JP2005171291A - Titanium-containing thin film and method for producing the same - Google Patents
Titanium-containing thin film and method for producing the same Download PDFInfo
- Publication number
- JP2005171291A JP2005171291A JP2003410104A JP2003410104A JP2005171291A JP 2005171291 A JP2005171291 A JP 2005171291A JP 2003410104 A JP2003410104 A JP 2003410104A JP 2003410104 A JP2003410104 A JP 2003410104A JP 2005171291 A JP2005171291 A JP 2005171291A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- thin film
- group
- containing thin
- integer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HGCIXCUEYOPUTN-UHFFFAOYSA-N C1CC=CCC1 Chemical compound C1CC=CCC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
【課題】MOCVD法により均一で安定した気化を行うことができ所望のチタン含有薄膜を得ることができるチタン含有薄膜の製造方法、及びその方法で得られたチタン含有薄膜を提供する。
【解決手段】式(1)
【化1】
(式中、R1、R2はメチル基またはエチル基であり、R3が炭素数1〜4の直鎖又は分岐状アルキル基の場合、kは1から5の整数であり、R3がトリメチルシリル基の場合、kは1から3の整数である。mは1から2の整数、nは1から3の整数でm+nが3又は4となる数を示す。)で示されるチタン錯体を原料として有機金属化学蒸着法によりチタン含有薄膜を製造する。
【選択図】 図1
The present invention provides a method for producing a titanium-containing thin film capable of obtaining a desired titanium-containing thin film by performing uniform and stable vaporization by MOCVD, and a titanium-containing thin film obtained by the method.
SOLUTION: Formula (1)
[Chemical 1]
(In the formula, R 1 and R 2 are a methyl group or an ethyl group, and when R 3 is a linear or branched alkyl group having 1 to 4 carbon atoms, k is an integer of 1 to 5, and R 3 is In the case of a trimethylsilyl group, k is an integer from 1 to 3. m is an integer from 1 to 2, n is an integer from 1 to 3, and m + n is a number that is 3 or 4. A titanium-containing thin film is produced by a metal organic chemical vapor deposition method.
[Selection] Figure 1
Description
本発明は、半導体装置の配線に用いられるアルミニウムまたは銅薄膜を形成加工する際の下地バリアとして有用な、チタン含有薄膜及びそれを有機金属化学蒸着(Metal Organic Chemical Vapor Deposition、以下、MOCVDという。)法により製造する方法に関するものである。 INDUSTRIAL APPLICABILITY The present invention is a titanium-containing thin film and a metal organic chemical vapor deposition (hereinafter referred to as MOCVD) useful as a base barrier when forming and processing an aluminum or copper thin film used for wiring of a semiconductor device. The present invention relates to a method of manufacturing by a method.
アルミニウム(以下、Alという。)、アルミニウム系合金、銅(以下、Cuという。)、又は銅系合金は、高い導電性などからLSIの配線材料として応用されている。Alの場合、直接シリコン酸化基板上に接触させると合金化やシリサイド化が起こり、シリコン酸化基板に導電性物質が侵入しリーク電流が著しく増加するという問題があった。Cuの場合も、直接シリコン酸化基板上に接触させるとCu自身が基板内に容易に拡散しリーク電流が著しく増加するという問題があった。 Aluminum (hereinafter referred to as Al), aluminum-based alloy, copper (hereinafter referred to as Cu), or copper-based alloy is applied as an LSI wiring material because of its high conductivity. In the case of Al, when it is brought into direct contact with a silicon oxide substrate, alloying or silicidation occurs, and there is a problem that a conductive material penetrates into the silicon oxide substrate and a leakage current increases remarkably. In the case of Cu as well, when it is brought into direct contact with the silicon oxide substrate, there is a problem that Cu itself is easily diffused into the substrate and the leakage current is remarkably increased.
そこで、Al,Cuにより配線を形成する際には、AlやCuの薄膜とシリコン酸化基板の間に下地バリア薄膜を形成することにより、Al化合物,Cuの拡散を防止している。この下地バリアメタル薄膜として高融点の金属窒化物である窒化チタン(以下、TiNという。)膜が知られている。現在までのMOCVD法によるTiN膜の作製例は、テトラキスジメチルアミノチタン(以下、TDMATという。)錯体、テトラキスジエチルアミノチタン(以下、TDEATという。)を原料に用いて行われた例がほとんどである(例えば特許文献1,2参照)。 Therefore, when the wiring is formed from Al or Cu, the base barrier thin film is formed between the Al or Cu thin film and the silicon oxide substrate to prevent the Al compound and Cu from diffusing. As this underlying barrier metal thin film, a titanium nitride (hereinafter referred to as TiN) film which is a high melting point metal nitride is known. To date, most of the examples of the production of TiN films by MOCVD are performed using tetrakisdimethylaminotitanium (hereinafter referred to as TDMAT) complex and tetrakisdiethylaminotitanium (hereinafter referred to as TDEAT) as raw materials ( For example, see Patent Documents 1 and 2).
しかし、上記原料でTiN膜をMOCVD法で作製する場合、次のような問題点があった。即ち、原料である化合物が熱的安定性、および水分に対する安定性に乏しく、成膜中、気化器内部で分解が加速度的に起こり、膜を堆積する成膜室において分解した配位子に起因する有機物のみが気化し原料錯体の気化を妨げ、不均一で安定しない原料の供給が行われていた。このため従来のTiN膜形成用の原料では、所望のTiN膜を高純度で作製することは困難であった。 However, when the TiN film is formed by the MOCVD method using the above raw materials, there are the following problems. That is, the compound as a raw material has poor thermal stability and moisture stability, and during film formation, decomposition occurs at an accelerated rate inside the vaporizer, resulting from the decomposition of the ligand in the film formation chamber where the film is deposited. As a result, only the organic substances that vaporize vaporize and hinder the vaporization of the raw material complex, and a non-uniform and unstable raw material was supplied. For this reason, it has been difficult to produce a desired TiN film with high purity by using conventional materials for forming a TiN film.
そこで本発明の目的は、MOCVD法により均一で安定した気化を行うことができ所望のチタン含有薄膜を得ることができるチタン含有薄膜の製造方法、及びその方法で得られたチタン含有薄膜を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a titanium-containing thin film capable of obtaining a desired titanium-containing thin film by performing uniform and stable vaporization by MOCVD, and a titanium-containing thin film obtained by the method. There is.
本発明者らは上述のような現状に鑑み、鋭意検討を重ねた結果、特定のチタン錯体を原料に用いて、MOCVD法により薄膜を製造することにより、不都合が生じることなく所望のチタン含有薄膜を得られることを見出し、本発明に到達した。 As a result of intensive studies in view of the above-mentioned present situation, the present inventors have produced a desired titanium-containing thin film without causing any inconvenience by producing a thin film by MOCVD using a specific titanium complex as a raw material. The present invention has been reached.
すなわち、本発明は、式(1) That is, the present invention provides the formula (1)
本発明では、上記式(1)で示されるチタン錯体を原料とすることを特徴とする。このチタン錯体は、均一で安定に気化することが好ましいという点を考慮すると、前述の式(1)で表されるもの中でも、好ましくはk=1、m=1、n=3であり、R1及びR2がメチル基、R3がメチル基、エチル基、イソプロピル基、t−ブチル基、トリメチルシリル基、又はn−ブチル基である。 In the present invention, the titanium complex represented by the above formula (1) is used as a raw material. In consideration of the fact that this titanium complex is preferably vaporized uniformly and stably, among those represented by the above formula (1), preferably k = 1, m = 1, n = 3, and R 1 and R 2 are a methyl group, R 3 is a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a trimethylsilyl group, or an n-butyl group.
より好ましい具体例としてはk=1、m=1、n=3、R1及びR2がメチル基であり、R3がメチル基[(CH3C5H4)Ti(N(CH3)2)3(以下、MeCpTi(NMe2)3という。)]、R3がエチル基[(CH3CH2C5H4)Ti(N(CH3)2)3(以下、EtCpTi(NMe2)3という。)]、R3がイソプロピル基[(iso−C3H7C5H4)Ti(N(CH3)2)3(以下、iso−PrCpTi(NMe2)3という。)]、R3がt−ブチル基[(t−C4H9C5H4)Ti(N(CH3)2)3(以下、t−BuCpTi(NMe2)3という。)]、R3がトリメチルシリル基[(CH3)3SiC5H4)Ti(N(CH3)2)3(以下、Me3SiCpTi(NMe2)3という。)]、またはR3がn−ブチル基[(C4H9C5H4)Ti(N(CH3)2)3(以下、n−BuCpTi(NMe2)3という。)]である。
As more preferred specific examples, k = 1, m = 1, n = 3, R 1 and R 2 are methyl groups, and R 3 is a methyl group [(CH 3 C 5 H 4 ) Ti (N (CH 3 ) 2 ) 3 (hereinafter referred to as MeCpTi (NMe 2 ) 3 )], R 3 is an ethyl group [(CH 3 CH 2 C 5 H 4 ) Ti (N (CH 3 ) 2 ) 3 (hereinafter referred to as EtCpTi (NMe 2). ) 3 that.)], R 3 is an isopropyl group [(iso-C 3 H 7 C 5 H 4) Ti (N (CH 3) 2) 3 ( hereinafter, iso-PrCpTi (NMe 2) 3 that.) , R 3 is a t-butyl group [(t-C 4 H 9 C 5 H 4 ) Ti (N (CH 3 ) 2 ) 3 (hereinafter referred to as t-BuCpTi (NMe 2 ) 3 )], R 3 is. trimethylsilyl group [(CH 3) 3 SiC 5 H 4) Ti (N (
本発明で用いられるMOCVD法としては特に限定はなく、また式(1)で表されるチタン錯体を供給する方法としては、例えばバブリング法、ベーキングユニット法、溶液気化法などがあげられるが、溶液気化法は成膜室の直前で原料を気化させて供給するため原料の熱変性が生じにくく、好ましい方法である。式(1)で表されるチタン錯体を有機溶媒に溶解して用いる場合、その有機溶媒としては、式(1)で表されるチタン錯体と反応しないものであれば特に限定されないが、例えばヘキサン、シクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類が好ましい。 The MOCVD method used in the present invention is not particularly limited, and examples of the method for supplying the titanium complex represented by the formula (1) include a bubbling method, a baking unit method, and a solution vaporization method. The vaporization method is a preferable method because the raw material is vaporized and supplied immediately before the film formation chamber, so that the thermal denaturation of the raw material hardly occurs. When the titanium complex represented by the formula (1) is used by dissolving in an organic solvent, the organic solvent is not particularly limited as long as it does not react with the titanium complex represented by the formula (1). Hydrocarbons such as cyclohexane, heptane, octane, toluene and xylene are preferred.
一例として、各原料を瞬時に気化させ成膜室に送る溶液気化CVD法について説明すると、MOCVD装置は例えば図1に示すものが使用できる。ここでは成膜室4と蒸気発生装置3を備え、成膜室内部にはヒーター6を設け、そのヒーター上に基板5を保持する。この成膜室内部は真空引きされる。成膜室にはN含有ガス9の導入管、Si含有ガス10の導入管が接続される。原料容器1に貯蔵されているチタン錯体は気化器2に搬送され、気化され蒸気となり、気化器2へ導入されたN2、He、Ar等の不活性ガスからなるキャリアガス8により成膜室4内の基板5上に供給され、基板5上で分解されることによりチタン含有薄膜が製造される。
As an example, a description will be given of a solution vaporization CVD method in which each raw material is instantly vaporized and sent to a film forming chamber. For example, the MOCVD apparatus shown in FIG. 1 can be used. Here, a
基板上での分解は熱により行われるばかりでなく、プラズマ、光等を併用しても良い。また、モノシラン、ジシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン等のSi含有ガスや、アンモニア、メチルヒドラジン、ジメチルヒドラジン、エチルヒドラジン、ジエチルヒドラジン、ブチルヒドラジン、フェニルヒドラジン、アジ化エチル、アジ化ブチル、アジ化フェニル等のN含有ガスを供給して成膜することにより、金属チタンだけでなく、TiN、珪化チタン、珪窒化チタン等のチタン含有薄膜を製造することができる。 The decomposition on the substrate is not only performed by heat, but plasma, light, or the like may be used in combination. Also, Si-containing gas such as monosilane, disilane, dichlorosilane, trichlorosilane, tetrachlorosilane, ammonia, methyl hydrazine, dimethyl hydrazine, ethyl hydrazine, diethyl hydrazine, butyl hydrazine, phenyl hydrazine, ethyl azide, butyl azide, azide By forming a film by supplying an N-containing gas such as phenyl phosphide, it is possible to produce not only metallic titanium but also a titanium-containing thin film such as TiN, titanium silicide, and titanium silicate nitride.
このチタン含有薄膜は、例えばシリコン基板表面のSiO2膜上にMOCVD法により形成され、このチタン含有薄膜の上に更にAlやCuなどの薄膜を形成することができる。なお、本発明において基板を用いる場合はその種類は特に限定されるものではない。 This titanium-containing thin film is formed, for example, on the SiO 2 film on the surface of the silicon substrate by MOCVD, and a thin film such as Al or Cu can be further formed on the titanium-containing thin film. In addition, when using a board | substrate in this invention, the kind is not specifically limited.
以上述べたように、本発明の上記式(1)で示されるチタン錯体を原料を原料としてMOCVD法を行うことにより、安定した成膜が可能となり、所望のチタン含有薄膜を得ることができる。 As described above, by performing the MOCVD method using the titanium complex represented by the above formula (1) of the present invention as a raw material, stable film formation is possible, and a desired titanium-containing thin film can be obtained.
次に本発明を実施例を用いて更に詳しく説明する。しかし本発明はこれら実施例のみに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
<実施例1>
EtCpTi(NMe2)3について、高純度Ar 400cc/分、10℃/分の条件において、熱重量減少分析測定を行った。また比較のためにシクロペンタジエニルトリス(ジメチルアミノ)チタン(以下、CpTi(NMe2)3という。)、TDMAT、TDEATについても、同様に熱重量減少分析測定を行った。結果を図2に示す。
<Example 1>
EtCpTi (NMe 2 ) 3 was subjected to thermogravimetry analysis measurement under conditions of high purity Ar 400 cc / min and 10 ° C./min. For comparison, cyclopentadienyltris (dimethylamino) titanium (hereinafter referred to as CpTi (NMe 2 ) 3 ), TDMAT, and TDEAT were similarly subjected to thermogravimetric reduction analysis measurement. The results are shown in FIG.
EtCpTi(NMe2)3は、均一に気化し、最終的に80%強重量減少したことからCVD用材料として適したものであるといえる。一方、CpTi(NMe2)3は気化特性が悪く、不均一に気化し最終的に40%強しか重量減少しないことから、CVD用材料としては不適切であった。また、TDMAT、TDEATの場合、40〜60℃付近において直線的な重量減少があり、低温において、熱分解又は高純度Ar中に残存するわずかな水との反応による分解が起こっていることが示唆された。 EtCpTi (NMe 2 ) 3 can be said to be suitable as a material for CVD because it is vaporized uniformly and finally reduced in weight by 80%. On the other hand, CpTi (NMe 2 ) 3 is not suitable as a material for CVD because it has poor vaporization characteristics and is vaporized unevenly, resulting in a weight loss of only 40%. In addition, in the case of TDMAT and TDEAT, there is a linear weight decrease in the vicinity of 40 to 60 ° C., suggesting that thermal decomposition or decomposition due to reaction with slight water remaining in high-purity Ar occurs at low temperatures. It was done.
<実施例2>
MeCpTi(NMe2)3をオクタンに0.1mol/lで溶かしたものを用いて、MOCVD法により以下のようにTiN膜を作製した。まず基板として、基板表面にSiO2膜(厚さ4000Å)が熱酸化により形成されたシリコン基板を用意した。用意した基板を装置の成膜室に設置し、基板温度を300℃とした。気化温度を120℃、圧力を1Torrに設定した。キャリアガスとしてArガスを用い、その流量を100ccmとした。また、反応ガスとしてNH3ガスを用い、500ccmの流量とした。前述の錯体溶液
を0.01cc/分の割合で30分間供給した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約40nmであった。
<Example 2>
A TiN film was prepared by MOCVD as follows using MeCpTi (NMe 2 ) 3 dissolved in octane at 0.1 mol / l. First, a silicon substrate having a SiO 2 film (thickness: 4000 mm) formed on the substrate surface by thermal oxidation was prepared as a substrate. The prepared substrate was placed in the film forming chamber of the apparatus, and the substrate temperature was set to 300 ° C. The vaporization temperature was set to 120 ° C. and the pressure was set to 1 Torr. Ar gas was used as a carrier gas, and the flow rate was set to 100 ccm. Further, NH 3 gas was used as the reaction gas, and the flow rate was 500 ccm. The aforementioned complex solution was supplied at a rate of 0.01 cc / min for 30 minutes. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 40 nm as measured by SEM.
<実施例3>
MeCpTi(NMe2)3溶液の代わりに、液体のEtCpTi(NMe2)3をそのまま0.003cc/分の割合で供給したこと以外は、実施例2と同様な条件でMOCVD法によりTiN膜を作製した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約50nmであった。
<Example 3>
A TiN film was formed by MOCVD under the same conditions as in Example 2 except that liquid EtCpTi (NMe 2 ) 3 was supplied as it was at a rate of 0.003 cc / min instead of the MeCpTi (NMe 2 ) 3 solution. did. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 50 nm as measured by SEM.
<実施例4>
iso−PrCpTi(NMe2)3をオクタンに0.1mol/lで溶かしたものを用いた以外は、実施例2と同様な条件でMOCVD法によりTiN膜を作製した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約40nmであった。
<Example 4>
A TiN film was produced by MOCVD under the same conditions as in Example 2 except that iso-PrCpTi (NMe 2 ) 3 dissolved in octane at 0.1 mol / l was used. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 40 nm as measured by SEM.
<実施例5>
t−BuCpTi(NMe2)3をオクタンに0.1mol/lで溶かしたものを用いて、実施例2と同様な条件でMOCVD法によりTiN膜を作製した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約30nmであった。
<Example 5>
A TiN film was prepared by MOCVD under the same conditions as in Example 2 using t-BuCpTi (NMe 2 ) 3 dissolved in octane at 0.1 mol / l. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 30 nm as measured by SEM.
<実施例6>
Me3SiCpTi(NMe2)3をオクタンに0.1mol/lで溶かしたものを用いて、実施例2と同様な条件でMOCVD法によりTiN膜を作製した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約30nmであった。
<Example 6>
A TiN film was prepared by MOCVD under the same conditions as in Example 2 using Me 3 SiCpTi (NMe 2 ) 3 dissolved in octane at 0.1 mol / l. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 30 nm as measured by SEM.
<実施例7>
液体のn−BuCpTi(NMe2)3をそのまま用いて、実施例3と同様な条件でMOCVD法によりTiN膜を作製した。TiN膜が得られたことをX線回折により確認した。膜厚はSEMにより測定したところ約30nmであった。
<Example 7>
Using a liquid n-BuCpTi (NMe 2 ) 3 as it was, a TiN film was produced by MOCVD under the same conditions as in Example 3. It was confirmed by X-ray diffraction that a TiN film was obtained. The film thickness was about 30 nm as measured by SEM.
1.原料容器
2.気化器
3.蒸気発生装置
4.成膜室
5.基板
6.ヒーター
7.真空ポンプ
8.キャリアガス
9.N含有ガス
10.Si含有ガス
1.
Claims (3)
A titanium-containing thin film produced by the method according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003410104A JP2005171291A (en) | 2003-12-09 | 2003-12-09 | Titanium-containing thin film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003410104A JP2005171291A (en) | 2003-12-09 | 2003-12-09 | Titanium-containing thin film and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005171291A true JP2005171291A (en) | 2005-06-30 |
Family
ID=34731270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003410104A Pending JP2005171291A (en) | 2003-12-09 | 2003-12-09 | Titanium-containing thin film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005171291A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007066546A1 (en) * | 2005-12-06 | 2007-06-14 | Tri Chemical Laboratories Inc. | Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film |
WO2009036045A1 (en) * | 2007-09-14 | 2009-03-19 | Sigma-Aldrich Co. | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors |
WO2009106433A1 (en) * | 2008-02-27 | 2009-09-03 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process |
EP2261389A2 (en) | 2006-06-02 | 2010-12-15 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming high-k dielectric films based on novel zirconium, and hafnium precursors and their use for semiconductor manufacturing |
WO2011011299A1 (en) | 2009-07-21 | 2011-01-27 | Sigma-Aldrich Co. | Compositions and methods of use for forming titanium- containing thin films |
US8039062B2 (en) | 2007-09-14 | 2011-10-18 | Sigma-Aldrich Co. Llc | Methods of atomic layer deposition using hafnium and zirconium-based precursors |
JP2012193445A (en) * | 2011-02-28 | 2012-10-11 | Tokyo Electron Ltd | Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program |
US8568530B2 (en) | 2005-11-16 | 2013-10-29 | Sigma-Aldrich Co. Llc | Use of cyclopentadienyl type hafnium and zirconium precursors in atomic layer deposition |
US9045509B2 (en) | 2009-08-14 | 2015-06-02 | American Air Liquide, Inc. | Hafnium- and zirconium-containing precursors and methods of using the same |
WO2015190900A1 (en) * | 2014-06-13 | 2015-12-17 | 주식회사 유진테크 머티리얼즈 | Precursor compound for film formation, and thin film formation method using same |
WO2016106090A1 (en) * | 2014-12-23 | 2016-06-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Zirconium-containing film forming compositions for vapor deposition of zirconium-containing films |
WO2016106086A1 (en) * | 2014-12-23 | 2016-06-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Zirconium-containing film forming compositions for vapor deposition of zirconium-containing films |
JP2016147819A (en) * | 2015-02-10 | 2016-08-18 | 東ソー株式会社 | Group 4 metal complex, production method thereof, preparation method of group 4 metal-containing thin film |
US10106568B2 (en) | 2016-10-28 | 2018-10-23 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films |
CN111683953A (en) * | 2018-02-07 | 2020-09-18 | Up化学株式会社 | Group iv metal element-containing compound, method for producing same, precursor composition for film formation containing same, and method for film formation using same |
WO2025028791A1 (en) * | 2023-07-28 | 2025-02-06 | 에스케이트리켐 주식회사 | Precursor for forming metal-silicon-containing thin film, thin film deposition method using same, and semiconductor device comprising thin film |
WO2025028792A1 (en) * | 2023-07-28 | 2025-02-06 | 에스케이트리켐 주식회사 | Precursor for forming metal-silicon containing thin film, thin film deposition method using same, and semiconductor device comprising the thin film |
-
2003
- 2003-12-09 JP JP2003410104A patent/JP2005171291A/en active Pending
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8568530B2 (en) | 2005-11-16 | 2013-10-29 | Sigma-Aldrich Co. Llc | Use of cyclopentadienyl type hafnium and zirconium precursors in atomic layer deposition |
JP2013047391A (en) * | 2005-12-06 | 2013-03-07 | Tri Chemical Laboratory Inc | Method for forming hafnium thin film and hafnium thin film-forming material |
JP5128289B2 (en) * | 2005-12-06 | 2013-01-23 | 株式会社トリケミカル研究所 | Hafnium-based compound, hafnium-based thin film forming material, and hafnium-based thin film forming method |
WO2007066546A1 (en) * | 2005-12-06 | 2007-06-14 | Tri Chemical Laboratories Inc. | Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film |
TWI415855B (en) * | 2005-12-06 | 2013-11-21 | Tri Chemical Lab Inc | Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method |
KR101367827B1 (en) * | 2005-12-06 | 2014-02-26 | 솔브레인 주식회사 | Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film |
US9911590B2 (en) | 2006-06-02 | 2018-03-06 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Methods of forming dielectric films, new precursors and their use in semiconductor manufacturing |
EP2261389A3 (en) * | 2006-06-02 | 2010-12-22 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming high-k dielectric films based on novel zirconium, and hafnium precursors and their use for semiconductor manufacturing |
JP2014039045A (en) * | 2006-06-02 | 2014-02-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for formation of dielectric film, novel precursor, and their use in semiconductor production |
US9583335B2 (en) | 2006-06-02 | 2017-02-28 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming dielectric films, new precursors and their use in semiconductor manufacturing |
EP2261389A2 (en) | 2006-06-02 | 2010-12-15 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming high-k dielectric films based on novel zirconium, and hafnium precursors and their use for semiconductor manufacturing |
US10217629B2 (en) | 2006-06-02 | 2019-02-26 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming dielectric films, new precursors and their use in semiconductor manufacturing |
US8668957B2 (en) | 2006-06-02 | 2014-03-11 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming dielectric films, new precursors and their use in semiconductor manufacturing |
US8399056B2 (en) | 2006-06-02 | 2013-03-19 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing |
US8470402B2 (en) | 2006-06-02 | 2013-06-25 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of depositing a metal-containing dielectric film |
KR101560755B1 (en) | 2007-09-14 | 2015-10-15 | 시그마 알드리치 컴퍼니 엘엘씨 | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors |
EP2644741A1 (en) * | 2007-09-14 | 2013-10-02 | Sigma-Aldrich Co. LLC | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors |
US8221852B2 (en) | 2007-09-14 | 2012-07-17 | Sigma-Aldrich Co. Llc | Methods of atomic layer deposition using titanium-based precursors |
US8039062B2 (en) | 2007-09-14 | 2011-10-18 | Sigma-Aldrich Co. Llc | Methods of atomic layer deposition using hafnium and zirconium-based precursors |
JP2010539709A (en) * | 2007-09-14 | 2010-12-16 | シグマ−アルドリッチ・カンパニー | Preparation of titanium-containing thin films by atomic layer growth using monocyclopentadienyl titanium-based precursors |
WO2009036045A1 (en) * | 2007-09-14 | 2009-03-19 | Sigma-Aldrich Co. | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors |
USRE45124E1 (en) | 2007-09-14 | 2014-09-09 | Sigma-Aldrich Co. Llc | Methods of atomic layer deposition using titanium-based precursors |
US8853075B2 (en) | 2008-02-27 | 2014-10-07 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ALD) process |
WO2009106433A1 (en) * | 2008-02-27 | 2009-09-03 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process |
JP2012533909A (en) * | 2009-07-21 | 2012-12-27 | シグマ−アルドリッチ・カンパニー、エルエルシー | Titanium-containing composition and method of using the composition for forming a titanium-containing thin film |
WO2011011299A1 (en) | 2009-07-21 | 2011-01-27 | Sigma-Aldrich Co. | Compositions and methods of use for forming titanium- containing thin films |
US9045509B2 (en) | 2009-08-14 | 2015-06-02 | American Air Liquide, Inc. | Hafnium- and zirconium-containing precursors and methods of using the same |
JP2012193445A (en) * | 2011-02-28 | 2012-10-11 | Tokyo Electron Ltd | Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program |
WO2015190900A1 (en) * | 2014-06-13 | 2015-12-17 | 주식회사 유진테크 머티리얼즈 | Precursor compound for film formation, and thin film formation method using same |
KR101785594B1 (en) | 2014-06-13 | 2017-10-17 | 주식회사 유진테크 머티리얼즈 | Precusor compositions and Method for forming a thin film using thereof |
US9868753B2 (en) | 2014-12-23 | 2018-01-16 | L'Air Liquide, Société Anonyme our l'Etude et l'Exploitation des Procédés Georges Claude | Germanium- and zirconium-containing composition for vapor deposition of zirconium-containing films |
WO2016106090A1 (en) * | 2014-12-23 | 2016-06-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Zirconium-containing film forming compositions for vapor deposition of zirconium-containing films |
US9499571B2 (en) | 2014-12-23 | 2016-11-22 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Germanium- and zirconium-containing compositions for vapor deposition of zirconium-containing films |
JP2018502449A (en) * | 2014-12-23 | 2018-01-25 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Zirconium-containing film forming composition for depositing zirconium-containing film |
JP2018503247A (en) * | 2014-12-23 | 2018-02-01 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Zirconium-containing film forming composition for depositing zirconium-containing film |
WO2016106086A1 (en) * | 2014-12-23 | 2016-06-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Zirconium-containing film forming compositions for vapor deposition of zirconium-containing films |
US9663547B2 (en) | 2014-12-23 | 2017-05-30 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films |
JP2016147819A (en) * | 2015-02-10 | 2016-08-18 | 東ソー株式会社 | Group 4 metal complex, production method thereof, preparation method of group 4 metal-containing thin film |
US10106568B2 (en) | 2016-10-28 | 2018-10-23 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films |
CN111683953A (en) * | 2018-02-07 | 2020-09-18 | Up化学株式会社 | Group iv metal element-containing compound, method for producing same, precursor composition for film formation containing same, and method for film formation using same |
JP2021512901A (en) * | 2018-02-07 | 2021-05-20 | ユーピー ケミカル カンパニー リミテッド | Group 4 metal element-containing compounds, methods for producing them, precursor compositions for film formation containing them, and methods for forming films using them. |
JP7329256B2 (en) | 2018-02-07 | 2023-08-18 | ユーピー ケミカル カンパニー リミテッド | Group 4 metal element-containing compound, method for producing the same, film-forming precursor composition containing the same, and method for forming a film using the same |
CN111683953B (en) * | 2018-02-07 | 2024-01-23 | Up化学株式会社 | Compound containing group IV metal element, process for producing the same, precursor composition for film formation containing the same, and film formation method using the same |
WO2025028791A1 (en) * | 2023-07-28 | 2025-02-06 | 에스케이트리켐 주식회사 | Precursor for forming metal-silicon-containing thin film, thin film deposition method using same, and semiconductor device comprising thin film |
WO2025028792A1 (en) * | 2023-07-28 | 2025-02-06 | 에스케이트리켐 주식회사 | Precursor for forming metal-silicon containing thin film, thin film deposition method using same, and semiconductor device comprising the thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4713041B2 (en) | Transition metal nitride thin film deposition method | |
JP4113099B2 (en) | Method for depositing a metal layer on the surface of a semiconductor substrate | |
JP2005171291A (en) | Titanium-containing thin film and method for producing the same | |
US9121093B2 (en) | Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof | |
JP5248986B2 (en) | Copper precursors for thin film deposition | |
KR20150013082A (en) | Volatile dihydropyrazinyl and dihydropyrazine metal complexes | |
US7034169B1 (en) | Volatile metal β-ketoiminate complexes | |
US8686138B2 (en) | Heteroleptic pyrrolecarbaldimine precursors | |
WO2013015947A2 (en) | Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films | |
US8758867B2 (en) | Neutral ligand containing precursors and methods for deposition of a metal containing film | |
EP3397789B1 (en) | Manganese-containing film forming compositions, their synthesis, and use in film deposition | |
JP2016508497A (en) | Manganese-containing compounds, their synthesis and their use in the deposition of manganese-containing films | |
US9790247B2 (en) | Cobalt-containing compounds, their synthesis, and use in cobalt-containing film deposition | |
JP2016513087A (en) | Manganese-containing compounds, their synthesis and their use in the deposition of manganese-containing films | |
JP6694704B2 (en) | Precursor for forming titanium-containing film and method for forming titanium-containing film | |
CN100393727C (en) | Volatile Metal β-Ketiminate Complexes | |
WO2023192111A1 (en) | Metal carbonyl complexes with phosphorus-based ligands for cvd and ald applications | |
WO2025132279A1 (en) | Group 13 metal compounds for ald applications | |
TW202214667A (en) | Thermally stable ruthenium precursor compositions and method of forming ruthenium-containing films | |
KR20160062675A (en) | Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition | |
EP1792907A1 (en) | Volatile metal beta-ketoiminate complexes | |
EP2060577A1 (en) | Copper precursors for thin film deposition | |
JP2003277930A (en) | Titanium complex-containing solution as raw material for organometallic chemical vapor deposition and titanium-containg thin film produced by using the same |