[go: up one dir, main page]

JP2005171209A - Filler-containing resin composition and method for producing the same - Google Patents

Filler-containing resin composition and method for producing the same

Info

Publication number
JP2005171209A
JP2005171209A JP2003417220A JP2003417220A JP2005171209A JP 2005171209 A JP2005171209 A JP 2005171209A JP 2003417220 A JP2003417220 A JP 2003417220A JP 2003417220 A JP2003417220 A JP 2003417220A JP 2005171209 A JP2005171209 A JP 2005171209A
Authority
JP
Japan
Prior art keywords
filler
resin composition
resin
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003417220A
Other languages
Japanese (ja)
Inventor
San Abe
賛 安部
Takashi Ito
隆 伊東
Takeshi Yanagihara
武 楊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Admatechs Co Ltd
Original Assignee
Toyota Motor Corp
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Admatechs Co Ltd filed Critical Toyota Motor Corp
Priority to JP2003417220A priority Critical patent/JP2005171209A/en
Publication of JP2005171209A publication Critical patent/JP2005171209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which has, when the level of a compounded filler is high, good fluidity, is good for handling, and can be used as a liquid sealing material that is caused to efficiently enter and fill the ten-odd μm gap between semiconductor elements and a substrate upon mounting of flip chips. <P>SOLUTION: The filler-containing resin composition (from which combinations of epoxy resins and silazanes are excluded) is provided, wherein 60% by weight or more of a filler produced by compounding a basic substance in a thermoplastic resin is compounded to the total amount and the filler is primarily dispersed in the thermoplastic resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱硬化性樹脂等の熱硬化性樹脂にフィラーが高濃度に1次分散されたフィラー含有樹脂組成物、及びその製造方法に関する。また、本発明は、耐吸湿性、耐ハンダクラック性に優れ、低膨張性のフィラー含有樹脂組成物に関する。   The present invention relates to a filler-containing resin composition in which a filler is primarily dispersed at a high concentration in a thermosetting resin such as a thermosetting resin, and a method for producing the same. The present invention also relates to a low-expansion filler-containing resin composition that is excellent in moisture absorption resistance and solder crack resistance.

半導体装置などの電子部品の封止方法として、セラミックスや、熱硬化性樹脂を用いる方法が、従来より行われている。なかでも、エポキシ樹脂等の熱硬化性樹脂系封止材による封止が、経済性及び性能のバランスより好ましく広く行われている。   As a method for sealing electronic components such as semiconductor devices, a method using ceramics or a thermosetting resin has been conventionally performed. Among these, sealing with a thermosetting resin-based sealing material such as an epoxy resin is preferably performed more widely than the balance between economy and performance.

近年の半導体装置の高機能化、高集積化等に伴い、従来の主流であったボンディングワイヤーを用いる方法に変わって、バンプ(突起電極)により半導体素子と基板を電気的に接続する方法、いわゆるフリップチップを用いた表面実装が増加している。このフリップチップ実装方式の半導体装置では、ヒートサイクル試験でバンプの接合部等にクラック等の欠陥が発生する場合がある。その為これを防止するために、半導体素子と基板の隙間及びバンプの周囲等を液状のエポキシ樹脂系封止材で充填し硬化することにより改良する方法(アンダーフィル)が行われている。   With the recent increase in functionality and integration of semiconductor devices, the method of electrically connecting a semiconductor element and a substrate by bumps (projection electrodes) instead of the conventional method using bonding wires, which is the mainstream, so-called Surface mounting using flip chips is increasing. In this flip chip mounting type semiconductor device, a defect such as a crack may occur in a joint portion of a bump or the like in a heat cycle test. Therefore, in order to prevent this, a method (underfill) has been performed in which the gap between the semiconductor element and the substrate, the periphery of the bump, and the like are filled with a liquid epoxy resin sealing material and cured.

フリップチップ実装方式等の半導体装置を封止する封止材は、耐湿信頼性、耐電気腐食性、耐ヒートサイクル性等の特性が要求されるが、その為に、封止材中にシリカ等の無機充填材を配合することにより吸湿率を低下させると共に熱膨張率を低下させることにより耐湿信頼性や耐ヒートサイクル性を向上させる方法が行われている。   A sealing material for sealing a semiconductor device such as a flip chip mounting method requires characteristics such as moisture resistance reliability, electric corrosion resistance, and heat cycle resistance. For this purpose, silica or the like is included in the sealing material. A method for improving moisture resistance reliability and heat cycle resistance by reducing the moisture absorption rate and reducing the coefficient of thermal expansion by blending the inorganic filler.

シリカ等の無機充填材の配合量を増加させる程、封止材の吸湿率の低下と熱膨張係数の低下が可能となり、耐湿信頼性や耐ヒートサイクル性を向上できるが、一方無機充填材の配合量を増加させる程、封止材の粘度が増加し、流動性が著しく低下する傾向があり問題となる。特に、フリップチップ実装においては、十数μm程度の半導体素子と基板の隙間に封止材を充填する必要があるため、封止材には高い浸入充填性が要求される。よって、このような封止材には、無機充填材の充填率を高くしてもなるべく粘度が高くならずに、高い侵入充填性を得る為に、無機充填材として球状で比表面積の小さい無機粒子が要求されている。   Increasing the blending amount of inorganic fillers such as silica can reduce the moisture absorption rate and thermal expansion coefficient of the sealing material, and improve moisture resistance reliability and heat cycle resistance. As the blending amount is increased, the viscosity of the sealing material increases and the fluidity tends to be remarkably lowered, which is a problem. In particular, in flip-chip mounting, since it is necessary to fill a gap between a semiconductor element of about 10 μm and a substrate with a sealing material, the sealing material is required to have a high penetration filling property. Therefore, in order to obtain a high intrusion filling property without increasing the viscosity as much as possible even if the filling rate of the inorganic filler is increased, such a sealing material is an inorganic material having a spherical shape and a small specific surface area. Particles are required.

係る観点から、シリカ粒子を火炎中で溶融する方法(例えば、下記特許文献1)等により得た球状シリカを封止材用充填材に使用する試みがなされている(例えば、下記特許文献2、3)。   From such a viewpoint, attempts have been made to use spherical silica obtained by a method of melting silica particles in a flame (for example, Patent Document 1 below) as a filler for sealing material (for example, Patent Document 2, the following Patent Document 2, 3).

しかしながら、これらの球状シリカは、比表面積の点において未だ十分小さいものではなかった。また一般的に火炎溶融法によって得られる球状シリカは、数十μm程度の大粒子径の粒子を含む傾向があり数十μm程度の半導体と基板の隙間に侵入充填するには問題があった。また、表面には凹凸形状が多く、真球度に劣るなどの点でも十分ではなかった。   However, these spherical silicas have not been sufficiently small in terms of specific surface area. In addition, spherical silica generally obtained by the flame melting method tends to include particles having a large particle size of about several tens of μm, and there is a problem in intruding and filling a gap between a semiconductor and a substrate of about several tens of μm. Also, the surface has many irregularities and is inadequate in terms of inferior sphericity.

また、異なる粒径分布を有する無機充填材を併用し液状封止材の流動性を良好にしようとする試みも提案されている(例えば、下記特許文献4〜8等)。しかしながら、これらに開示された方法は、使用する無機充填材の比表面積が大きかったり、形状が破砕状であったり、エポキシ化合物等の熱硬化性樹脂と硬化剤などからなる熱硬化性樹脂組成物の粘度が高すぎたり、固体状であったりする理由より、液状封止材として十分な流動性を得るに至っていない。   In addition, attempts have been made to improve the fluidity of a liquid sealing material by using inorganic fillers having different particle size distributions (for example, Patent Documents 4 to 8 below). However, the methods disclosed in these publications are such that the specific surface area of the inorganic filler used is large, the shape is crushed, or a thermosetting resin composition comprising a thermosetting resin such as an epoxy compound and a curing agent. In view of the fact that the viscosity is too high or solid, sufficient fluidity as a liquid sealing material has not been obtained.

また、シリカ粒子を表面処理して封止材用充填材に使用する試みがなされており、例えば、下記特許文献9には、半導体封止用エポキシ樹脂中に分散するシリカ粒子表面をメチルエチルケトン中で酸無水物を用いてエステル化処理し、樹脂中での分散性を向上することが開示されている。   In addition, attempts have been made to surface-treat silica particles and use them as a filler for sealing materials. For example, in Patent Document 9 below, the surface of silica particles dispersed in an epoxy resin for semiconductor sealing is incorporated in methyl ethyl ketone. It is disclosed that esterification treatment is performed using an acid anhydride to improve dispersibility in a resin.

しかしながら、上記の技術では、樹脂中で無機質充填剤粒子が凝集しやすく、不均一で、粘度が高く、その結果、流動性が低く、更なる成形性向上を図ることができないという問題があった。しかも、エポキシ樹脂と硬化剤を一緒にシリカを分散させたメチルエチルケトンに添加した後溶媒を真空蒸留させている。また、混合物の中に酢酸も存在し、エポキシ当量を維持したまま溶媒を完全に除去することは不可能であると考えられる。つまり、この公報は硬化組成物を作成するものであり、本発明のごとくシリカ分散エポキシ樹脂を調整するものと違うものである。   However, the above technique has a problem that the inorganic filler particles easily aggregate in the resin, are non-uniform, have a high viscosity, and as a result, have low fluidity and cannot be further improved in moldability. . Moreover, the epoxy resin and the curing agent are added together to methyl ethyl ketone in which silica is dispersed, and then the solvent is vacuum distilled. Also, acetic acid is also present in the mixture, and it is considered impossible to completely remove the solvent while maintaining the epoxy equivalent. That is, this gazette is for making a cured composition, and is different from that for preparing a silica-dispersed epoxy resin as in the present invention.

一方、下記特許文献10には、酸素を含む雰囲気内においてバーナにより化学炎を形成し、この化学炎中に金属粉末を粉塵雲を形成しうる量投入して燃焼させて、酸化物超微粒子を合成する製造方法の開示がある。また、下記特許文献11には、酸化物を構成する金属粉末をキャリアガスとともに反応容器内へ供給する第1工程と、該反応容器内で発火させて火炎を形成し、該金属粉末を燃焼させ酸化物の粉末を合成する第2工程とからなる酸化物粉末の製造方法において、第1工程は、小粒径の金属酸化物と上記金属粉末との混合物を供給し、第2工程は、上記金属酸化物を核として上記金属粉末の燃焼により合成される酸化物により粒成長させることを特徴とする酸化物粉末の製造方法の開示がある。   On the other hand, in Patent Document 10 below, a chemical flame is formed by a burner in an oxygen-containing atmosphere, and an amount of metal powder that can form a dust cloud is introduced into the chemical flame and burned to produce ultrafine oxide particles. There is a disclosure of a manufacturing method for synthesis. Patent Document 11 listed below includes a first step of supplying a metal powder constituting an oxide into a reaction vessel together with a carrier gas, and forming a flame by igniting the reaction vessel to burn the metal powder. In the oxide powder manufacturing method comprising the second step of synthesizing the oxide powder, the first step supplies a mixture of the metal oxide having a small particle size and the metal powder, and the second step includes the above step. There is a disclosure of a method for producing an oxide powder, characterized in that a metal oxide is used as a nucleus to cause grain growth with an oxide synthesized by combustion of the metal powder.

特開昭58-145613号公報JP-A-58-145613 特開平9-235357号公報Japanese Patent Laid-Open No. 9-235357 特開平10-53694号公報Japanese Patent Laid-Open No. 10-53694 特開平2-228354号公報JP-A-2-228354 特開平3-177450号公報Japanese Unexamined Patent Publication No. 3-177450 特開平5-230341号公報Japanese Patent Laid-Open No. 5-230341 特開平4-253760号公報JP-A-4-253760 特開平5-206333号公報Japanese Patent Laid-Open No. 5-206333 特開平6-283633号公報JP-A-6-283633 特開昭60-255602号公報JP-A-60-255602 特開平1-24004号公報Japanese Unexamined Patent Publication No. 1-24004

シリカをエポキシ樹脂等の熱硬化性樹脂に分散させる方法として、ロール等による機械分散が一般的である。しかし、アドマファイン(商標名)のような微粒子シリカの場合は、完全に分散させることが困難である。このため、微粒子の粘度低下効果などは十分に引き出せない。シリカを有機溶媒に分散させた後、樹脂を添加して溶媒を除去する方法も考えられるが、溶媒を完全に除去するために高温加熱が必要である。しかし、シリカの存在下で、加熱するとエポキシが反応してエポキシ当量が変化し粘度が高くなる。しかも反応自身はシリカの表面状態によって異なるので制御が不可能である。   As a method of dispersing silica in a thermosetting resin such as an epoxy resin, mechanical dispersion using a roll or the like is common. However, in the case of fine particle silica such as Admafine (trade name), it is difficult to completely disperse. For this reason, the effect of reducing the viscosity of the fine particles cannot be sufficiently extracted. A method of removing the solvent by adding a resin after dispersing silica in an organic solvent is also conceivable, but heating at a high temperature is necessary to completely remove the solvent. However, when heated in the presence of silica, the epoxy reacts to change the epoxy equivalent and increase the viscosity. Moreover, since the reaction itself varies depending on the surface state of silica, it cannot be controlled.

無機粒子含有樹脂複合材料において、無機粒子とマトリックスポリマーとの間を強固な結合で結ぶことは重要である。粒子の表面を改質してマトリックスと結合を強くする方法として、シランカップリング剤で処理するのは一般的である。しかし、金属を燃焼して得られる金属酸化物粉体であるアドマファイン(商標名)のような微粒子の場合は処理によって凝集が起こりやすく、樹脂中に分散しにくくなり、粘度が高くなる問題点がある。例えば、エポキシシラン処理シリカをエポキシ樹脂等の熱硬化性樹脂に配合する場合は粘度が非常に高くなることがその典型である。   In the inorganic particle-containing resin composite material, it is important to connect the inorganic particles and the matrix polymer with a strong bond. Treatment with a silane coupling agent is a common method for modifying the particle surface to strengthen the bond with the matrix. However, in the case of fine particles such as Admafine (trade name), which is a metal oxide powder obtained by burning metal, it tends to agglomerate by treatment, and it becomes difficult to disperse in the resin, and the viscosity becomes high There is. For example, when epoxy silane-treated silica is blended with a thermosetting resin such as an epoxy resin, the viscosity is typically very high.

つまり、シリカ粒子がエポキシ樹脂等の熱硬化性樹脂と反応する特性を有するため、高流動を実現できないことが問題であった。   That is, since the silica particles have a property of reacting with a thermosetting resin such as an epoxy resin, it has been a problem that high flow cannot be realized.

本発明は、上記問題点を改善するために成されたもので、その目的とするところは、フィラーの配合量が多い場合であっても、良好な流動性を有し、取り扱い性に優れ、フリップチップ実装の際に半導体素子と基板間の十数μmのギャップにも効率良く侵入充填できる液状封止材となる樹脂組成物を提供することにある。   The present invention was made in order to improve the above-mentioned problems, and the object is to have good fluidity and excellent handleability even when the filler content is large. An object of the present invention is to provide a resin composition serving as a liquid sealing material capable of efficiently entering and filling a gap of tens of micrometers between a semiconductor element and a substrate during flip chip mounting.

上記課題を解決するため、本発明者は上記金属を燃焼して得られる金属微粒子をエポキシ樹脂等の熱硬化性樹脂中に高濃度に1次分散させることに着目し本発明に至った。   In order to solve the above-mentioned problems, the present inventor has reached the present invention paying attention to primary dispersion of metal fine particles obtained by burning the above metal in a thermosetting resin such as an epoxy resin at a high concentration.

第1に本発明は、フィラー含有樹脂組成物の発明であり、熱硬化性樹脂(エポキシ樹脂を除く)中に塩基性物質を配合したフィラーが全量に対して60重量%以上配合され、該フィラーが熱硬化性樹脂(エポキシ樹脂を除く)中に一次分散していることを特徴とする。同様に、熱硬化性樹脂中に塩基性物質(シラザン類を除く)を配合したフィラーが全量に対して60重量%以上配合され、該フィラーが熱硬化性樹脂中に一次分散していることを特徴とする。   First, the present invention is an invention of a filler-containing resin composition, wherein a filler containing a basic substance in a thermosetting resin (excluding an epoxy resin) is blended in an amount of 60% by weight or more based on the total amount. Is primarily dispersed in a thermosetting resin (excluding epoxy resin). Similarly, a filler in which a basic substance (excluding silazanes) is blended in a thermosetting resin is blended by 60% by weight or more based on the total amount, and the filler is primarily dispersed in the thermosetting resin. Features.

フィラーとしては限定されず、公知のものを用いることが出来る。この中で、金属を燃焼して得られる金属酸化物粉体が好ましく例示される。   It does not limit as a filler, A well-known thing can be used. Among these, a metal oxide powder obtained by burning metal is preferably exemplified.

金属を燃焼して得られる金属酸化物粉体とは、珪素、アルミニウム、マグネシウム、ジルコニウム、チタン等の金属粉末、その他ムライト組成に調合したアルミニウム粉末とシリコン粉末、スピネル組成に調合したマグネシウム粉末とアルミニウム粉末、コージェライト組成に調合したアルミニウム粉末、マグネシウム粉末・シリコン粉末等の金属粉末混合物をキャリアガスとともに酸素を含む雰囲気中で化学炎を形成し・この化学炎中に目的とするシリカ(SiO)、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)等の金属酸化物や、複合酸化物の超微粒子を得るものである。本発明では、シリカを主成分とする金属酸化物粉体が好ましい。また、前記金属を燃焼してうる金属酸化物粉体は、平均粒子径が0.05μmから10μmの真球状粒子であるものが好ましい。 Metal oxide powder obtained by burning metal is metal powder such as silicon, aluminum, magnesium, zirconium, titanium, etc., aluminum powder and silicon powder prepared in mullite composition, magnesium powder and aluminum prepared in spinel composition A chemical flame is formed in an atmosphere containing oxygen together with a carrier gas, such as a powder, aluminum powder mixed in a cordierite composition, magnesium powder, silicon powder, etc., and target silica (SiO 2 ) in this chemical flame Metal oxides such as alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), etc., and ultrafine particles of composite oxide are obtained. In this invention, the metal oxide powder which has a silica as a main component is preferable. The metal oxide powder obtained by burning the metal is preferably a true spherical particle having an average particle diameter of 0.05 μm to 10 μm.

本発明のフィラー含有樹脂組成物中では、金属を燃焼して得られる金属酸化物微粒子等のフィラーが、全量に対して60重量%以上含まれ、一次分散している。半導体封止材料として、鉛フリーのハンダに耐えるために、90重量%以上が好ましく、95重量%以上がより好ましい。   In the filler-containing resin composition of the present invention, fillers such as metal oxide fine particles obtained by burning metal are contained in an amount of 60% by weight or more based on the total amount and are primarily dispersed. The semiconductor sealing material is preferably 90% by weight or more, more preferably 95% by weight or more in order to withstand lead-free solder.

本発明のフィラー含有樹脂組成物は、このような超微粒子の金属酸化物粉末が凝縮することなく、均一に1次分散している。   In the filler-containing resin composition of the present invention, such ultrafine metal oxide powder is uniformly primary dispersed without condensing.

フィラーの表面が塩基性物質で処理されていることは樹脂との親和性を高める上で好ましい。本発明においてフィラーに配合される塩基性物質は、アンモニア、有機アミン、シラザン類、窒素を含むシランカップリング剤、窒素を含有する環状化合物から選択される1種以上である。   It is preferable that the surface of the filler is treated with a basic substance in order to increase the affinity with the resin. The basic substance blended in the filler in the present invention is at least one selected from ammonia, organic amines, silazanes, silane coupling agents containing nitrogen, and cyclic compounds containing nitrogen.

本発明で言うシラザン類は、分子中にSi−N結合を有する珪素化合物で、オルガノシラザンと称することもあり、例えば、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメテルシクロトリシラザン、などのシラサン類から選択される化合物又はその組み合わせである。この中で、ヘキサメチルジシラザン(HMDS)がシリカの凝集を抑制し、酸性であるシリカを塩基性に傾け、有機物に対する親和性を向上させ、シランカップリング剤などの付着の均一性を向上させて、エポキシ樹脂に対する安定性を向上させるなどの点で好ましい。   Silazanes referred to in the present invention are silicon compounds having a Si—N bond in the molecule, and are sometimes referred to as organosilazanes. For example, hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, A compound selected from silazanes such as silazane, 1,1,3,3,5,5-hexametacyclotrisilazane, or a combination thereof. Among them, hexamethyldisilazane (HMDS) suppresses silica aggregation, tilts acidic silica to basic, improves affinity for organic substances, and improves the uniformity of adhesion of silane coupling agents, etc. In view of improving the stability to the epoxy resin, it is preferable.

塩基性物質であるアミン系シランカップリング剤は下記一般式
(R(R(RSi
で表されるもので、n+M+1は4である。Rは一級、二級及び三級アミンの置換基でSi原子とC−Si結合で結合されている。Rは炭化水素基でSi原子とC−Si結合で結合されている。Rは加水分解可能な置換基で、Si原子とSi−OR(Rは炭化水素基)、Si−OCOR(Rは炭化水素基)、Si−NHCOR(Rは炭化水素基)、Si−NR(R、Rは炭化水素基又は水素)などの結合で結合されている。具体的にはN−フェニル−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、などがあげられる。
The amine-based silane coupling agent, which is a basic substance, has the following general formula (R 1 ) n (R 2 ) m (R 3 ) l Si
N + M + 1 is 4. R 1 is a primary, secondary and tertiary amine substituent and is bonded to the Si atom by a C—Si bond. R 2 is a hydrocarbon group and is bonded to the Si atom by a C—Si bond. R 3 is a hydrolyzable substituent, Si atom and Si-OR (R is a hydrocarbon group), Si-OCOR (R is a hydrocarbon group), Si-NHCOR (R is a hydrocarbon group), Si-NR l R 2 (R 1 and R 2 are hydrocarbon groups or hydrogen) and the like. Specific examples include N-phenyl-γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane.

塩基性物質のフィラーに対する処理量は粉体表面積1m当り0.05から5μモル、好ましくは0.05から1μモルがよい。0.05μモル未満の場合は、処理効果が不十分で、5μモルを超える場合は粉体表面が疎水性となりハンドリング性が逆に悪くなる。又、表面が疎水性であるため、エポキシ樹脂などに対する密着性も悪くなる。更に粉体表面の水酸基がなくなるため、更なるシランカップリング剤などの処理が不可能となる。シリカ、アルミナの場合はIRスペクトル上3700cm−1付近の水酸基の吸収ピークが完全に消失しない程度の処理は最も望ましい。 The processing amount of the basic substance relative to the filler is 0.05 to 5 μmol, preferably 0.05 to 1 μmol, per 1 m 2 of the powder surface area. When the amount is less than 0.05 μmol, the treatment effect is insufficient. When the amount exceeds 5 μmol, the powder surface becomes hydrophobic and handling properties are adversely affected. Further, since the surface is hydrophobic, adhesion to an epoxy resin or the like is also deteriorated. Furthermore, since there are no hydroxyl groups on the powder surface, further treatment with a silane coupling agent or the like becomes impossible. In the case of silica or alumina, the treatment is most desirable so that the absorption peak of the hydroxyl group in the vicinity of 3700 cm −1 on the IR spectrum is not completely lost.

本発明のフィラー含有樹脂組成物に用いられる熱硬化性樹脂は限定されない。具体的には、エポキシ樹脂、フェノール樹脂、ウレタン、ポリイミド、不飽和ポリエステルから選択される1種以上が好ましく例示される。   The thermosetting resin used for the filler-containing resin composition of the present invention is not limited. Specifically, one or more types selected from epoxy resins, phenol resins, urethanes, polyimides and unsaturated polyesters are preferably exemplified.

エポキシ樹脂としては特に限定されず、1分子中にエポキシ基を2個以上有するモノマー、オリゴマー、及びポリマー全般が用いられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が例示される。これらは単独でも混合して用いてもよい。無機充填材はエポキシ樹脂組成物中に高充填されることが好ましいため、エポキシ樹脂組成物の流動性を良好に維持するには低粘度樹脂が好ましい。   The epoxy resin is not particularly limited, and monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule are used. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin etc. are illustrated. These may be used alone or in combination. Since the inorganic filler is preferably highly filled in the epoxy resin composition, a low-viscosity resin is preferable in order to maintain good fluidity of the epoxy resin composition.

フィラーは、下記のような粒径分布を有するシリカ粒子が好ましい。
(1)平均粒径0.01μから30μ、最大粒径75μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
(2)平均粒径0.01μから20μ、最大粒径45μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
(3)平均粒径0.01μから10μ、最大粒径20μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
(4)平均粒径0.01μから5μ、最大粒径10μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
(5)平均粒径0.01μから3μ、最大粒径5μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
(6)平均粒径0.01μから1.5μ、最大粒径3μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子。
The filler is preferably silica particles having the following particle size distribution.
(1) At least one or more types of silica particles selected from spherical silica particles having an average particle size of 0.01 to 30 μ and a maximum particle size of 75 μ.
(2) At least one or more types of silica particles selected from spherical silica particles having an average particle size of 0.01 to 20 μ and a maximum particle size of 45 μ.
(3) At least one or more types of silica particles selected from spherical silica particles having an average particle size of 0.01 μm to 10 μm and a maximum particle size of 20 μm.
(4) At least one or more types of silica particles selected from spherical silica particles having an average particle size of 0.01 to 5 μ and a maximum particle size of 10 μ.
(5) At least one or more types of silica particles selected from spherical silica particles having an average particle size of 0.01 to 3 μ and a maximum particle size of 5 μ.
(6) At least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 μ to 1.5 μ and a maximum particle size of 3 μ.

また、球状シリカ粒子は、溶融球状シリカ粒子及び/又は金属珪素を酸化して得られる球状シリカ粒子であることが好ましい。   The spherical silica particles are preferably spherical silica particles obtained by oxidizing fused spherical silica particles and / or metal silicon.

本発明で言うフィラーには、上記球状シリカ等の金属を燃焼して得られる金属酸化物粉体の他に、他の粉体を用いることが出来る。粉体は制限されないが、例えば、板状無機粉体、繊維状無機粉体、無定形無機粉体、木粉、熱硬化性樹脂の破砕粉体、重合で得られた樹脂粒子、無機難燃剤から選択される一種類以上の粉体が好ましく例示される。   As the filler in the present invention, other powders can be used in addition to the metal oxide powder obtained by burning the metal such as the spherical silica. The powder is not limited. For example, plate-like inorganic powder, fibrous inorganic powder, amorphous inorganic powder, wood powder, crushed powder of thermosetting resin, resin particles obtained by polymerization, inorganic flame retardant One or more kinds of powders selected from are preferably exemplified.

具体的には、板状無機粉体としてマイカ、繊維状無機粉体としてタルク、ガラス繊維、炭素繊維、チタン酸カリウムウイスカー、無定形無機粉体として炭酸カルシウム、破砕シリカ、熱硬化性樹脂の破砕粉体としてエポキシ樹脂の破砕粉体、重合で得られた樹脂粒子として懸濁重合で合成した樹脂粒子、無機難燃剤として水酸化アルミ、水酸化マグネシウム等が好ましく例示される。   Specifically, mica as the plate-like inorganic powder, talc, glass fiber, carbon fiber, potassium titanate whisker as the fibrous inorganic powder, calcium carbonate, crushed silica, and thermosetting resin as the amorphous inorganic powder Preferable examples include crushed powder of epoxy resin as powder, resin particles synthesized by suspension polymerization as resin particles obtained by polymerization, and aluminum hydroxide and magnesium hydroxide as inorganic flame retardants.

金属を燃焼して得られる金属酸化物粉体の表面がシランカップリング剤で処理されていることは樹脂との親和性を高める上で好ましい。シランカップリング剤としては、エポキシシラン、アミノシラン、アクリルシラン、チオールシランから選択される1種以上であることが好ましい。具体的には、シランカップリング剤として、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシラン等が例示される。   The surface of the metal oxide powder obtained by burning the metal is preferably treated with a silane coupling agent in order to increase the affinity with the resin. The silane coupling agent is preferably at least one selected from epoxy silane, amino silane, acrylic silane, and thiol silane. Specifically, as a silane coupling agent, γ-glycidoxypropyltriethoxysilane, epoxy silane such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxy Examples thereof include aminosilanes such as silane and N-phenylaminopropyltrimethoxysilane, hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, and octadecyltrimethoxysilane, mercaptosilane, and the like.

フィラーを樹脂に高充填させるために、粒径の異なるものを適当に配合することが有効である。具体的には大きいフィラーが最密充填した時の隙間に小さいフィラーを順次充填していく考え方が一般的で、例えばHorsleldモデルがその一例である。又、実際の粉体を最密充填なるように配合するための計算法も知られている。しかし、未処理のフィラー、或いは従来知られている方法で処理されたフィラーに対して、上記最密充填しても未だ十分な低粘度が達成できない。   In order to fill the resin with a high amount of filler, it is effective to appropriately mix those having different particle diameters. Specifically, the idea of sequentially filling small fillers into the gaps when large fillers are closely packed is generally the Horsleld model, for example. In addition, a calculation method for blending actual powder so as to be closely packed is also known. However, it is still impossible to achieve a sufficiently low viscosity even when the above-mentioned close packing is performed on an untreated filler or a filler treated by a conventionally known method.

本発明の方法で処理したフィラーは、塩基性物質を併用することによって、従来のカップリング剤処理よりはるかに処理が均一で、樹脂に対する親和性も格段に高い。従って、本発明のフィラーを樹脂に配合すると、粘度が非常に低くなり、上記最密充填の方法で異なる粒径のフィラーを最密充填になるように配合すると従来のフィラー技術では達成できない低粘度樹脂組成物が得られる。   The filler treated by the method of the present invention is treated more uniformly than the conventional coupling agent treatment by using a basic substance in combination, and the affinity for the resin is remarkably high. Therefore, when the filler of the present invention is blended with the resin, the viscosity becomes very low, and when the filler having a different particle size is blended so as to be close packed by the above close packing method, the low viscosity cannot be achieved by the conventional filler technology. A resin composition is obtained.

第2に、本発明は、フィラー含有樹脂組成物の製造方法の発明であり、塩基性物質をスラリに配合したフィラーを有機溶媒に分散させてうるスラリに、熱硬化性樹脂(エポキシ樹脂を除く)又は該熱硬化性樹脂(エポキシ樹脂を除く)の一部分を混合した後、溶媒を除去することを特徴とする。同様に、塩基性物質(シラザン類を除く)をスラリに配合したフィラーを有機溶媒に分散させてうるスラリに、熱硬化性樹脂又は該熱硬化性樹脂の一部分を混合した後、溶媒を除去することを特徴とする。ここで、塩基性物質及び熱硬化性樹脂は、上述の通りである。   Second, the present invention is an invention of a method for producing a filler-containing resin composition, in which a thermosetting resin (excluding epoxy resin) is added to a slurry obtained by dispersing a filler containing a basic substance in a slurry in an organic solvent. ) Or a part of the thermosetting resin (excluding the epoxy resin) is mixed, and then the solvent is removed. Similarly, after mixing a thermosetting resin or a part of the thermosetting resin with a slurry obtained by dispersing a filler containing a basic substance (excluding silazanes) in an organic solvent, the solvent is removed. It is characterized by that. Here, the basic substance and the thermosetting resin are as described above.

本発明の方法により、金属酸化物等のフィラーをエポキシ樹脂等の熱硬化性樹脂へ高充填することが可能である。ヘキサメチルジシラザン(HMDS)等の塩基性物質でフィラー表面を酸性から塩基性に変換し、フィラーの熱硬化性樹脂に対する活性を抑制し熱硬化性樹脂との反応による粘性増加を抑制する。これにより、熱硬化性樹脂充填時に低粘度且つ高流動性を実現することが可能となった。なお、有機溶媒による表面処理工程と、塩基性物質による表面処理工程とは順序の入替え可能である。   By the method of the present invention, a filler such as a metal oxide can be highly filled into a thermosetting resin such as an epoxy resin. The filler surface is converted from acidic to basic with a basic substance such as hexamethyldisilazane (HMDS), and the activity of the filler on the thermosetting resin is suppressed and the increase in viscosity due to the reaction with the thermosetting resin is suppressed. Thereby, it became possible to realize low viscosity and high fluidity when filling the thermosetting resin. The order of the surface treatment step using an organic solvent and the surface treatment step using a basic substance can be interchanged.

本発明で用いられる有機溶媒は、エポキシ樹脂等の熱硬化性樹脂やシラザン類等の塩基性物質、更にはシランカップリング剤との反応性がない非プロトン性のものであって、金属酸化物微粒子等のフィラーを良く分散させるものである。具体的には、メチルエチルケトン、メチルイソブチルケトン、アセトン、ベンゼン、トルエン、キシレン、酢酸エチル、ジメチルエーテル、シクロヘキサン等が例示される。   The organic solvent used in the present invention is a thermosetting resin such as an epoxy resin, a basic substance such as a silazane, and an aprotic one that is not reactive with a silane coupling agent, and is a metal oxide. A filler such as fine particles is well dispersed. Specific examples include methyl ethyl ketone, methyl isobutyl ketone, acetone, benzene, toluene, xylene, ethyl acetate, dimethyl ether, cyclohexane and the like.

金属酸化物微粒子等のフィラーが分散した有機溶媒に添加される塩基性物質としてはシラザン類が好ましく、例えばヘキサメチルジシラザン、ヘキサフェニルジシラザン等のシラザン類から選択される化合物またはその組み合わせが好ましく例示される。この中で、ヘキサメチルジシラザン(HMDS)が、シリカ等の金属酸化物微粒子等のフィラーの凝集を抑制し、酸性であるシリカを塩基性に傾け、有機物に対する親和性を向上させ均一性を向上させてエポキシ樹脂等の熱硬化性樹脂に対する安定性を向上させる等の点で好ましい。有機溶媒中のシラザン類等の塩基性物質の存在量は、フィラーに対して10〜1000ppmが好ましく、10ppm未満であると添加効果に乏しく、1000ppmを越えるとシラザン類等の塩基性物質の分解性生物がエポキシ樹脂等の熱硬化性樹脂中に残存して、樹脂の強度の低下、密着性の低下、着色等の不都合が生じる。   Silazanes are preferred as the basic substance added to the organic solvent in which fillers such as metal oxide fine particles are dispersed. For example, compounds selected from silazanes such as hexamethyldisilazane and hexaphenyldisilazane or combinations thereof are preferred. Illustrated. Among these, hexamethyldisilazane (HMDS) suppresses the aggregation of fillers such as metal oxide fine particles such as silica, tilts acidic silica to basicity, improves affinity for organic substances and improves uniformity. It is preferable in terms of improving the stability to a thermosetting resin such as an epoxy resin. The amount of the basic substance such as silazanes in the organic solvent is preferably 10 to 1000 ppm relative to the filler, and if it is less than 10 ppm, the effect of addition is poor. Living organisms remain in a thermosetting resin such as an epoxy resin, resulting in inconveniences such as a decrease in strength of the resin, a decrease in adhesion, and coloring.

エポキシ樹脂等の熱硬化性樹脂配合物から有機溶媒を除去するには、減圧下に加熱蒸留すればよい。組成物中に残留する揮発分が0.5%以下であることが好ましい。   In order to remove the organic solvent from the thermosetting resin compound such as epoxy resin, it may be distilled by heating under reduced pressure. The volatile content remaining in the composition is preferably 0.5% or less.

本発明のエポキシ樹脂等の熱硬化性樹脂組成物の製造方法においては、更に、金属を燃焼して得られる金属酸化物微粒子等のフィラー中の粗大粒子を除去する工程を含むことが好ましい。この工程は、上記エポキシ樹脂等の熱硬化性樹脂組成物の製造方法中のどの部分に加えられても良い。   The method for producing a thermosetting resin composition such as an epoxy resin of the present invention preferably further includes a step of removing coarse particles in a filler such as metal oxide fine particles obtained by burning metal. This step may be added to any part in the method for producing a thermosetting resin composition such as the epoxy resin.

第3に、本発明は、上記のエポキシ樹脂等の熱硬化性樹脂組成物に、硬化剤成分及び硬化触媒成分を含む熱硬化性樹脂組成物であり、特に半導体封止用に好適な熱硬化性樹脂組成物である。   Third, the present invention is a thermosetting resin composition containing a curing agent component and a curing catalyst component in the above-described epoxy resin or other thermosetting resin composition, and is particularly suitable for semiconductor encapsulation. It is an adhesive resin composition.

上記硬化剤成分としては、アミン系、酸無水物系、フェノール系硬化剤など特に限定されない。   The curing agent component is not particularly limited, such as an amine-based, acid anhydride-based, or phenol-based curing agent.

アミン系硬化剤としては、脂肪族ポリアミン、ポリアミドポリアミン、脂環族ポリアミン、芳香族ポリアミンおよびその他がある。脂肪族ポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン及びジエチルアミノプロピルアミン等が例示される。ポリアミドポリアミンとしては、ポリアミドポリアミンが例示される。脂環族ポリアミンとしては、メンセンジアミン、イソホロンジアミン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4−アミノ−3−メチルシクロヘキシル)メタン及びビス(4−アミノシクロヘキシル)メタン等が例示される。芳香族ポリアミンとしては、メタキシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン及びm−フェニレンジアミン等が例時される。その他としては、ジシアンジアミド及びアジピン酸ジヒラシドが例示される。また、アミン系硬化剤の配合割合は、エポキシ樹脂の場合、エポキシ基に対するアミノ基の活性水素の当量比(エポキシ基/活性水素)が通常1/0.8〜1/1.2、好ましくは1/0.9〜1/1.1の範囲が良い。   Examples of amine curing agents include aliphatic polyamines, polyamide polyamines, alicyclic polyamines, aromatic polyamines, and others. Examples of the aliphatic polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine. Examples of the polyamide polyamine include polyamide polyamine. Examples of alicyclic polyamines include mensendiamine, isophoronediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro (5,5) undecane adduct Bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane and the like. Examples of aromatic polyamines include metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and m-phenylenediamine. Others include dicyandiamide and adipic acid dihiraside. The mixing ratio of the amine curing agent is, in the case of an epoxy resin, the equivalent ratio of active hydrogen of amino group to epoxy group (epoxy group / active hydrogen) is usually 1 / 0.8 to 1 / 1.2, preferably 1 / 0.9 to A range of 1 / 1.1 is good.

酸無水物系硬化剤としては、分子量は140〜200程度のものが好適に用いられる。例えば、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物等が例示される。上記酸無水物系硬化剤の配合割合は、エポキシ樹脂の場合、エポキシ基に対する酸無水物基の当量比(エポキシ基/酸無水物基)が、1/0.5〜1/1.3の範囲が好ましい。   As the acid anhydride curing agent, those having a molecular weight of about 140 to 200 are preferably used. Examples thereof include colorless to light yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride. In the case of an epoxy resin, the mixing ratio of the acid anhydride curing agent is preferably such that the equivalent ratio of the acid anhydride group to the epoxy group (epoxy group / acid anhydride group) is in the range of 1 / 0.5 to 1 / 1.3.

フェノール系硬化剤としては、分子中に2個以上、好ましくは3個以上のフェノール性水酸基を有するものである。具体的には、フェノールや置換フェノール、例えば、o−クレゾール、p−クレゾール、t−ブチルフェノール、タミルフェノール、フェニルフェノールとホルムアルデヒドを酸やアルカリで反応したものが例示される。ホルムアルデヒドの替わりに、ほかのアルデヒド、例えば、ベンズアルデヒド、クロトンアルデヒド、サリチルアルデヒド、ヒドロキシベンズアルデヒド、グリオキザール及びテレフタルアルデヒドを用いたものも利用できる。レゾルシンとアルデヒドの反応物やポリビニルフェノールも本発明の硬化剤として用いることができる。また、フェノール系硬化剤の配合割合は、エポキシ樹脂の場合、エポキシ基に対する硬化剤のフェノール性水酸基の当量比(エポキシ基/フェノール性水酸基)が通常、1/0.8〜1/1.2、好ましくは1/0.9〜1/1.1の範囲が耐熱性及び耐湿性の点から選ばれる。   The phenolic curing agent has two or more, preferably three or more phenolic hydroxyl groups in the molecule. Specific examples include phenols and substituted phenols such as o-cresol, p-cresol, t-butylphenol, tamilphenol, phenylphenol and formaldehyde reacted with acid or alkali. Instead of formaldehyde, other aldehydes such as benzaldehyde, crotonaldehyde, salicylaldehyde, hydroxybenzaldehyde, glyoxal and terephthalaldehyde can be used. A reaction product of resorcin and aldehyde or polyvinylphenol can also be used as the curing agent of the present invention. In addition, in the case of an epoxy resin, the proportion of the phenolic curing agent is such that the equivalent ratio of the phenolic hydroxyl group of the curing agent to the epoxy group (epoxy group / phenolic hydroxyl group) is usually 1 / 0.8 to 1 / 1.2, preferably 1. The range of /0.9 to 1 / 1.1 is selected from the viewpoints of heat resistance and moisture resistance.

上記硬化触媒成分としては、三級アミン、四級アンモニウム塩、イミダゾール化合物、ホウ素化合物及び有機金属錯塩等が例示される。   Examples of the curing catalyst component include tertiary amines, quaternary ammonium salts, imidazole compounds, boron compounds and organometallic complex salts.

三級アミンとしては、トリエタノールアミン、テトラメチルヘキサンジアミン、トリエチレンジアミン、ジメチルアニリン、ジメチルアミノエタノール、ジエチルアミノエタノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、N,N'−ジメチルピペラジン、ピリジン、ピコリン、1,8−ジアザービシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン及び2−(ジメチルアミノ)メチルフェノール等がある。四級アンモニウム塩としては、ドデシルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ベンジルジメチルテトラデシルアンモニウムクロライド及びステアリルトリメチルアンモニウムクロライド等がある。イミダゾール類としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−エチルイミダゾール、1−ベンジル−2−メチルイミダゾール及び1−シアノエチル−2−ウンデシルイミダゾール等がある。ホウ素化合物としては、テトラフェニルボロン塩類、例えば、トリエチレンアミンテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等がある。有機金属錯塩としては、例えば、リン酸塩等が挙げられ、そのリン酸塩としては、例えば、トリフェニルホスフィン、トリス−2,6ジメトキシフェニルホスフィン、トリ−p−トリルホスフィン、亜リン酸トリフェニル、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート及びテトラ−n−ブチルホスホニウムブロマイド等がある。   Tertiary amines include triethanolamine, tetramethylhexanediamine, triethylenediamine, dimethylaniline, dimethylaminoethanol, diethylaminoethanol, 2,4,6-tris (dimethylaminomethyl) phenol, N, N′-dimethylpiperazine, Examples include pyridine, picoline, 1,8-diazabicyclo (5,4,0) undecene-7, benzyldimethylamine and 2- (dimethylamino) methylphenol. Quaternary ammonium salts include dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, benzyldimethyltetradecylammonium chloride and stearyltrimethylammonium chloride. Examples of imidazoles include 2-methylimidazole, 2-undecylimidazole, 2-ethylimidazole, 1-benzyl-2-methylimidazole, and 1-cyanoethyl-2-undecylimidazole. Examples of the boron compound include tetraphenyl boron salts such as triethyleneamine tetraphenyl borate and N-methylmorpholine tetraphenyl borate. Examples of the organic metal complex salts include phosphates, and the phosphates include, for example, triphenylphosphine, tris-2,6-dimethoxyphenylphosphine, tri-p-tolylphosphine, and triphenyl phosphite. Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate and tetra-n-butylphosphonium bromide.

本発明のエポキシ樹脂等の熱硬化性樹脂組成物は、上記の各成分の他、必要に応じてカップリング剤、カーボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤、シリコーンオイル、イオン捕捉剤、難燃剤、ゴム等の低応力添加剤等の種々の添加剤等を適宜配合しても差し支えない。   The thermosetting resin composition such as an epoxy resin of the present invention includes a coupling agent, a colorant such as carbon black and bengara, a mold release agent such as natural wax and synthetic wax, as necessary, in addition to the above components. Various additives such as a silicone oil, an ion scavenger, a flame retardant, and a low stress additive such as rubber may be appropriately blended.

本発明のエポキシ樹脂等の熱硬化性樹脂組成物は、半導体装置や液晶表示装置
の封止材料として有用である。
The thermosetting resin composition such as an epoxy resin of the present invention is useful as a sealing material for semiconductor devices and liquid crystal display devices.

本発明の金属酸化物等のフィラーが均一分散されたエポキシ樹脂等の熱硬化性樹脂組成物は、従来の混練法で得られない(1)高フィラー濃度、(2)1次粒子として分散され、粗粒及び擬集がない高分散度、(3)低粘度、(4)低粗粒量のフィラー含有樹脂組成物が得られ、半導体、ディスプレ液状封止、セラ代替材料、精密樹脂部品等に好ましく適用できる。   A thermosetting resin composition such as an epoxy resin in which a filler such as a metal oxide of the present invention is uniformly dispersed cannot be obtained by a conventional kneading method (1) high filler concentration, (2) dispersed as primary particles. , High dispersibility without coarse particles and pseudo-collection, (3) low viscosity, (4) low coarse particle filler-containing resin composition is obtained, semiconductor, display liquid sealing, sera substitute material, precision resin parts, etc. Can be preferably applied.

以下、実施例と比較例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples and comparative examples.

[実施例1]
平均粒径が25μ、比表面積が1.8m/g、最大粒子径が75μの球状シリカを70重量部、平均粒径が7μ、比表面積が4.6m/g、最大粒子径が75μの球状シリカを30重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が75μの球状シリカを10重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘欄の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。825EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、81.5%と言う値を得た。
[Example 1]
70 parts by weight of spherical silica having an average particle size of 25 μ, a specific surface area of 1.8 m 2 / g and a maximum particle size of 75 μ, an average particle size of 7 μ, a specific surface area of 4.6 m 2 / g and a maximum particle size of 75 μ 30 parts by weight of spherical silica, 10 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 75 μ, 25 parts by weight of epoxy resin (828 EL), and 0 by KBM403 .4 parts by weight, 0.01 parts by weight of butylamine, 100 parts by weight of methyl ethyl ketone, and after mixing in a mixer, disperse the powder with a disperser and heat at 120 ° C. for 3 hours under reduced pressure to remove the solvent. Removal of a viscous column liquid was obtained. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 825EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 81.5% was obtained.

[実施例2]
平均粒径が25μ、比表面積が1.8m/g、最大粒子径が45μの球状シリカを70重量部、平均粒径が7μ、比表面積が4.6m/g、最大粒子径が45μの球状シリカを30重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを10重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、KBM903を0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘欄の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、225と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、81.5%と言う値を得た。
[Example 2]
70 parts by weight of spherical silica having an average particle size of 25 μ, a specific surface area of 1.8 m 2 / g and a maximum particle size of 45 μ, an average particle size of 7 μ, a specific surface area of 4.6 m 2 / g and a maximum particle size of 45 μ 30 parts by weight of spherical silica, 10 parts by weight of spherical silica having an average particle diameter of 0.5 μm, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 25 parts by weight of epoxy resin (828EL), and 0 of KBM403 .4 parts by weight, 0.01 parts by weight of KBM903, 100 parts by weight of methyl ethyl ketone, and after mixing in a mixer, disperse the powder with a disperser and heat at 120 ° C. for 3 hours under reduced pressure to remove the solvent. Removal of a viscous column liquid was obtained. When the epoxy equivalent of the resin composition was measured, a value of 225 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 81.5% was obtained.

[比較例1]
平均粒径が25μ、比表面積が1.8m/g、最大粒子径が75μの球状シリカを70重量部、平均粒径が7μ、比表面積が4.6m/g、最大粒子径が75μの球状シリカを30重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が75μの球状シリカを10重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 1]
70 parts by weight of spherical silica having an average particle size of 25 μ, a specific surface area of 1.8 m 2 / g, and a maximum particle size of 75 μ, an average particle size of 7 μ, a specific surface area of 4.6 m 2 / g, and a maximum particle size of 75 μ 30 parts by weight of spherical silica, 10 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 75 μ, 25 parts by weight of epoxy resin (828 EL), and 0 of KBM403 After mixing 4 parts by weight and 100 parts by weight of methyl ethyl ketone in a mixer, the powder was dispersed with a disperser, and the solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure. The epoxy resin was cured. And I couldn't get it out of the container.

[実施例3]
平均粒径が7μ、比表面積が4.6m/g、最大粒子径が20μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が20μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、アニリンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 3]
70 parts by weight of spherical silica having an average particle size of 7 μ, a specific surface area of 4.6 m 2 / g and a maximum particle size of 20 μ, an average particle size of 0.5 μ, a specific surface area of 7 m 2 / g and a maximum particle size of 20 μ 30 parts by weight of spherical silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of aniline, 100 parts by weight of methyl ethyl ketone, mixed in a mixer, The powder was dispersed by heating at 120 ° C. for 3 hours under reduced pressure to remove the solvent, and a viscous liquid was obtained. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[比較例2]
平均粒径が7μ、比表面積が4.6m/g、最大粒子径が20μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が20μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 2]
70 parts by weight of spherical silica having an average particle diameter of 7 μ, a specific surface area of 4.6 m 2 / g and a maximum particle diameter of 20 μ, an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g and a maximum particle diameter of 20 μ 30 parts by weight of spherical silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 100 parts by weight of methyl ethyl ketone, and after mixing in a mixer, the powder is dispersed with a disperser, When the solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure, the epoxy resin was cured and could not be removed from the container.

[実施例4]
平均粒径が2μ、比表面積が2m/g、最大粒子径が10μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が10μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 4]
Average particle size 2.mu., specific surface area of 2m 2 / g, a maximum particle size of 10 [mu] 70 parts by weight of spherical silica of an average particle size of 0.5 [mu], a specific surface area of 7m 2 / g, a maximum particle size of 10 [mu] of the spherical 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then mixed with a disperser. The body was dispersed and heated at 120 ° C. for 3 hours under reduced pressure to remove the solvent to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[実施例5]
平均粒径が2μ、比表面積が2m/g、最大粒子径が5μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が5μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、2PHZ(四国化成製)を0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 5]
70 parts by weight of spherical silica having an average particle size of 2 μ, a specific surface area of 2 m 2 / g, and a maximum particle size of 5 μ, a spherical particle having an average particle size of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle size of 5 μ 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of 2PHZ (manufactured by Shikoku Kasei), 100 parts by weight of methyl ethyl ketone, and after mixing in a mixer The powder was dispersed with a disperser, and the solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[実施例6]
平均粒径が2μ、比表面積が2m/g、最大粒子径が5μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が5μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、アンモニアを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 6]
Average particle size 2.mu., specific surface area of 2m 2 / g, a maximum particle size of 70 parts by weight of spherical silica of 5 [mu], an average particle diameter of 0.5 [mu], a specific surface area of 7m 2 / g, spherical maximum particle diameter of 5 [mu] 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of ammonia and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then mixed with a disperser. The body was dispersed and heated at 120 ° C. for 3 hours under reduced pressure to remove the solvent to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[実施例7]
平均粒径が2μ、比表面積が2m/g、最大粒子径が5μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が5μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、エチレンジアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘桐の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800度に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 7]
Average particle size 2.mu., specific surface area of 2m 2 / g, a maximum particle size of 70 parts by weight of spherical silica of 5 [mu], an average particle diameter of 0.5 [mu], a specific surface area of 7m 2 / g, spherical maximum particle diameter of 5 [mu] 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of ethylenediamine and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then mixed with a disperser. The body was dispersed, and the solvent was removed by heating at 120 ° C. for 3 hours while reducing the pressure to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the resin composition was heated to 800 degrees and ash content was measured, a value of 80.0% was obtained.

[実施例8]
平均粒径が2μ、比表面積が2m/g、最大粒子径が105μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が105μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、10μのフィルターを通して、最大粒子径を10μにした。減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、79.9%と言う値を得た。
[Example 8]
70 parts by weight of spherical silica having an average particle diameter of 2 μ, a specific surface area of 2 m 2 / g and a maximum particle diameter of 105 μ, an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g and a spherical particle having a maximum particle diameter of 105 μ 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then mixed with a disperser. The body was dispersed to a maximum particle size of 10μ through a 10μ filter. The solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 79.9% was obtained.

[実施例9]
平均粒径が2μ、比表面積が2m/g、最大粒子径が105μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が105μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、5μのフィルターを通して、最大粒子径を5μにした。減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、79.8%と言う値を得た。
[Example 9]
70 parts by weight of spherical silica having an average particle diameter of 2 μ, a specific surface area of 2 m 2 / g and a maximum particle diameter of 105 μ, an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g and a spherical particle having a maximum particle diameter of 105 μ 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then mixed with a disperser. The body was dispersed and passed through a 5μ filter to a maximum particle size of 5μ. The solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the resin composition was heated to 800 ° C. and the ash content was measured, a value of 79.8% was obtained.

[比較例3]
平均粒径が2μ、比表面積が2m/g、最大粒子径が5μの球状シリカを70重量部、平均粒径が0.5μ、比表面積が7m/g、最大粒子径が5μの球状シリカを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 3]
70 parts by weight of spherical silica having an average particle size of 2 μ, a specific surface area of 2 m 2 / g, and a maximum particle size of 5 μ, a spherical particle having an average particle size of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle size of 5 μ 30 parts by weight of silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403 and 100 parts by weight of methyl ethyl ketone are mixed in a mixer, and then the powder is dispersed with a disperser and decompressed. However, when the solvent was removed by heating at 120 ° C. for 3 hours, the epoxy resin was cured and could not be removed from the container.

[実施例10]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が105μの球状シリカを95重量部、平均粒径が0.2μ、比表面積が16m/g、最大粒子径が105μの球状シリカを5重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、3μのフィルターを通して、最大粒子径を3μにした。減圧しながら120℃、3時間加熱して溶媒を除去して、粘桐の液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、79.9%と言う値を得た。
[Example 10]
95 parts by weight of spherical silica having an average particle size of 0.5 μ, a specific surface area of 7 m 2 / g and a maximum particle size of 105 μ, an average particle size of 0.2 μ, a specific surface area of 16 m 2 / g and a maximum particle size of 105 μ 5 parts by weight of spherical silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone were mixed in a mixer, and then dispersed. Then, the powder was dispersed and the maximum particle size was adjusted to 3μ through a 3μ filter. The solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 79.9% was obtained.

[比較例4]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が105μの球状シリカを95重量部、平均粒径が0.2μ、比表面積が16m/g、最大粒子径が105μの球状シリカを5重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、3μのフィルターを通して、最大粒子径を3μにした。減圧しながら120℃、3時間加熱して溶媒を除去したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 4]
95 parts by weight of spherical silica having an average particle size of 0.5 μ, a specific surface area of 7 m 2 / g and a maximum particle size of 105 μ, an average particle size of 0.2 μ, a specific surface area of 16 m 2 / g and a maximum particle size of 105 μ 5 parts by weight of spherical silica, 25 parts by weight of epoxy resin (828EL), 0.4 parts by weight of KBM403, 100 parts by weight of methyl ethyl ketone, and mixed in a mixer, the powder was dispersed with a disperser, The maximum particle size was adjusted to 3μ through a 3μ filter. When the solvent was removed by heating at 120 ° C. for 3 hours under reduced pressure, the epoxy resin was cured and could not be removed from the container.

[実施例11]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを70重量部、平均粒径が6μのカオリンを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠な液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 11]
70 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 30 parts by weight of kaolin having an average particle diameter of 6 μ, and 25 parts by weight of epoxy resin (828EL) Then, 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone were mixed in a mixer, and then the powder was dispersed with a disperser and heated at 120 ° C. for 3 hours while reducing the pressure. The solvent was removed to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[比較例5]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを70重量部、平均粒径が6μのカオリンを30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 5]
70 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 30 parts by weight of kaolin having an average particle diameter of 6 μ, and 25 parts by weight of epoxy resin (828EL) Then, 0.4 parts by weight of KBM403 and 100 parts by weight of methyl ethyl ketone were mixed in a mixer, and then the powder was dispersed with a disperser and heated at 120 ° C. for 3 hours under reduced pressure to cure the epoxy resin. I couldn't get it out of the container.

[実施例12]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを70重量部、直径が7μのガラスフィバー粉末を30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、ブチルアミンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱して溶媒を除去して、粘稠な液体を得た。樹脂組成物のエポキシ等量を測定したところ、樹脂換算で、224と言う値を得た。828EL自身のエポキシ等量は225であった。樹脂組成物を800℃に加熱して灰分を測定したところ、80.0%と言う値を得た。
[Example 12]
70 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 30 parts by weight of glass fiber fiber having a diameter of 7 μ, and 25 parts by weight of epoxy resin (828 EL) Then, 0.4 parts by weight of KBM403, 0.01 parts by weight of butylamine and 100 parts by weight of methyl ethyl ketone were mixed in a mixer, and then the powder was dispersed with a disperser and heated at 120 ° C. for 3 hours while reducing the pressure. The solvent was removed to obtain a viscous liquid. When the epoxy equivalent of the resin composition was measured, a value of 224 was obtained in terms of resin. The epoxy equivalent of 828EL itself was 225. When the ash content was measured by heating the resin composition to 800 ° C., a value of 80.0% was obtained.

[比較例6]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを70重量部、直径が7μのガラスフィバー粉末を30重量部、エポキシ樹脂(828EL)を25重量部、KBM403を0.4重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱したところ、エポキシ樹脂が硬化して、容器から出せなかった。
[Comparative Example 6]
70 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 30 parts by weight of glass fiber fiber having a diameter of 7 μ, and 25 parts by weight of epoxy resin (828 EL) Then, 0.4 parts by weight of KBM403 and 100 parts by weight of methyl ethyl ketone were mixed in a mixer, and then the powder was dispersed with a disperser and heated at 120 ° C. for 3 hours under reduced pressure to cure the epoxy resin. I couldn't get it out of the container.

[実施例の物性]
上記実施例及び比較例で得られた樹脂組成物の物性等を下記のように調べた。結果を比較例と合わせて表1〜3に示す。
〈粘度の測定〉 E型粘度計(株式会社東京計器製)を用いて、25℃の粘度(Pa・S)を測定した。
〈硬化物の物性〉
実施例1から12で得られた樹脂組成物に対して、エポキシ硬化剤2PHZを1重量部を配合して、190℃、5時間加熱することによって、硬化物を得た。硬化物の物性を以下のように調べた。
〈曲げ強度 〉曲げ強度の測定は、JISK6911に基いて行った。
〈吸水率〉 直径50×3mmの円盤を85℃/85%RHの恒温恒湿器に168時間放置し、吸水率を測定した。
〈SEM観察〉 上記曲げ強度を測定により破断した破断面をSEMで観察したところ、粒子と樹脂の界面の密着がよく、粒子の凝集もなく、粒子の脱離もなかった。
[Physical properties of Examples]
The physical properties and the like of the resin compositions obtained in the above examples and comparative examples were examined as follows. The results are shown in Tables 1 to 3 together with Comparative Examples.
<Measurement of Viscosity> Using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.), the viscosity (Pa · S) at 25 ° C. was measured.
<Physical properties of cured product>
1 part by weight of the epoxy curing agent 2PHZ was added to the resin compositions obtained in Examples 1 to 12 and heated at 190 ° C. for 5 hours to obtain a cured product. The physical properties of the cured product were examined as follows.
<Bending strength> The bending strength was measured based on JISK6911.
<Water Absorption> A disk having a diameter of 50 × 3 mm was left in a constant temperature and humidity chamber of 85 ° C./85% RH for 168 hours, and the water absorption was measured.
<SEM Observation> When the fracture surface fractured by measuring the bending strength was observed with SEM, the interface between the particles and the resin was good, the particles were not aggregated, and the particles were not detached.

《比較例の物性測定》
容器を切り裂くことにより固化物を取り出し190℃、5時間加熱することによって、硬化物を得た。更に、硬化物をカッターにより切断しサンプルを調整し曲げ強度、吸水率の測定、SEM観察を行った。
<< Measurement of physical properties of comparative examples >>
The solidified product was taken out by cutting the container and heated at 190 ° C. for 5 hours to obtain a cured product. Furthermore, the cured product was cut with a cutter, the sample was adjusted, bending strength and water absorption were measured, and SEM observation was performed.

Figure 2005171209
Figure 2005171209

Figure 2005171209
Figure 2005171209

Figure 2005171209
Figure 2005171209

表1〜3の結果より、比較例1〜6に比べて、本発明の実施例1〜12は、粘度が一定値以下であり、曲げ強度に優れ、吸水率が低く、樹脂と粒子が一体化していることが分かる。   From the result of Tables 1-3, compared with Comparative Examples 1-6, Examples 1-12 of this invention have a viscosity below a fixed value, are excellent in bending strength, have a low water absorption, and resin and particle | grains are integral. You can see that

[実施例13]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、IST社製ポリイミドワニス、スカイボンド703を20重量部、ヘキサメチルジシラザンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら90℃、3時間加熱してメチルエチルケトンを除去して、粘稠な液体を得た。得られた液体をスライドガラスに挟んで、顕微鏡観察したところ、シリカ粒子が凝集なく、一次粒子まで分散していることが判明した。液体を塗布し、乾燥、焼付けすることによって強靭なフィルムを得た。フィルム中のシリカは凝集なく、均一分散であった。
[Example 13]
80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 20 parts by weight of IST polyimide varnish, Skybond 703, and hexamethyldisilazane of 0. After mixing 01 parts by weight and 100 parts by weight of methyl ethyl ketone in a mixer, disperse the powder with a disperser and remove the methyl ethyl ketone by heating at 90 ° C. for 3 hours under reduced pressure to obtain a viscous liquid. Obtained. When the obtained liquid was sandwiched between slide glasses and observed with a microscope, it was found that the silica particles were not agglomerated but were dispersed to the primary particles. A tough film was obtained by applying the liquid, drying and baking. Silica in the film was uniformly dispersed without aggregation.

[比較例7]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、IST社製ポリイミドワニス、スカイボンド703を20重量部ミキサーに入れて混合した後、三本ロールで分散を試みたところ、混合物が液化せず、ロールにのらなかった。
[Comparative Example 7]
After 80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, IST polyimide varnish, and Skybond 703 are mixed in a mixer by 20 parts by weight, When dispersion was attempted with three rolls, the mixture did not liquefy and did not get on the roll.

[実施例14]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、三洋化成社製ポリオールエクセルフローを20重量部、ヘキサメチルジシラザンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら90℃、3時間加熱してメチルエチルケトンを除去して、粘稠な液体を得た。得られた液体をスライドガラスに挟んで、顕微鏡観察したところ、シリカ粒子が凝集なく、一次粒子まで分散していることが判明した。得られた液体にウレタン樹脂主剤(イソシアネート)、スズ触媒を配合すると、シリカ粒子が均一に分散されたウレタン硬化体を得た。
[Example 14]
80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, Sanyo Chemical Co., Ltd. polyol excel flow 20 parts by weight, and hexamethyldisilazane 0.01 parts by weight Part, 100 parts by weight of methyl ethyl ketone was mixed in a mixer, and then the powder was dispersed with a disperser and heated at 90 ° C. for 3 hours under reduced pressure to remove methyl ethyl ketone to obtain a viscous liquid. . When the obtained liquid was sandwiched between slide glasses and observed with a microscope, it was found that the silica particles were not agglomerated but were dispersed to the primary particles. When a urethane resin main component (isocyanate) and a tin catalyst were blended into the obtained liquid, a urethane cured body in which silica particles were uniformly dispersed was obtained.

[比較例8]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、三洋化成社製ポリオールエクセルフローを20重量部ミキサーに入れて混合した後、三本ロールで分散を試みたところ、混合物が液化せず、ロールにのらなかった。
[Comparative Example 8]
80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, and a polyol excel flow manufactured by Sanyo Chemical Co., Ltd. in a 20 parts by weight mixer are mixed. When dispersion was attempted with a roll, the mixture did not liquefy and did not get on the roll.

[実施例15]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、大日本インキ化学社製フェノール樹脂TD2131を20重量部、へキサメチルジシラザンを0.01重量部、メチルエチルケトンを100重量部、ミキサーに入れて混合した後、分散機で粉体を分散させて、減圧しながら120℃、3時間加熱してメチルエチルケトンを除去して、粘稠な液体を得た。得られた液体をスライドガラスに挟んで、顕微鏡観察したところ、シリカ粒子が凝集なく、一次粒子まで分散していることが判明した。得られた液体を室温まで冷やすとシリカが均一に分散した固形物を得た。個体を粉砕して、ヘキサミンを配合して混合し、加圧、加熱硬化させることによって、シリカ粒子が均一に分散されたフェノール樹脂硬化体を得た。
[Example 15]
80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 20 parts by weight of Dainippon Ink Chemical Co., Ltd. phenol resin TD2131, and 0 of hexamethyldisilazane .01 parts by weight, 100 parts by weight of methyl ethyl ketone, mixed in a mixer, then the powder is dispersed with a disperser and heated at 120 ° C. for 3 hours under reduced pressure to remove the methyl ethyl ketone to obtain a viscous liquid Got. When the obtained liquid was sandwiched between slide glasses and observed with a microscope, it was found that the silica particles were not agglomerated but were dispersed to the primary particles. When the obtained liquid was cooled to room temperature, a solid material in which silica was uniformly dispersed was obtained. The solid was pulverized, mixed with hexamine, mixed, pressurized and heated to obtain a cured phenol resin in which silica particles were uniformly dispersed.

[比較例9]
平均粒径が0.5μ、比表面積が7m/g、最大粒子径が45μの球状シリカを80重量部、大日本インキ化学社製フェノール樹脂TD2131を20重量部ミキサーに入れて混合した後、三本ロールで分散を試みたところ、混合物が固形粉体の状態で、ロールにのらなかった。
[Comparative Example 9]
After 80 parts by weight of spherical silica having an average particle diameter of 0.5 μ, a specific surface area of 7 m 2 / g, and a maximum particle diameter of 45 μ, 20 parts by weight of Dainippon Ink Chemical Co., Ltd. phenol resin TD2131 were mixed, When dispersion was attempted with three rolls, the mixture was in the form of solid powder and did not get on the roll.

実施例13〜15の結果より、種々の熱硬化性樹脂と塩基性物質の組合せにおいても、本発明の効果が奏されることが分る。   From the results of Examples 13 to 15, it can be seen that the effects of the present invention are exhibited even in combinations of various thermosetting resins and basic substances.

本発明の熱硬化性樹脂組成物は、(1)高フィラー濃度、(2)1次粒子として分散され、粗粒及び擬集がない高分散度、(3)低粘度、(4)低粗粒量のフィラー含有樹脂組成物であることを生かして、半導体、ディスプレー液状封止、セラミックス代替材料、精密樹脂部品等の分野に広く適用できる。   The thermosetting resin composition of the present invention comprises (1) high filler concentration, (2) dispersed as primary particles, high dispersion without coarse particles and false collection, (3) low viscosity, (4) low roughness By making use of the filler-containing resin composition having a particle amount, it can be widely applied to the fields of semiconductors, liquid display sealing, ceramic substitute materials, precision resin parts and the like.

Claims (22)

熱硬化性樹脂(エポキシ樹脂を除く)中に塩基性物質を配合したフィラーが全量に対して60重量%以上配合され、該フィラーが熱硬化性樹脂(エポキシ樹脂を除く)中に一次分散していることを特徴とするフィラー含有樹脂組成物。   A filler containing a basic substance in a thermosetting resin (excluding an epoxy resin) is mixed in an amount of 60% by weight or more based on the total amount, and the filler is primarily dispersed in the thermosetting resin (excluding an epoxy resin). A filler-containing resin composition characterized by comprising: 前記塩基性物質は、アンモニア、有機アミン、シラザン類、窒素を含むシランカップリング剤、窒素を含有する環状化合物から選択される1種以上であるフィラー含有樹脂組成物。   The filler-containing resin composition, wherein the basic substance is at least one selected from ammonia, organic amines, silazanes, a silane coupling agent containing nitrogen, and a cyclic compound containing nitrogen. 熱硬化性樹脂中に塩基性物質(シラザン類を除く)を配合したフィラーが全量に対して60重量%以上配合され、該フィラーが熱硬化性樹脂中に一次分散していることを特徴とするフィラー含有樹脂組成物。   A filler in which a basic substance (excluding silazanes) is blended in a thermosetting resin is blended in an amount of 60% by weight or more based on the total amount, and the filler is primarily dispersed in the thermosetting resin. Filler-containing resin composition. 前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、ウレタン、ポリイミド、不飽和ポリエステルから選択される1種以上であることを特徴とする請求項3に記載のフィラー含有樹脂組成物。   The filler-containing resin composition according to claim 3, wherein the thermosetting resin is at least one selected from an epoxy resin, a phenol resin, urethane, polyimide, and an unsaturated polyester. 前記フィラーは、平均粒径0.01μから30μ、最大粒径75μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   5. The filler-containing material according to claim 1, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 μm to 30 μm and a maximum particle size of 75 μm. Resin composition. 前記フィラーは、平均粒径0.01μから20μ、最大粒径45μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing material according to any one of claims 1 to 4, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 to 20 µ and a maximum particle size of 45 µ. Resin composition. 前記フィラーは、平均粒径0.01μから10μ、最大粒径20μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing material according to any one of claims 1 to 4, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 µm to 10 µm and a maximum particle size of 20 µm. Resin composition. 前記フィラーは、平均粒径0.01μから5μ、最大粒径10μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing composition according to any one of claims 1 to 4, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 to 5 µ and a maximum particle size of 10 µ. Resin composition. 前記フィラーは、平均粒径0.01μから3μ、最大粒径5μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing material according to any one of claims 1 to 4, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle size of 0.01 to 3 µ and a maximum particle size of 5 µ. Resin composition. 前記フィラーは、平均粒径0.01μから1.5μ、最大粒径3μの球状シリカ粒子から選ばれる少なくとも一種類以上のシリカ粒子含むことを特徴とする請求項1から4のいずれかに記載のフィラー含有樹脂組成物。   5. The filler according to claim 1, wherein the filler contains at least one kind of silica particles selected from spherical silica particles having an average particle diameter of 0.01 μm to 1.5 μm and a maximum particle diameter of 3 μm. Filler-containing resin composition. 前記球状シリカ粒子は、溶融球状シリカ粒子及び/又は金属珪素を酸化して得られる球状シリカ粒子であることを特徴とする請求項5から10のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing resin composition according to any one of claims 5 to 10, wherein the spherical silica particles are spherical silica particles obtained by oxidizing fused spherical silica particles and / or metal silicon. 板状無機粉体、繊維状無機粉体、無定形無機粉体、木粉、熱硬化性樹脂の破砕粉体、重合で得られた樹脂粒子、無機難燃剤から選択される一種類以上の粉体が配合されることを特徴とする請求項1から11のいずれかに記載のフィラー含有樹脂組成物。   One or more kinds of powders selected from plate-like inorganic powder, fibrous inorganic powder, amorphous inorganic powder, wood powder, crushed powder of thermosetting resin, resin particles obtained by polymerization, and inorganic flame retardant The filler-containing resin composition according to any one of claims 1 to 11, wherein a body is blended. 前記板状無機粉体はマイカ、前記繊維状無機粉体はタルク、ガラス繊維、炭素繊維、チタン酸カリウムウイスカー、前記無定形無機粉体は炭酸カルシウム、破砕シリカ、前記熱硬化性樹脂の破砕粉体はエポキシ樹脂の破砕粉体、前記重合で得られた樹脂粒子は懸濁重合で合成した樹脂粒子、前記無機難燃剤は水酸化アルミ、水酸化マグネシウムから選択されることを特徴とする請求項12に記載のフィラー含有樹脂組成物。   The plate-like inorganic powder is mica, the fibrous inorganic powder is talc, glass fiber, carbon fiber, potassium titanate whisker, the amorphous inorganic powder is calcium carbonate, crushed silica, and crushed powder of the thermosetting resin. The body is a crushed powder of epoxy resin, the resin particles obtained by the polymerization are resin particles synthesized by suspension polymerization, and the inorganic flame retardant is selected from aluminum hydroxide and magnesium hydroxide. 12. The filler-containing resin composition according to 12. 前記フィラーは、シランカップリング剤で処理することを特徴とする請求項1から13のいずれかに記載のフィラー含有樹脂組成物。   The filler-containing resin composition according to any one of claims 1 to 13, wherein the filler is treated with a silane coupling agent. 前記シランカップリング剤は、エポキシシラン、アミノシラン、アクリルシラン、チオールシランから選択される1種以上であることを特徴とする請求項14に記載のフィラー含有樹脂組成物。   The filler-containing resin composition according to claim 14, wherein the silane coupling agent is at least one selected from epoxy silane, amino silane, acrylic silane, and thiol silane. 塩基性物質をスラリに配合したフィラーを有機溶媒に分散させてうるスラリに、熱硬化性樹脂(エポキシ樹脂を除く)又は該熱硬化性樹脂(エポキシ樹脂を除く)の一部分を混合した後、溶媒を除去することを特徴とするフィラー含有樹脂組成物の製造方法。   After mixing a part of the thermosetting resin (excluding the epoxy resin) or a part of the thermosetting resin (excluding the epoxy resin) into the slurry obtained by dispersing the filler containing the basic substance in the slurry in the organic solvent, the solvent A method for producing a filler-containing resin composition, wherein the filler is removed. 前記塩基性物質は、アンモニア、有機アミン、シラザン類、窒素を含むシランカップリング剤、窒素を含有する環状化合物から選択される1種以上であることを特徴とする請求項16に記載の樹脂組成物の製造方法。   The resin composition according to claim 16, wherein the basic substance is at least one selected from ammonia, organic amines, silazanes, a silane coupling agent containing nitrogen, and a cyclic compound containing nitrogen. Manufacturing method. 塩基性物質(シラザン類を除く)をスラリに配合したフィラーを有機溶媒に分散させてうるスラリに、熱硬化性樹脂又は該熱硬化性樹脂の一部分を混合した後、溶媒を除去することを特徴とするフィラー含有樹脂組成物の製造方法。   A feature is that a thermosetting resin or a part of the thermosetting resin is mixed with a slurry obtained by dispersing a filler containing a basic substance (excluding silazanes) in a slurry in an organic solvent, and then the solvent is removed. A method for producing a filler-containing resin composition. 前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、ウレタン、ポリイミド、不飽和ポリエステルから選択される1種以上であることを特徴とする請求項18に記載の樹脂組成物の製造方法。   The method for producing a resin composition according to claim 18, wherein the thermosetting resin is at least one selected from an epoxy resin, a phenol resin, urethane, polyimide, and an unsaturated polyester. 前記塩基性物質の混合時の存在量が、フィラーに対して1ppmから1000ppmであることを特徴とする請求項16から19のいずれかに記載のフィラー含有樹脂組成物の製造方法。   The method for producing a filler-containing resin composition according to any one of claims 16 to 19, wherein the abundance of the basic substance when mixed is 1 ppm to 1000 ppm with respect to the filler. 組成物中に残留する揮発分が0.5%以下であることを特徴とする請求項16から20のいずれかに記載のフィラー含有樹脂組成物の製造方法。   The method for producing a filler-containing resin composition according to any one of claims 16 to 20, wherein a volatile content remaining in the composition is 0.5% or less. 請求項1から15に記載のフィラー含有樹脂組成物に、硬化剤又は触媒を配合したことを特徴とする熱硬化性組成物。   The thermosetting composition characterized by mix | blending the hardening | curing agent or the catalyst with the filler containing resin composition of Claims 1-15.
JP2003417220A 2003-12-15 2003-12-15 Filler-containing resin composition and method for producing the same Pending JP2005171209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417220A JP2005171209A (en) 2003-12-15 2003-12-15 Filler-containing resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417220A JP2005171209A (en) 2003-12-15 2003-12-15 Filler-containing resin composition and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005171209A true JP2005171209A (en) 2005-06-30

Family

ID=34736194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417220A Pending JP2005171209A (en) 2003-12-15 2003-12-15 Filler-containing resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005171209A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016429A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor encapsulation
CN102344656A (en) * 2011-07-20 2012-02-08 江苏兆鋆新材料科技有限公司 Highly-toughened bulk molding composition
JP2012193059A (en) * 2011-03-15 2012-10-11 Admatechs Co Ltd Method for producing metal oxide particle and method for producing resin composition comprising the metal oxide particle
WO2016190323A1 (en) * 2015-05-25 2016-12-01 日立化成株式会社 Resin composition, resin sheet, prepreg, insulating material, resin-sheet cured article, and heat-dissipating member
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
WO2019131671A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Encapsulating composition, production method therefor, and semiconductor device
EP3564323A4 (en) * 2016-12-28 2020-08-26 Namics Corporation Surface-treated silica filler and resin composition containing surface-treated silica filler
CN112745676A (en) * 2019-10-29 2021-05-04 日铁化学材料株式会社 Resin composition, resin film, and metal-clad laminate
KR102347309B1 (en) * 2021-06-17 2022-01-12 주식회사 태성스틸 Eco cerapoxy gold epoxy pigments for steel pipe, coating methods and coating system thereof
KR102401931B1 (en) * 2021-09-29 2022-05-27 주식회사 태성스틸 Eco cerapoxy gold epoxy pigments for steel pipe, coating methods and coating system thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016429A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor encapsulation
JP2012193059A (en) * 2011-03-15 2012-10-11 Admatechs Co Ltd Method for producing metal oxide particle and method for producing resin composition comprising the metal oxide particle
CN102344656A (en) * 2011-07-20 2012-02-08 江苏兆鋆新材料科技有限公司 Highly-toughened bulk molding composition
CN107614620A (en) * 2015-05-25 2018-01-19 日立化成株式会社 Resin combination, resin sheet, prepreg, insulant, resin sheet solidfied material and radiating component
JPWO2016190323A1 (en) * 2015-05-25 2018-03-15 日立化成株式会社 Resin composition, resin sheet, prepreg, insulator, cured resin sheet, and heat dissipation member
WO2016190323A1 (en) * 2015-05-25 2016-12-01 日立化成株式会社 Resin composition, resin sheet, prepreg, insulating material, resin-sheet cured article, and heat-dissipating member
TWI716407B (en) * 2015-05-25 2021-01-21 日商昭和電工材料股份有限公司 Resin composition, resin sheet, prepreg, insulator, hardened resin sheet and heat dissipation member
US11072710B2 (en) 2016-12-28 2021-07-27 Namics Corporation Surface-treated silica filler, and resin composition containing surface-treated silica filler
EP3564323A4 (en) * 2016-12-28 2020-08-26 Namics Corporation Surface-treated silica filler and resin composition containing surface-treated silica filler
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
KR102666277B1 (en) 2017-12-21 2024-05-20 나믹스 가부시끼가이샤 Resin compositions, semiconductor encapsulants, one-component adhesives and adhesive films
JP2019112486A (en) * 2017-12-21 2019-07-11 ナミックス株式会社 Resin composition
CN111356742A (en) * 2017-12-21 2020-06-30 纳美仕有限公司 Resin composition, semiconductor sealing agent, one-component adhesive, and adhesive film
KR20200092320A (en) * 2017-12-21 2020-08-03 나믹스 가부시끼가이샤 Resin composition, semiconductor encapsulant, one-component adhesive and adhesive film
US11518867B2 (en) 2017-12-21 2022-12-06 Namics Corporation Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
JP7148946B2 (en) 2017-12-21 2022-10-06 ナミックス株式会社 resin composition
CN111601849A (en) * 2017-12-28 2020-08-28 日立化成株式会社 Sealing composition, method for producing the same, and semiconductor device
JPWO2019131671A1 (en) * 2017-12-28 2021-01-14 昭和電工マテリアルズ株式会社 Encapsulation composition, its manufacturing method, and semiconductor device
KR20200103683A (en) * 2017-12-28 2020-09-02 히타치가세이가부시끼가이샤 Sealing composition and its manufacturing method and semiconductor device
WO2019131671A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Encapsulating composition, production method therefor, and semiconductor device
KR102668756B1 (en) 2017-12-28 2024-05-22 가부시끼가이샤 레조낙 Sealing composition and method for manufacturing the same and semiconductor device
CN112745676A (en) * 2019-10-29 2021-05-04 日铁化学材料株式会社 Resin composition, resin film, and metal-clad laminate
KR102347309B1 (en) * 2021-06-17 2022-01-12 주식회사 태성스틸 Eco cerapoxy gold epoxy pigments for steel pipe, coating methods and coating system thereof
KR102401931B1 (en) * 2021-09-29 2022-05-27 주식회사 태성스틸 Eco cerapoxy gold epoxy pigments for steel pipe, coating methods and coating system thereof

Similar Documents

Publication Publication Date Title
JP5220981B2 (en) Finely basic silica powder, method for producing the same, and resin composition
JP2005171208A (en) Filler and resin composition
TWI550018B (en) Semiconductor packaging resin composition and method of use thereof
JP4279521B2 (en) Metal oxide powder for epoxy resin composition for semiconductor encapsulation, its production method, and epoxy resin composition for semiconductor encapsulation
JP2004210901A (en) Liquid epoxy resin composition and electronic component device
KR20150037843A (en) Liquid sealing material and electronic component using same
TW201136977A (en) Epoxy resin composition
JP5112157B2 (en) Silica fine particles and silica fine particle-containing resin composition
JP5937403B2 (en) Slurry composition and resin composition using the same
JP2005171206A (en) Powder mixture for resin blending and resin composition
JP2005171209A (en) Filler-containing resin composition and method for producing the same
JP4276423B2 (en) Basic silica powder, method for producing the same, and resin composition
JP4428618B2 (en) Surface-modified spherical silica, method for producing the same, and sealing resin composition
JP4516779B2 (en) Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition
JP2015189638A (en) surface-modified silica powder and slurry composition
US6372839B1 (en) Flip-chip type semiconductor device underfill
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP6950299B2 (en) Resin composition for encapsulant and electronic device using it
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP5367205B2 (en) Liquid epoxy resin composition for sealing
TW201211145A (en) Encapsulating resin composition
JP2005171199A (en) Finely basic alumina powder, method for producing the same, and resin composition
JP5335184B2 (en) Active silica fine particles, method for producing the same, and resin composition
JP2004059779A (en) Metal oxide fine particle dispersed epoxy resin composition and method for producing the same
JPH08253625A (en) Water-repellent powder, its production and curable polymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A02 Decision of refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A02