[go: up one dir, main page]

JP2005156374A - Method and apparatus for evaluating gear frequency transmission characteristics - Google Patents

Method and apparatus for evaluating gear frequency transmission characteristics Download PDF

Info

Publication number
JP2005156374A
JP2005156374A JP2003396038A JP2003396038A JP2005156374A JP 2005156374 A JP2005156374 A JP 2005156374A JP 2003396038 A JP2003396038 A JP 2003396038A JP 2003396038 A JP2003396038 A JP 2003396038A JP 2005156374 A JP2005156374 A JP 2005156374A
Authority
JP
Japan
Prior art keywords
gear
frequency
excitation
evaluation
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396038A
Other languages
Japanese (ja)
Inventor
Yasunari Kawashima
康成 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003396038A priority Critical patent/JP2005156374A/en
Publication of JP2005156374A publication Critical patent/JP2005156374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for evaluating frequency transmission characteristics through the engagement of gears, allowing the evaluation of the frequency transmission characteristics of gears using a motor and a vibration exciter of a real machine so that the vibration characteristics do not change. <P>SOLUTION: The apparatus for evaluating gear frequency transmission characteristics, comprising a driven shaft to which a gear to be evaluated is attached, a drive shaft to which a drive gear engaging with the gear to be evaluated is attached, and rotation detectors which generate rotation signals for predetermined rotation angles and are attached to the driven shaft and the drive shaft, evaluates the frequency transmission characteristics of the gear to be evaluated through the difference in the signal outputs. The apparatus comprises translational excition means which minutely excites either the gear to be evaluated or the drive gear in the translational direction, rotational uneveness calculating means which determines the rotational transmission errors between the drive shaft and the driven shaft, and gear frequency transmission characteristics evaluating means which calculates the transmission characteristics from the relationship between the exciting force and the value of the rotational uneveness in the exciting frequency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、歯車の噛合いによる周波数伝達特性の評価方法及び装置に関するもので、特に、回転特性に影響を与える実用的な歯車の周波数伝達特性を簡易的な方法で評価する歯車周波数伝達特性の評価方法および装置に関する。   The present invention relates to a method and an apparatus for evaluating a frequency transmission characteristic by meshing of gears, and in particular, a gear frequency transmission characteristic for evaluating a frequency transmission characteristic of a practical gear that affects a rotational characteristic by a simple method. The present invention relates to an evaluation method and apparatus.

一般に、歯車機構系を用いた精密機械製品である、情報機器(複写機、プリンタ、等)、家電製品、ロボット等幅広い分野での設計工程、検査工程において、評価歯車が取り付く従動軸と、前記評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号を発生させる回転検出器を取付け、この信号出力の差分から歯車の誤差を求める方法が知られている。
なお、先行技術としては、1.特開2003−98005「歯車電動機のギヤノイズの評価試験方法」(歯車を回転させずに、軸に加振トルクを加えて、他の軸上に静的負荷を与え、各部の振動や音を計測する方法)、2.特開2001−255240「プラスチック歯車の性能試験方法及びその装置」(歯車の噛合い位置(位相)を変更して、基準歯車の偏心成分を除去する方法)、3.特開2001−264216「歯車評価方法と歯車評価の解析プログラムを記録した記録媒体及び歯車評価装置」(駆動側と従動側の回転角を計測し、その差分から伝達誤差を求め、歯車を評価する方法)等が挙げられる。
特開2003−98005 特開2001−255240 特開2000−264216
In general, in a design process and an inspection process in a wide range of fields such as information equipment (copiers, printers, etc.), home appliances, robots, etc., which are precision machine products using a gear mechanism system, a driven shaft to which an evaluation gear is attached, A method is known in which a rotation detector that generates a rotation signal at each fixed rotation angle is attached to a drive shaft that is attached to a drive gear that meshes with an evaluation gear, and a gear error is obtained from the difference in signal output.
The prior art includes: JP 2003-98005 "Evaluation test method of gear noise of gear motor" (Applying excitation torque to shaft without rotating gear, applying static load on other shaft, measuring vibration and sound of each part Method), 2. 2. Japanese Patent Laid-Open No. 2001-255240 “Plastic Gear Performance Testing Method and Apparatus” (Method of removing eccentric component of reference gear by changing gear meshing position (phase)) JP 2001-264216 "Gear evaluation method and recording medium recording gear evaluation analysis program and gear evaluation apparatus" (measurement of rotation angle on driving side and driven side, obtaining transmission error from the difference, and evaluating gear Method).
JP2003-98005 JP 2001-255240 A JP 2000-264216 A

しかしながら、上記従来の技術には、以下のような問題点があった。
すなわち、特開2003−98005では、ある噛合い状態に限定して、そこでの周波数伝達特性を評価する方法が提案されているが、測定した噛合い状態が、他の歯の噛合い状態と同じと仮定すればこの評価方法でよいのだが、歯車の歯面精度が全歯とも同じではないこと、噛合い状態が回転角度で変化する(噛合い率が3.5の場合、3枚歯噛合いと4枚歯噛合いが交互に生じる)ので、その様な場合、問題が生じる。
また、特開2001−255240の場合、偏心成分を除去した回転伝達特性が得られるが、周波数伝達特性を計測するには、噛合い位置の変更があり、周波数ごとに評価を行う周波数伝達特性評価には不向きである欠点があった。
また、特開2000−264216の場合(一般的な評価方法も含めて)、駆動軸と従動軸にセンサを取り付け、その差分から伝達誤差を求めるようになっているが、評価する回転速度によって特性値が変化する。これは、歯車系の振動特性によるもので、共振付近の回転速度では速度ムラが大きくなったり、反共振付近での回転速度では逆に小さくなる問題点があった。仕様回転数だけの特性を評価するのであれば、このような従来方法で十分であるが、より高精度な回転特性を得るためにも周波数特性を評価し、速度ムラが大きくなる領域(共振付近)であれば、周波数特性に対し、対策を施すなどの対応が必要である。
このように従来技術では、ある限定された条件(噛合い位置、回転速度)での評価であり、回転ムラに影響を及ぼす周波数伝達特性を適切に評価できていない。また、駆動モータに周期的な変動トルクを加えて周波数伝達特性を評価する一般的な方法もあるが、この場合、高い周波数になるにつれて高出力のモータが必要になり、実機で使用するモータでは対応できなくなる問題がある。また、駆動歯車と従動歯車の軸間距離の規制で大きなモータを取り付けて評価することもできない場合がある。
However, the conventional technique has the following problems.
That is, in Japanese Patent Laid-Open No. 2003-98005, a method for evaluating the frequency transfer characteristic in a certain meshing state is proposed, but the measured meshing state is the same as the meshing state of other teeth. Assuming that, this evaluation method suffices, but the tooth surface accuracy of the gears is not the same for all teeth, and the meshing state changes with the rotation angle (when the meshing rate is 3.5, the three-tooth meshing In such a case, a problem arises.
In the case of Japanese Patent Laid-Open No. 2001-255240, a rotation transfer characteristic from which an eccentric component is removed can be obtained. However, in order to measure the frequency transfer characteristic, there is a change in the meshing position, and the frequency transfer characteristic evaluation is performed for each frequency. Had the disadvantage of being unsuitable.
In the case of Japanese Patent Laid-Open No. 2000-264216 (including general evaluation methods), a sensor is attached to the drive shaft and the driven shaft, and a transmission error is obtained from the difference between them. The value changes. This is due to the vibration characteristics of the gear system, and there is a problem that the speed unevenness becomes large at the rotational speed near the resonance or becomes smaller at the rotational speed near the anti-resonance. Such a conventional method is sufficient for evaluating the characteristics of only the specified rotational speed. However, in order to obtain a more accurate rotational characteristic, the frequency characteristic is evaluated and the region where the speed unevenness becomes large (near the resonance) ), It is necessary to take measures such as taking measures against the frequency characteristics.
As described above, in the conventional technique, evaluation is performed under certain limited conditions (engagement position, rotation speed), and frequency transfer characteristics that affect rotation unevenness cannot be appropriately evaluated. In addition, there is a general method for evaluating the frequency transfer characteristics by applying periodic fluctuation torque to the drive motor. In this case, however, a higher output motor is required as the frequency becomes higher. There is a problem that can not be handled. In addition, there may be a case where a large motor cannot be attached and evaluated due to the restriction of the distance between the axes of the driving gear and the driven gear.

本発明は、上記従来の問題点を解決するためになされたもので、その目的は、環境に負荷のかかる高出力のモータを使用することなく、振動特性が変わらないように実機のモータと加振機を用いて歯車の周波数伝達特性を評価することができる歯車の噛合いによる周波数伝達特性の評価方法及び装置を提供することである。
さらに、本発明は、歯車駆動系の振動特性を実機に近い状態で計測できるようにし、測定精度を向上させることを他の目的とする。
さらに、本発明は、並進加振力を効率的に使用し、評価時での電力消費低減を他の目的とする。
さらに、本発明は、はすば歯車において、高さ方向に加振機を設置できないような場合でも周波数伝達特性を評価できる省スペースな評価方法の提供を他の目的とする。
さらに、本発明は、評価回転中に歯面同士が離れて計測精度が低下するのを防ぐことを他の目的とする。
さらに、本発明は、評価回転中に歯面同士が離れて計測精度が低下するのを防ぐことを他の目的とする。
さらに、本発明は、並進加振力を歯面接触部に効率よく伝達させ、加振機消費電力の軽減を他の目的とする。
さらに、本発明は、周波数伝達特性を評価中に共振状態によって歯車や装置の破損を防ぐことを他の目的とする。
さらに、本発明は、高周波数帯域までの評価が可能になると共に、微小な加振力の場合にも対応でき、少ない電力で評価できる方法の提供を他の目的とする。
さらに、本発明は、環境に負荷のかかる高出力のモータを使用することなく、実機のモータと加振機を用いて歯車の周波数伝達特性を評価装置の提供を他の目的とする。
The present invention has been made in order to solve the above-described conventional problems, and its object is to add an actual motor to the motor so that the vibration characteristics do not change without using a high-output motor that is burdensome on the environment. An object of the present invention is to provide a method and an apparatus for evaluating frequency transfer characteristics by meshing of gears, which can evaluate the frequency transfer characteristics of gears using a vibrator.
Another object of the present invention is to improve the measurement accuracy by measuring the vibration characteristics of the gear drive system in a state close to that of an actual machine.
Furthermore, another object of the present invention is to efficiently use translational excitation force and reduce power consumption at the time of evaluation.
Furthermore, another object of the present invention is to provide a space-saving evaluation method capable of evaluating frequency transfer characteristics even when a vibration exciter cannot be installed in the height direction in a helical gear.
Furthermore, another object of the present invention is to prevent the measurement accuracy from being lowered due to separation of tooth surfaces during evaluation rotation.
Furthermore, another object of the present invention is to prevent the measurement accuracy from being lowered due to separation of tooth surfaces during evaluation rotation.
Another object of the present invention is to efficiently transmit the translational excitation force to the tooth surface contact portion and reduce the power consumption of the vibrator.
Another object of the present invention is to prevent gears and devices from being damaged by resonance during evaluation of frequency transfer characteristics.
Furthermore, another object of the present invention is to provide a method that can be evaluated up to a high frequency band, can cope with a minute excitation force, and can be evaluated with less power.
Furthermore, another object of the present invention is to provide an apparatus for evaluating the frequency transfer characteristics of gears using an actual motor and a vibration exciter without using a high-output motor that places a burden on the environment.

上述の目的を達成するために、請求項1記載の発明は、評価歯車が取り付く従動軸と、前記評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価方法においてて、前記評価歯車と駆動歯車のいずれか一方を並進方向に微小に加振する並進加振工程と、前記駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出工程と、その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価工程とから構成されることを特徴とする。
また、請求項2記載の発明は、前記並進加振が、前記駆動歯車に加えられることを特徴とする。
また、請求項3記載の発明は、前記並進加振の方向が、前記歯車の噛合っている作用線の方向である圧力角に合わせられていることを特徴とする。
また、請求項4記載の発明は、前記歯車をはすば歯車とし、並進加振方向を軸方向としてあることを特徴とする。
また、請求項5記載の発明は、前記評価歯車が取り付けられた従動軸には、摩擦などによる負荷機構が取り付けられていることを特徴とする。
また、請求項6記載の発明は、前記並進方向の加振力は、歯車の噛合い力よりも小さく設定されていることを特徴とする。
また、請求項7記載の発明は、前記軸に設けられた軸受けに前記並進加振が施され、その軸受けが弾性体で支持されていることを特徴とする。
また、請求項8記載の発明は、前記歯車のバックラッシ量と前記加振の周波数の回転ムラ量が等しくなったら、加振力をレベルダウンすることを特徴とする。
また、請求項9記載の発明は、前記並進加振しない方の軸受け部に加速度センサーを取り付け、回転ムラの特性に加味して伝達特性を算出することを特徴とする。
また、請求項10記載の発明は、評価歯車が取り付く従動軸と、前記評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価装置において、前記評価歯車と駆動歯車のいずれか一方を並進方向に微小に加振する並進加振手段と、前記駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出手段と、その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価手段とから構成されることを特徴とする。
In order to achieve the above-described object, according to the first aspect of the present invention, a rotation signal is generated for each fixed rotation angle on the driven shaft to which the evaluation gear is attached and the drive shaft to which the drive gear meshing with the evaluation gear is attached. In the gear frequency transmission characteristic evaluation method for attaching a rotation detector and evaluating the frequency transmission characteristic of the evaluation gear from the difference between the signal outputs, either one of the evaluation gear and the drive gear is slightly excited in the translation direction. A translational vibration step, a rotation unevenness calculating step for obtaining a rotation transmission error between the drive shaft and the driven shaft, and a gear frequency transmission characteristic evaluation for calculating a transfer characteristic from the relationship between the excitation force and the rotation unevenness value at the vibration frequency. It is characterized by comprising a process.
The invention according to claim 2 is characterized in that the translational excitation is applied to the drive gear.
The invention according to claim 3 is characterized in that the direction of the translational excitation is adjusted to a pressure angle which is a direction of a line of action with which the gear is engaged.
According to a fourth aspect of the present invention, the gear is a helical gear, and the translational excitation direction is an axial direction.
The invention according to claim 5 is characterized in that a load mechanism by friction or the like is attached to the driven shaft to which the evaluation gear is attached.
The invention according to claim 6 is characterized in that the excitation force in the translation direction is set smaller than the meshing force of the gear.
The invention according to claim 7 is characterized in that the translational excitation is applied to a bearing provided on the shaft, and the bearing is supported by an elastic body.
The invention according to claim 8 is characterized in that when the backlash amount of the gear is equal to the rotational unevenness amount of the excitation frequency, the excitation force is reduced in level.
The invention according to claim 9 is characterized in that an acceleration sensor is attached to the non-translational bearing portion, and the transfer characteristic is calculated in consideration of the rotation unevenness characteristic.
According to a tenth aspect of the present invention, a rotation detector for generating a rotation signal for each fixed rotation angle is attached to the driven shaft to which the evaluation gear is attached and the drive shaft to which the drive gear meshing with the evaluation gear is attached. In the gear frequency transmission characteristic evaluation apparatus for evaluating the frequency transmission characteristic of the evaluation gear from the difference in signal output, the translational excitation means for minutely exciting either the evaluation gear or the drive gear in the translational direction, and the drive A rotation unevenness calculating means for calculating a rotation transmission error between the shaft and the driven shaft, and a gear frequency transfer characteristic evaluating means for calculating a transfer characteristic from the relationship between the excitation force at the excitation frequency and the rotation unevenness value. Features.

本発明によれば、評価歯車が取り付く被駆動軸と、評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号(矩形波信号)を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価方法が、歯車を並進方向に微小に加振できる並進加振工程と、駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出工程と、その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価工程とから構成されるので、加振機から周波数に対応した加振力が、歯車全体を並進方向に揺らし、噛合っている歯部を通して他軸へ伝わり、その結果、回転ムラとして検出される。歯部の伝達特性が低い場合は、加振機での振動が吸収され、加振周波数での速度ムラは検出されない。このように加振周波数に対応した歯部での周波数伝達特性が評価できる。その結果、環境に負荷のかかる高出力のモータを使用することなく、実機のモータと加振機を用いた簡単な構成で歯車の周波数伝達特性を評価できる。
また、他の発明によれば、前記歯車の並進加振は、駆動軸歯車としてあることことで、従動軸にいろいろな付属部品が取り付いている場合でも、駆動軸側をモータごと並進加振するので、従動軸の付属部品を取り外すことなく評価が行える。その結果、歯車駆動系の振動特性を実機に近い状態で計測できるようにし、測定精度の向上を提供できる。
また、他の発明によれば、前記並進加振の方向を、歯車の噛合っている作用線の方向である圧力角に合わせてあることで、並進加振力を歯面接触部の法線方向と平行にすることができ、被加振側の軸受けにかかる負荷を最小限にできる。その結果、並進加振力を効率的に使用し、評価時での電力消費低減を提供できる。
また、他の発明によれば、前記歯車をはすば歯車とし、並進加振方向を軸方向としてあることで、はすば歯車のねじれ角に対応した並進加振力を加えることができる。その結果、はすば歯車において、高さ方向に加振機を設置できないような場合でも周波数伝達特性を評価できる省スペースな評価方法の提供を提供できる。
また、他の発明によれば、前記評価歯車が取り付く被駆動軸には、摩擦などによる負荷機構が取り付けられていることで、加振機での加振力によって歯面同士が飛び跳ねる現象を防止することができる。その結果、歯面同士が離れて回転ムラ計測精度が低下することを防ぎ。高精度に評価することができる。
また、他の発明によれば、前記並進方向の加振力は、歯車の噛合い力よりも小さく設定してあることで、加振機での加振力によって歯面同士が飛び跳ねる現象を防止することができる。その結果、歯面同士が離れて回転ムラ計測精度が低下することを防ぎ。高精度に評価することができる。
また、他の発明によれば、前記並進加振を軸受けに施し、その軸受けを弾性体で支持されていることで、加振機での加振力によって対象歯車単体を揺らすことができる。その結果、並進加振力を歯面接触部に効率よく伝達させ、加振機消費電力の軽減を図ることができる。
According to the present invention, a rotation detector that generates a rotation signal (rectangular wave signal) for each fixed rotation angle is attached to the driven shaft to which the evaluation gear is attached and the drive shaft to which the drive gear meshing with the evaluation gear is attached, The evaluation method of the gear frequency transmission characteristic that evaluates the frequency transmission characteristic of the evaluation gear from the difference of the signal output is a translational excitation process that can slightly excite the gear in the translational direction, and a rotation transmission error between the drive shaft and the driven shaft. The rotation unevenness calculating step for calculating the transmission frequency and the gear frequency transfer characteristic evaluating step for calculating the transfer characteristic from the relationship between the excitation force and the rotation unevenness value at the excitation frequency. The vibration force oscillates the entire gear in the translational direction and is transmitted to the other shaft through the meshing teeth, and as a result, detected as rotation unevenness. When the transmission characteristic of the tooth portion is low, vibrations in the vibration exciter are absorbed and speed unevenness at the vibration frequency is not detected. In this way, the frequency transfer characteristic at the tooth portion corresponding to the excitation frequency can be evaluated. As a result, it is possible to evaluate the frequency transfer characteristics of the gears with a simple configuration using a real motor and a vibration exciter without using a high-output motor that places a burden on the environment.
According to another invention, the translational excitation of the gear is as a drive shaft gear, so that the drive shaft side is subjected to translational excitation with the motor even when various accessory parts are attached to the driven shaft. Therefore, evaluation can be performed without removing the accessory parts of the driven shaft. As a result, the vibration characteristics of the gear drive system can be measured in a state close to that of an actual machine, and improvement in measurement accuracy can be provided.
According to another invention, the translational excitation force is made normal to the tooth surface contact portion by adjusting the direction of the translational excitation to the pressure angle that is the direction of the line of engagement of the gears. It can be made parallel to the direction, and the load applied to the bearing on the excitation side can be minimized. As a result, the translational excitation force can be used efficiently, and a reduction in power consumption at the time of evaluation can be provided.
According to another invention, the gear is a helical gear and the translational excitation direction is an axial direction, so that a translational excitation force corresponding to the helical angle of the helical gear can be applied. As a result, in a helical gear, it is possible to provide a space-saving evaluation method that can evaluate frequency transfer characteristics even when a vibrator cannot be installed in the height direction.
According to another invention, the driven shaft to which the evaluation gear is attached is attached with a load mechanism by friction or the like, thereby preventing a phenomenon in which tooth surfaces jump from each other due to the excitation force of the shaker. can do. As a result, tooth surfaces are separated from each other and rotation unevenness measurement accuracy is prevented from decreasing. It can be evaluated with high accuracy.
According to another invention, the exciting force in the translational direction is set to be smaller than the meshing force of the gear, thereby preventing a phenomenon in which tooth surfaces jump from each other due to the exciting force of the vibrator. can do. As a result, tooth surfaces are separated from each other and rotation unevenness measurement accuracy is prevented from decreasing. It can be evaluated with high accuracy.
According to another aspect of the invention, the translational excitation is applied to the bearing, and the bearing is supported by the elastic body, so that the target gear unit can be shaken by the excitation force of the shaker. As a result, the translational excitation force can be efficiently transmitted to the tooth surface contact portion, and the power consumption of the shaker can be reduced.

また、他の発明によれば、前記歯車のバックラッシ量と加振周波数の回転ムラ量が等しくなったら、加振力をレベルダウンすることで、歯面の異常振動を回避することができる。その結果、周波数伝達特性を評価中に共振状態によって歯車や装置の破損を防ぐことが可能となる。
また、他の発明によれば、前記並進加振しない方の軸受け部に加速度センサーを取り付け、回転ムラの特性に加味して伝達特性を算出することで、回転検出器の分解能や応答速度の問題で、加振周波数での回転ムラが計測できない場合でも加速度センサーの出力を代用することで評価ができる。その結果、高周波数帯域までの評価が可能になると共に、微小な加振力の場合にも対応でき、少ない電力で評価が可能となる。
また、他の発明によれば、評価歯車が取り付く被駆動軸と、評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号(矩形波信号)を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価装置において、歯車を並進方向に微小に加振できる並進加振手段と、駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出手段と、その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価手段とから構成されることで、加振機から周波数に対応した加振力が歯車全体を並進方向に揺らし、噛合っている歯部を通して他軸へ伝わり、その結果、回転ムラとして検出される。歯部の伝達特性が低い場合は、加振機での振動が吸収され、加振周波数での速度ムラは検出されない。このように加振周波数に対応した歯部での周波数伝達特性が評価できる。その結果、環境に負荷のかかる高出力のモータを使用することなく、実機のモータと加振機を用いた簡単な構成で歯車の周波数伝達特性を評価できる装置を提供できる。
According to another invention, when the backlash amount of the gear and the rotation unevenness amount of the excitation frequency become equal, abnormal vibration of the tooth surface can be avoided by lowering the excitation force. As a result, it is possible to prevent damage to the gears and the device depending on the resonance state during evaluation of the frequency transfer characteristics.
Further, according to another invention, an acceleration sensor is attached to the non-translational bearing part, and the transfer characteristic is calculated in consideration of the rotation unevenness characteristic. Thus, even when rotation unevenness at the excitation frequency cannot be measured, evaluation can be performed by substituting the output of the acceleration sensor. As a result, it is possible to evaluate up to a high frequency band, and it is possible to cope with a minute excitation force, and it is possible to evaluate with a small amount of power.
According to another invention, a rotation detector that generates a rotation signal (rectangular wave signal) for each fixed rotation angle on a driven shaft to which an evaluation gear is attached and a drive shaft to which a drive gear meshing with the evaluation gear is attached. In the gear frequency transmission characteristic evaluation apparatus that evaluates the frequency transmission characteristic of the evaluation gear from the difference between the signal outputs, the translational excitation means that can slightly excite the gear in the translational direction, and the drive shaft and the driven shaft It is composed of a rotation unevenness calculating means for obtaining a rotation transfer error, and a gear frequency transfer characteristic evaluating means for calculating a transfer characteristic from the relationship between the excitation force and the rotation unevenness value at the excitation frequency. Exciting force corresponding to sway the entire gear in the translational direction and is transmitted to the other shaft through the meshing teeth, and as a result, detected as rotation unevenness. When the transmission characteristic of the tooth portion is low, vibrations in the vibration exciter are absorbed and speed unevenness at the vibration frequency is not detected. In this way, the frequency transfer characteristic at the tooth portion corresponding to the excitation frequency can be evaluated. As a result, it is possible to provide a device that can evaluate the frequency transfer characteristics of a gear with a simple configuration using a real motor and a vibration exciter without using a high-output motor that places a burden on the environment.

以下に添付の図を参照してこの発明の実施形態を詳細に説明する。
図1は、本発明による歯車周波数伝達特性評価装置の一実施形態の概略構成図である。
図1に示すように、この歯車周波数伝達特性評価装置は、モータ1よりの駆動軸3に取りつけられた駆動歯車5と感光体ドラムなどの部品7よりの従動軸9に取り付けられた従動歯車(評価歯車)11との歯車周波数伝達特性を評価するもので、総合的な制御を行うCPU(Central Processing Unit)13、RAM(Random Access Memory)15、表示ディスプレイのCRT(Cathode Ray Tube)17、入力用のキーボード19とマウス21、評価結果等を出力するプリンタ23、CPU13の基本制御を行うOS(Operating System)と本発明の要旨である評価プログラムが蓄積された磁気ディスク装置(HDD:Hard Disk Drive)25、A/D、D/A27、カウンタ29、それらを相互に接続する内部バス31からなる評価コンピュータ33と、感光体ドラムなどの部品7よりの従動軸9に取り付けられた従動歯車11に並進方向の加振力を加える加振機35と、一定回転角毎に回転信号(矩形波信号)を発生するように駆動軸3および従動軸9に取りつけられたエンコーダ(回転検出器)37、39と、からなっている。
また、駆動軸3および従動軸9に取りつけられたエンコーダ37、39の出力は、カウンタ29を通して評価コンピュータ33側に入力される。また、コンピュータ33側からA/D、D/A27を通して駆動モータ1に設定の回転速度となるように速度指令と、加振機35に設定した周波数での加振力の指令を、また、後述する従動軸上の負荷用ブレーキに負荷指令が与えられる。また、評価結果は、一時的にRAM(Random Access Memory)15に記憶される。
このような構成で以下に説明する歯車周波数伝達特性評価プログラムを実行させることで、実機に近い条件で歯車の実用的な周波数伝達特性が得られ、設計工程や検査工程で有効な情報をCRTやプリントアウトした紙から供給することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an embodiment of a gear frequency transfer characteristic evaluation apparatus according to the present invention.
As shown in FIG. 1, this gear frequency transfer characteristic evaluation apparatus includes a drive gear 5 attached to a drive shaft 3 from a motor 1 and a driven gear (attached to a driven shaft 9 from a component 7 such as a photosensitive drum. A gear frequency transmission characteristic with respect to the evaluation gear) 11 is evaluated. A central processing unit (CPU) 13, a random access memory (RAM) 15, a CRT (Cathode Ray Tube) 17 of a display display, an input Keyboard 19 and mouse 21, a printer 23 for outputting evaluation results, etc., an OS (Operating System) for basic control of the CPU 13, and a magnetic disk device (HDD: Hard Disk Drive) in which an evaluation program as the gist of the present invention is stored ) 25, A / D, D / A 27, counter 29, evaluation computer 33 comprising an internal bus 31 for connecting them, and a photosensitive drum, etc. An exciter 35 for applying an excitation force in the translational direction to the driven gear 11 attached to the driven shaft 9 from the product 7, and the drive shaft 3 and the drive shaft 3 so as to generate a rotation signal (rectangular wave signal) at every fixed rotation angle. And encoders (rotation detectors) 37 and 39 attached to the driven shaft 9.
The outputs of the encoders 37 and 39 attached to the drive shaft 3 and the driven shaft 9 are input to the evaluation computer 33 side through the counter 29. Further, a speed command and a vibration force command at a frequency set in the shaker 35 so as to obtain a rotation speed set in the drive motor 1 through the A / D and D / A 27 from the computer 33 side will be described later. A load command is given to the load brake on the driven shaft. The evaluation result is temporarily stored in a RAM (Random Access Memory) 15.
By executing the gear frequency transfer characteristic evaluation program described below in such a configuration, a practical frequency transfer characteristic of the gear can be obtained under conditions close to those of an actual machine, and information useful in the design process and the inspection process can be obtained by CRT and It can be supplied from printed paper.

次に、図1に示した歯車周波数伝達特性評価装置による歯車周波数伝達特性評価方法について図2を参照して説明する。図2は、本発明を実施した周波数伝達特性評価方法のフローチャートである。
評価方法の手順としては、図2のステップ101において、評価条件となる周波数領域、回転速度、加振力(または加振振幅)が評価コンピュータ33に入力され、ここで、入力された条件に従い、駆動軸3上のモータ1が回転され、感光体ドラムなどの部品7よりの従動軸9に取り付けられた従動歯車11に加振力が加えられ、従動歯車11が微小に加振される。次に、ステップ103において、加振機35により加振する周波数が評価コンピュータ33において自動設定される。ここでは、周波数は評価条件で決めた領域で低い周波数から高い周波数へ少しずつシフトさせていくが、その逆のパターンでも構わない。
次に、ステップ105における歯車駆動測定では、モータ1により駆動され加振機35により加振された状態で、駆動軸3上と従動軸9上のエンコーダ37、39の差分(減速比を考慮して)より、回転誤差(回転ムラ=速度ムラ)が求められる。各周波数ごとの測定時間は、従動歯車11が1回転回る時間以上にセットしておく。この回転ムラには、歯車の形状精度や偏心によるものや駆動モータ1の速度ムラによるものなど様々な要因によるものが含まれている。ここでは、加振された周波数に着目して、この周波数成分での回転ムラ(エンコーダ37、39出力の差分)が算出される(ステップ107)。
次に、ステップ109において、加振周波数での回転ムラが加振力(または加振振幅)で割り算され、加振周波数における伝達特性が算出される。その後、ステップ111において、加振周波数を変更するかチェックが行われ、評価条件で設定した加振周波数領域を全部終わっていない場合は、再度、ステップ103に戻って、加振周波数をシフトさせて同じ様な評価を進める。次に、全ての加振周波数領域で計測が終わった場合は、ステップ113において、加振した各周波数ごとの伝達特性をグラフ化などして出力し、周波数伝達特性評価を終了する。
図3は、図2に示した周波数伝達特性評価方法によって評価した結果の一例を示すグラフ図である。加振周波数によって、伝達特性が大きくなっているところ(共振点)、小さくなっているところ(反共振点)が確認できる。
Next, a gear frequency transfer characteristic evaluation method using the gear frequency transfer characteristic evaluation apparatus shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a flowchart of the frequency transfer characteristic evaluation method embodying the present invention.
As a procedure of the evaluation method, in step 101 of FIG. 2, the frequency region, the rotation speed, and the excitation force (or excitation amplitude) that are the evaluation conditions are input to the evaluation computer 33, where, according to the input conditions, The motor 1 on the drive shaft 3 is rotated, and an excitation force is applied to a driven gear 11 attached to a driven shaft 9 from a component 7 such as a photosensitive drum, so that the driven gear 11 is slightly excited. Next, in step 103, the frequency to be vibrated by the shaker 35 is automatically set in the evaluation computer 33. Here, the frequency is gradually shifted from a low frequency to a high frequency in a region determined by the evaluation condition, but a reverse pattern may be used.
Next, in the gear drive measurement in step 105, the difference between the encoders 37 and 39 on the drive shaft 3 and the driven shaft 9 (in consideration of the reduction ratio) in the state driven by the motor 1 and vibrated by the shaker 35. Thus, a rotation error (rotation unevenness = speed unevenness) is obtained. The measurement time for each frequency is set to be longer than the time required for the driven gear 11 to make one rotation. This uneven rotation includes various factors such as those caused by gear shape accuracy and eccentricity, and those caused by speed unevenness of the drive motor 1. Here, paying attention to the excited frequency, rotation unevenness (difference between encoders 37 and 39 output) at this frequency component is calculated (step 107).
Next, in step 109, the rotation unevenness at the excitation frequency is divided by the excitation force (or excitation amplitude), and the transfer characteristic at the excitation frequency is calculated. After that, in step 111, it is checked whether to change the excitation frequency. If all the excitation frequency regions set in the evaluation conditions are not completed, the process returns to step 103 again to shift the excitation frequency. Proceed with the same evaluation. Next, when the measurement is completed in all the excitation frequency regions, in step 113, the transfer characteristics for each of the excited frequencies are output in a graph or the like, and the frequency transfer characteristic evaluation is completed.
FIG. 3 is a graph showing an example of a result of evaluation by the frequency transfer characteristic evaluation method shown in FIG. Depending on the excitation frequency, it can be confirmed that the transfer characteristic is large (resonance point) and small (anti-resonance point).

図4は、従動歯車11に回転方向の加振力(従来技術)を与えた場合(a)と、従動歯車11に並進方向Aの加振力F(本発明)を与えた場合(b)の説明図である。歯面接触面に加振周波数の力や振幅が加わり、反対側の歯車にどのように伝わるかが評価できれば周波数伝達特性が求められる。そこで、歯面接触面を加振する場合、一定回転速度で回しながら、さらに回転方向の加振力を加える(従来技術)よりも、並進方向Aに加振力F(本発明)を与えて一定回転速度の回転力と歯面を加振する並進力に分割した方が、実機のモータや制御系をそのまま使用できる点(実機の振動特性のまま評価ができる)、専用の加振機とコントローラが使用できる点(高周波数領域まで評価ができる)などで有利となる。
以上のように、本発明を実施した周波数伝達特性評価方法によれば、加振機から周波数に対応した加振力が、歯車全体を並進方向に揺らし、噛合っている歯部を通して他軸へ伝わり、その結果、回転ムラとして検出される。歯部の伝達特性が低い場合は、加振機での振動が吸収され、加振周波数での速度ムラは検出されない。このように加振周波数に対応した歯部での周波数伝達特性が評価できる。その結果、環境に負荷のかかる高出力のモータを使用することなく、実機のモータと加振機を用いた簡単な構成で歯車の周波数伝達特性を評価できる。
FIG. 4 shows a case (a) in which a rotational force (prior art) is applied to the driven gear 11 and a case (B) in which a vibration force F (present invention) in the translational direction A is applied to the driven gear 11. It is explanatory drawing of. If the force and amplitude of the excitation frequency are applied to the tooth contact surface and it can be evaluated how it is transmitted to the gear on the opposite side, the frequency transfer characteristic can be obtained. Therefore, when the tooth surface contact surface is vibrated, the exciting force F (the present invention) is applied in the translational direction A, rather than applying the exciting force in the rotational direction while rotating at a constant rotational speed (prior art). It is possible to use the motor and control system of the actual machine as is (divided into the rotational force at a constant rotational speed and the translational force that vibrates the tooth surface) (the vibration characteristics of the actual machine can be evaluated), and a dedicated vibrator This is advantageous in that the controller can be used (evaluation is possible up to a high frequency range).
As described above, according to the frequency transfer characteristic evaluation method embodying the present invention, the excitation force corresponding to the frequency from the shaker shakes the entire gear in the translational direction, and passes to the other shaft through the meshed teeth. As a result, rotation unevenness is detected. When the transmission characteristic of the tooth portion is low, vibrations in the vibration exciter are absorbed and speed unevenness at the vibration frequency is not detected. In this way, the frequency transfer characteristic at the tooth portion corresponding to the excitation frequency can be evaluated. As a result, it is possible to evaluate the frequency transfer characteristics of the gears with a simple configuration using a real motor and a vibration exciter without using a high-output motor that places a burden on the environment.

図5は、駆動歯車5側に並進加振を与える実施形態を示す説明図である。図5に示すように、駆動側歯車5を並進方向Aに加振力Fで加振することで、従動軸9にいろいろな付属部品が取り付いている場合でも、付属部品を取り外すことなく評価が行える。画像形成装置の場合、従動軸は感光体ドラムなどの部品が取り付けられており、これを外すと従動軸の慣性項(慣性モーメント)が変わり周波数伝達特性をきちんと評価することができない。また、付けたまま実施すると、感光体ドラムも並進振動するため、周辺機器と接触し破損の恐れがある。従って、このように駆動歯車5側に並進加振を与えることで、これを回避でき、実機に近い状態で周波数伝達特性が評価できる。
図6は、並進方向の加振力Fの内の歯面法線力Faの割合を増やした実施形態を示す説明図である。ここで、並進方向の加振力Fは、歯面法線力Faと歯面摩擦力Fbに振り分けられるので周波数伝達特性評価に必要な前者の割合を増やすことで、加振機を有効に使用できる(図6(a)参照)。後者は摩擦力となり発熱するので、なるべく低減したほうが良い。そこで、図6に示す実施形態では、加振の方向を歯車の噛合っている作用線の方向である圧力角に合わせるようにしている(図6(b)参照)。これにより、発熱を抑えた評価ができ、樹脂歯車など温度で特性が大きく変化する場合(熱膨張による寸法変化、温度による弾性率変化)などに有利である。
図7は、はすば歯車を用いた実施形態を示す説明図である。図7(b)に示すように、はすば歯車の場合、ねじれ角βに応じて歯面法線力Faが軸方向Fcと周方向Fdに振り分けられる。そこで、図7(a)に示すように、この実施形態では、従動軸9方向に対象歯車全体を加振することで、歯面にも振動が加わり、これを利用して周波数伝達特性を評価する。歯車の上下方向などに加振機設置スペースがない場合には、このようにすることで評価が可能となる。ねじれ角βが大きいほど加振機のエネルギーが歯面に伝わりやすいので、βが大きいほど評価に必要な消費エネルギーは小さくて済む。
FIG. 5 is an explanatory view showing an embodiment in which translational excitation is applied to the drive gear 5 side. As shown in FIG. 5, even when various accessory parts are attached to the driven shaft 9 by exciting the drive side gear 5 with the excitation force F in the translational direction A, the evaluation can be performed without removing the accessory parts. Yes. In the case of an image forming apparatus, components such as a photosensitive drum are attached to the driven shaft, and if this is removed, the inertia term (moment of inertia) of the driven shaft changes and the frequency transfer characteristics cannot be evaluated properly. Further, if it is carried out while being attached, the photosensitive drum also vibrates in translation, which may come into contact with peripheral devices and be damaged. Therefore, by giving translational excitation to the drive gear 5 side in this way, this can be avoided and the frequency transfer characteristic can be evaluated in a state close to that of the actual machine.
FIG. 6 is an explanatory diagram showing an embodiment in which the ratio of the tooth surface normal force Fa in the translational force F in the translation direction is increased. Here, since the exciting force F in the translational direction is divided into the tooth surface normal force Fa and the tooth surface friction force Fb, the former can be used effectively by increasing the proportion of the former necessary for frequency transfer characteristic evaluation. (See FIG. 6A). Since the latter becomes a frictional force and generates heat, it is better to reduce it as much as possible. Therefore, in the embodiment shown in FIG. 6, the direction of excitation is adjusted to the pressure angle that is the direction of the line of action with which the gear is engaged (see FIG. 6B). This makes it possible to perform evaluation while suppressing heat generation, and is advantageous in the case where characteristics change greatly with temperature, such as a resin gear (dimensional change due to thermal expansion, elastic modulus change due to temperature).
FIG. 7 is an explanatory view showing an embodiment using a helical gear. As shown in FIG. 7B, in the case of a helical gear, the tooth surface normal force Fa is distributed in the axial direction Fc and the circumferential direction Fd according to the twist angle β. Therefore, as shown in FIG. 7A, in this embodiment, the entire target gear is vibrated in the direction of the driven shaft 9, so that the tooth surface is also vibrated, and this is used to evaluate the frequency transfer characteristic. To do. In the case where there is no space for installing a vibrator in the vertical direction of the gear, the evaluation can be performed in this way. As the twist angle β is larger, the energy of the vibrator is more easily transmitted to the tooth surface. Therefore, the larger β is, the smaller the energy consumption required for the evaluation is.

図8は、評価歯車が取り付く従動軸に摩擦などによる負荷機構としてのブレーキを取り付けた実施形態の構成図である。加振力が大きい場合や加振周波数が高くなった場合、接触している歯車歯面が飛び跳ねて離れる場合(歯面分離)が、ある。これは、そのまま回転ムラとして現れ、伝達特性へ影響が及ぶので回避する必要がある。そこで、この実施形態では、図8に示すように、評価歯車11が取り付く従動軸9に摩擦などによる負荷機構としてのブレーキ41を取り付ける。これにより、加振機での加振力によって歯面同士が飛び跳ねる現象を防止でき、歯面同士が離れて回転ムラ計測精度が低下することを防ぎ、高精度に評価することができる。負荷の大きさは、実機で加わる負荷の大きさに設定し、必要以上に大きくしないこととする。あまり大きくすると、歯車が変形し、振動特性の系が変わるので注意する。
図9は、前記並進方向の加振力を歯車の噛合い力よりも小さく設定した実施形態の説明図である。図9(a)に示すように、ある一定速度で回転している歯車の歯面接触力は、モータからの駆動力と従動軸上の負荷トルクが釣り合っている。この状態で、外部から加振力を加えると歯面接触力が図9(b)のように変化する。この変化を利用して力が伝達されるかどうかを評価して周波数応答を評価している。そのような中で、加振力が噛合っている力(釣り合い力)よりも大きなレベルになると歯面同士が飛び跳ねてしまうので、これを回避するように、この実施形態では、前記並進方向の加振力を歯車の噛合い力よりも小さくなるように設定している。その結果、歯面同士が離れて回転ムラ計測精度が低下することを防ぎ。高精度に評価することができる。
図10は、加振力を直接に軸受けに与える場合の実施形態の説明図である。歯面に周期的な力を与えて周波数特性を評価する場合、図10(a)に示すように、加振機35をベース部43につけるとベース質量の影響を受ける。つまりベース質量が大きい場合、加振機35はベースごと振動させないといけないので大きな出力が要求される。一方、図10(b)のように加振力を直接に軸受け45に与え、その軸受け45を弾性体47で支持することにより、ベース部43の影響は受けなくなり、対象歯車単体(回転軸9)を揺らすことができる。その結果、並進加振力を歯面接触部に効率よく伝達させ、加振機消費電力の軽減を図ることができる。
FIG. 8 is a configuration diagram of an embodiment in which a brake as a load mechanism by friction or the like is attached to a driven shaft to which an evaluation gear is attached. When the excitation force is large or when the excitation frequency becomes high, there are cases where the gear tooth surfaces that are in contact jump and leave (tooth separation). This appears as rotation unevenness as it is and affects the transmission characteristics, so it must be avoided. Therefore, in this embodiment, as shown in FIG. 8, a brake 41 as a load mechanism by friction or the like is attached to the driven shaft 9 to which the evaluation gear 11 is attached. Thereby, it is possible to prevent the tooth surfaces from jumping due to the excitation force of the vibration exciter, to prevent the tooth surfaces from separating from each other and to reduce the rotational unevenness measurement accuracy, and to evaluate with high accuracy. The size of the load is set to the size of the load applied by the actual machine, and it should not be increased more than necessary. If it is too large, the gear will be deformed and the vibration characteristic system will change.
FIG. 9 is an explanatory diagram of an embodiment in which the exciting force in the translation direction is set smaller than the meshing force of the gear. As shown in FIG. 9 (a), the driving force from the motor and the load torque on the driven shaft balance the tooth surface contact force of the gear rotating at a certain constant speed. In this state, when an excitation force is applied from the outside, the tooth surface contact force changes as shown in FIG. The frequency response is evaluated by evaluating whether force is transmitted using this change. Under such circumstances, the tooth surfaces jump out when the excitation force is at a level greater than the meshing force (balance force). Therefore, in this embodiment, in order to avoid this, The excitation force is set to be smaller than the meshing force of the gear. As a result, tooth surfaces are separated from each other and rotation unevenness measurement accuracy is prevented from decreasing. It can be evaluated with high accuracy.
FIG. 10 is an explanatory diagram of an embodiment in the case where the excitation force is directly applied to the bearing. When the frequency characteristics are evaluated by applying a periodic force to the tooth surface, as shown in FIG. 10A, when the vibration exciter 35 is attached to the base portion 43, it is affected by the base mass. That is, when the base mass is large, the vibrator 35 must vibrate together with the base, so a large output is required. On the other hand, as shown in FIG. 10B, an excitation force is directly applied to the bearing 45, and the bearing 45 is supported by the elastic body 47, so that it is not affected by the base portion 43, and the target gear unit (the rotating shaft 9) is not affected. ) Can be shaken. As a result, the translational excitation force can be efficiently transmitted to the tooth surface contact portion, and the power consumption of the shaker can be reduced.

図11は、歯車のバックラッシ量と加振周波数の回転ムラ量をチェックし、それらが等しくなったら、加振力をレベルダウンするように修正するようにした周波数伝達特性評価方法の実施形態のフローチャートである。この周波数伝達特性評価方法の実施形態では、歯車バックラッシは、歯車の諸元からの値(設計値)でも、実測値でも構わない。この値を評価条件入力工程で追加してセットする(ステップ201)。その後、加振周波数、加振力を設定し(ステップ203、205)、評価を行いながら(ステップ207、209)、回転ムラの大きさとバックラッシ量とを比較し(ステップ211)、等しくなったら、加振力が大きすぎる(共振領域)と判断し、加振力を小さく設定する(ステップ205)。
後は、加振周波数での回転ムラが加振力(または加振振幅)で割り算され、加振周波数における伝達特性が算出され(ステップ213)、加振周波数を変更するかチェックが行われ(ステップ215)、評価条件で設定した加振周波数領域を全部終わっていない場合は、再度、ステップ103に戻って、加振周波数をシフトさせて同じ様な評価を進め、全ての加振周波数領域で計測が終わった場合は、加振した各周波数毎の伝達特性をグラフ化などして出力し(ステップ217)、周波数伝達特性評価を終了する。
これによって、歯面の異常振動を回避することができ、その結果、周波数伝達特性を評価中に共振状態によって歯車や装置の破損を防ぐことが可能となる。
図12は、並進加振しない方の軸受け部(駆動軸3)に加速度センサーを取り付け、回転ムラの特性に加味して伝達特性を算出する場合の実施形態の構成図である。図12に示すように、この実施形態では、並進加振しない方の軸受け部(駆動軸3)に加速度センサー49を取り付け、回転ムラの特性に加味して伝達特性を算出するようにしている。従動側の加振振動が歯面を伝わり駆動側に達すると回転ムラと共に振動としても現れてくる。この振動を加速度ピックアップ49で計測し、伝達特性を評価する。このようにすれば、回転ムラだけでは、回転検出器の分解能や応答速度の問題で、加振周波数での応答が計測できない場合でも評価が可能となる。その結果、高周波数帯域までの評価が可能になると共に、微小な加振力の場合にも対応でき、少ない電力で評価が可能となる。
FIG. 11 is a flowchart of an embodiment of the frequency transfer characteristic evaluation method in which the backlash amount of the gear and the rotation unevenness amount of the excitation frequency are checked, and when they become equal, the excitation force is corrected to be lowered. It is. In this embodiment of the frequency transfer characteristic evaluation method, the gear backlash may be a value (design value) from the specifications of the gear or an actual measurement value. This value is added and set in the evaluation condition input step (step 201). Thereafter, the excitation frequency and the excitation force are set (steps 203 and 205) and the evaluation is performed (steps 207 and 209), and the magnitude of the rotation unevenness and the backlash amount are compared (step 211). It is determined that the excitation force is too large (resonance region), and the excitation force is set small (step 205).
Thereafter, the rotation unevenness at the vibration frequency is divided by the vibration force (or vibration amplitude), the transfer characteristic at the vibration frequency is calculated (step 213), and it is checked whether the vibration frequency is changed (step 213). Step 215) If not all of the excitation frequency regions set in the evaluation conditions have been completed, the process returns to Step 103 again, and the same evaluation is performed by shifting the excitation frequency. When the measurement is finished, the transfer characteristic for each frequency that has been vibrated is output as a graph (step 217), and the frequency transfer characteristic evaluation is completed.
As a result, abnormal vibration of the tooth surface can be avoided, and as a result, it is possible to prevent the gears and the device from being damaged by the resonance state during evaluation of the frequency transfer characteristics.
FIG. 12 is a configuration diagram of an embodiment in which an acceleration sensor is attached to a bearing portion (drive shaft 3) that is not subjected to translational excitation, and transfer characteristics are calculated in consideration of rotation unevenness characteristics. As shown in FIG. 12, in this embodiment, an acceleration sensor 49 is attached to the bearing portion (drive shaft 3) that is not subjected to translational excitation, and the transfer characteristic is calculated in consideration of the rotation unevenness characteristic. When the excitation vibration on the driven side is transmitted through the tooth surface and reaches the driving side, it appears as vibration as well as uneven rotation. This vibration is measured by the acceleration pickup 49, and the transfer characteristic is evaluated. In this way, it is possible to evaluate even if the response at the excitation frequency cannot be measured by only the rotation unevenness due to the resolution of the rotation detector and the response speed. As a result, it is possible to evaluate up to a high frequency band, and it is possible to cope with a minute excitation force, and it is possible to evaluate with a small amount of power.

本発明による歯車周波数伝達特性評価装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the gear frequency transfer characteristic evaluation apparatus by this invention. 本発明を実施した周波数伝達特性評価方法のフローチャートである。It is a flowchart of the frequency transfer characteristic evaluation method which implemented this invention. 図2に示した周波数伝達特性評価方法によって評価した結果の一例を示すグラフ図である。It is a graph which shows an example of the result evaluated by the frequency transfer characteristic evaluation method shown in FIG. 従動歯車11に回転方向の加振力(従来技術)を与えた場合と、従動歯車11に並進方向Aの加振力F(本発明)を与えた場合の説明図である。It is explanatory drawing when the excitation force (prior art) of a rotation direction is given to the driven gear 11, and the excitation force F (this invention) of the translation direction A is given to the driven gear 11. 駆動歯車5側に並進加振を与える実施形態を示す説明図である。It is explanatory drawing which shows embodiment which gives translation excitation to the drive gearwheel 5 side. 並進方向の加振力Fの内の歯面法線力Faの割合を増やした実施形態を示す説明図である。It is explanatory drawing which shows embodiment which increased the ratio of the tooth surface normal force Fa in the exciting force F of a translation direction. はすば歯車を用いた実施形態を示す説明図である。It is explanatory drawing which shows embodiment using a helical gear. 評価歯車が取り付く従動軸に摩擦などによる負荷機構としてのブレーキを取り付けた実施形態の構成図である。It is a block diagram of embodiment which attached the brake as a load mechanism by friction etc. to the driven shaft to which an evaluation gear wheel is attached. 前記並進方向の加振力を歯車の噛合い力よりも小さく設定した実施形態の説明図である。It is explanatory drawing of embodiment which set the exciting force of the said translation direction smaller than the meshing force of a gearwheel. 加振力を直接に軸受けに与える場合の実施形態の説明図である。It is explanatory drawing of embodiment in the case of giving an exciting force directly to a bearing. 歯車のバックラッシ量と加振周波数の回転ムラ量をチェックし、それらが等しくなったら、加振力をレベルダウンするように修正するようにした周波数伝達特性評価方法の実施形態のフローチャートである。It is a flowchart of an embodiment of a frequency transfer characteristic evaluation method in which the backlash amount of the gear and the rotation unevenness amount of the excitation frequency are checked, and when they become equal, the excitation force is corrected to be lowered. 並進加振しない方の軸受け部(駆動軸3)に加速度センサーを取り付け、回転ムラの特性に加味して伝達特性を算出する場合の実施形態の構成図である。FIG. 5 is a configuration diagram of an embodiment in a case where an acceleration sensor is attached to a bearing portion (drive shaft 3) that is not subjected to translational excitation, and transmission characteristics are calculated in consideration of rotation unevenness characteristics.

符号の説明Explanation of symbols

1…モータ、3…駆動軸、5…駆動歯車、7…部品、9…従動軸、11…従動歯車、13…CPU、19…キーボード、21…マウス、23…プリンタ、29…カウンタ、31…内部バス、33…評価コンピュータ、35…加振機、37、39…エンコーダ、41…ブレーキ、43…ベース部、47…弾性体、49…加速度ピックアップ   DESCRIPTION OF SYMBOLS 1 ... Motor, 3 ... Drive shaft, 5 ... Drive gear, 7 ... Parts, 9 ... Driven shaft, 11 ... Driven gear, 13 ... CPU, 19 ... Keyboard, 21 ... Mouse, 23 ... Printer, 29 ... Counter, 31 ... Internal bus 33 ... Evaluation computer 35 ... Exciter 37, 39 ... Encoder 41 ... Brake 43 ... Base part 47 ... Elastic body 49 ... Accelerometer

Claims (10)

評価歯車が取り付く従動軸と、前記評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価方法であって、
前記評価歯車と駆動歯車のいずれか一方を並進方向に微小に加振する並進加振工程と、
前記駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出工程と、
その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価工程とから構成されることを特徴とする歯車周波数伝達特性の評価方法。
A rotation detector that generates a rotation signal for each fixed rotation angle is attached to the driven shaft to which the evaluation gear is attached and the drive shaft to which the drive gear meshing with the evaluation gear is attached. A gear frequency transmission characteristic evaluation method for evaluating characteristics,
A translational excitation step of minutely exciting one of the evaluation gear and the drive gear in the translation direction;
A rotation unevenness calculating step for obtaining a rotation transmission error between the drive shaft and the driven shaft;
A gear frequency transfer characteristic evaluation method comprising: a gear frequency transfer characteristic evaluation step for calculating a transfer characteristic from a relationship between an excitation force and a rotation unevenness value at the excitation frequency.
前記並進加振が、前記駆動歯車に加えられることを特徴とする請求項1記載の歯車周波数伝達特性の評価方法。   The gear frequency transfer characteristic evaluation method according to claim 1, wherein the translational excitation is applied to the drive gear. 前記並進加振の方向が、前記歯車の噛合っている作用線の方向である圧力角に合わせられていること特徴とする請求項1あるいは2のいずれかに記載の歯車周波数伝達特性の評価方法。   3. The method for evaluating a gear frequency transmission characteristic according to claim 1, wherein a direction of the translational excitation is set to a pressure angle that is a direction of a line of action with which the gear is engaged. . 前記歯車をはすば歯車とし、並進加振方向を軸方向としてあることを特徴とする請求項1あるいは2のいずれかに記載の歯車周波数伝達特性の評価方法。   The gear frequency transmission characteristic evaluation method according to claim 1, wherein the gear is a helical gear, and the translational excitation direction is an axial direction. 前記評価歯車が取り付けられた従動軸には、摩擦などによる負荷機構が取り付けられていることを特徴とする請求項1から4のいずれかに記載の歯車周波数伝達特性の評価方法。   5. The gear frequency transmission characteristic evaluation method according to claim 1, wherein a load mechanism by friction or the like is attached to the driven shaft to which the evaluation gear is attached. 前記並進方向の加振力は、歯車の噛合い力よりも小さく設定されていることを特徴とする請求項1から5のいずれかに記載の歯車周波数伝達特性の評価方法。   The gear frequency transfer characteristic evaluation method according to any one of claims 1 to 5, wherein the excitation force in the translation direction is set to be smaller than a meshing force of the gear. 前記軸に設けられた軸受けに前記並進加振が施され、その軸受けが弾性体で支持されていることを特徴とする請求項1から6のいずれかに記載の歯車周波数伝達特性の評価方法。   7. The gear frequency transmission characteristic evaluation method according to claim 1, wherein the translational excitation is applied to a bearing provided on the shaft, and the bearing is supported by an elastic body. 前記歯車のバックラッシ量と前記加振の周波数の回転ムラ量が等しくなったら、加振力をレベルダウンすることを特徴とする請求項1から7のいずれかに記載の歯車周波数伝達特性の評価方法。   8. The method for evaluating a gear frequency transmission characteristic according to claim 1, wherein when the backlash amount of the gear and the amount of rotation unevenness of the excitation frequency become equal, the excitation force is reduced in level. . 前記並進加振しない方の軸受け部に加速度センサーを取り付け、回転ムラの特性に加味して伝達特性を算出することを特徴とする請求項1から8のいずれかに記載の歯車周波数伝達特性の評価方法。   The gear frequency transmission characteristic evaluation according to any one of claims 1 to 8, wherein an acceleration sensor is attached to the non-translational vibration-bearing part, and the transmission characteristic is calculated in consideration of the rotation unevenness characteristic. Method. 評価歯車が取り付く従動軸と、前記評価歯車と噛合う駆動歯車が取り付く駆動軸に、それぞれ一定回転角毎に回転信号を発生させる回転検出器を取付け、この信号出力の差分から評価歯車の周波数伝達特性を評価する歯車周波数伝達特性の評価装置であって、
前記評価歯車と駆動歯車のいずれか一方を並進方向に微小に加振する並進加振手段と、
前記駆動軸と従動軸との回転伝達誤差を求める回転ムラ算出手段と、
その加振周波数における加振力と回転ムラ値の関係より伝達特性を算出する歯車周波数伝達特性評価手段とから構成されることを特徴とする歯車周波数伝達特性の評価装置。
A rotation detector that generates a rotation signal for each fixed rotation angle is attached to the driven shaft to which the evaluation gear is attached and the drive shaft to which the drive gear meshing with the evaluation gear is attached. A gear frequency transfer characteristic evaluation device for evaluating characteristics,
Translational excitation means for minutely vibrating either one of the evaluation gear and the drive gear in the translation direction;
Rotation unevenness calculating means for obtaining a rotation transmission error between the drive shaft and the driven shaft;
A gear frequency transfer characteristic evaluation device comprising gear frequency transfer characteristic evaluation means for calculating a transfer characteristic from a relationship between an excitation force and a rotation unevenness value at the excitation frequency.
JP2003396038A 2003-11-26 2003-11-26 Method and apparatus for evaluating gear frequency transmission characteristics Pending JP2005156374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396038A JP2005156374A (en) 2003-11-26 2003-11-26 Method and apparatus for evaluating gear frequency transmission characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396038A JP2005156374A (en) 2003-11-26 2003-11-26 Method and apparatus for evaluating gear frequency transmission characteristics

Publications (1)

Publication Number Publication Date
JP2005156374A true JP2005156374A (en) 2005-06-16

Family

ID=34721645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396038A Pending JP2005156374A (en) 2003-11-26 2003-11-26 Method and apparatus for evaluating gear frequency transmission characteristics

Country Status (1)

Country Link
JP (1) JP2005156374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760259A (en) * 2018-05-04 2018-11-06 西南交通大学 A kind of contact of multifunction vibration and energy transition experiment platform
CN109765024A (en) * 2019-02-26 2019-05-17 西南交通大学 A multifunctional vibration contact testing machine
CN113074853A (en) * 2021-03-17 2021-07-06 重庆青山工业有限责任公司 Method for testing dynamic meshing force of gear pair corresponding to current gear of gearbox
CN115165344A (en) * 2022-06-29 2022-10-11 重庆交通大学 Planetary gear fretting fatigue life test system and test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760259A (en) * 2018-05-04 2018-11-06 西南交通大学 A kind of contact of multifunction vibration and energy transition experiment platform
CN109765024A (en) * 2019-02-26 2019-05-17 西南交通大学 A multifunctional vibration contact testing machine
CN109765024B (en) * 2019-02-26 2020-01-31 西南交通大学 A multifunctional vibration contact testing machine
CN113074853A (en) * 2021-03-17 2021-07-06 重庆青山工业有限责任公司 Method for testing dynamic meshing force of gear pair corresponding to current gear of gearbox
CN115165344A (en) * 2022-06-29 2022-10-11 重庆交通大学 Planetary gear fretting fatigue life test system and test method

Similar Documents

Publication Publication Date Title
JP3912543B2 (en) Rigidity evaluation device and method for bearing device, manufacturing device and method, and bearing device
CN101310427A (en) Stator core looseness diagnosis device and stator core looseness diagnosis method
JPH07303385A (en) Rotary body drive controller
JP2005156374A (en) Method and apparatus for evaluating gear frequency transmission characteristics
US6253620B1 (en) Device and method for measuring dynamic torsional characteristics of a damper assembly
JP2002243590A (en) Gear evaluation method, gear evaluation device and storage medium
JP7222204B2 (en) Machine diagnosis device and machine diagnosis program
JP7222206B2 (en) Machine diagnosis device and machine diagnosis program
JPWO2008072307A1 (en) Balance correction apparatus and method
JP2004117088A (en) Method for measuring bearing characteristic and bearing
JP4525415B2 (en) Engine balance measuring apparatus and method
JP2018186698A (en) Vibration-type driving device, method for controlling vibration-type driving device, program, robot, pan head of imaging device, and image forming apparatus
JP7222205B2 (en) Machine diagnosis device and machine diagnosis program
JP4780321B2 (en) Gear vibration forcing evaluation system
JP2003337083A (en) Analytical method for rotary drive mechanism, memory medium, and analytical system for rotary drive mechanism
JP2004045392A (en) Apparatus for measuring rotation balance of rotor and method therefor
JP3820378B2 (en) Belt drive modeling method
JPH06133122A (en) Image forming output device
JP2000240727A (en) Automatic aligning device
JPH08115041A (en) Automatic inertia adjusting device
JP3258721B2 (en) Image output equipment
JP3258720B2 (en) Image output equipment
JP7631139B2 (en) Equipment abnormal vibration measuring device, abnormal vibration measuring method, and abnormal vibration measuring program
JP2005156326A (en) Helical gear torque irregularity evaluation device and helical gear shape accuracy evaluation device
JP3258722B2 (en) Image output equipment