[go: up one dir, main page]

JP2005159212A - Electrode connection method for display panel, and plasma display manufacturing method using the same - Google Patents

Electrode connection method for display panel, and plasma display manufacturing method using the same Download PDF

Info

Publication number
JP2005159212A
JP2005159212A JP2003398715A JP2003398715A JP2005159212A JP 2005159212 A JP2005159212 A JP 2005159212A JP 2003398715 A JP2003398715 A JP 2003398715A JP 2003398715 A JP2003398715 A JP 2003398715A JP 2005159212 A JP2005159212 A JP 2005159212A
Authority
JP
Japan
Prior art keywords
display panel
electrode
plasma display
fpc
electrode connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003398715A
Other languages
Japanese (ja)
Other versions
JP4352876B2 (en
JP2005159212A5 (en
Inventor
Akihiro Tabata
昭弘 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003398715A priority Critical patent/JP4352876B2/en
Publication of JP2005159212A publication Critical patent/JP2005159212A/en
Publication of JP2005159212A5 publication Critical patent/JP2005159212A5/ja
Application granted granted Critical
Publication of JP4352876B2 publication Critical patent/JP4352876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode connection method with which a connection defect does not occur between a connecting terminal of a plasma display panel and a tape carrier package (TCP) or a flexible printed circuit board (FPC). <P>SOLUTION: In the electrode connection method for the display panel and the plasma display manufacturing method using the same, with regard to the electrode connection method for the display panel with which a panel electrode terminal of the display panel and the flexible printed circuit board or the tape carrier package are connected via an anisotropic conductive film by a heating head, sheets of two types or more having different thermal deformation temperatures are used as a shock absorbing material between the heating head and the flexible printed circuit board or the tape carrier package. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディスプレイパネルの製造方法に関し、特にプラズマディスプレイ(PDP)パネルとモジュールパッケージとを接続するフレキシブルプリント基板(FPC)及びテープキャリアパッケージ(TCP)とを加熱圧着によって接続するディスプレイパネルの電極接続方法およびプラズマディスプレイの製造方法に関するものである。   The present invention relates to a method for manufacturing a display panel, and more particularly, a display panel electrode connection for connecting a plasma display (PDP) panel and a module package with a flexible printed circuit board (FPC) and a tape carrier package (TCP) by thermocompression bonding. The present invention relates to a method and a method for manufacturing a plasma display.

大画面フラットディスプレイとしてPDPが有力視されている。PDPパネル端部の構成は図1に示すように、ガラス前面基板3とガラス背面基板2とからなる。   PDP is regarded as a promising large screen flat display. As shown in FIG. 1, the PDP panel end portion includes a glass front substrate 3 and a glass rear substrate 2.

PDPの配線材料としては主に銀電極あるいはパラジウムを添加した銀電極が用いられる。またPDP端子と接続する回路基板としてはFPCやTCPが用いられる。   As a wiring material of PDP, a silver electrode or a silver electrode added with palladium is mainly used. As a circuit board connected to the PDP terminal, FPC or TCP is used.

このFPCにはドライバIC、チップコンデンサが搭載されている場合もある。PDP端子とFPC、TCPとの接続は、一般に異方性導電フィルム(以下、ACFと略す)で接続される。ACFは未硬化のエポキシ樹脂に導電粒子を分散させたフィルムである。このACFを接続対象部材間に介在させ、加熱圧着すると、加圧により部材の接続端子は導電粒子で電気的に接続されるが、横方向には圧力がかからないため隣接端子間の絶縁性は確保される。   In some cases, a driver IC and a chip capacitor are mounted on the FPC. The connection between the PDP terminal and the FPC and TCP is generally connected by an anisotropic conductive film (hereinafter abbreviated as ACF). ACF is a film in which conductive particles are dispersed in an uncured epoxy resin. When this ACF is interposed between the members to be connected and thermocompression bonded, the connecting terminals of the members are electrically connected by conductive particles by pressurization, but since no pressure is applied in the lateral direction, insulation between adjacent terminals is ensured. Is done.

従来より加熱圧着の際には接続部を構成している各種材料を熱破壊あるいは機械的衝撃から保護するために加熱ヘッドに緩衝材(クッション材)を供給し加熱ヘッドが直接FPCやTCPに接触しないようになっている(例えば、特許文献1)。   Conventionally, in the case of thermocompression bonding, a buffer material (cushion material) is supplied to the heating head in order to protect the various materials constituting the connection part from thermal destruction or mechanical shock, and the heating head directly contacts the FPC or TCP. (For example, patent document 1).

しかし、ガラス基板の厚さのばらつきによるプラズマディスプレイの接続端子間の高さのばらつきがACFに含まれる導電粒子の径に比べて非常に大きいためプラズマディスプレイパネルとFPCまたはTCPとの間で接続不良を生じるおそれがある。すなわちPDP接続端子の高さが低くPDP接続端子の表面とFPCまたはTCPの接続表面との隙間がACFに含まれる導電粒子の径より大きく、さらに熱圧着の際に緩衝材がそのばらつきを吸収できない場合上記のような接続不良が生じる。   However, since the variation in the height between the connection terminals of the plasma display due to the variation in the thickness of the glass substrate is very large compared to the diameter of the conductive particles contained in the ACF, the connection between the plasma display panel and the FPC or TCP is poor. May occur. That is, the height of the PDP connection terminal is low and the gap between the surface of the PDP connection terminal and the connection surface of the FPC or TCP is larger than the diameter of the conductive particles contained in the ACF, and the buffer material cannot absorb the variation during thermocompression bonding. In this case, the above-mentioned connection failure occurs.

またACFが接続端子間の隙間を完全に埋めないと界面に気泡を含む原因となる。この場合局所的に湿度が増大しイオンマイグレーションが発生する原因にもなりうる。ここでイオンマイグレーションとは、電気化学反応によって電極金属がイオン溶解して電極間に析出する現象のことである。
特開2000−250061号(第2頁)
Further, if the ACF does not completely fill the gap between the connection terminals, it may cause bubbles at the interface. In this case, the humidity may increase locally and cause ion migration. Here, the ion migration is a phenomenon in which the electrode metal is ion-dissolved by an electrochemical reaction and deposited between the electrodes.
JP 2000-250061 (2nd page)

上記従来技術の問題点に鑑み、本発明は加熱圧着の際に発生する接続端子間の接続不良を防止することをその課題とする。   In view of the above problems of the prior art, an object of the present invention is to prevent a connection failure between connection terminals that occurs during thermocompression bonding.

上記課題を解決するため、本発明は以下の構成からなる。すなわち、ディスプレイパネルのパネル電極端子と、フレキシブルプリント基板もしくはテープキャリアパッケージとを、加熱ヘッドにより異方性導電フィルムを介して接続する電極の接続方法において、加熱ヘッドとフレキシブルプリント基板もしくはテープキャリアパッケージとの間に熱変形温度の異なる2種以上のシートを緩衝材として用いることを特徴とするディスプレイパネルの電極接続方法およびプラズマディスプレイの製造方法である。     In order to solve the above problems, the present invention has the following configuration. That is, in the electrode connection method of connecting a panel electrode terminal of a display panel and a flexible printed circuit board or a tape carrier package via an anisotropic conductive film by a heating head, the heating head and the flexible printed circuit board or the tape carrier package A display panel electrode connecting method and a plasma display manufacturing method, wherein two or more kinds of sheets having different heat deformation temperatures are used as cushioning materials.

本発明によれば、接続端子間の高さのばらつきも吸収し、各素子や端子に均一に加熱、加圧が行われ、確実に接続することができる。   According to the present invention, variations in height between connection terminals are also absorbed, and heating and pressurization are uniformly performed on each element and terminal, so that a reliable connection can be achieved.

本発明の実施の形態について、図面を参照して説明する。本発明の特徴はディスプレイパネルの電極端子とFPCまたはTCPとを加熱ヘッドで押し付けて接続する際に、加熱ヘッドの下に熱変形温度の異なる2層以上の緩衝材を介在させ、この2層の緩衝材を用いてプラズマディスプレイパネルとFPCまたはTCPとを加熱圧着する点にある。   Embodiments of the present invention will be described with reference to the drawings. The feature of the present invention is that, when the electrode terminal of the display panel and FPC or TCP are connected by pressing with a heating head, two or more layers of cushioning materials having different thermal deformation temperatures are interposed under the heating head, The plasma display panel and the FPC or TCP are heat-pressed using a buffer material.

なお、熱変形温度 とは、ASTM D648の規格によるものであり、フィルム組成物ペレットを射出成形機でASTM D648に基づく熱変形温度 測定試片に成形し、80℃で24時間アニールした後、低荷重4.6kg/cm2の条件で測定した温度である。 The heat distortion temperature is based on the standard of ASTM D648. The film composition pellet is formed into a heat distortion temperature measurement specimen based on ASTM D648 with an injection molding machine and annealed at 80 ° C. for 24 hours. This is a temperature measured under a load of 4.6 kg / cm 2 .

次に、プラズマディスプレイ について説明する。以下に、最も一般的なAC型プラズマディスプレイを例に取り、その基本構造を説明するが、必ずしもこの構造には限定されない。なお、AC型とは、電源方式が交流であり、構造的には直流であるDC型と比較して、誘電体層を有する点等が相違する。   Next, a plasma display will be described. The basic structure will be described below by taking the most common AC type plasma display as an example. However, the structure is not necessarily limited to this structure. Note that the AC type is different from the DC type in which the power supply system is alternating current and structurally direct current in that it has a dielectric layer.

プラズマディスプレイの構成について簡単に説明する。
プラズマディスプレイは、前面板および/または背面板に形成された蛍光体層が内部空間内に面しているように、該前面板と該背面板を封着してなる部材において、前記内部空間内に放電ガスが封入されてなるものである。前面板には表示面側の基板であり表示用放電のための透明電極(サスティン電極、スキャン電極)が形成されている。より低抵抗な電極を形成する目的で透明電極の背面側にバス電極を形成しても良い。AC型プラズマディスプレイ の場合、電極の透明誘電体およびその保護膜としてMgO薄膜が形成される場合が多い。背面板には、表示させるセルをアドレス選択するための電極(アドレス電極)が形成されている。アドレス電極は材質がAg、Cr/Cu/Cr等で構成されていてその厚みは2〜10μ程度、幅は50〜150μm程度である。
The configuration of the plasma display will be briefly described.
The plasma display is a member formed by sealing the front plate and the rear plate so that the phosphor layer formed on the front plate and / or the rear plate faces the inner space. The discharge gas is sealed in the tube. The front plate is a substrate on the display surface side, and a transparent electrode (sustain electrode, scan electrode) for display discharge is formed. A bus electrode may be formed on the back side of the transparent electrode for the purpose of forming a lower resistance electrode. In the case of an AC type plasma display, an MgO thin film is often formed as a transparent dielectric of an electrode and its protective film. On the back plate, electrodes (address electrodes) for selecting cells to be displayed are formed. The address electrode is made of Ag, Cr / Cu / Cr or the like, and has a thickness of about 2 to 10 μm and a width of about 50 to 150 μm.

また放電の広がりを一定領域に抑え表示を規定内のセル内で行わせかつ均一な放電空間を確保するために隔壁(リブともいう)が設けられる。さらに隔壁上の所定位置に赤、緑、青の各色に発光する蛍光体層が形成される。   In addition, barrier ribs (also referred to as ribs) are provided in order to suppress the spread of the discharge to a certain area and to perform display in the cells within the specified range and to ensure a uniform discharge space. Furthermore, phosphor layers that emit light of red, green, and blue colors are formed at predetermined positions on the barrier ribs.

上記した前面板と背面板をマトリクス駆動が可能になるように合わせて、封着した後、排気し、He、Ne、Xeの混合ガスを封入し、駆動回路を実装してプラズマディスプレイパネルを作製する。隣り合う放電電極の間にパルス状の交流電圧を印加するとガス放電が生じ、プラズマが形成される。ここで生じた紫外線が蛍光体を励起して可視光を発光し前面板を通して表示発光を得る。   The above front plate and back plate are aligned so that matrix driving is possible, sealed, then evacuated, filled with a mixed gas of He, Ne, and Xe, and mounted with a drive circuit to produce a plasma display panel To do. When a pulsed AC voltage is applied between adjacent discharge electrodes, gas discharge occurs and plasma is formed. The ultraviolet rays generated here excite the phosphor to emit visible light, and display emission is obtained through the front plate.

次に、電極の接続に用いる各構成について説明する。
異方性導電フィルム(ACF)はACFは未硬化のエポキシ樹脂等のバインダーに金メッキされたニッケル粒子等の導電粒子を分散させたフィルムである。
Next, each structure used for electrode connection will be described.
An anisotropic conductive film (ACF) is a film in which conductive particles such as nickel particles plated with gold on a binder such as an uncured epoxy resin are dispersed.

FPCの構成はポリイミド等の絶縁膜と電極端子の形成された金属膜からなる。金属膜には通常銅が用いられる。ポリイミドフィルム等の絶縁膜に接着剤層を介して金属膜と張り合わされた3層FPCと接着剤層のない2層FPCがあるがいずれにも本発明は適用できる。   The configuration of the FPC is made of an insulating film such as polyimide and a metal film on which electrode terminals are formed. Copper is usually used for the metal film. Although there are a three-layer FPC in which an insulating film such as a polyimide film is bonded to a metal film via an adhesive layer and a two-layer FPC without an adhesive layer, the present invention can be applied to both.

TCPの構成はポリイミドフィルム等の絶縁膜に接着剤層を介してと電極端子の形成された金属膜からなる。   The structure of TCP consists of a metal film having an electrode terminal formed on an insulating film such as a polyimide film through an adhesive layer.

図1は、本発明の実施の形態におけるプラズマディスプレイの電極接続部分の構成を説明する概略断面図である。図1に示すように、本実施の形態においてプラズマディスプレイを構成するガラス前面基板3とガラス背面基板2が貼り合わされた構造になっておりガラス背面基板の表面には電極4が形成されている。また、ガラス背面基板2にガラス前面基板3から張り出す部分があり、この張り出し部分表面の電極は接続端子となる。一方、ICが搭載されたポリイミドフィルム等からなるFPC6にも電極端子8が形成されておりプラズマディスプレイパネル1の接続端子4とFPC6の接続端子8とを異方性導電フィルム(ACF)5を介して加熱圧着することによってプラズマディスプレイパネル1とFPC6とを電気的に接続した構造となっている。   FIG. 1 is a schematic cross-sectional view illustrating a configuration of an electrode connection portion of a plasma display according to an embodiment of the present invention. As shown in FIG. 1, a glass front substrate 3 and a glass rear substrate 2 constituting a plasma display in the present embodiment are bonded together, and an electrode 4 is formed on the surface of the glass rear substrate. Further, the glass back substrate 2 has a portion protruding from the glass front substrate 3, and the electrode on the surface of the protruding portion serves as a connection terminal. On the other hand, an electrode terminal 8 is also formed on the FPC 6 made of a polyimide film or the like on which an IC is mounted. The connection terminal 4 of the plasma display panel 1 and the connection terminal 8 of the FPC 6 are connected via an anisotropic conductive film (ACF) 5. The plasma display panel 1 and the FPC 6 are electrically connected by thermocompression bonding.

図2(a)はPDPパネルに電極端子が複数個形成されている様子を示した平面図である。図2(b)はFPCの端部に形成されたFPC電極端子の部分を示した平面図である。これらの各端子を互いに接続することにより、プラズマディスプレイの電極接続が完了する。   FIG. 2A is a plan view showing a state in which a plurality of electrode terminals are formed on the PDP panel. FIG. 2B is a plan view showing a portion of the FPC electrode terminal formed at the end of the FPC. By connecting these terminals to each other, the electrode connection of the plasma display is completed.

接続方法は次の通りである。まずプラズマディスプレイパネル1のガラス背面基板2上に形成された接続端子4の上にACF5を通常温度50〜100℃、圧力0.1〜1Pa、時間1〜10秒の条件で仮圧着する。ACF上部に貼り付けてある保護テープを剥離した後、ACF5上にFPC6の電極端子部分8を位置合わせして置き、その上方から200〜230℃に加温された加熱ヘッド11を降下させ、プラズマディスプレイパネル1の接続端子4とFPC6の接続端子8とをACF5を介して加熱圧着する。圧着は通常1〜5MPaの圧力で行われる。圧着時間は5〜20秒が好ましい。   The connection method is as follows. First, the ACF 5 is temporarily pressure-bonded on the connection terminals 4 formed on the glass back substrate 2 of the plasma display panel 1 under the conditions of a normal temperature of 50 to 100 ° C., a pressure of 0.1 to 1 Pa, and a time of 1 to 10 seconds. After peeling off the protective tape affixed to the top of the ACF, the electrode terminal portion 8 of the FPC 6 is aligned and placed on the ACF 5, and the heating head 11 heated to 200 to 230 ° C. is lowered from above, and the plasma The connection terminal 4 of the display panel 1 and the connection terminal 8 of the FPC 6 are heat-bonded via the ACF 5. The pressure bonding is usually performed at a pressure of 1 to 5 MPa. The crimping time is preferably 5 to 20 seconds.

このプラズマディスプレイパネル1とFPC6との熱圧着の際には、接続部を構成している各種材料を熱破壊あるいは機械的衝撃から保護するために加熱ヘッド11の下に緩衝材9,10を挟み込み、加熱ヘッド11が直接FPC6に接触しないようにしている。
この緩衝材としては、熱変形温度の異なる2種またはそれ以上を使用することが必要である。熱変形温度の高い緩衝材は加熱ヘッド11に接触する側の上層シート9として、熱変形温度の低い緩衝材はFPC6に接触する側の下層シート10として使用される。
When the plasma display panel 1 and the FPC 6 are thermocompression bonded, the buffer materials 9 and 10 are sandwiched under the heating head 11 in order to protect various materials constituting the connection portion from thermal destruction or mechanical shock. The heating head 11 is prevented from contacting the FPC 6 directly.
As this cushioning material, it is necessary to use two or more kinds having different heat distortion temperatures. The buffer material having a high heat deformation temperature is used as the upper layer sheet 9 on the side in contact with the heating head 11, and the buffer material having a low heat deformation temperature is used as the lower layer sheet 10 on the side in contact with the FPC 6.

ここで、熱変形温度が低い緩衝材の熱変形温度は100〜200℃であることが好ましい。熱変形温度が100〜200℃とすることにより熱圧着時の軟化で接続端子間の高さのばらつきを吸収して均一に圧力が伝達される。さらに好ましくは150〜190℃が良い。しかし熱変形温度が100〜200℃の緩衝材の単独使用では機械的強度が低く、さらに加熱ヘッドに融着する問題がある。   Here, it is preferable that the heat deformation temperature of the buffer material having a low heat deformation temperature is 100 to 200 ° C. By setting the thermal deformation temperature to 100 to 200 ° C., the softness during thermocompression bonding absorbs the variation in height between the connection terminals, and pressure is transmitted uniformly. More preferably, 150-190 degreeC is good. However, when the buffer material having a heat deformation temperature of 100 to 200 ° C. is used alone, the mechanical strength is low, and there is a problem that it is fused to the heating head.

熱変形温度が100〜200℃の緩衝材としてはナイロン6(熱変形温度150℃)、ナイロン12(熱変形温度140℃)、 ポリアセタール(熱変形温度180℃)、ポリカーボネート (熱変形温度185℃)、、ポリスルホン(熱変形温度180℃)、ポリアリルエーテル(熱変形温度160℃)、ポリアリレート(熱変形温度170℃)等が挙げられる。中でもポリカーボネートが特に好ましく用いられる。   Nylon 6 (heat deformation temperature 150 ° C.), nylon 12 (heat deformation temperature 140 ° C.), polyacetal (heat deformation temperature 180 ° C.), polycarbonate (heat deformation temperature 185 ° C.) as buffer materials having a heat deformation temperature of 100 to 200 ° C. And polysulfone (thermal deformation temperature 180 ° C.), polyallyl ether (thermal deformation temperature 160 ° C.), polyarylate (thermal deformation temperature 170 ° C.) and the like. Of these, polycarbonate is particularly preferably used.

一方、熱変形温度が高い緩衝材の熱変形温度は200℃よりも高いことが好ましい。熱変形温度を200℃よりも高くすることにより機械的強度を保つことができ、融着の問題もない。好ましくは、200℃よりも高く300℃以下が好ましい。しかし単独使用では材質が硬く変形しにくいため接続端子間の高さのばらつきを吸収することができない。   On the other hand, it is preferable that the heat deformation temperature of the buffer material having a high heat deformation temperature is higher than 200 ° C. By making the heat distortion temperature higher than 200 ° C., the mechanical strength can be maintained and there is no problem of fusion. Preferably, it is higher than 200 ° C. and 300 ° C. or lower. However, when used alone, the material is hard and difficult to be deformed, so it is impossible to absorb the variation in height between the connection terminals.

熱変形温度が200℃以上の緩衝材としては四ふっ化エチレン(熱変形温度260℃)、ナイロン66(熱変形温度210℃)、GF強化ポリエチレンテレフタレート、ポリプロピレンサルファイド、ポリイミド等が挙げられる。中でも、が特に好ましく用いられる。   Examples of the buffer material having a heat deformation temperature of 200 ° C. or higher include ethylene tetrafluoride (heat deformation temperature 260 ° C.), nylon 66 (heat deformation temperature 210 ° C.), GF reinforced polyethylene terephthalate, polypropylene sulfide, polyimide, and the like. Among these, is particularly preferably used.

緩衝材として、高熱変形温度のものと低熱変形温度のものを組み合わせて初めて、接続端子間の高さのばらつきを吸収して均一に圧力が伝達されかつ機械的な強度も得られ融着もなく確実な接続ができるようになる。    Only when a material with a high heat deformation temperature and a material with a low heat deformation temperature are combined as a cushioning material, the pressure variation is uniformly transmitted and the mechanical strength is obtained without any fusion. A secure connection can be made.

以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれに限定されるものではない
<熱変形温度測定方法>
ASTM D648の規格に準拠した。フィルム組成物ペレットを射出成形機でASTM D648に基づく熱変形温度 測定試片に成形し、80℃で24時間アニールした後、低荷重4.6kg/cm2の条件で変形する温度を測定した。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to this <Method for measuring heat distortion temperature>
Conforms to the standard of ASTM D648. The film composition pellets were molded into a specimen for measuring heat distortion temperature based on ASTM D648 using an injection molding machine, annealed at 80 ° C. for 24 hours, and then the temperature at which the film composition was deformed under conditions of a low load of 4.6 kg / cm 2 was measured.

実施例1
プラズマディスプレイを以下の手順にて作製した。まず、旭硝子社製“PD−200”ガラス基板(42インチ)上に、感光性銀ペーストを用いたフォトリソグラフィー法によりアドレス電極パターンを形成した。電極厚みは3μm、電極端子は電極幅120μm、ピッチ240μmとした。次いで、アドレス電極が形成されたガラス基板上に誘電体層をスクリーン印刷法により20μmの厚みで形成した。しかる後、感光性ペーストを用いたフォトリソグラフィー法により厚み100μmの隔壁を形成した。次に、蛍光体層をディスペンサー法にて厚さ20μmに形成し、焼成して背面板を作製した。
Example 1
A plasma display was produced by the following procedure. First, an address electrode pattern was formed on a “PD-200” glass substrate (42 inches) manufactured by Asahi Glass Co., Ltd. by a photolithography method using a photosensitive silver paste. The electrode thickness was 3 μm, the electrode terminals were electrode width 120 μm, and pitch 240 μm. Next, a dielectric layer having a thickness of 20 μm was formed on the glass substrate on which the address electrodes were formed by screen printing. Thereafter, a partition wall having a thickness of 100 μm was formed by a photolithography method using a photosensitive paste. Next, the phosphor layer was formed to a thickness of 20 μm by a dispenser method and baked to produce a back plate.

次に、“PD−200”ガラス基板上に、フォトエッチング方によりITO電極を形成した後、感光性銀ペーストを用いたフォトリソグラフィー法によりバス電極パターンを形成した。しかる後、透明誘電体層をスクリーン印刷法により30μmの厚みで形成した。さらに、500nm厚のMgO膜を電子ビーム蒸着法により形成して、放電のための複数の電極を形成した前面板を得た。   Next, an ITO electrode was formed on a “PD-200” glass substrate by a photoetching method, and then a bus electrode pattern was formed by a photolithography method using a photosensitive silver paste. Thereafter, a transparent dielectric layer was formed to a thickness of 30 μm by screen printing. Furthermore, a 500 nm-thick MgO film was formed by electron beam evaporation to obtain a front plate on which a plurality of electrodes for discharge were formed.

次に、前面板及び背面板用ガラス基板にシール剤となる低融点ガラスペーストを設け、所定の配置になるよう位置合わせして対向配置し、450℃、30分間処理しガラス基板を封止した。その後、表示領域内部の排気及びNe95%、Xe5%の混合ガスの封入を行ってプラズマディスプレイパネルを完成させた。   Next, a low-melting glass paste serving as a sealant is provided on the glass substrate for the front plate and the back plate, aligned to face each other in a predetermined arrangement, and processed at 450 ° C. for 30 minutes to seal the glass substrate. . Thereafter, the plasma display panel was completed by exhausting the inside of the display region and sealing with a mixed gas of Ne 95% and Xe 5%.

その後、プラズマディスプレイパネルのガラス背面基板上に形成された接続端子(電極)の上にACFを温度60℃、圧力0.5Pa、時間2秒の条件で仮圧着した。   Then, ACF was temporarily pressure-bonded on the connection terminals (electrodes) formed on the glass back substrate of the plasma display panel under the conditions of a temperature of 60 ° C., a pressure of 0.5 Pa, and a time of 2 seconds.

ACF上部に貼り付けてある保護テープを剥離した後、ACF上にFPCの電極端子部分を位置合わせして置き、その上方から200℃に加温された加熱ヘッドを降下させ、プラズマディスプレイパネルの接続端子とFPCの接続端子とをACFを介して3MPaの圧力で10秒間加熱圧着した。   After peeling off the protective tape affixed to the top of the ACF, the electrode terminal part of the FPC is aligned and placed on the ACF, and the heating head heated to 200 ° C. is lowered from above to connect the plasma display panel. The terminal and the connecting terminal of the FPC were thermocompression bonded via ACF at a pressure of 3 MPa for 10 seconds.

FPCはポリイミド層厚み25μm、銅電極厚み18μmの二層FPCを用いた。電極端子は電極幅120μm、ピッチ240μmとした。ACFは厚み35μm、ACFは導電粒子径8μm、導電粒子は金メッキニッケルのものを用いた。   As the FPC, a two-layer FPC having a polyimide layer thickness of 25 μm and a copper electrode thickness of 18 μm was used. The electrode terminals had an electrode width of 120 μm and a pitch of 240 μm. ACF had a thickness of 35 μm, ACF had a conductive particle diameter of 8 μm, and the conductive particles were gold-plated nickel.

プラズマディスプレイへのFPC圧着には株式会社システム開発製のCFV−1型PDP用FPC貼付け装置を使用した。   An FPC pasting apparatus for CFV-1 type PDP manufactured by System Development Co., Ltd. was used for FPC crimping to the plasma display.

この緩衝材としては加熱ヘッドに接触する側の熱変形温度の高い上層シートとしてニチアス(株)製の厚み30μmの四フッ化エチレンシート(熱変形温度260℃)を使用した。FPCに接触する側の熱変形温度の低い下層シートとして三菱エンジニアリングプラスチックス(株)製ポリカーボネート樹脂シート(商品名:ユーピロンシート、厚み:50μm、熱変形温度180℃)を使用した。加熱圧着後端子の接続状態を10倍の顕微鏡を用いて観察した。   As this cushioning material, a 30 μm thick ethylene tetrafluoride sheet (heat distortion temperature 260 ° C.) manufactured by Nichias Co., Ltd. was used as an upper layer sheet having a high heat deformation temperature on the side in contact with the heating head. A polycarbonate resin sheet (trade name: Iupilon sheet, thickness: 50 μm, heat distortion temperature 180 ° C.) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used as a lower layer sheet having a low heat distortion temperature on the side in contact with the FPC. The connection state of the terminal after thermocompression bonding was observed using a 10 × microscope.

本構成、接続方法において接続端子間の高さのばらつきも吸収し、良好な接続状態を得ることができた。また、PDPパネルを点灯させて、表示を確認したところ、接続不良に基づく点灯不良は観察されなかった。   In this configuration and connection method, variations in height between connection terminals were absorbed, and a good connection state could be obtained. Further, when the display was confirmed by lighting the PDP panel, no lighting failure based on poor connection was observed.

実施例2
FPCの代わりにTCPを使用した以外は実施例1と同一の方法でプラズマディスプレイを製造し、加熱圧着後端子の接続状態を観察した。
Example 2
A plasma display was manufactured in the same manner as in Example 1 except that TCP was used instead of FPC, and the connection state of the terminals after thermocompression bonding was observed.

TCPはポリイミド層厚み75μm、銅電極厚み25μm、接着剤厚み12μmのものを用いた。電極端子は電極幅120μm、ピッチ240μmとした。   TCP having a polyimide layer thickness of 75 μm, a copper electrode thickness of 25 μm, and an adhesive thickness of 12 μm was used. The electrode terminals had an electrode width of 120 μm and a pitch of 240 μm.

本構成、接続方法において接続端子間の高さのばらつきも吸収し、良好な接続状態を得ることができた。   In this configuration and connection method, variations in height between connection terminals were absorbed, and a good connection state could be obtained.

実施例3
緩衝材として熱変形温度の高い上層シートとしてニチアス(株)製の厚み30μmの四ふっ化エチレンシート(熱変形温度260℃)し、熱変形温度の低い下層シートとして東レ製ナイロン66シート(熱変形温度210℃)を使用した以外は実施例1と同一の方法でプラズマディスプレイを製造した。本構成、接続方法において電極端子とACFの間にわずかに気泡が発生したが、ほぼ良好な接続状態を得ることができた。
Example 3
A 30 μm thick ethylene tetrafluoride sheet (heat distortion temperature 260 ° C.) manufactured by Nichias Co., Ltd. as an upper layer sheet having a high heat deformation temperature as a cushioning material, and a Toray nylon 66 sheet (heat deformation as a lower sheet having a low heat deformation temperature A plasma display was manufactured in the same manner as in Example 1 except that the temperature was 210 ° C. In the present configuration and connection method, a slight amount of bubbles was generated between the electrode terminal and the ACF, but a substantially good connection state could be obtained.

比較例1
緩衝材として四ふっ化フッ化エチレンシートのみを使用した以外は実施例1と同一の方法でプラズマディスプレイを製造した。本構成、接続方法において電極端子とACFの間に気泡が発生し、良好な接続状態を得ることができなかった。
Comparative Example 1
A plasma display was manufactured in the same manner as in Example 1 except that only the tetrafluorofluoroethylene sheet was used as the buffer material. In this configuration and connection method, bubbles were generated between the electrode terminal and the ACF, and a good connection state could not be obtained.

比較例2
緩衝材としてポリカーボネート樹脂シートのみを使用した以外は実施例1と同一の方法でプラズマディスプレイを製造した。本構成、接続方法においてポリカーボネート樹脂シートが加熱ヘッドに融着して良好な接続状態を得ることができなかった。
Comparative Example 2
A plasma display was produced in the same manner as in Example 1 except that only the polycarbonate resin sheet was used as the buffer material. In this configuration and connection method, the polycarbonate resin sheet was fused to the heating head, and a good connection state could not be obtained.

なお上述した実施形態ではプラズマディスプレイパネルとFPCとの接続を例にとり説明したが、LCD等他のディスプレイパネルにFPCやTCPを接続する場合にも本発明を適用できる。   In the above-described embodiment, the connection between the plasma display panel and the FPC has been described as an example. However, the present invention can also be applied to the case where the FPC or TCP is connected to another display panel such as an LCD.

プラズマディスプレイの電極接続部分の構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the electrode connection part of a plasma display. (a)PDPパネルに電極端子が複数個形成されている様子を示した平面図である。(b)FPCの端部に形成されたFPC電極端子の部分を示した平面図である。(A) It is the top view which showed a mode that multiple electrode terminals were formed in the PDP panel. (B) It is the top view which showed the part of the FPC electrode terminal formed in the edge part of FPC.

符号の説明Explanation of symbols

1 PDPパネル
2 ガラス背面基板
3 ガラス前面基板
4 PDP電極(接続端子)
5 ACF(異方性導電フィルム)
6 FPC
7 絶縁フィルム
8 FPC電極端子
9 緩衝材(上層)
10 緩衝材(下層)
11 加熱ヘッド
12 ガラス前面基板
13 PDP電極(接続端子)
14 ガラス背面基板
15 FPC電極端子
16 絶縁フィルム
17 FPC
1 PDP panel 2 Glass back substrate 3 Glass front substrate 4 PDP electrode (connection terminal)
5 ACF (anisotropic conductive film)
6 FPC
7 Insulating film 8 FPC electrode terminal 9 Buffer material (upper layer)
10 cushioning material (lower layer)
11 Heating head 12 Glass front substrate 13 PDP electrode (connection terminal)
14 Glass back substrate 15 FPC electrode terminal 16 Insulating film 17 FPC

Claims (5)

ディスプレイパネルのパネル電極端子と、フレキシブルプリント基板もしくはテープキャリアパッケージとを、加熱ヘッドにより異方性導電フィルムを介して接続するディスプレイパネルの電極接続方法において、加熱ヘッドとフレキシブルプリント基板もしくはテープキャリアパッケージとの間に、熱変形温度の異なる2種以上のシートを緩衝材として用いることを特徴とするディスプレイパネルの電極接続方法。 In a display panel electrode connection method for connecting a panel electrode terminal of a display panel and a flexible printed circuit board or a tape carrier package via an anisotropic conductive film by a heating head, the heating head and the flexible printed circuit board or the tape carrier package A method for connecting electrodes of a display panel, wherein two or more kinds of sheets having different thermal deformation temperatures are used as cushioning materials. フレキシブルプリント基板もしくはテープキャリアパッケージに接する側の緩衝材の熱変形温度が、加熱ヘッドに接する側の緩衝材の熱変形温度よりも低いことを特徴とする請求項1に記載のディスプレイパネルの電極接続方法。 2. The electrode connection of a display panel according to claim 1, wherein the thermal deformation temperature of the buffer material on the side in contact with the flexible printed circuit board or the tape carrier package is lower than the thermal deformation temperature of the buffer material on the side in contact with the heating head. Method. フレキシブルプリント基板もしくはテープキャリアパッケージに接する側の緩衝材の熱変形温度が、100〜200℃であることを特徴とする請求項1または2に記載のディスプレイパネルの電極接続方法。 The display panel electrode connection method according to claim 1 or 2, wherein the thermal deformation temperature of the buffer material on the side in contact with the flexible printed circuit board or the tape carrier package is 100 to 200 ° C. 加熱ヘッドに接する側の緩衝材の熱変形温度が200℃よりも高いことを特徴とする請求項1〜3のいずれかに記載のディスプレイパネルの電極接続方法。 4. The display panel electrode connecting method according to claim 1, wherein the heat deformation temperature of the buffer material on the side in contact with the heating head is higher than 200.degree. 請求項1〜4のいずれかに記載のディスプレイパネルの電極接続方法を用いたプラズマディスプレイの製造方法。 The manufacturing method of the plasma display using the electrode connection method of the display panel in any one of Claims 1-4.
JP2003398715A 2003-11-28 2003-11-28 Display panel electrode connecting method and plasma display manufacturing method using the same Expired - Fee Related JP4352876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398715A JP4352876B2 (en) 2003-11-28 2003-11-28 Display panel electrode connecting method and plasma display manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398715A JP4352876B2 (en) 2003-11-28 2003-11-28 Display panel electrode connecting method and plasma display manufacturing method using the same

Publications (3)

Publication Number Publication Date
JP2005159212A true JP2005159212A (en) 2005-06-16
JP2005159212A5 JP2005159212A5 (en) 2007-01-18
JP4352876B2 JP4352876B2 (en) 2009-10-28

Family

ID=34723488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398715A Expired - Fee Related JP4352876B2 (en) 2003-11-28 2003-11-28 Display panel electrode connecting method and plasma display manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP4352876B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133050A (en) * 2005-11-09 2007-05-31 Shimadzu Corp Optical device
JP2007165571A (en) * 2005-12-14 2007-06-28 Matsushita Electric Ind Co Ltd Electronic component mounting equipment
JP2008193023A (en) * 2007-02-08 2008-08-21 Sekisui Chem Co Ltd Manufacturing method for semiconductor device, and semiconductor device manufacturing heat-resistant sheet
WO2020184329A1 (en) * 2019-03-12 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133050A (en) * 2005-11-09 2007-05-31 Shimadzu Corp Optical device
JP2007165571A (en) * 2005-12-14 2007-06-28 Matsushita Electric Ind Co Ltd Electronic component mounting equipment
JP2008193023A (en) * 2007-02-08 2008-08-21 Sekisui Chem Co Ltd Manufacturing method for semiconductor device, and semiconductor device manufacturing heat-resistant sheet
WO2020184329A1 (en) * 2019-03-12 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic instrument
CN113544761A (en) * 2019-03-12 2021-10-22 索尼半导体解决方案公司 Display devices and electronic equipment
CN113544761B (en) * 2019-03-12 2023-10-10 索尼半导体解决方案公司 Display devices and electronic equipment
US12356811B2 (en) 2019-03-12 2025-07-08 Sony Semiconductor Solutions Corporation Display device and electronic device with heat absorption layer coupled to pad electrode layer

Also Published As

Publication number Publication date
JP4352876B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
EP2980870B1 (en) Light-emitting device, production method therefor, and device using light-emitting device
US8836204B2 (en) Organic EL illumination device
US6522073B2 (en) Plasma display panel with an auxiliary bonding pad
EP1057216A1 (en) Sealing of large area display structures
JP2000243555A (en) Organic EL display
US11805687B2 (en) Display device and multi-panel display device
JP5165913B2 (en) Backlight unit and manufacturing method thereof
US20030197475A1 (en) Flat-panel display, manufacturing method thereof, and portable terminal
CN102983282A (en) Organic light emitting diode module
CN105409025A (en) Structural components of flexible printed circuit boards
JP4352876B2 (en) Display panel electrode connecting method and plasma display manufacturing method using the same
TW201303426A (en) Low temperature contact structure for flexible solid state devices
TWI416549B (en) Ptc device and electric apparatus including the same
US20060284557A1 (en) Organic electroluminescent display element and manufacturing method thereof
KR20090057719A (en) Plasma display device
KR20230102306A (en) Display device and multi-panel display device
JP4569020B2 (en) Electrical connection method, electrical connection device, and electronic apparatus
CN1937141B (en) Plasma display panel and manufacturing method of the same
KR20070038771A (en) Plasma display device
JP4166111B2 (en) Ferroelectric liquid crystal display device and manufacturing method thereof
JP2003162964A (en) Plasma display panel and manufacturing method therefor, and plasma display device
JP4923528B2 (en) Plasma display device
KR100736581B1 (en) Plasma display device and manufacturing method thereof
KR100716618B1 (en) Plasma Display Panel Having Hydrophobic Insulating Layer And Method Of Manufacturing The Same
JP2006059548A (en) Display board

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090720

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120807

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees