[go: up one dir, main page]

JP2005161843A - Thermoplastic resin film - Google Patents

Thermoplastic resin film Download PDF

Info

Publication number
JP2005161843A
JP2005161843A JP2004318946A JP2004318946A JP2005161843A JP 2005161843 A JP2005161843 A JP 2005161843A JP 2004318946 A JP2004318946 A JP 2004318946A JP 2004318946 A JP2004318946 A JP 2004318946A JP 2005161843 A JP2005161843 A JP 2005161843A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mol
film
resin film
mesogenic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004318946A
Other languages
Japanese (ja)
Inventor
Isao Manabe
功 真鍋
Ryosuke Matsui
良輔 松井
Minoru Yoshida
実 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004318946A priority Critical patent/JP2005161843A/en
Publication of JP2005161843A publication Critical patent/JP2005161843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin film excellent in gas barrier property and mechanical strength and suitable for packaging. <P>SOLUTION: This thermoplastic resin film is produced by alternately laminating the layer of a thermoplastic resin (B) containing a mesogenic group of 0.1 mol% or more and that of another thermoplastic resin (A) containing the mesogenic group of 35 mol% or less in five layers or more in total without interposing an adhesive layer. The film is characterized in that the mesogenic group content in the resin (B) is higher than that of the resin (A). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱可塑性樹脂フィルムに関するものである。更に詳しくはガスバリア性、機械的強度に優れ、包装用途に適した熱可塑性樹脂フィルムに関するものである。   The present invention relates to a thermoplastic resin film. More specifically, the present invention relates to a thermoplastic resin film excellent in gas barrier properties and mechanical strength and suitable for packaging applications.

食品や医薬、化粧品などの包装材料には包装された内容物の変質を抑制するために酸素や水蒸気などの高いバリア性が求められている。従来、使用されている高ガスバリア性を示すポリ塩化ビニリデンは塩素元素を有することから、代替品が検討されている。例えば、エチレン-ビニルアルコール共重合体によるバリア材料が提案されている。(例えば特許文献1参照)しかし、エチレンビニルアルコール共重合体は水酸基を有するため親水性であり、高湿度下ではバリア性が大幅に低下してしまう。また、機械的強度が弱いので単体では使用しにくいという問題がある。また、複合ナイロンフィルムによる高酸素バリア性材料の提案もなされている。(例えば特許文献2参照)しかし、同様に親水性が強いために水蒸気バリア性に劣るという課題がある。   Packaging materials such as foods, pharmaceuticals, and cosmetics are required to have high barrier properties such as oxygen and water vapor in order to suppress deterioration of the packaged contents. Conventionally, since the polyvinylidene chloride which shows the high gas barrier property used has a chlorine element, the alternative is examined. For example, a barrier material made of an ethylene-vinyl alcohol copolymer has been proposed. However, since ethylene vinyl alcohol copolymer has a hydroxyl group, it is hydrophilic, and barrier properties are greatly reduced under high humidity. Moreover, since mechanical strength is weak, there exists a problem that it is difficult to use by itself. In addition, high oxygen barrier materials using composite nylon films have been proposed. (For example, refer patent document 2) However, since hydrophilicity is similarly strong, there exists a subject that it is inferior to water vapor | steam barrier property.

また、メソゲン基を含有する熱可塑性樹脂は液晶性を示し、高配向化しやすいために、高ガスバリア性、高耐熱性、低吸湿性を示すことが知られており、これまでに射出成型品や繊維などとして実用化されている。しかし、液晶性を示す樹脂は通常の押し出しを行うと流れ方向に強い配向が生じて異方性の強いフィルムになってしまい幅方向への延伸が困難である。このような異方性を解消する方法としてインフレーション法についての提案がされている。(例えば特許文献3、特許文献4参照)しかし、これらの方法によって得られた液晶性樹脂フィルムは流れ方向、幅方向における物性バランスの問題は解決されたものの液晶性樹脂固有の表面あれの問題、また包装用途に必要な意匠性、透明性などの問題が解決されていない。
特開平5−271498号公報 (1頁23行目) 特開2001−310425号公報 (1頁26行目) 特公平6−39533号公報 (1頁33行目) 特開平4−286626号公報 (1頁33行目)
In addition, thermoplastic resins containing mesogenic groups are known to exhibit high gas barrier properties, high heat resistance, and low hygroscopicity because they exhibit liquid crystallinity and are easy to be highly oriented. It has been put to practical use as a fiber. However, if the resin exhibiting liquid crystallinity is subjected to normal extrusion, strong orientation occurs in the flow direction, resulting in a strong anisotropic film, which makes it difficult to stretch in the width direction. As a method for eliminating such anisotropy, an inflation method has been proposed. (For example, see Patent Document 3 and Patent Document 4) However, although the liquid crystalline resin film obtained by these methods has solved the problem of physical property balance in the flow direction and the width direction, the problem of surface roughness inherent to the liquid crystalline resin, In addition, problems such as designability and transparency necessary for packaging applications have not been solved.
JP-A-5-271498 (page 1, line 23) JP 2001-310425 A (page 1, line 26) Japanese Examined Patent Publication No. 6-39533 (page 1, line 33) JP-A-4-286626 (page 1, line 33)

上気した従来技術の問題点に鑑み、本発明の課題は、高湿度下においても高ガスバリア性を示すメソゲン基含有熱可塑性樹脂を接着剤を介することなく5層以上積層することによって成形性に優れ、また意匠性や透明性も併せ持った高ガスバリア性熱可塑性樹脂を提供するものである。   In view of the above-mentioned problems of the prior art, the object of the present invention is to achieve moldability by laminating five or more mesogenic group-containing thermoplastic resins exhibiting high gas barrier properties even under high humidity without using an adhesive. It is an object of the present invention to provide a high gas barrier thermoplastic resin that is excellent in design and transparency.

かかる課題を解決するため、本発明の熱可塑性樹脂フィルムは次の構成を有する。すなわち、メソゲン基を0.1モル%以上含有する熱可塑性樹脂(B)層とメソゲン基含有量が35モル%以下の熱可塑性樹脂(A)層とが接着層を介することなく交互に5層以上積層されており、熱可塑性樹脂(B)中のメソゲン基含有量が熱可塑性樹脂(A)中のメソゲン基含有量よりも多いことを特徴とする熱可塑性樹脂フィルムである。   In order to solve this problem, the thermoplastic resin film of the present invention has the following configuration. That is, the thermoplastic resin (B) layer containing 0.1 mol% or more of mesogenic groups and the thermoplastic resin (A) layer having a mesogenic group content of 35 mol% or less alternately have five layers without interposing an adhesive layer. The thermoplastic resin film is characterized by being laminated as described above and having a mesogenic group content in the thermoplastic resin (B) higher than a mesogenic group content in the thermoplastic resin (A).

本発明における熱可塑性樹脂フィルムはガスバリア性、強伸度で表される高い機械的強度に優れ、包装用途に適した熱可塑性樹脂フィルムである。   The thermoplastic resin film in the present invention is a thermoplastic resin film that is excellent in gas barrier properties and high mechanical strength expressed by high elongation and suitable for packaging applications.

本発明の熱可塑性樹脂フィルムは、高ガスバリア性、高い機械的強度の点での点でメソゲン基を0.1モル%以上含有する熱可塑性樹脂(B)層とメソゲン基含有量が35モル%以下の熱可塑性樹脂(A)層とが接着層を介することなく交互に5層以上積層されており、熱可塑性樹脂(B)中のメソゲン基含有量が熱可塑性樹脂(A)中のメソゲン基含有量よりも多いことを特徴とすることが必要である。本発明において熱可塑性樹脂(A)中のメソゲン基の含有量は35モル%以下で熱可塑性樹脂(B)中のメソゲン基含有量よりも少なければ問題ないが、成形性の点で15モル%以下であることが好ましく、最も好ましくはメソゲン基が含まれていない形態である。また、熱可塑性樹脂(B)中のメソゲン基含有量は特に上限は限定されないが、成形性の点から85モル%以下であることが好ましい。   The thermoplastic resin film of the present invention has a thermoplastic resin (B) layer containing 0.1 mol% or more of mesogenic groups and a mesogenic group content of 35 mol% in terms of high gas barrier properties and high mechanical strength. Five or more layers of the following thermoplastic resin (A) layers are alternately laminated without an adhesive layer, and the mesogenic group content in the thermoplastic resin (B) is the mesogenic group in the thermoplastic resin (A). It is necessary to be characterized by more than the content. In the present invention, the content of the mesogenic group in the thermoplastic resin (A) is 35 mol% or less and is less than the content of the mesogenic group in the thermoplastic resin (B). The following is preferable, and the most preferable form is one containing no mesogenic group. The upper limit of the mesogenic group content in the thermoplastic resin (B) is not particularly limited, but is preferably 85 mol% or less from the viewpoint of moldability.

ここで、メソゲン基とは、液晶層を形成するために中心となる剛直な原子団のことをいい、棒状または、平面上の構造を持ち、高い配列性を示す基のことである。熱可塑性樹脂中にメソゲン基を含有することで、メソゲン基が高配向するために高ガスバリア性、高機械的強度を示す。本発明におけるメソゲン基は特に限定されないが、成形性、バリア性、機械特性の点でヒドロキシ芳香族カルボン酸、芳香族ジカルボン酸、芳香族ジヒドロキシ化合物のいずれから選ばれる化合物であることが好ましい。さらに好ましくは構造式(1)〜(10)の中から選ばれる化合物である。また、剛直性を失わない程度で、芳香環に置換基を有してあってもよい。   Here, the mesogenic group refers to a rigid atomic group that is the center for forming the liquid crystal layer, and is a group that has a rod-like or planar structure and exhibits high alignment. By containing a mesogenic group in the thermoplastic resin, the mesogenic group is highly oriented, and thus exhibits high gas barrier properties and high mechanical strength. The mesogenic group in the present invention is not particularly limited, but is preferably a compound selected from hydroxy aromatic carboxylic acids, aromatic dicarboxylic acids, and aromatic dihydroxy compounds in terms of moldability, barrier properties, and mechanical properties. More preferred are compounds selected from structural formulas (1) to (10). Further, the aromatic ring may have a substituent as long as the rigidity is not lost.

(構造式1)   (Structural formula 1)

Figure 2005161843
Figure 2005161843

(構造式2)   (Structural formula 2)

Figure 2005161843
Figure 2005161843

(構造式3)   (Structural formula 3)

Figure 2005161843
Figure 2005161843

(構造式4)    (Structural formula 4)

Figure 2005161843
Figure 2005161843

(構造式5)    (Structural formula 5)

Figure 2005161843
Figure 2005161843

(構造式6)   (Structural formula 6)

Figure 2005161843
Figure 2005161843

(構造式7)   (Structural formula 7)

Figure 2005161843
Figure 2005161843

(構造式8)   (Structural formula 8)

Figure 2005161843
Figure 2005161843

(構造式9)   (Structural formula 9)

Figure 2005161843
Figure 2005161843

(構造式10)   (Structural formula 10)

Figure 2005161843
Figure 2005161843

本発明におけるメソゲン基含有熱可塑性樹脂の重合方法は、特に制限がなく、通常のポリエステルの重縮合法に準じて重合できるが、例えば、ヒドロキシ芳香族カルボン酸、芳香族ジヒドロキシ化合物、芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって製造する方法などが挙げられる。ここでいう脱酢酸重縮合とは、芳香族ジヒドロキシカルボン酸および芳香族ジヒドロキシ化合物のアシル化された水酸基と芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のカルボン酸基との脱酢酸反応の繰り返しによって、系外に酢酸を留出して重合が進行する重縮合反応を意味するものである。また、本発明のメソゲン基含有熱可塑性樹脂は製造の際、共重合モノマー、触媒及び/または着色防止剤、酸化防止剤、熱安定剤、及び難燃剤などの添加剤を添加してもよい。   The polymerization method of the mesogenic group-containing thermoplastic resin in the present invention is not particularly limited, and can be polymerized according to a normal polyester polycondensation method. For example, hydroxy aromatic carboxylic acid, aromatic dihydroxy compound, aromatic dicarboxylic acid And the like, and a method of producing a phenolic hydroxyl group by reacting with acetic anhydride, followed by deacetic acid polycondensation reaction. The deacetic acid polycondensation referred to here is by repeating the deacetic acid reaction between the acylated hydroxyl group of the aromatic dihydroxycarboxylic acid and aromatic dihydroxy compound and the carboxylic acid group of the aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid, It means a polycondensation reaction in which acetic acid is distilled out of the system and polymerization proceeds. In addition, the mesogen group-containing thermoplastic resin of the present invention may be added with additives such as a copolymerization monomer, a catalyst and / or an anti-coloring agent, an antioxidant, a thermal stabilizer, and a flame retardant.

本発明におけるメソゲン基を含有しない熱可塑性樹脂は、特に限定されず、例えばポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂、ナイロン6、ナイロン66、ナイロン12などのポリアミド樹脂、ポリエチレンテフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、アクリル樹脂などが挙げられる。   The thermoplastic resin not containing a mesogenic group in the present invention is not particularly limited, for example, a polyolefin resin such as polyethylene, polypropylene, or polymethylpentene, a polyamide resin such as nylon 6, nylon 66, or nylon 12, a polyethylene terephthalate, or a polybutylene. Examples thereof include polyester resins such as terephthalate and polyethylene-2,6-naphthalate, polycarbonate resins, polyacetal resins, polyphenylene sulfide resins, and acrylic resins.

これらの樹脂はホモ樹脂であってもよく、共重合またはブレンドであってもよい。また、樹脂の中に各種添加剤、例えば酸化防止剤、耐電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、増粘剤、相溶化剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤などを添加してもよい。   These resins may be homo-resins, copolymerized or blended. Also, various additives in the resin, such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, thickeners, thickeners, compatibilizers, thermal stabilizers, lubricants, infrared absorbers An ultraviolet absorber or the like may be added.

また、本発明において温度280℃、剪断速度100(s−1)の条件下における熱可塑性樹脂(A)と熱可塑性樹脂(B)の溶融粘度の差が150Pa・s以下であることが好ましい。溶融粘度の差が150Pa・sより大きくなると、製膜性に劣り、熱可塑性樹脂(B)が均一な膜になりにくく、高ガスバリア性が発現しない場合があるために好ましくない。より好ましくは、熱可塑性樹脂(A)と熱可塑性樹脂(B)の溶融粘度差が130Pa・s以下であり、100Pa・s以下であれば最も好ましい。メソゲン基を含有する熱可塑性樹脂は、剪断速度によって溶融粘度が大きく変わるため、熱可塑性樹脂(A)と、熱可塑性樹脂(B)の押し出し時の溶融粘度差が小さいことが重要である。このため、押し出し時の剪断速度である100(s−1)の条件下で比較する必要がある。 In the present invention, the difference in melt viscosity between the thermoplastic resin (A) and the thermoplastic resin (B) under conditions of a temperature of 280 ° C. and a shear rate of 100 (s −1 ) is preferably 150 Pa · s or less. When the difference in melt viscosity is larger than 150 Pa · s, the film-forming property is inferior, the thermoplastic resin (B) is not easily formed into a uniform film, and high gas barrier properties may not be exhibited. More preferably, the difference in melt viscosity between the thermoplastic resin (A) and the thermoplastic resin (B) is 130 Pa · s or less, and most preferably 100 Pa · s or less. Since the melt viscosity of the thermoplastic resin containing a mesogenic group varies greatly depending on the shear rate, it is important that the difference in melt viscosity at the time of extrusion of the thermoplastic resin (A) and the thermoplastic resin (B) is small. For this reason, it is necessary to compare under the condition of 100 (s −1 ), which is the shear rate at the time of extrusion.

本発明における熱可塑性樹脂は、上記した樹脂の中でも成形性、機械的強度の点でポリエステル樹脂が特に好ましい。ここでポリエステル樹脂は、ジオール成分とジカルボン酸成分との重縮合によって得られるポリマーのことである。具体的にはジオール成分としては例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、ネオペンチルグリコール、ポリアルキレングリコール、ビスフェノールAエチレンオキサイド付加物などがある。また、ジカルボン酸成分としてはテレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、シクロヘキサンジカルボン酸、金属スルホイソフタル酸などがあり、またこれらのジエステル誘導体であっても構わない。この中で、金属スルホイソフタル酸としては、ナトリウムスルホイソフタル酸、カルシウムスルホイソフタル酸、マグネシウムスルホイソフタル酸などがある。   The thermoplastic resin in the present invention is particularly preferably a polyester resin in terms of moldability and mechanical strength among the above-described resins. Here, the polyester resin is a polymer obtained by polycondensation of a diol component and a dicarboxylic acid component. Specific examples of the diol component include ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexanedimethanol, neopentyl glycol, polyalkylene glycol, and bisphenol A ethylene oxide adduct. Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, cyclohexanedicarboxylic acid, and metal sulfoisophthalic acid, and these diester derivatives may also be used. Among these, examples of the metal sulfoisophthalic acid include sodium sulfoisophthalic acid, calcium sulfoisophthalic acid, and magnesium sulfoisophthalic acid.

これらのジオール成分とジカルボン酸成分またはそのエステル誘導体との組み合わせは任意であり、3つ以上の成分より重縮合される場合、得られるポリエステルは共重合ポリエステルとなる。この中でも経済性、成形性の点でより好ましいポリエステルとしてはジエチレングリコールとテレフタル酸もしくは、ジメチルテレフタレートから重縮合によって得られるポリエチレンテレフタレートである。   Combinations of these diol components and dicarboxylic acid components or ester derivatives thereof are arbitrary, and when polycondensed from three or more components, the resulting polyester becomes a copolyester. Among these polyesters, polyethylene terephthalate obtained by polycondensation from diethylene glycol and terephthalic acid or dimethyl terephthalate is more preferable from the viewpoint of economy and moldability.

本発明におけるポリエステルを製造するに際して、反応触媒、着色防止剤などを使用することができる。反応触媒としては、例えば、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、チタン化合物、ゲルマニウム化合物など、また着色防止剤としては、リン化合物などを使用することができる。   In producing the polyester in the present invention, a reaction catalyst, an anti-coloring agent and the like can be used. As the reaction catalyst, for example, an alkali metal compound, an alkaline earth metal compound, a zinc compound, a lead compound, a titanium compound, a germanium compound or the like can be used, and as a coloring inhibitor, a phosphorus compound or the like can be used.

通常、ポリエステルの製造が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物および/またはチタン化合物を添加することが好ましい。   Usually, it is preferable to add an antimony compound, a germanium compound and / or a titanium compound as a polymerization catalyst at an arbitrary stage before the production of the polyester is completed.

かかるアンチモン化合物としては、特に限定しないが、例えば、三酸化アンチモンなどの酸化物、酢酸アンチモンなどが使用できる。また、さらにチタン化合物としては、特に限定しないが、チタンテトラエトキシド、チタンテトラブトキシドなどのチタンテトラアルコキシドを好ましく用いることができる。   The antimony compound is not particularly limited, and for example, oxides such as antimony trioxide, antimony acetate, and the like can be used. Further, the titanium compound is not particularly limited, but titanium tetraalkoxide such as titanium tetraethoxide and titanium tetrabutoxide can be preferably used.

また、ゲルマニウム化合物としては、例えば、二酸化ゲルマニウム、水酸化ゲルマニウム水和物あるいはゲルマニウムテトラメトキシド、ゲルマニウムエチレングリコキシドなどのゲルマニウムアルコキシド化合物、ゲルマニウムフェノキシド化合物、リン酸ゲルマニウム、亜リン酸ゲルマニウムなどのリン酸含ゲルマニウム化合物、酢酸ゲルマニウムなどを使用することができる。なかでも二酸化ゲルマニウムが好ましく用いられる。   Examples of germanium compounds include germanium dioxide, germanium hydroxide hydrate or germanium tetramethoxide, germanium alkoxide compounds such as germanium ethylene glycoxide, phosphoric acids such as germanium phenoxide compounds, germanium phosphate, and germanium phosphite. Germanium-containing compounds, germanium acetate, and the like can be used. Of these, germanium dioxide is preferably used.

本発明においては、メソゲン基は表層の方が剪断がかかり配向しやすいので、高配向界面を増やすために、一層当たりの厚みを薄くさせるために交互に5層以上の多層積層フィルムにすることが好ましい。また、一層当たりの厚みを薄くすることは、透明性の点でも好ましい。   In the present invention, the mesogenic group is sheared and oriented more easily on the surface layer. Therefore, in order to increase the highly oriented interface, it is possible to alternately form a multilayer laminated film of 5 or more layers in order to reduce the thickness per layer. preferable. Moreover, reducing the thickness per layer is also preferable from the viewpoint of transparency.

また、通常は、押し出し時に異方性が強くなり、均一な膜になりにくく、延伸も困難であるメソゲン基含有熱可塑性樹脂がメソゲン基が液晶性の弱まる35モル%以下の熱可塑性樹脂と交互に5層以上積層することで全体として均一な膜になりやすく、容易に延伸できるようになる。   Also, a mesogenic group-containing thermoplastic resin, which usually has a strong anisotropy during extrusion, is difficult to form a uniform film, and is difficult to stretch, alternates with a 35 mol% or less thermoplastic resin in which the mesogenic group weakens liquid crystallinity. By laminating five or more layers, it becomes easy to form a uniform film as a whole and can be easily stretched.

本発明において熱可塑性樹脂(A)と熱可塑性樹脂(B)を5層以上に積層する方法は特に限定しないが、例えば2台以上の押し出し機を用いて異なる流路から送り出された熱可塑性樹脂をフィードブロックやスタティックミキサー、マルチマニホールドダイなどを用いて多層に積層する方法などを使用することができる。ここでスタティックミキサーとしては、パイプミキサー、スクエアミキサーなどが挙げられるがスクエアミキサーの方が好ましい。   In the present invention, the method of laminating the thermoplastic resin (A) and the thermoplastic resin (B) into five or more layers is not particularly limited. For example, the thermoplastic resin fed from different flow paths using two or more extruders. A method of laminating a plurality of layers using a feed block, a static mixer, a multi-manifold die, or the like can be used. Here, examples of the static mixer include a pipe mixer and a square mixer, but the square mixer is preferable.

本発明の熱可塑性樹脂フィルムは無延伸でも、一軸延伸でも、二軸延伸でもよいが、機械的強度、バリア性の点で二軸に延伸している方が好ましい。   The thermoplastic resin film of the present invention may be unstretched, uniaxially stretched, or biaxially stretched, but is preferably stretched biaxially in terms of mechanical strength and barrier properties.

また、二軸延伸させる方法としては特に限定しないが、ロールの速度差により長手方向に一軸に延伸し、その一軸に延伸したものをテンターで幅方向に引っ張り延伸する逐次二軸延伸法、またはテンターで同時に二軸に延伸する方法などが挙げられる。延伸倍率としてはそれぞれの方向に好ましくは1.6〜4.2倍、更に好ましくは2.4〜4.0倍である。また、延伸速度は1000〜200000%/分であることが望ましく、延伸温度は熱可塑性樹脂(A)のガラス転移温度からガラス転移温度+100℃の温度範囲であれば任意の温度とすることができるが、好ましくは80〜130℃、特に好ましくは長手方向の延伸温度を90〜120℃、幅方向の延伸温度を90〜130℃とするのがよい。   The biaxial stretching method is not particularly limited, but a sequential biaxial stretching method in which a uniaxial stretching is performed in the longitudinal direction due to a roll speed difference, and the uniaxial stretching is stretched in the width direction with a tenter, or a tenter. And a method of stretching biaxially at the same time. The stretching ratio is preferably 1.6 to 4.2 times in each direction, and more preferably 2.4 to 4.0 times. Further, the stretching speed is desirably 1000 to 200000% / min, and the stretching temperature can be any temperature as long as it is in the temperature range from the glass transition temperature of the thermoplastic resin (A) to the glass transition temperature + 100 ° C. However, the stretching temperature in the longitudinal direction is preferably 80 to 130 ° C., and the stretching temperature in the width direction is preferably 90 to 130 ° C.

また、二軸延伸したフィルムは、平面性、寸法安定性を付与するために熱処理をするのが好ましい。熱処理はオーブン中、加熱されたロール上など任意の方法により行うことができる。熱処理温度は延伸温度以上融点以下の任意の温度とすることができるが、成形加工性の点から160〜240℃が好ましい。また、熱処理時間は他の特性を悪化させない範囲において任意とすることができるが、通常1〜30秒間行うのが好ましい。さらに、熱処理はフィルムを長手方向及び幅方向に弛緩させて行ってもよい。   In addition, the biaxially stretched film is preferably subjected to a heat treatment in order to impart flatness and dimensional stability. The heat treatment can be performed by an arbitrary method such as in an oven or on a heated roll. The heat treatment temperature can be any temperature not lower than the stretching temperature and not higher than the melting point, but is preferably 160 to 240 ° C. from the viewpoint of moldability. The heat treatment time can be arbitrarily set within a range not deteriorating other characteristics, but it is usually preferable to carry out for 1 to 30 seconds. Further, the heat treatment may be performed by relaxing the film in the longitudinal direction and the width direction.

本発明の熱可塑性樹脂フィルムの空隙率は3%未満であることが好ましい。ここで、空隙率とは、熱可塑性樹脂A単体で製膜した二軸延伸フィルムと、熱可塑性樹脂Bのチップの比重を測定し、そこから求められる理論比重と実際に測定した熱可塑性樹脂フィルムの比重から以下の式より求めたものである。
空隙率={(理論比重−実測した比重)/(理論比重)}×100
空隙率が3%以上であると、(A)層と(B)層との界面接着性に劣っている場合、フィルム中、特に(B)層中に亀裂が発生している場合などが考えられ、高ガスバリア性や機械的強度が低下してしまうため、好ましくない。空隙率は2%未満であればさらに好ましい。本発明のポリエステルフィルムの空隙率を3%未満にする方法は特に限定されないが例えば、延伸後に加熱ロールや、加熱プレス機などによって発生した空隙を消滅させる方法などが挙げられる。この時、加熱ロールや加熱プレス機の温度は熱可塑性樹脂(B)の融点以上であるとより空隙が消滅できるので好ましい。
The porosity of the thermoplastic resin film of the present invention is preferably less than 3%. Here, the porosity means the specific gravity of the biaxially stretched film formed from the thermoplastic resin A alone and the chip of the thermoplastic resin B, and the theoretical specific gravity required from the measured specific gravity and the actually measured thermoplastic resin film. It is obtained from the following formula from the specific gravity of.
Porosity = {(theoretical specific gravity−measured specific gravity) / (theoretical specific gravity)} × 100
When the porosity is 3% or more, there are cases where the interfacial adhesiveness between the (A) layer and the (B) layer is inferior, or there are cracks in the film, particularly the (B) layer. This is not preferable because high gas barrier properties and mechanical strength are lowered. More preferably, the porosity is less than 2%. The method for setting the porosity of the polyester film of the present invention to less than 3% is not particularly limited, and examples thereof include a method of eliminating voids generated by a heating roll or a heating press after stretching. At this time, it is preferable that the temperature of the heating roll or the heating press is equal to or higher than the melting point of the thermoplastic resin (B) because voids can disappear.

本発明の熱可塑性樹脂フィルムの厚みは製膜安定性の点で6〜50μmであることが好ましい。さらに包装材料として使用する場合は8〜20μmであることが好ましい。   The thickness of the thermoplastic resin film of the present invention is preferably 6 to 50 μm from the viewpoint of film formation stability. Furthermore, when using as a packaging material, it is preferable that it is 8-20 micrometers.

本発明の熱可塑性樹脂(A)とメソゲン基含有熱可塑性樹脂(B)との積層比率は、積層性、製膜安定性の点で(A層厚み)/(B層厚み)=0.2〜20であることが好ましい。高ガスバリア性、高機械的強度の点からは、(A層厚み)/(B層厚み)=0.5〜10であることが好ましい。   The lamination ratio of the thermoplastic resin (A) of the present invention to the mesogenic group-containing thermoplastic resin (B) is (layer A thickness) / (layer B thickness) = 0.2 in terms of laminateability and film formation stability. It is preferably ~ 20. From the viewpoint of high gas barrier properties and high mechanical strength, it is preferable that (A layer thickness) / (B layer thickness) = 0.5-10.

また、一層当たりの厚みは高配向界面の増加、透明性の点で700nm以下であることが好ましい。さらに好ましくは可視光の波長領域以下である380nm以下であることが好ましい。   Further, the thickness per layer is preferably 700 nm or less from the viewpoint of an increase in highly oriented interface and transparency. More preferably, it is 380 nm or less, which is the wavelength region of visible light or less.

本発明に使用した物性値の評価法を記載する。   An evaluation method of physical property values used in the present invention will be described.

(熱可塑性樹脂の融点)
熱可塑性樹脂約5mgを示差走査熱量計(パーキンエルマー社製 DSC7)により、25℃から250℃まで20℃/分で昇温し、5分間250℃を保持した後に急冷した。その後、再び25℃から250℃まで20℃/分の昇温速度で測定し、吸熱ピーク温度を融点とした。
(Melting point of thermoplastic resin)
About 5 mg of a thermoplastic resin was heated from a temperature of 25 ° C. to 250 ° C. at 20 ° C./min by a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co.), and rapidly cooled after being kept at 250 ° C. for 5 minutes. Thereafter, the temperature was again measured from 25 ° C. to 250 ° C. at a rate of temperature increase of 20 ° C./min, and the endothermic peak temperature was taken as the melting point.

(メソゲン含有熱可塑性樹脂の液晶開始温度)
ヤナコ微量融点測定装置 MP−500Dを用いてメソゲン基含有熱可塑性樹脂チップ5mgに徐々に熱を加えていったときの様子を観察し、樹脂に流動が生じた温度を液晶開始温度とした。
(Liquid crystal starting temperature of mesogen-containing thermoplastic resin)
A state where heat was gradually applied to 5 mg of a mesogen group-containing thermoplastic resin chip using a Yanako trace melting point measuring apparatus MP-500D was observed, and a temperature at which the resin flowed was defined as a liquid crystal starting temperature.

(溶融粘度)
キャピログラフ1C(東洋精機社製)を用いて、温度280℃のときの値を測定した。荷重を調整して、剪断速度が100(s−1)のとき、および1000(s−1)のときの溶融粘度を求めた。単位はPa・sで示した。
(Melt viscosity)
Using Capillograph 1C (manufactured by Toyo Seiki Co., Ltd.), the value at a temperature of 280 ° C. was measured. The load was adjusted to determine the melt viscosity when the shear rate was 100 (s −1 ) and 1000 (s −1 ). The unit is indicated by Pa · s.

(積層比)
フィルムの断面を透過型電子顕微鏡(日立製作所TEM H7100)にて写真撮影し、フィルムの積層比を測定した。倍率は6000倍で観察した。
(Lamination ratio)
The cross section of the film was photographed with a transmission electron microscope (Hitachi, Ltd. TEM H7100), and the lamination ratio of the film was measured. The magnification was observed at 6000 times.

(空隙率)
熱可塑性樹脂フィルム(実施例12〜14で製膜したフィルム)、二軸延伸PETフィルム(比較例1で製膜したフィルム)、熱可塑性樹脂(B)のチップ(実施例12〜14で使用したチップ)の比重をそれぞれ、密度勾配管(NaBr水溶液、25℃)に20時間含浸させ測定した。フィルムの場合はサンプルを5mm×5mmの正方形、チップの場合は2mm×5mm×5mmのたわら型にして測定を行った。求めた比重より熱可塑性樹脂フィルムの空隙率を以下の式により求めた。
空隙率(%)={比重(理論値)−比重(実測値)}/比重(理論値)×100
比重(理論値)=二軸延伸PETフィルムの比重×PET層(A)層の積層厚み分率+熱可塑性樹脂(B)チップの比重×熱可塑性樹脂(B)層の積層厚み分率
PET層(A)層の積層厚み分率=(A/A+B)
熱可塑性樹脂(B)層の積層厚み分率=(B/A+B)
比重(実測値)=熱可塑性樹脂フィルムの比重。
(Porosity)
Thermoplastic resin film (film formed in Examples 12-14), biaxially stretched PET film (film formed in Comparative Example 1), thermoplastic resin (B) chip (used in Examples 12-14) The specific gravity of the chips was measured by impregnating each in a density gradient tube (NaBr aqueous solution, 25 ° C.) for 20 hours. In the case of a film, the measurement was performed with a sample of 5 mm × 5 mm square, and in the case of a chip, a 2 mm × 5 mm × 5 mm straw type. From the determined specific gravity, the porosity of the thermoplastic resin film was determined by the following equation.
Porosity (%) = {specific gravity (theoretical value) −specific gravity (actual value)} / specific gravity (theoretical value) × 100
Specific gravity (theoretical value) = specific gravity of biaxially stretched PET film × laminate thickness fraction of PET layer (A) + thermoplastic resin (B) specific gravity of chip × laminate thickness fraction of thermoplastic resin (B) layer PET layer (A) Layer thickness ratio = (A / A + B)
Lamination thickness fraction of thermoplastic resin (B) layer = (B / A + B)
Specific gravity (actual value) = specific gravity of thermoplastic resin film.

(酸素透過率)
熱可塑性樹脂フィルムに無機薄膜を蒸着させて測定を行った。無機薄膜の蒸着方法は以下のようにした。熱可塑性樹脂フィルム表面を窒素/炭酸ガスの混合ガス(窒素/炭酸ガス85/15)の雰囲気下中で40W・min/mの処理条件でコロナ放電処理を施し、フィルムの濡れ張力を45mN/m以上にしてロール状に巻き取った。その時のフィルムの温度は30℃であり、10時間放置した後に小幅にスリットした。次に、小幅にスリットしたフィルムをフィルム走行装置を具備した真空蒸着装置内にセットし、1.00×10−2Paの高真空にした後に、−20℃の冷却金属ドラムを介して走行させた。この時、アルミニウム金属を加熱蒸発させながら、走行フィルムのコロナ放電処理面に凝集体積させ、アルミニウムの蒸着薄膜層を形成して巻き取った。蒸着後、真空蒸着装置内を常圧に戻して、巻き取ったフィルムを巻き返し、40℃の温度で2日間エージングして、無機薄膜を蒸着させた。この無機薄膜蒸着熱可塑性樹脂フィルムをモダンコントロール社製の酸素透過率計(OXTRAN−100)を用いて、湿度80%、温度23℃の条件下で測定し、厚み12μm当たりの換算値にして示した。厚み換算はサンプルの厚みをa(μm)、サンプルの酸素透過率をb(cc/m・day)とした場合に以下の式で行った。
酸素透過率(12μm換算値)=b×(a/12)
(水蒸気透過率)
酸素透過率と同様の方法で熱可塑性樹脂フィルムに無機薄膜を蒸着させ、モダンコントロール社製の水蒸気透過率計(PERMATRANW3/31)を用いて、湿度100%、温度37.8℃の条件下で測定した値を厚み12μm当たりの換算値にして示した。厚み換算は酸素透過率と同様の方法で行った。
(Oxygen permeability)
Measurement was performed by depositing an inorganic thin film on the thermoplastic resin film. The vapor deposition method of the inorganic thin film was as follows. The surface of the thermoplastic resin film is subjected to corona discharge treatment under a treatment condition of 40 W · min / m 2 in an atmosphere of a mixed gas of nitrogen / carbon dioxide (nitrogen / carbon dioxide 85/15), and the wetting tension of the film is 45 mN / m or more and wound into a roll. The temperature of the film at that time was 30 ° C., and the film was slit for a short time after being left for 10 hours. Next, the film slit in a small width is set in a vacuum vapor deposition apparatus equipped with a film traveling apparatus, and after being made a high vacuum of 1.00 × 10 −2 Pa, it is traveled through a cooling metal drum at −20 ° C. It was. At this time, while the aluminum metal was evaporated by heating, it was agglomerated on the corona discharge treatment surface of the running film, and an aluminum vapor deposition thin film layer was formed and wound up. After vapor deposition, the inside of the vacuum vapor deposition apparatus was returned to normal pressure, the wound film was wound up, and aged at a temperature of 40 ° C. for 2 days to deposit an inorganic thin film. This inorganic thin film vapor-deposited thermoplastic resin film was measured using an oxygen permeability meter (OXTRAN-100) manufactured by Modern Control Co., Ltd. under the conditions of humidity 80% and temperature 23 ° C., and shown as a converted value per 12 μm thickness. It was. The thickness was converted by the following equation when the sample thickness was a (μm) and the oxygen permeability of the sample was b (cc / m 2 · day).
Oxygen permeability (12 μm equivalent) = b × (a / 12)
(Water vapor transmission rate)
An inorganic thin film is vapor-deposited on the thermoplastic resin film in the same manner as the oxygen transmission rate, and using a water vapor transmission rate meter (PERMATRANW 3/31) manufactured by Modern Control, under the conditions of humidity 100% and temperature 37.8 ° C. The measured value was shown as a converted value per thickness of 12 μm. The thickness was converted by the same method as the oxygen transmission rate.

(強伸度)
引張試験機(オリエンテック社製テンシロンAMF/RTA−100)を用いて、幅10mmのサンプルフィルムをチャック間長さ50mm(初期試料長)となるようにセットし、25℃、65%RHの条件下で引張速度300mm/分で引張試験を行った。最大点伸度は以下の式より求めた。
最大点伸度(%)={(フィルムにかかる応力が最大のときの試料長−初期試料長)/初期試料長}×100
また、ヤング率は、引張試験で記録した応力−歪み曲線をMP−200Sデータ処理プログラムを用いて、立ち上がり部分の接線より求めた。
(Strong elongation)
Using a tensile tester (Tensilon AMF / RTA-100 manufactured by Orientec Co., Ltd.), set a sample film with a width of 10 mm so that the length between chucks is 50 mm (initial sample length), and conditions of 25 ° C. and 65% RH A tensile test was performed at a tensile speed of 300 mm / min. The maximum point elongation was obtained from the following equation.
Maximum point elongation (%) = {(sample length when stress applied to film is maximum−initial sample length) / initial sample length} × 100
The Young's modulus was obtained from the tangent line of the rising portion using a MP-200S data processing program based on the stress-strain curve recorded in the tensile test.

(ポリエチレンテレフタレートの固有粘度)
ポリエチレンテレフタレートをo-クロロフェノールに溶解し、25℃において測定した(ASTM D1601−86(1991))。
(Intrinsic viscosity of polyethylene terephthalate)
Polyethylene terephthalate was dissolved in o-chlorophenol and measured at 25 ° C. (ASTM D1601-86 (1991)).

(実施例1)
熱可塑性樹脂フィルムの熱可塑性樹脂(A)の製造方法を以下に示す。テレフタル酸ジメチル100重量部、エチレングリコール60重量部の混合物にテレフタル酸ジメチルに対して酢酸マグネシウム0.08重量部、三酸化アンチモン0.022重量部を加え、150℃から235℃まで昇温しながら、メタノールを系外に留出させ、エステル交換反応を行った。次いでリン酸85%水溶液0.019重量部を添加し、235℃から徐々に昇温、減圧し、最終的に290℃、0.5mmHgまで昇温、減圧し、極限粘度が0.65となるまで重縮合反応を行い、その後ストランド状に吐出、冷却し、カッティングしてポリエチレンテレフタレート樹脂を得た。リン酸水溶液を添加する際に同時に、平均二次粒子径1.2μmの凝集シリカ粒子のエチレングリコールスラリーを粒子濃度2重量部となるように添加して粒子マスターポリエステル樹脂を得た。
(Example 1)
The manufacturing method of the thermoplastic resin (A) of a thermoplastic resin film is shown below. To a mixture of 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol, 0.08 parts by weight of magnesium acetate and 0.022 parts by weight of antimony trioxide are added to dimethyl terephthalate and the temperature is raised from 150 ° C. to 235 ° C. Then, methanol was distilled out of the system to carry out a transesterification reaction. Next, 0.019 part by weight of 85% phosphoric acid aqueous solution is added, and the temperature is gradually raised and reduced from 235 ° C., and finally heated to 290 ° C. and 0.5 mmHg and reduced to an intrinsic viscosity of 0.65. The polycondensation reaction was carried out until it was discharged into a strand, cooled, and cut to obtain a polyethylene terephthalate resin. Simultaneously with the addition of the phosphoric acid aqueous solution, an ethylene glycol slurry of agglomerated silica particles having an average secondary particle diameter of 1.2 μm was added so as to have a particle concentration of 2 parts by weight to obtain a particle master polyester resin.

また、メソゲン基を含有する熱可塑性樹脂(B)としては、凝集シリカ粒子を添加する以外は上記の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを46.5モル%、構造式(1)を39.5モル%、構造式(3)を7.0モル%、構造式(8)を7.0モル%、に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを用いた。この液晶ポリエステルチップは以下の特性を示した。 [ 融点:216℃、液晶開始温度:168℃、溶融粘度:41Pa・s(剪断速度100(s−1))、17Pa・s(剪断速度1000(s−1))]
上記の熱可塑性樹脂(A)(B)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し溶融させ、フィードブロックにて9層に合流させた。合流した熱可塑性樹脂(A)(B)は実行段数が3段のスタティックミキサーに供給し、熱可塑性樹脂Aが65層、熱可塑性樹脂Bが64層からなる厚み方向に交互に積層された構造とした。また、熱可塑性樹脂Aが両表層であり、積層厚み比はA/B=1になるように吐出量にて調整した。このようにして得られた計129層からなる積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。延伸倍率は表に示す通りである。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取り熱可塑性樹脂フィルムを得た。
As the thermoplastic resin (B) containing a mesogenic group, 46.5 mol% of polyethylene terephthalate prepared by the same production method as the above thermoplastic resin (A) except that aggregated silica particles are added, and the structure Acetic anhydride was reacted with 39.5 mol% of the formula (1), 7.0 mol% of the structural formula (3), and 7.0 mol% of the structural formula (8) to acylate the phenolic hydroxyl group. Thereafter, a liquid crystalline polyester chip obtained by performing a deacetic acid polycondensation reaction was used. This liquid crystal polyester chip exhibited the following characteristics. [Melting point: 216 ° C., liquid crystal starting temperature: 168 ° C., melt viscosity: 41 Pa · s (shear rate 100 (s −1 )), 17 Pa · s (shear rate 1000 (s −1 ))]
The thermoplastic resins (A) and (B) are dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to separate extruders set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side). It was melted and merged into 9 layers with a feed block. The joined thermoplastic resins (A) and (B) are supplied to a static mixer having three stages of execution, and are structured in which 65 layers of thermoplastic resin A and 64 layers of thermoplastic resin B are alternately stacked in the thickness direction. It was. Moreover, the thermoplastic resin A was both surface layers, and the lamination thickness ratio was adjusted by the discharge amount so that A / B = 1. The thus obtained laminate consisting of a total of 129 layers is supplied to a T-die and formed into a sheet shape, and is then brought into close contact with a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV. Cooled and solidified. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. The draw ratio is as shown in the table. Thereafter, the biaxially stretched film was heat-treated at 230 ° C. in the tenter, uniformly cooled, and then cooled to room temperature to obtain a wound thermoplastic resin film.

(実施例2)
実施例1と同様の方法で熱可塑性樹脂(A)、メソゲン基含有熱可塑性樹脂(B)を得た。
上記の熱可塑性樹脂(A)(B)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し溶融させ、フィードブロックにて3層に合流させた。合流した熱可塑性樹脂(A)(B)は実行段数が3段のスタティックミキサーに供給し、熱可塑性樹脂(A)17層、(B)16層からなる積層体を積層厚み比A/B=5になるように吐出した。このようにして得られた計33層からなる積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。延伸倍率は表に示す通りである。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取ることによって熱可塑性樹脂フィルムを得た。
(Example 2)
A thermoplastic resin (A) and a mesogenic group-containing thermoplastic resin (B) were obtained in the same manner as in Example 1.
The thermoplastic resins (A) and (B) are dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to separate extruders set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side). It was melted and merged into three layers with a feed block. The joined thermoplastic resins (A) and (B) are supplied to a static mixer having three stages of execution, and a laminate composed of 17 layers of thermoplastic resin (A) and 16 layers of (B) is laminated thickness ratio A / B = It discharged so that it might be set to 5. The thus obtained laminate consisting of a total of 33 layers was supplied to a T-die and formed into a sheet shape, and was then brought into close contact with a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV. Cooled and solidified. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. The draw ratio is as shown in the table. Thereafter, the biaxially stretched film was heat-treated in the tenter at 230 ° C., uniformly cooled, cooled to room temperature, and wound up to obtain a thermoplastic resin film.

(実施例3)
実施例1と同様の方法で熱可塑性樹脂(A)、メソゲン基含有熱可塑性樹脂(B)を得た。
上記の熱可塑性樹脂(A)(B)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し溶融させ、フィードブロックにて3層に合流させた。合流した熱可塑性樹脂(A)(B)は実行段数が2段のスタティックミキサーに供給し、熱可塑性樹脂(A)9層、(B)8層からなる積層体を積層厚み比A/B=5になるように吐出した。このようにして得られた計17層からなる積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。延伸倍率は表に示す通りである。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取ることによって熱可塑性樹脂フィルムを得た。
(Example 3)
A thermoplastic resin (A) and a mesogenic group-containing thermoplastic resin (B) were obtained in the same manner as in Example 1.
The thermoplastic resins (A) and (B) are dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to separate extruders set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side). It was melted and merged into three layers with a feed block. The joined thermoplastic resins (A) and (B) are supplied to a static mixer having two stages of execution, and a laminate composed of 9 layers of thermoplastic resin (A) and 8 layers of (B) is laminated thickness ratio A / B = It discharged so that it might be set to 5. After supplying a total of 17 layers thus obtained to a T-die and forming it into a sheet, it was brought into close contact with a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV. Cooled and solidified. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. The draw ratio is as shown in the table. Thereafter, the biaxially stretched film was heat-treated in the tenter at 230 ° C., uniformly cooled, cooled to room temperature, and wound up to obtain a thermoplastic resin film.

(実施例4)
実施例1と同様の方法で熱可塑性樹脂(A)、メソゲン基含有熱可塑性樹脂(B)を得た。
上記の熱可塑性樹脂(A)(B)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し溶融させ、フィードブロックにて3層に合流させた。合流した熱可塑性樹脂(A)(B)は実行段数が1段のスタティックミキサーに供給し、熱可塑性樹脂(A)5層、(B)4層からなる積層体を積層厚み比A/B=5になるように吐出した。このようにして得られた計9層からなる積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。延伸倍率は表に示す通りである。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取ることによって熱可塑性樹脂フィルムを得た。
Example 4
A thermoplastic resin (A) and a mesogenic group-containing thermoplastic resin (B) were obtained in the same manner as in Example 1.
The thermoplastic resins (A) and (B) are dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to separate extruders set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side). It was melted and merged into three layers with a feed block. The joined thermoplastic resins (A) and (B) are supplied to a static mixer having one stage of execution, and a laminate composed of 5 layers of thermoplastic resin (A) and 4 layers of (B) is laminated thickness ratio A / B = It discharged so that it might be set to 5. The thus obtained laminate consisting of a total of 9 layers was supplied to a T-die and formed into a sheet shape, and then adhered to a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV. Cooled and solidified. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. The draw ratio is as shown in the table. Thereafter, the biaxially stretched film was heat-treated in the tenter at 230 ° C., uniformly cooled, cooled to room temperature, and wound up to obtain a thermoplastic resin film.

(実施例5)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)も実施例1と同様の方法で構造式(1)が39.5モル%構造式(4)が7.0モル%、構造式(8)が7.0モル%、ポリエチレンテレフタレートが46.5モル%とからなる液晶性ポリエステルチップを得た。この液晶ポリエステルチップは以下の特性を示した[融点:215℃、液晶開始温度:163℃、溶融粘度23Pa・s(剪断速度100(s−1))、10Pa・s(剪断速度1000(s−1))]。
上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で計129層の熱可塑性樹脂フィルムを得た。
(Example 5)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. The mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (1) of 39.5 mol%, the structural formula (4) of 7.0 mol%, and the structural formula (8) of 7 A liquid crystalline polyester chip comprising 0.0 mol% and 46.5 mol% polyethylene terephthalate was obtained. This liquid crystal polyester chip showed the following characteristics [melting point: 215 ° C., liquid crystal starting temperature: 163 ° C., melt viscosity 23 Pa · s (shear rate 100 (s −1 )), 10 Pa · s (shear rate 1000 (s − 1 ))].
A total of 129 layers of the thermoplastic resins (A) and (B) were obtained using the same apparatus and method as in Example 1.

(実施例6)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)も実施例1と同様の方法で構造式(2)が47.5モル%構造式(5)が7.0モル%、構造式(8)が7.0モル%、ポリエチレンテレフタレートが44.5モル%とからなる液晶性ポリエステルチップを得た。この液晶ポリエステルチップは以下の特性を示した。(融点:224℃、液晶開始温度:178℃、溶融粘度29Pa・s(剪断速度100(s−1))、12Pa・s(剪断速度1000(s−1)))。上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=3となるように吐出した。
(Example 6)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. Further, the mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (2) of 47.5 mol%, the structural formula (5) of 7.0 mol%, and the structural formula (8) of 7 A liquid crystalline polyester chip comprising 0.0 mol% and polyethylene terephthalate of 44.5 mol% was obtained. This liquid crystal polyester chip exhibited the following characteristics. (Melting point: 224 ° C., liquid crystal starting temperature: 178 ° C., melt viscosity 29 Pa · s (shear rate 100 (s −1 )), 12 Pa · s (shear rate 1000 (s −1 ))). A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 1. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 3.

(実施例7)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)は実施例1と同様の方法で構造式(2)が49モル%構造式(6)が7.0モル%、構造式(9)が7.0モル%、ポリエチレンテレフタレートが37モル%とからなる液晶性ポリエステルチップを得た。この液晶ポリエステルチップは以下の特性を示した。[ 融点:230℃、液晶開始温度:184℃、溶融粘度39Pa・s(剪断速度100(s−1))、17Pa・s(剪断速度1000(s−1))]。上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=4となるように吐出した。
(Example 7)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. The mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (2) being 49 mol%, the structural formula (6) being 7.0 mol%, and the structural formula (9) being 7.0. A liquid crystalline polyester chip comprising mol% and polyethylene terephthalate was 37 mol% was obtained. This liquid crystal polyester chip exhibited the following characteristics. [Melting point: 230 ° C., liquid crystal starting temperature: 184 ° C., melt viscosity 39 Pa · s (shear rate 100 (s −1 )), 17 Pa · s (shear rate 1000 (s −1 ))]. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 1. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 4.

(実施例8)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)も実施例1と同様の方法で構造式(2)が53.5モル%構造式(7)が7.0モル%、構造式(10)が7.0モル%、ポリエチレンテレフタレートが32.5モル%とからなる液晶性ポリエステルチップを得た。[融点:252℃、液晶開始温度:197℃、溶融粘度56(剪断速度100(s−1))、22Pa・s(剪断速度1000(s−1))]。上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=5となるように吐出した。
(Example 8)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. Further, the mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (2) of 53.5 mol%, the structural formula (7) of 7.0 mol%, and the structural formula (10) of 7 A liquid crystalline polyester chip comprising 0.0 mol% and 32.5 mol% polyethylene terephthalate was obtained. [Melting point: 252 ° C., liquid crystal starting temperature: 197 ° C., melt viscosity 56 (shear rate 100 (s −1 )), 22 Pa · s (shear rate 1000 (s −1 ))]. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 1. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 5.

(実施例9)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)も実施例1と同様の方法で構造式(2)が53.5モル%構造式(5)が7.0モル%、構造式(8)が7.0モル%、ポリエチレンテレフタレートが32.5モル%とからなる液晶性ポリエステルチップを得た。[ 融点:249℃、液晶開始温度:194℃、溶融粘度54(剪断速度100(s−1))、22Pa・s(剪断速度1000(s−1))]。上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=1となるように吐出した。
Example 9
A thermoplastic resin (A) was obtained in the same manner as in Example 1. Further, the mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (2) of 53.5 mol%, the structural formula (5) of 7.0 mol%, and the structural formula (8) of 7 A liquid crystalline polyester chip comprising 0.0 mol% and 32.5 mol% polyethylene terephthalate was obtained. [Melting point: 249 ° C., liquid crystal starting temperature: 194 ° C., melt viscosity 54 (shear rate 100 (s −1 )), 22 Pa · s (shear rate 1000 (s −1 ))]. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 1. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 1.

(実施例10)
熱可塑性樹脂(A)の製造方法は、凝集シリカ粒子を添加する以外は実施例1の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを65モル%、構造式(1)を21モル%、(3)を7.0モル%、(8)を7.0モル%を無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを得た。[ 融点:209℃、液晶開始温度:161℃、溶融粘度21(剪断速度100(s−1))、9Pa・s(剪断速度1000(s−1))]。また、熱可塑性樹脂(B)は実施例1と同様の方法で得た。上記の熱可塑性樹脂(A)、(B)を実施例2と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=5となるように吐出した。
(Example 10)
The manufacturing method of the thermoplastic resin (A) is 65 mol% polyethylene terephthalate prepared by the same manufacturing method as the thermoplastic resin (A) of Example 1 except that the aggregated silica particles are added, and the structural formula (1) 21 mol%, 7.0 mol% of (3), 7.0 mol% of (8) were reacted with acetic anhydride to acylate the phenolic hydroxyl group, and then obtained by performing a deacetic acid polycondensation reaction. The obtained liquid crystalline polyester chip was obtained. [Melting point: 209 ° C., liquid crystal starting temperature: 161 ° C., melt viscosity 21 (shear rate 100 (s −1 )), 9 Pa · s (shear rate 1000 (s −1 ))]. Further, the thermoplastic resin (B) was obtained in the same manner as in Example 1. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) by the same apparatus and method as in Example 2. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 5.

(実施例11)
熱可塑性樹脂(A)の製造方法は凝集シリカ粒子を添加する以外は実施例1の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを85モル%、構造式(1)を1.0モル%、(3)を7.0モル%、(8)を7.0モル%を無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを得た。(融点:197℃、液晶開始温度:156℃、溶融粘度19(剪断速度100(s−1))、7Pa・s(剪断速度1000(s−1)))。また、熱可塑性樹脂(B)は実施例1と同様の方法で得た。上記の熱可塑性樹脂(A)、(B)を実施例2と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=5となるように吐出した。
(Example 11)
The manufacturing method of the thermoplastic resin (A) is 85 mol% of polyethylene terephthalate prepared by the same manufacturing method as that of the thermoplastic resin (A) of Example 1 except that aggregated silica particles are added, and the structural formula (1) is 1 0.0 mol%, 7.0 mol% of (3) and 7.0 mol% of (8) are reacted with acetic anhydride to acylate the phenolic hydroxyl group, followed by a deacetic acid polycondensation reaction. The obtained liquid crystalline polyester chip was obtained. (Melting point: 197 ° C., liquid crystal starting temperature: 156 ° C., melt viscosity 19 (shear rate 100 (s −1 )), 7 Pa · s (shear rate 1000 (s −1 ))). Further, the thermoplastic resin (B) was obtained in the same manner as in Example 1. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) by the same apparatus and method as in Example 2. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 5.

(比較例1)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。熱可塑性樹脂(A)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し、溶融させた後、フィードブロックにて3層に合流させた。合流した熱可塑性樹脂(A)は実行段数が3段のスタティックミキサーに供給し、厚み方向に交互に積層された構造とした。実施例(1)と同様に計33層からなる積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取ることによって熱可塑性樹脂フィルムを得た。
(Comparative Example 1)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. The thermoplastic resin (A) was dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to a separate extruder set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side) to be melted. Then, it was made to join 3 layers with a feed block. The joined thermoplastic resin (A) was supplied to a static mixer having three execution stages, and was laminated alternately in the thickness direction. In the same manner as in Example (1), a laminate consisting of a total of 33 layers was supplied to a T-die and formed into a sheet shape, and then adhered onto a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV. And solidified by cooling. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. Thereafter, the biaxially stretched film was heat-treated in the tenter at 230 ° C., uniformly cooled, cooled to room temperature, and wound up to obtain a thermoplastic resin film.

(比較例2)
実施例1と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基含有熱可塑性樹脂(B)も実施例1と同様の方法で構造式(2)が39.5モル%構造式(5)が7.0モル%、構造式(10)が7.0モル%、ポリエチレンテレフタレートが46.5モル%とからなる液晶性ポリエステルチップを得た。この液晶ポリエステルチップは以下の特性を示した。[ 融点:217℃、液晶開始温度:167℃、溶融粘度29(剪断速度100(s−1))、10Pa・s(剪断速度1000(s−1))]。上記の熱可塑性樹脂(A)(B)を真空条件下で150℃、5時間乾燥させた後、シリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した別々の押出機に供給し溶融させ、フィードブロックにて3層に合流させた。この積層体をTダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化した。その後、ロールの速度差により100℃で長手方向に一軸に延伸しその後、テンターで幅方向に110℃で引っ張り延伸した。その後、二軸延伸したフィルムをテンター内230℃で熱処理を行い、均一に徐冷後、室温まで冷やして巻き取ることによって熱可塑性樹脂フィルムを得た。
(Comparative Example 2)
A thermoplastic resin (A) was obtained in the same manner as in Example 1. Further, the mesogenic group-containing thermoplastic resin (B) was prepared in the same manner as in Example 1 with the structural formula (2) of 39.5 mol%, the structural formula (5) of 7.0 mol%, and the structural formula (10) of 7 A liquid crystalline polyester chip comprising 0.0 mol% and 46.5 mol% polyethylene terephthalate was obtained. This liquid crystal polyester chip exhibited the following characteristics. [Melting point: 217 ° C., liquid crystal starting temperature: 167 ° C., melt viscosity 29 (shear rate 100 (s −1 )), 10 Pa · s (shear rate 1000 (s −1 ))]. The thermoplastic resins (A) and (B) are dried under vacuum conditions at 150 ° C. for 5 hours, and then supplied to separate extruders set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side). It was melted and merged into three layers with a feed block. This laminate was supplied to a T-die and formed into a sheet shape, and was then brought into close contact with a chromium plating roll maintained at 25 ° C. by an electrostatic application casting method at an applied voltage of 7 kV and solidified by cooling. Thereafter, the film was stretched uniaxially in the longitudinal direction at 100 ° C. due to the difference in roll speed, and then stretched at 110 ° C. in the width direction with a tenter. Thereafter, the biaxially stretched film was heat-treated in the tenter at 230 ° C., uniformly cooled, cooled to room temperature, and wound up to obtain a thermoplastic resin film.

(比較例3)
凝集シリカ粒子を添加する以外は実施例1の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを60モル%、構造式(1)を26モル%、(3)を7.0モル%、(8)を7.0モル%を無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを得た。[ 融点:212℃、液晶開始温度:164℃、溶融粘度27(剪断速度100(s−1))、9Pa・s(剪断速度1000(s−1))]。また、熱可塑性樹脂(B)は実施例1と同様の方法で得た。上記の熱可塑性樹脂(A)、(B)を実施例2と同様の装置、方法で熱可塑性樹脂フィルムを得た。このときの熱可塑性樹脂(A)と熱可塑性樹脂(B)との積層厚み比はA/B=5となるように吐出した。
(Comparative Example 3)
60 mol% of polyethylene terephthalate, 26 mol% of structural formula (1), and 7.0 of (3) prepared by the same production method as the thermoplastic resin (A) of Example 1 except that the agglomerated silica particles are added. A liquid crystalline polyester chip obtained by reacting 7.0 mol% of (%) and acetic anhydride with 7.0 mol% of (8) to acylate the phenolic hydroxyl group and then performing a deacetic acid polycondensation reaction was obtained. [Melting point: 212 ° C., liquid crystal starting temperature: 164 ° C., melt viscosity 27 (shear rate 100 (s −1 )), 9 Pa · s (shear rate 1000 (s −1 ))]. Further, the thermoplastic resin (B) was obtained in the same manner as in Example 1. A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) by the same apparatus and method as in Example 2. At this time, the thermoplastic resin (A) and the thermoplastic resin (B) were discharged such that the lamination thickness ratio was A / B = 5.

(比較例4)
実施例1と同様の方法でメソゲン基含有熱可塑性樹脂(B)を得た。熱可塑性樹脂(B)をシリンダー温度260℃(ホッパー側)〜280℃(先端側)に設定した小型押出機に供給し、溶融させた後、Tダイに供給しシート状に成形した後、印加電圧7kVで静電印加キャスト方式で25℃に保たれたクロムメッキロール上に密着させ冷却固化しることによって熱可塑性樹脂フィルムを得た。
(Comparative Example 4)
A mesogen group-containing thermoplastic resin (B) was obtained in the same manner as in Example 1. The thermoplastic resin (B) is supplied to a small extruder set at a cylinder temperature of 260 ° C. (hopper side) to 280 ° C. (tip side), melted, then supplied to a T die and molded into a sheet, and then applied. A thermoplastic resin film was obtained by closely contacting and solidifying on a chrome plating roll maintained at 25 ° C. by an electrostatic application casting method at a voltage of 7 kV.

上記実施例および比較例で得られたフィルムのガスバリア性と強伸度を評価した結果を表1および表2に示す。なお、表中、メソゲンの種類におけるかっこ書きの数字は、上記構造式の番号に対応するものである。   Tables 1 and 2 show the results of evaluating the gas barrier properties and the strength and elongation of the films obtained in the above Examples and Comparative Examples. In the table, the numbers in parentheses in the types of mesogens correspond to the numbers in the above structural formula.

Figure 2005161843
Figure 2005161843

Figure 2005161843
Figure 2005161843

(実施例12)
実施例1と同様にして、熱可塑性樹脂フィルムを得た。得たフィルムを200mm×200mmにサンプリングし220℃、30kg/cm、60sの条件で加熱プレスを行い、空隙率の低い熱可塑性樹脂フィルムを得た。その際、サンプルの上下にを東レデュポン(株)製のカプトンフィルム(タイプ:500V)を置き、さらにその上下を鋼板ではさみ、均一にプレスを行った。
(実施例13)
実施例と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基を含有する熱可塑性樹脂(B)としては、凝集シリカ粒子を添加する以外は上記の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを46.5モル%、構造式(1)を39.5モル%、構造式(3)を7.0モル%、構造式(8)を7.0モル%、に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを用いた。この液晶ポリエステルチップは以下の特性を示した。 [ 融点:216℃、液晶開始温度:168℃、溶融粘度:11Pa・s(剪断速度100(s−1))、6Pa・s(剪断速度1000(s−1))]
上記の熱可塑性樹脂(A)、(B)を実施例1と同様の装置、方法で熱可塑性樹脂フィルムを得た。
(実施例14)
実施例と同様の方法で熱可塑性樹脂(A)を得た。また、メソゲン基を含有する熱可塑性樹脂(B)としては、凝集シリカ粒子を添加する以外は上記の熱可塑性樹脂(A)と同様の製造方法で調製したポリエチレンテレフタレートを46.5モル%、構造式(1)を39.5モル%、構造式(3)を7.0モル%、構造式(8)を7.0モル%、に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応を行うことによって得られた液晶性ポリエステルチップを用いた。この液晶ポリエステルチップは以下の特性を示した。 [ 融点:216℃、液晶開始温度:168℃、溶融粘度:67Pa・s(剪断速度100(s−1))、27Pa・s(剪断速度1000(s−1))]
上記の熱可塑性樹脂(A)、(B)を実施例12と同様の装置、方法で熱可塑性樹脂フィルムを得た。実施例1、12〜14についての結果を表3および表4にまとめた。
(Example 12)
In the same manner as in Example 1, a thermoplastic resin film was obtained. The obtained film was sampled to 200 mm × 200 mm and heated and pressed under the conditions of 220 ° C., 30 kg / cm 2 and 60 s to obtain a thermoplastic resin film having a low porosity. At that time, a Kapton film (type: 500 V) manufactured by Toray DuPont Co., Ltd. was placed on the top and bottom of the sample, and the top and bottom were further sandwiched with steel plates, and pressed uniformly.
(Example 13)
A thermoplastic resin (A) was obtained in the same manner as in the examples. As the thermoplastic resin (B) containing a mesogenic group, 46.5 mol% of polyethylene terephthalate prepared by the same production method as the above thermoplastic resin (A) except that aggregated silica particles are added, and the structure Acetic anhydride was reacted with 39.5 mol% of the formula (1), 7.0 mol% of the structural formula (3), and 7.0 mol% of the structural formula (8) to acylate the phenolic hydroxyl group. Thereafter, a liquid crystalline polyester chip obtained by performing a deacetic acid polycondensation reaction was used. This liquid crystal polyester chip exhibited the following characteristics. [Melting point: 216 ° C., liquid crystal starting temperature: 168 ° C., melt viscosity: 11 Pa · s (shear rate 100 (s −1 )), 6 Pa · s (shear rate 1000 (s −1 ))]
A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 1.
(Example 14)
A thermoplastic resin (A) was obtained in the same manner as in the examples. As the thermoplastic resin (B) containing a mesogenic group, 46.5 mol% of polyethylene terephthalate prepared by the same production method as the above thermoplastic resin (A) except that aggregated silica particles are added, and the structure Acetic anhydride was reacted with 39.5 mol% of the formula (1), 7.0 mol% of the structural formula (3), and 7.0 mol% of the structural formula (8) to acylate the phenolic hydroxyl group. Thereafter, a liquid crystalline polyester chip obtained by performing a deacetic acid polycondensation reaction was used. This liquid crystal polyester chip exhibited the following characteristics. [Melting point: 216 ° C., liquid crystal starting temperature: 168 ° C., melt viscosity: 67 Pa · s (shear rate 100 (s −1 )), 27 Pa · s (shear rate 1000 (s −1 ))]
A thermoplastic resin film was obtained from the thermoplastic resins (A) and (B) using the same apparatus and method as in Example 12. The results for Examples 1 and 12-14 are summarized in Tables 3 and 4.

Figure 2005161843
Figure 2005161843

Figure 2005161843
Figure 2005161843

本発明によれば、透明性、意匠性に優れ、高湿度下においても高いバリア性を示す熱可塑性樹脂フィルムが得られるため、食品、医薬品、化粧品などの包装用途に好適なフィルムを提供することができる。具体的には、パウチ系容器への展開や金属缶ラミネートフィルム、ストリップ包装などに用いることができる。   According to the present invention, since a thermoplastic resin film having excellent transparency and design properties and high barrier properties even under high humidity can be obtained, a film suitable for packaging applications such as foods, pharmaceuticals, and cosmetics is provided. Can do. Specifically, it can be used for development in pouch-type containers, metal can laminate films, strip packaging, and the like.

Claims (7)

メソゲン基を0.1モル%以上含有する熱可塑性樹脂(B)層とメソゲン基含有量が35モル%以下の熱可塑性樹脂(A)層とが接着層を介することなく交互に5層以上積層されており、熱可塑性樹脂(B)中のメソゲン基含有量が熱可塑性樹脂(A)中のメソゲン基含有量よりも多いことを特徴とする熱可塑性樹脂フィルム。 Five or more thermoplastic resin (B) layers containing 0.1 mol% or more of mesogenic groups and five or more thermoplastic resin (A) layers having a mesogenic group content of 35 mol% or less are laminated alternately without interposing an adhesive layer. A thermoplastic resin film characterized in that the mesogenic group content in the thermoplastic resin (B) is greater than the mesogenic group content in the thermoplastic resin (A). 熱可塑性樹脂(A)中のメソゲン基含有量が15モル%以下であることを特徴とする請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the content of mesogenic groups in the thermoplastic resin (A) is 15 mol% or less. 熱可塑性樹脂の主成分がポリエステルであることを特徴とする請求項1または2に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1 or 2, wherein the main component of the thermoplastic resin is polyester. メソゲン基がヒドロキシ芳香族カルボン酸、芳香族ジカルボン酸、芳香族ジヒドロキシ化合物のいずれから選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 3, wherein the mesogenic group is at least one selected from hydroxy aromatic carboxylic acids, aromatic dicarboxylic acids, and aromatic dihydroxy compounds. 二軸延伸されていることを特徴とする請求項1〜4のいずれかに記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 4, wherein the thermoplastic resin film is biaxially stretched. 温度280℃、剪断速度100(s−1)の条件下における熱可塑性樹脂(A)と熱可塑性樹脂(B)の溶融粘度の差が150Pa・s以下であることを特徴とする請求項1〜5のいずれかに記載の熱可塑性樹脂フィルム。 The difference in melt viscosity between the thermoplastic resin (A) and the thermoplastic resin (B) under the conditions of a temperature of 280 ° C. and a shear rate of 100 (s −1 ) is 150 Pa · s or less. The thermoplastic resin film according to any one of 5. フィルムの空隙率が3%未満であることを特徴とする請求項1〜6のいずれかに記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the porosity of the film is less than 3%.
JP2004318946A 2003-11-13 2004-11-02 Thermoplastic resin film Pending JP2005161843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318946A JP2005161843A (en) 2003-11-13 2004-11-02 Thermoplastic resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003383605 2003-11-13
JP2004318946A JP2005161843A (en) 2003-11-13 2004-11-02 Thermoplastic resin film

Publications (1)

Publication Number Publication Date
JP2005161843A true JP2005161843A (en) 2005-06-23

Family

ID=34741730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318946A Pending JP2005161843A (en) 2003-11-13 2004-11-02 Thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP2005161843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211087A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Polyester film for sealing-up reverse face of solar cell and method of manufacturing the same, solar cell reverse face protective film, and solar cell module
JP2011235569A (en) * 2010-05-12 2011-11-24 Polyplastics Co Multi-layer injection blow molded object and method for manufacturing multi-layer injection blow molded object
JP2016076724A (en) * 2009-12-22 2016-05-12 三菱化学株式会社 Material for resin molded body and method for producing resin molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187104A (en) * 1998-12-21 2000-07-04 Nitto Denko Corp Optical element and liquid crystal display device
JP2001004845A (en) * 1999-06-21 2001-01-12 Nitto Denko Corp Polarized light guiding plate and surface light source for polarized light
JP2002214433A (en) * 2001-01-16 2002-07-31 Nitto Denko Corp Light diffusing plate, optical element and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187104A (en) * 1998-12-21 2000-07-04 Nitto Denko Corp Optical element and liquid crystal display device
JP2001004845A (en) * 1999-06-21 2001-01-12 Nitto Denko Corp Polarized light guiding plate and surface light source for polarized light
JP2002214433A (en) * 2001-01-16 2002-07-31 Nitto Denko Corp Light diffusing plate, optical element and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076724A (en) * 2009-12-22 2016-05-12 三菱化学株式会社 Material for resin molded body and method for producing resin molded body
JP2011211087A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Polyester film for sealing-up reverse face of solar cell and method of manufacturing the same, solar cell reverse face protective film, and solar cell module
JP2011235569A (en) * 2010-05-12 2011-11-24 Polyplastics Co Multi-layer injection blow molded object and method for manufacturing multi-layer injection blow molded object

Similar Documents

Publication Publication Date Title
JP4470491B2 (en) Polyester film and gas barrier polyester film
JP4573145B1 (en) Laminated polyester film for molding and method for producing the same
JP4405120B2 (en) Polylactic acid biaxially stretched laminated film with heat sealability
KR20210088586A (en) Biaxially oriented polyester film and manufacturing method thereof
JP4600442B2 (en) Laminated polyester film for molding
WO2005073318A1 (en) Biaxially oriented film
KR20040091576A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
KR100529482B1 (en) White laminated polyester film for metal plate joining processing and manufacturing method of laminate using same
JP2011143714A (en) Laminated film and vapor deposition film using the same
JP2007118476A (en) Biaxially oriented polyester film for packaging
US5780158A (en) Biaxially oriented film to be laminated on a metal
JP2000119414A (en) Polyester film for vapor deposition
JP2005161843A (en) Thermoplastic resin film
JP4341555B2 (en) Biaxially oriented polyester film
JP2006009025A (en) Biaxially stretched polyester film and method for producing the same
JP2001232739A (en) Film for vapor deposition and vapor deposited film using the same
JP2004042488A (en) Vapor deposition film
JP5266655B2 (en) Biaxially oriented polyester film for packaging
JP2006007779A (en) Biaxially stretched polyester film and method for producing the same
JP3351158B2 (en) Stretched polyester film for packaging
JP2003145667A (en) Vapor-deposited film
JP2004115782A (en) Packaging polyester film
JPH08244189A (en) Laminated lap film
JP2004330476A (en) Biaxially stretched laminated polyester film
JP2005254710A (en) Laminated polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810