[go: up one dir, main page]

JP2005170903A - Method for producing bicyclo [2.2.1] heptane derivative - Google Patents

Method for producing bicyclo [2.2.1] heptane derivative Download PDF

Info

Publication number
JP2005170903A
JP2005170903A JP2003416569A JP2003416569A JP2005170903A JP 2005170903 A JP2005170903 A JP 2005170903A JP 2003416569 A JP2003416569 A JP 2003416569A JP 2003416569 A JP2003416569 A JP 2003416569A JP 2005170903 A JP2005170903 A JP 2005170903A
Authority
JP
Japan
Prior art keywords
bicyclo
reaction
isomerization
catalyst
heptane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003416569A
Other languages
Japanese (ja)
Inventor
Naoya Kono
直弥 河野
Masashi Machida
雅志 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003416569A priority Critical patent/JP2005170903A/en
Publication of JP2005170903A publication Critical patent/JP2005170903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプタン誘導体の製造に際し、ビシクロ[2.2.1]ヘプテン類の異性化の長期連続運転を可能とし、ビシクロ[2.2.1]ヘプタン誘導体を高収率で安定して得られる方法を提供する。
【解決手段】プロピレン又はブテンとシクロペンタジエン又はジシクロペンタジエンとをディールス・アルダー反応させて得られた反応生成物を、異性化触媒の存在下で異性化してビシクロ[2.2.1]ヘプタン誘導体を製造するに際し、異性化触媒として、好ましくは固体酸触媒を不活性ガスの存在下、50〜500℃の温度で前処理した触媒を用い、異性化反応を液相で行う。
【選択図】なし


Long-term continuous isomerization of bicyclo [2.2.1] heptenes in the production of bicyclo [2.2.1] heptane derivatives useful as base monomers for production of functional monomers and traction drive fluids Provided is a method that enables operation and stably obtains a bicyclo [2.2.1] heptane derivative in a high yield.
Bicyclo [2.2.1] heptane derivatives are obtained by isomerizing a reaction product obtained by subjecting propylene or butene and cyclopentadiene or dicyclopentadiene to Diels-Alder reaction in the presence of an isomerization catalyst. In the production of, the isomerization catalyst is preferably a catalyst obtained by pretreating a solid acid catalyst at a temperature of 50 to 500 ° C. in the presence of an inert gas, and the isomerization reaction is performed in a liquid phase.
[Selection figure] None


Description

本発明は、ビシクロ[2.2.1]ヘプタン誘導体の製造方法の改良に関し、さらに詳しくは、本発明は、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプタン誘導体を、効率よく製造する方法に関するものである。   The present invention relates to an improvement in a method for producing a bicyclo [2.2.1] heptane derivative. More specifically, the present invention relates to a bicyclo [2. 2.1] A method for efficiently producing a heptane derivative.

自動車用トラクション式CVT(無段変速機)は、大型車から小型車まで搭載可能で、燃費が良い上、加速が鋭く、変速ショックがない快適な変速機として、今後の自動変速機の主流を占めるものと予測されている。このCVTには、動力伝達のために、高温(約140℃)においてトラクション係数が高く、かつ低温始動性のために、低温(約−40℃)においても低い粘度をもつ優れた性能を有するトラクションオイルが必要である。   The traction CVT (continuously variable transmission) for automobiles can be mounted from large vehicles to small vehicles, and it will be the mainstream of future automatic transmissions as a comfortable transmission with good fuel efficiency, sharp acceleration, and no shift shock. It is predicted. This CVT has a high traction coefficient at high temperature (about 140 ° C) for power transmission, and has excellent performance with low viscosity at low temperature (about -40 ° C) for low temperature startability. Oil is needed.

この高温でのトラクション係数と低温粘度とは、相反する性能であって、この相反する性能を高い次元で両立させた優れたトラクションオイル基油が開示されている(例えば、特許文献1、特許文献2参照)。また、これらの特許文献には、上記基油の中間体として、2−メチレン−3−メチルビシクロ[2.2.1]ヘプタン、2,3−ジメチルビシクロ[2.2.1]ヘプト−2−エンなどのビシクロ[2.2.1]ヘプタン誘導体が開示されている。
一方、シクロペンタジエンと2−ブテンをディールス・アルダー反応させて、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンを得、それを異性化させることにより、2−メチレン−3−メチルビシクロ[2.2.1]ヘプタン及び2,3−ジメチルビシクロ[2.2.1]ヘプト−2−エンを製造する方法が開示されている(例えば、特許文献3参照)。さらに、前半のディールス・アルダー反応において、炭素数3若しくは4の非環状オレフィンの一種又は二種以上とシクロペンタジエン又はジシクロペンタジエンを気相あるいは超臨界状態の条件で反応を行うことにより、ビシクロ[2.2.1]ヘプテン類を高選択率で得ることができる製造方法も開示されている(例えば、特許文献4参照)。
The high temperature traction coefficient and the low temperature viscosity are contradictory performances, and excellent traction oil base oils in which the contradictory performances are compatible at a high level are disclosed (for example, Patent Document 1 and Patent Documents). 2). Moreover, these patent documents include 2-methylene-3-methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [2.2.1] hept-2 as intermediates of the above base oil. Bicyclo [2.2.1] heptane derivatives such as -ene are disclosed.
On the other hand, cyclopentadiene and 2-butene are subjected to Diels-Alder reaction to obtain 5,6-dimethylbicyclo [2.2.1] hept-2-ene, which is isomerized to give 2-methylene-3. -A method for producing methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [2.2.1] hept-2-ene is disclosed (for example, see Patent Document 3). Furthermore, in the first half of the Diels-Alder reaction, by reacting one or more acyclic olefins having 3 or 4 carbon atoms with cyclopentadiene or dicyclopentadiene in a gas phase or supercritical state, bicyclo [ 2.2.1] A production method capable of obtaining heptenes with high selectivity is also disclosed (see, for example, Patent Document 4).

ビシクロ[2.2.1]ヘプタン誘導体は上記のように5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンなどのビシクロ[2.2.1]ヘプテン類を異性化することにより製造される。特許文献3においては固体酸触媒を用いた気相異性化が行われているが、触媒活性の低下が著しく、安定した連続運転ができないという問題がある。
特公平7−103387号公報(第1頁) 特開2000−17280号公報(第1頁) 特開2001−226296号公報(第7頁) 特開2002−114714号公報(第1頁)
Bicyclo [2.2.1] heptane derivatives isomerize bicyclo [2.2.1] heptenes such as 5,6-dimethylbicyclo [2.2.1] hept-2-ene as described above. Manufactured by. In Patent Document 3, gas phase isomerization using a solid acid catalyst is performed. However, there is a problem that the catalytic activity is remarkably lowered and stable continuous operation cannot be performed.
Japanese Examined Patent Publication No. 7-103387 (first page) JP 2000-17280 A (first page) JP 2001-226296 A (page 7) JP 2002-114714 A (first page)

本発明は、このような状況下で、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプタン誘導体の製造に際し、ビシクロ[2.2.1]ヘプテン類の異性化の長期連続運転を可能とし、ビシクロ[2.2.1]ヘプタン誘導体が高収率で安定して得られる方法を提供することを目的とするものである。   Under such circumstances, the present invention provides bicyclo [2.2.1] bicyclo [2.2.1] heptane derivatives useful as functional monomers and raw materials for producing base oils for traction drive fluids. It is an object of the present invention to provide a method that enables a long-term continuous operation of isomerization of heptenes and can stably obtain a bicyclo [2.2.1] heptane derivative in a high yield.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ビシクロ[2.2.1]ヘプテン類の異性化を液相で行うことにより触媒活性を安定に保つことができること、原料であるビシクロ[2.2.1]ヘプテン類中の水分量を抑えることにより初期活性の急激な低下を抑えることができること、触媒を特定の方法で前処理することにより初期活性をコントロールできること、従って、これらの操作を組み合わせることにより、異性化反応の長期間連続運転ができ、ビシクロ[2.2.1]ヘプタン誘導体が高収率で安定して得られること見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors can maintain the catalytic activity stably by performing isomerization of bicyclo [2.2.1] heptenes in the liquid phase. The ability to control the initial activity by pretreating the catalyst in a specific manner, by suppressing the water content in the raw material bicyclo [2.2.1] heptenes, Therefore, it has been found that by combining these operations, the isomerization reaction can be continuously operated for a long period of time, and the bicyclo [2.2.1] heptane derivative can be stably obtained in a high yield. The present invention has been completed based on such findings.

すなわち、本発明は以下のビシクロ[2.2.1]ヘプタン誘導体の製造方法を提供するものである。
(1) プロピレン又はブテンとシクロペンタジエン又はジシクロペンタジエンとをディールス・アルダー反応させて得られた反応生成物を、異性化触媒の存在下で異性化してビシクロ[2.2.1]ヘプタン誘導体を製造するに際し、異性化反応を液相で行うことを特徴とするビシクロ[2.2.1]ヘプタン誘導体の製造方法。
(2) 異性化触媒として、固体酸触媒を不活性ガスの存在下、50〜500℃の温度で前処理した触媒を用いる(1)のビシクロ[2.2.1]ヘプタン誘導体の製造方法。
(3) 異性化触媒が、アルミナボリアである(2)のビシクロ[2.2.1]ヘプタン誘導体の製造方法。
(4) 異性化反応器に供するディールス・アルダー反応生成物が、水分含有量500ppm以下である(1)〜(3)のいずれかのビシクロ[2.2.1]ヘプタン誘導体の製造方法。
(5) 異性化反応を、反応温度20〜400℃、圧力0.1MPa以上で行う(1)〜(4)のいずれかのビシクロ[2.2.1]ヘプタン誘導体の製造方法。
(6) 2−ブテンとシクロペンタジエン又はジシクロペンタジエンとをディールス・アルダー反応させて得られた反応生成物を異性化させる(1)〜(5)のいずれかのビシクロ[2.2.1]ヘプタン誘導体の製造方法。
That is, the present invention provides the following method for producing a bicyclo [2.2.1] heptane derivative.
(1) A reaction product obtained by Diels-Alder reaction of propylene or butene with cyclopentadiene or dicyclopentadiene is isomerized in the presence of an isomerization catalyst to obtain a bicyclo [2.2.1] heptane derivative. A method for producing a bicyclo [2.2.1] heptane derivative, wherein the isomerization reaction is carried out in a liquid phase during production.
(2) The method for producing a bicyclo [2.2.1] heptane derivative according to (1), wherein a catalyst obtained by pretreating a solid acid catalyst at a temperature of 50 to 500 ° C. in the presence of an inert gas is used as the isomerization catalyst.
(3) The method for producing a bicyclo [2.2.1] heptane derivative according to (2), wherein the isomerization catalyst is alumina boria.
(4) The method for producing a bicyclo [2.2.1] heptane derivative according to any one of (1) to (3), wherein the Diels-Alder reaction product used in the isomerization reactor has a water content of 500 ppm or less.
(5) The method for producing a bicyclo [2.2.1] heptane derivative according to any one of (1) to (4), wherein the isomerization reaction is performed at a reaction temperature of 20 to 400 ° C. and a pressure of 0.1 MPa or more.
(6) Biisomer [2.2.1] according to any one of (1) to (5), wherein 2-butene and cyclopentadiene or dicyclopentadiene are subjected to Diels-Alder reaction to isomerize the reaction product. A method for producing a heptane derivative.

本発明によれば、ビシクロ[2.2.1]ヘプテン類の異性化における触媒の活性低下や急激な劣化が抑制されて長期連続運転が可能となり、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプタン誘導体を高収率で安定して製造することができる。   According to the present invention, it is possible to suppress long-term continuous operation by suppressing a decrease in catalyst activity and rapid deterioration in the isomerization of bicyclo [2.2.1] heptenes, and a functional monomer or a base oil for a traction drive fluid. Bicyclo [2.2.1] heptane derivatives useful as production raw materials can be stably produced in high yield.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明のビシクロ[2.2.1]ヘプタン誘導体の製造方法においてディールス・アルダー反応に供される原料としてはプロピレン又はブテンとシクロペンタジエン又はジシクロペンタジエンが用いられる。ブテンとしては1−ブテン及び2−ブテンが好ましく、これらの中で特に2−ブテンが好ましい。この2−ブテンはシス体、トランス体のいずれを用いてもよいし、その混合物を用いてもよい。
このディールス・アルダー反応において、原料のオレフィンとしてプロピレンを用いた場合には5−メチル−ビシクロ[2.2.1]ヘプト−2エンが、原料に1−ブテンを用いた場合には5−エチル−ビシクロ[2.2.1]ヘプト−2エンが、原料に2−ブテンを用いた場合には5,6−ジメチル−ビシクロ[2.2.1]ヘプト−2エンが製造される。
In the production method of the bicyclo [2.2.1] heptane derivative of the present invention, propylene or butene and cyclopentadiene or dicyclopentadiene are used as raw materials to be subjected to Diels-Alder reaction. As butene, 1-butene and 2-butene are preferable, and 2-butene is particularly preferable among these. As this 2-butene, either a cis isomer or a trans isomer may be used, or a mixture thereof may be used.
In this Diels-Alder reaction, 5-methyl-bicyclo [2.2.1] hept-2ene is used when propylene is used as the starting olefin, and 5-ethyl is used when 1-butene is used as the starting material. When bicyclo [2.2.1] hept-2ene is used as the starting material and 2-butene is used, 5,6-dimethyl-bicyclo [2.2.1] hept-2ene is produced.

ディールス・アルダー反応のもう一方の原料である共役二重結合をもつ化合物としては、シクロペンタジエンそのものを用いてもよく、ジシクロペンタジエンを用いてもよい。ジシクロペンタジエンは加熱により容易に熱分解してシクロペンタジエンを生成し、実質的にシクロペンタジエンが反応に供されることになる。
プロピレン又はブテンとシクロペンタジエン又はジシクロペンタジエンの比率は、プロピレン又はブテン/シクロペンタジエンのモル比が通常1以上である。この原料比が1以上であれば目的物以外の重質物の生成を抑制することができる。この原料比は2〜20がより好ましく、4〜15が特に好ましい。
ディールス・アルダー反応の温度は、通常約20〜400℃、好ましくは100〜350℃である。
As the compound having a conjugated double bond, which is another raw material for the Diels-Alder reaction, cyclopentadiene itself or dicyclopentadiene may be used. Dicyclopentadiene is easily pyrolyzed by heating to produce cyclopentadiene, and cyclopentadiene is substantially subjected to the reaction.
As for the ratio of propylene or butene to cyclopentadiene or dicyclopentadiene, the molar ratio of propylene or butene / cyclopentadiene is usually 1 or more. If this raw material ratio is 1 or more, the generation of heavy substances other than the target product can be suppressed. The raw material ratio is more preferably 2 to 20, and particularly preferably 4 to 15.
The temperature of the Diels-Alder reaction is usually about 20 to 400 ° C, preferably 100 to 350 ° C.

本発明において、ディールス・アルダー反応によるプロピレンからの反応生成物である5−メチル−ビシクロ[2.2.1]ヘプト−2エンを異性化することにより2−メチレンビシクロ[2.2.1]ヘプタンおよび/または2−メチルビシクロ[2.2.1]ヘプト−2−エンが製造され、1−ブテンからの反応生成物である5−エチル−ビシクロ[2.2.1]ヘプト−2−エンを異性化することにより2−エチリデンビシクロ[2.2.1]ヘプタンおよび/または2−エチルビシクロ[2.2.1]ヘプト−2−エンが製造され、2−ブテンからの反応生成物である5,6−ジメチル−ビシクロ[2.2.1]ヘプト−2−エンを異性化することにより2−メチレン−3−メチルビシクロ[2.2.1]へプタンおよび/または2,3−ジメチルビシクロ[2.2.1]へプト−2−エンが得られる。本発明のビシクロ[2.2.1]ヘプタン誘導体には、上記のようなビシクロ[2.2.1]へプタン類とビシクロ[2.2.1]へプテン類を包含する。
以下に、最も一般的である2−ブテンを原料に用いた場合、すなわち5,6−ジメチル−ビシクロ[2.2.1]ヘプト−2−エンを異性化する場合について説明するが、原料に1−ブテンおよびプロピレンを用いた場合にも同様に適用することができる。
In the present invention, 2-methylenebicyclo [2.2.1] is obtained by isomerizing 5-methyl-bicyclo [2.2.1] hept-2ene, which is a reaction product from propylene by Diels-Alder reaction. Heptane and / or 2-methylbicyclo [2.2.1] hept-2-ene is produced and the reaction product from 1-butene, 5-ethyl-bicyclo [2.2.1] hept-2-ene Isomerization of ene produces 2-ethylidenebicyclo [2.2.1] heptane and / or 2-ethylbicyclo [2.2.1] hept-2-ene, reaction product from 2-butene By isomerizing 5,6-dimethyl-bicyclo [2.2.1] hept-2-ene which is 2-methylene-3-methylbicyclo [2.2.1] heptane and / or 2 3-dimethyl-bi hept-2-ene to [2.2.1] can be obtained. Bicyclo [2.2.1] heptane derivatives of the present invention include bicyclo [2.2.1] heptanes and bicyclo [2.2.1] heptenes as described above.
The case where 2-butene, which is the most common, is used as a raw material, that is, a case where 5,6-dimethyl-bicyclo [2.2.1] hept-2-ene is isomerized is described below. The same applies to the case of using 1-butene and propylene.

異性化触媒としては、酸の性質を持つ固体触媒、いわゆる固体酸触媒が好ましい。具体的には、アルミナ,シリカ,チタニア,ジルコニア,クロミア,酸化亜鉛,シリカアルミナ,シリカマグネシア,アルミナボリア,シリカボリア,シリカジルコニアなどの金属酸化物類:リン酸カルシウム,リン酸ジルコニウム,カルシウムヒドロキシアパタイトなどの金属リン酸塩類:硫酸マグネシウム,硫酸カルシウム,硫酸アルミニウムなどの金属硫酸塩類:ベントナイト,モンモリロナイト,カオリンなどの層状シリケート類:活性白土,酸性白土などの白土類:固体リン酸や硫酸をシリカやアルミナに含浸させた固型化酸類:その他イオン交換樹脂、ゼオライトなどが挙げられる。これら固体酸触媒で酸強度が高いものには、シリカアルミナ,アルミナボリア,ゼオライトなど、中程度のものには、チタニア、モンモリロナイトなど、また、酸強度が低いものには、アルミナ,シリカなどがある。
本発明における異性化触媒には酸強度が高いものがより好ましく、特にアルミナボリアが好ましい。異性化触媒にアルミナボリアを用いる場合のボリア濃度は0.1〜50重量%が好ましく,特に1〜20重量%が好ましい。ボリア濃度を0.1〜50重量%とすることにより、高い活性が得られ、かつ、副生成物の生成量を少なくすることができる。
The isomerization catalyst is preferably a solid catalyst having acid properties, so-called solid acid catalyst. Specifically, metal oxides such as alumina, silica, titania, zirconia, chromia, zinc oxide, silica alumina, silica magnesia, alumina boria, silica boria, silica zirconia: metals such as calcium phosphate, zirconium phosphate, calcium hydroxyapatite Phosphate: Metal sulfate such as magnesium sulfate, calcium sulfate, aluminum sulfate: Layered silicates such as bentonite, montmorillonite, kaolin: White clay such as activated clay, acid clay, etc .: Solid phosphoric acid or sulfuric acid impregnated with silica or alumina Solidified acids: Other examples include ion exchange resins and zeolites. Among these solid acid catalysts, those having high acid strength include silica alumina, alumina boria, zeolite, etc., medium ones such as titania and montmorillonite, and those having low acid strength include alumina, silica and the like. .
As the isomerization catalyst in the present invention, those having high acid strength are more preferable, and alumina boria is particularly preferable. When alumina boria is used as the isomerization catalyst, the boria concentration is preferably 0.1 to 50% by weight, particularly preferably 1 to 20% by weight. By setting the boria concentration to be 0.1 to 50% by weight, high activity can be obtained and the amount of by-products generated can be reduced.

本発明において、異性化反応に供するのディールス・アルダー反応生成物(5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンなど)中の水分濃度は500ppm以下が好ましく,特に100ppm以下が好ましい。原料中の水分を500ppm以下とすることにより,触媒の初期活性の低下を抑制することができ,安定な運転が可能となる。原料中の水分を低減させる方法は一般的な方法であれば,特に制限はないが,モレキュラーシーブ3Aを用いる方法が特に好ましい。
本発明はディールス・アルダー反応生成物の異性化反応を液相で行うことを特徴とするものである。この異性化反応は有機溶剤の存在下でも無溶媒下であっても進行する。異性化反応の反応温度は通常約20〜300℃,特に50〜250℃が好ましい。異性化反応の反応温度が20℃以上では異性化反応が良好に進行し,300℃以下であれば原料及び生成物の熱分解を抑制することができる。反応圧力は,反応温度において液相を維持するのに必要な圧力以上であれば,特に制限はないが、通常は0.1MPa以上、好ましくは0.3〜3MPaである。反応場が気相の場合には活性は安定することなく低下し続けるのでビシクロ[2.2.1]ヘプタン誘導体を安定して製造することができないが、本発明により反応器を加圧し反応場の液相を保つことにより,初期活性の低下後,活性は安定し,長期連続運転が可能となる。
異性化反応の反応器の形式は固定床型管型反応器,連続攪拌槽型反応器等,いかなる反応器の形式も採用できるが,固定床型管型反応器が特に好ましい。
異性化触媒に対する原料の供給量は、重量空間速度WHSVが、通常0.01〜20h-1,好ましくは0.1〜10h-1になるようにする。
In the present invention, the water concentration in the Diels-Alder reaction product (5,6-dimethylbicyclo [2.2.1] hept-2-ene etc.) used for the isomerization reaction is preferably 500 ppm or less, particularly 100 ppm or less. Is preferred. By setting the water content in the raw material to 500 ppm or less, a decrease in the initial activity of the catalyst can be suppressed, and a stable operation becomes possible. The method for reducing moisture in the raw material is not particularly limited as long as it is a general method, but a method using molecular sieve 3A is particularly preferable.
The present invention is characterized in that the isomerization reaction of the Diels-Alder reaction product is performed in a liquid phase. This isomerization reaction proceeds in the presence or absence of an organic solvent. The reaction temperature of the isomerization reaction is usually about 20 to 300 ° C, particularly preferably 50 to 250 ° C. If the reaction temperature of the isomerization reaction is 20 ° C. or higher, the isomerization reaction proceeds well, and if it is 300 ° C. or lower, thermal decomposition of the raw materials and products can be suppressed. The reaction pressure is not particularly limited as long as it is equal to or higher than the pressure necessary for maintaining the liquid phase at the reaction temperature, but is usually 0.1 MPa or higher, preferably 0.3 to 3 MPa. In the case where the reaction field is a gas phase, the activity continues to decrease without being stable, so that the bicyclo [2.2.1] heptane derivative cannot be stably produced. By maintaining this liquid phase, the activity stabilizes after the initial activity declines, enabling long-term continuous operation.
As the type of the reactor for the isomerization reaction, any type of reactor such as a fixed bed type tubular reactor or a continuous stirred tank type reactor can be adopted, but a fixed bed type tubular reactor is particularly preferable.
The feed rate of the raw material to the isomerization catalyst is such that the weight space velocity WHSV is usually 0.01 to 20 h −1 , preferably 0.1 to 10 h −1 .

本発明において、異性化反応で使用する触媒は,N2やアルゴン等の不活性ガスを流通させながら加熱前処理を行うことが好ましい。前処理温度は,50〜500℃が好ましく,特に100〜300℃が好ましい。この温度が50℃以上であれば,触媒上に吸着している水の脱離が容易であり、また,500℃以下であれば,触媒の結晶構造が変化するのを抑制することができる。前処理時間は不活性ガス流量及び温度によって変わるため,限定できないが,前処理時の出口ガス中の水分量が一定になるまで行う。出口ガス中の水分量測定方法としては,露点計を利用する方法が好適に用いられる。 In the present invention, the catalyst used in the isomerization reaction is preferably subjected to pretreatment with heating while circulating an inert gas such as N 2 or argon. The pretreatment temperature is preferably 50 to 500 ° C, particularly preferably 100 to 300 ° C. If this temperature is 50 ° C. or higher, desorption of water adsorbed on the catalyst is easy, and if it is 500 ° C. or lower, it is possible to suppress a change in the crystal structure of the catalyst. The pretreatment time varies depending on the inert gas flow rate and temperature, so it cannot be limited, but is performed until the moisture content in the outlet gas during pretreatment becomes constant. As a method for measuring the amount of water in the outlet gas, a method using a dew point meter is preferably used.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
内径14mm,長さ400mmのステンレス製反応管にアルミナボリア触媒(触媒化成工業(株)製 C−15、ボリア濃度5重量%)29.6gを充填した。これを常圧下、窒素400ml/minを流しながら,150℃で12時間前処理を行った。前処理終了は出口ガスの露点が−36℃以下(水分量200ppm以下)で一定となることを確認した。
液相異性化反応は、モレキュレーシーブ3Aで水分を10ppm以下に脱水した5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンを69.0ml/hr(WHSV=2.0h-1)で反応器に連続供給し,液相を保つために圧力0.5MPaGで反応を行った。転化率がほぼ一定になるように反応開始時は反応温度100℃,その後触媒活性の低下にともない徐々に温度を上げ,約30日で活性がほぼ安定した。活性安定後の運転開始後60日目,反応温度213℃の反応成績は5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=90.6%,ビシクロ[2.2.1]ヘプタン誘導体への選択率=99.3%であった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
A stainless steel reaction tube having an inner diameter of 14 mm and a length of 400 mm was charged with 29.6 g of an alumina boria catalyst (C-15 manufactured by Catalyst Chemical Industry Co., Ltd., boria concentration 5 wt%). This was pretreated at 150 ° C. for 12 hours while flowing 400 ml / min of nitrogen under normal pressure. At the end of the pretreatment, it was confirmed that the dew point of the outlet gas was constant at −36 ° C. or less (water content 200 ppm or less).
The liquid phase isomerization reaction was carried out using 69.0 ml / hr (WHSV = 2.0 h) of 5,6-dimethylbicyclo [2.2.1] hept-2-ene dehydrated to 10 ppm or less with molecular sieve 3A. -1 ) was continuously supplied to the reactor, and the reaction was carried out at a pressure of 0.5 MPaG in order to maintain the liquid phase. The reaction temperature was 100 ° C. at the start of the reaction so that the conversion rate was almost constant, and then the temperature was gradually raised as the catalyst activity decreased, and the activity became almost stable in about 30 days. On the 60th day after the start of operation after stabilization of the activity, the reaction performance at a reaction temperature of 213 ° C. was 5,6-dimethylbicyclo [2.2.1] hept-2-ene conversion = 90.6%, bicyclo [2.2 .1] Selectivity to heptane derivative = 99.3%.

実施例2
実施例1において,反応条件を34.5ml/hr(WHSV=1.0h-1),203℃に変更したところ,実施例1と同様に活性が安定していることを確認した。運転開始後86日目の反応成績は5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=90.4%,選択率=99.2%であった。
Example 2
In Example 1, when the reaction conditions were changed to 34.5 ml / hr (WHSV = 1.0 h −1 ) and 203 ° C., it was confirmed that the activity was stable as in Example 1. On the 86th day after the start of operation, the reaction results were 5,6-dimethylbicyclo [2.2.1] hept-2-ene conversion = 90.4% and selectivity = 99.2%.

実施例3
実施例1と同様に,内径14mm,長さ400mmのステンレス製反応管にアルミナボリア触媒(触媒化成工業(株)製 C−15、ボリア濃度5重量%)27.6gを充填した。これを常圧下,窒素400ml/minを流しながら,300℃,2時間で前処理を行った。原料はモレキュラーシーブ3Aによる脱水処理を行っていない5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン(水分量200ppm)を用いて,実施例1と同様に反応を行った。
運転開始後36日目,205℃,WHSV=1.0h-1で5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=80.8%,選択率=99.3%。供給量を変更し,運転開始後40日目,205℃,WHSV=0.67h-1で、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=91.1%,選択率=99.0%であった。
Example 3
In the same manner as in Example 1, 27.6 g of an alumina boria catalyst (C-15 manufactured by Catalytic Chemical Industry Co., Ltd., boria concentration 5 wt%) was packed in a stainless steel reaction tube having an inner diameter of 14 mm and a length of 400 mm. This was pretreated at 300 ° C. for 2 hours while flowing 400 ml / min of nitrogen under normal pressure. The reaction was carried out in the same manner as in Example 1 using 5,6-dimethylbicyclo [2.2.1] hept-2-ene (water content 200 ppm) that had not been dehydrated by molecular sieve 3A.
On the 36th day after the start of operation, conversion to 5,6-dimethylbicyclo [2.2.1] hept-2-ene at 205 ° C. and WHSV = 1.0 h −1 = 80.8%, selectivity = 99.3 %. On the 40th day after the start of operation at 205 ° C., WHSV = 0.67 h −1 , conversion of 5,6-dimethylbicyclo [2.2.1] hept-2-ene = 91.1% The selectivity was 99.0%.

実施例4
実施例3で,原料をモレキュレーシーブ3Aで水分を10ppm以下に脱水した5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンに交換したところ,活性が向上することを確認した。
この結果、205℃,WHSV=1.0h-1の条件で,運転開始後44日目で原料切替前の反応成績は5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=73.6%,選択率=99.3%であり、原料切替後13日目(運転開始後57日目)の反応成績は5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=91.9%,選択率=99.3%であった。
Example 4
In Example 3, it was confirmed that the activity was improved when the raw material was replaced with 5,6-dimethylbicyclo [2.2.1] hept-2-ene which was dehydrated to 10 ppm or less with molecular sieve 3A. did.
As a result, the reaction results before starting material switching on the 44th day after starting operation under the conditions of 205 ° C. and WHSV = 1.0 h −1 were 5,6-dimethylbicyclo [2.2.1] hept-2-ene conversion. The rate of reaction was 73.6%, the selectivity was 99.3%, and the reaction performance on the 13th day after starting material switching (57th day after starting operation) was 5,6-dimethylbicyclo [2.2.1] hept- The conversion rate of 2-ene was 91.9% and the selectivity was 99.3%.

比較例1
内径10mm,長さ150mmのステンレス製反応管にアルミナボリア触媒(触媒化成工業(株)製 C−15、ボリア濃度5重量%)5.4gを充填した。これを常圧下,窒素100ml/minを流しながら,300℃で2時間前処理を行った。
気相異性化反応は,5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンを3.4ml/hr(WHSV=1.8hr-1)で150℃の予備加熱器を通した後,反応器に供給した。圧力は常圧で行った。反応開始時の反応温度は180℃,その後触媒活性の低下にともない徐々に温度を上げ,280℃まで昇温したが,活性は低下し続け,安定するには至らなかった。運転開始後20日目の反応成績はWHSV=0.2hr-1,反応温度240℃で5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=70.2%,選択率=92.9%,運転開始後40日目の反応成績は,WHSV=0.2hr-1,反応温度280℃で5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=51.3%,選択率=75.5%であった。
Comparative Example 1
A stainless steel reaction tube having an inner diameter of 10 mm and a length of 150 mm was charged with 5.4 g of an alumina boria catalyst (C-15 manufactured by Catalyst Chemical Industry Co., Ltd., boria concentration 5 wt%). This was pretreated at 300 ° C. for 2 hours while flowing 100 ml / min of nitrogen under normal pressure.
In the gas phase isomerization reaction, 5,6-dimethylbicyclo [2.2.1] hept-2-ene was passed through a preheater at 150 ° C. at 3.4 ml / hr (WHSV = 1.8 hr −1 ). After that, it was fed to the reactor. The pressure was normal pressure. The reaction temperature at the start of the reaction was 180 ° C., and then gradually increased with a decrease in catalyst activity, and the temperature was increased to 280 ° C. However, the activity continued to decrease and did not stabilize. On the 20th day after the start of operation, the reaction results are WHSV = 0.2 hr −1 , conversion temperature of 5,6-dimethylbicyclo [2.2.1] hept-2-ene at a reaction temperature of 240 ° C. = 70.2%, selection Rate = 92.9%, Reaction results on the 40th day after the start of operation are WHSV = 0.2 hr −1 , conversion of 5,6-dimethylbicyclo [2.2.1] hept-2-ene at a reaction temperature of 280 ° C. The rate was 51.3% and the selectivity was 75.5%.

実施例5
内径10mm,長さ400mmのステンレス製反応管にアルミナボリア触媒(触媒化成工業(株)製 C−15、ボリア濃度5重量%)14.4gを充填した。これを窒素置換し,触媒の前処理を行わずに,実施例3と同様に脱水処理を行っていない5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン(水分量200ppm)を用いて,液相を保つために圧力0.5MPaGで実施例1と同様に反応を行った。反応温度160℃以下では反応が進行しなかった。反応温度を210℃に上げたところ,反応は進行し,運転開始後2日目の反応成績は,WHSV=1.0h-1で5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン転化率=60.1%、選択率=99.1%であった。
以上の各実施例と各比較例の操作条件の概要と反応成績を第1表に示す。
Example 5
A stainless steel reaction tube having an inner diameter of 10 mm and a length of 400 mm was charged with 14.4 g of an alumina boria catalyst (C-15 manufactured by Catalyst Chemical Industry Co., Ltd., boria concentration 5 wt%). This was replaced with nitrogen, and 5,6-dimethylbicyclo [2.2.1] hept-2-ene (water content 200 ppm) was not subjected to dehydration treatment as in Example 3 without performing catalyst pretreatment. Was used in the same manner as in Example 1 at a pressure of 0.5 MPaG to maintain the liquid phase. The reaction did not proceed at a reaction temperature of 160 ° C. or lower. When the reaction temperature was raised to 210 ° C., the reaction proceeded, and the reaction results on the second day after the start of operation were as follows: 5,6-dimethylbicyclo [2.2.1] hept-2 at WHSV = 1.0 h −1. -Conversion of ene = 60.1%, selectivity = 99.1%.
Table 1 shows an overview of the operating conditions and reaction results of the above Examples and Comparative Examples.

Figure 2005170903
Figure 2005170903

Claims (6)

プロピレン又はブテンとシクロペンタジエン又はジシクロペンタジエンとをディールス・アルダー反応させて得られた反応生成物を、異性化触媒の存在下で異性化してビシクロ[2.2.1]ヘプタン誘導体を製造するに際し、異性化反応を液相で行うことを特徴とするビシクロ[2.2.1]ヘプタン誘導体の製造方法。   In producing a bicyclo [2.2.1] heptane derivative by isomerizing a reaction product obtained by reacting propylene or butene with cyclopentadiene or dicyclopentadiene in the presence of an isomerization catalyst. A method for producing a bicyclo [2.2.1] heptane derivative, characterized in that the isomerization reaction is performed in a liquid phase. 異性化触媒として、固体酸触媒を不活性ガスの存在下、50〜500℃の温度で前処理した触媒を用いる請求項1に記載のビシクロ[2.2.1]ヘプタン誘導体の製造方法。   The method for producing a bicyclo [2.2.1] heptane derivative according to claim 1, wherein a catalyst obtained by pretreating a solid acid catalyst at a temperature of 50 to 500 ° C in the presence of an inert gas is used as the isomerization catalyst. 異性化触媒が、アルミナボリアである請求項2に記載のビシクロ[2.2.1]ヘプタン誘導体の製造方法。   The method for producing a bicyclo [2.2.1] heptane derivative according to claim 2, wherein the isomerization catalyst is alumina boria. 異性化反応器に供するディールス・アルダー反応生成物が、水分含有量500ppm以下である請求項1〜3のいずれかに記載のビシクロ[2.2.1]ヘプタン誘導体の製造方法。   The method for producing a bicyclo [2.2.1] heptane derivative according to any one of claims 1 to 3, wherein the Diels-Alder reaction product used in the isomerization reactor has a water content of 500 ppm or less. 異性化反応を、反応温度20〜400℃、圧力0.1MPa以上で行う請求項1〜4のいずれかに記載のビシクロ[2.2.1]ヘプタン誘導体の製造方法。   The method for producing a bicyclo [2.2.1] heptane derivative according to any one of claims 1 to 4, wherein the isomerization reaction is performed at a reaction temperature of 20 to 400 ° C and a pressure of 0.1 MPa or more. 2−ブテンとシクロペンタジエン又はジシクロペンタジエンとをディールス・アルダー反応させて得られた反応生成物を異性化させる請求項1〜5のいずれかに記載のビシクロ[2.2.1]ヘプタン誘導体の製造方法。


The bicyclo [2.2.1] heptane derivative according to any one of claims 1 to 5, wherein a reaction product obtained by subjecting 2-butene and cyclopentadiene or dicyclopentadiene to Diels-Alder reaction is isomerized. Production method.


JP2003416569A 2003-12-15 2003-12-15 Method for producing bicyclo [2.2.1] heptane derivative Pending JP2005170903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416569A JP2005170903A (en) 2003-12-15 2003-12-15 Method for producing bicyclo [2.2.1] heptane derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416569A JP2005170903A (en) 2003-12-15 2003-12-15 Method for producing bicyclo [2.2.1] heptane derivative

Publications (1)

Publication Number Publication Date
JP2005170903A true JP2005170903A (en) 2005-06-30

Family

ID=34735730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416569A Pending JP2005170903A (en) 2003-12-15 2003-12-15 Method for producing bicyclo [2.2.1] heptane derivative

Country Status (1)

Country Link
JP (1) JP2005170903A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048205A (en) * 2015-06-02 2018-03-29 セントラル硝子株式会社 Method for producing hydrohalofluoroolefin
JPWO2018221693A1 (en) * 2017-05-31 2020-05-28 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048205A (en) * 2015-06-02 2018-03-29 セントラル硝子株式会社 Method for producing hydrohalofluoroolefin
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US12179182B2 (en) 2017-05-31 2024-12-31 National University Corporation Hokkaido University Method for making functional structural body
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US12115523B2 (en) 2017-05-31 2024-10-15 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
JPWO2018221693A1 (en) * 2017-05-31 2020-05-28 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
JP7352910B2 (en) 2017-05-31 2023-09-29 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Similar Documents

Publication Publication Date Title
KR102513667B1 (en) Multi-stage catalyst system and propene production method
JP2005170903A (en) Method for producing bicyclo [2.2.1] heptane derivative
JP4079776B2 (en) Methods for producing chain alpha olefins and ethylene
RU2422420C1 (en) Method of producing olefins
US5849974A (en) Olefin isomerization process
CN110267932B (en) Multi-stage catalyst system for self-metathesis with controlled isomerization and cracking
TW200628441A (en) Catalyst and process for the metathesis of ethylene and butene to produce propylene
US20170327437A1 (en) Method for oligomerization of ethylene
JPH01284587A (en) Production of liquid hydrocarbon
US4300006A (en) Synthetic lube oil production
RU2638835C2 (en) Method of catalytic conversion of ketoacids through intermediate dimers of ketoacids and their hydroprocessing in hydrocarbons
US5254786A (en) Olefin disproportionation catalyst and process
JP2887011B2 (en) Catalytic alkenylbenzene cyclization
Klepel et al. Oligomerization as an important step and side reaction for skeletal isomerization of linear butenes on H-ZSM-5
JP5001274B2 (en) Production method of lower olefins under negative pressure
US4992608A (en) Method for preparing cumene
TW202043180A (en) Process for the oligomerization of olefins with control of the oligomer content in the hydrocarbon streams to be oligomerized
US4125569A (en) Process for increasing hydrogenation rate of polymerized n-alphaolefins
JP4448709B2 (en) Process for producing bicyclo [2.2.1] heptenes
US5098876A (en) Olefin disproportionation catalyst and process
Moffat et al. 2-Methylbutanal as a probe molecule and the production of isoprene on stoichiometric and nonstoichiometric BPO catalysts
EP1254882B1 (en) Process for preparing bicyclo 2.2.1|heptane derivatives
JP4431407B2 (en) Process for producing n-butenes by isomerization of isobutene
JP4431408B2 (en) Process for producing n-butenes by isomerization of isobutene
JPS58121221A (en) Production of tertiary olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117