2 (en) Application of crossed teflon diffuser to coatings on oriented surfaces
KR20060010944A (en) Method of measuring and predicting adhesion between coatings
Strasser et al. Characterization of Photodegradation in Unsteady Pressure-Sensitive Paint Under Varying Pressures