JP2005152849A - Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus - Google Patents
Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus Download PDFInfo
- Publication number
- JP2005152849A JP2005152849A JP2003398246A JP2003398246A JP2005152849A JP 2005152849 A JP2005152849 A JP 2005152849A JP 2003398246 A JP2003398246 A JP 2003398246A JP 2003398246 A JP2003398246 A JP 2003398246A JP 2005152849 A JP2005152849 A JP 2005152849A
- Authority
- JP
- Japan
- Prior art keywords
- suspended
- filter
- collecting
- particulate collection
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Filtering Of Dispersed Particles In Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
Abstract
【課題】 浮遊微粒子を各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集用フィルタ及びそれを用いた浮遊微粒子捕集方法、浮遊微粒子分析方法、並びに浮遊微粒子捕集装置を提供することを目的とする。
【解決手段】 本発明の浮遊微粒子捕集用フィルタ1は、厚みが0.1μm〜20μmの多孔膜からなり、孔部2の孔径が20μm以下、好ましくは0.1μm〜10μmで、多孔膜の開孔率が45%〜75%である構成を有する。本発明の浮遊微粒子捕集方法は、浮遊微粒子捕集用フィルタ1を風路にセットするセット工程と、風路に気体を吸引する吸引工程と、を備えた構成を有する。本発明の浮遊微粒子分析方法は、微粒子捕集工程と撮像工程と微粒子測定工程とを備えた構成を有する。本発明の浮遊微粒子捕集装置は、筐体と浮遊微粒子捕集用フィルタとフィルタ送り部とを備えた構成を有する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a filter for collecting floating particles that can be easily and quickly classified and collected in a state where the suspended particles are separated, a method for collecting suspended particles, a method for analyzing suspended particles, and a method for collecting suspended particles. An object is to provide a collecting device.
SOLUTION: The suspended particulate collection filter 1 of the present invention comprises a porous membrane having a thickness of 0.1 μm to 20 μm, and the pore diameter of the pore 2 is 20 μm or less, preferably 0.1 μm to 10 μm. It has a configuration with an open area ratio of 45% to 75%. The suspended particulate collection method of the present invention has a configuration including a setting step for setting the suspended particulate collection filter 1 in an air passage and a suction step for sucking gas into the air passage. The suspended particulate analysis method of the present invention has a configuration including a particulate collection step, an imaging step, and a particulate measurement step. The suspended particulate collection device of the present invention has a configuration including a housing, a suspended particulate collection filter, and a filter feed section.
[Selection] Figure 1
Description
本発明は、大気中等に浮遊する固体又は液体の浮遊微粒子を容易に捕集し、捕集された浮遊微粒子の個々の形状や大きさ、浮遊微粒子間の相対的な位置や距離を測定することができる浮遊微粒子捕集用フィルタ及びそれを用いた浮遊微粒子捕集方法、浮遊微粒子分析方法、並びに浮遊微粒子捕集装置に関するものである。 The present invention easily collects solid or liquid suspended fine particles floating in the atmosphere, etc., and measures the shape and size of the collected suspended fine particles and the relative position and distance between the suspended fine particles. The present invention relates to a filter for collecting floating particles, a method for collecting suspended particles, a method for analyzing suspended particles, and a device for collecting suspended particles.
従来、大気汚染の原因となる物質としては、炭酸ガスやNOx、SOx等のガス状化学物質が重視されてきたが、これらは基本的に大気中の濃度の平均値として把握されてきた。また、大気汚染の原因となる他の物質としては煤塵や粉塵等のガス状でない物質もあり、これらも捕集された後分析され大気中の濃度の平均値として測定されてきた。しかしながら、平均値測定では大気汚染の原因を正確に把握するのは不十分であり、酸性雨の例を考えても、実際は雨になる以前のミストの状態が最もpHが低い。
なお、生態に影響を与える汚染物質は、上述した酸性のミストやシックハウス症候群の原因となるホルムアルデヒド等の揮発性化学物質等の化学物質を含む微量な液体の浮遊微粒子か、海塩粒子や黄砂、金属系酸化物、花粉、塵埃等の固体の浮遊微粒子であることが多い。したがって、大気中に浮遊している浮遊微粒子の個々の大きさや形状、或いは含まれる化学物質の成分の性質を測定して検知することが極めて重要である。しかしながら、従来、このような大気中に浮遊している液体又は固体の浮遊微粒子の個々の大きさや形状或いは性質等を測定し分析して、その大気中のある平面における二次元分布や粒径分布、またその二次元分布や粒径分布の時間的な変化を簡便に求める手法が確立されていなかった。
個々の浮遊微粒子を対象とする従来の分析方法としては、大きく分けて、大気等の雰囲気中に浮遊する微粒子を一旦フィルタ等に捕集し、捕集された個々の微粒子を分析する方法と、大気等の雰囲気中に浮遊する浮遊微粒子を浮遊状態のままで連続的に分析する方法とがある。浮遊する微粒子を一旦フィルタ等に捕集して分析する分析方法としては、雰囲気中に浮遊する微粒子を一旦フィルタ等に捕集し、捕集された個々の微粒子をX線マイクロアナリシスや発光分光分析、二次イオン質量分析法、レーザマイクロプローブ質量分析法等により分析する方法が用いられている。発光分光分析により分析を行う場合には、フィルタ等に捕集された個々の浮遊微粒子を順次取り出してプラズマ発光させ、その強度および発光波長に基づいて大きさおよび成分を測定すると共に、その取り出し回数から粒子数を算出している。
これに対し、大気等の雰囲気中に浮遊する浮遊微粒子を浮遊状態のままで連続的に分析する分析方法としては、例えば、大気等の雰囲気中に浮遊する個々の浮遊微粒子をイオン化加熱源に衝突させ、この衝突により生じたイオン群を質量分析計に導入して分析する方法が知られている。また、雰囲気中にある浮遊微粒子をキャピラリやノズル等を介して真空中に引き込むと共に、引き込まれた個々の浮遊微粒子をエキシマレーザで励起させてレーザ脱離によりイオン化し、イオン化された浮遊微粒子の粒径や成分を飛行時間型質量分析計により分析する方法や、雰囲気中に浮遊する浮遊微粒子を高周波誘導結合プラズマにより分解、励起及びイオン化し、イオン化された浮遊微粒子の成分を四重極質量分析計等により分析する方法が知られている。また、1〜100nm程度の粒径を有するnm粒子やクラスタ等の微粒子について、その粒径や粒子数、成分等を定量的に求める分析方法も考案され、特許文献1に開示されている。
Conventionally, gaseous chemical substances such as carbon dioxide, NOx, and SOx have been emphasized as substances that cause air pollution, but these have been basically grasped as average values of concentrations in the atmosphere. In addition, other substances that cause air pollution include non-gaseous substances such as dust and dust, which have been collected and analyzed and measured as an average value in the atmosphere. However, it is insufficient to accurately determine the cause of air pollution in the average value measurement, and even in the case of acid rain, the mist state before rain actually has the lowest pH.
The pollutants that affect the ecology are trace liquid suspended particles containing chemical substances such as the above-mentioned acidic mist and volatile chemicals that cause sick house syndrome, sea salt particles, yellow sand, It is often a solid suspended fine particle such as a metal oxide, pollen or dust. Therefore, it is extremely important to measure and detect the individual size and shape of the suspended fine particles suspended in the atmosphere, or the properties of the chemical substances contained therein. However, conventionally, the individual size, shape, or properties of liquid or solid suspended fine particles suspended in the atmosphere are measured and analyzed to obtain a two-dimensional distribution or particle size distribution in a plane in the atmosphere. In addition, a method for easily obtaining the temporal change of the two-dimensional distribution and particle size distribution has not been established.
As a conventional analysis method for individual suspended fine particles, roughly divided, a method of collecting fine particles floating in an atmosphere such as air once in a filter, etc., and analyzing the collected individual fine particles, There is a method of continuously analyzing suspended fine particles suspended in an atmosphere such as the air in a suspended state. The analysis method for collecting and analyzing floating particles once in a filter, etc., is to collect the fine particles floating in the atmosphere once in a filter, and then use X-ray microanalysis or emission spectroscopic analysis for the collected individual particles. , Secondary ion mass spectrometry, laser microprobe mass spectrometry, and the like are used. When analyzing by emission spectroscopic analysis, each suspended fine particle collected by a filter or the like is sequentially taken out to cause plasma emission, and the size and components are measured based on the intensity and emission wavelength, and the number of extractions is taken. The number of particles is calculated from
On the other hand, as an analysis method for continuously analyzing suspended fine particles suspended in an atmosphere such as the air in a suspended state, for example, each suspended particulate suspended in an atmosphere such as the atmosphere collides with an ionization heating source. In addition, a method is known in which an ion group generated by this collision is introduced into a mass spectrometer for analysis. In addition, airborne fine particles in the atmosphere are drawn into vacuum through capillaries, nozzles, etc., and the individual airborne fine particles that are drawn in are excited by excimer laser and ionized by laser desorption. A method of analyzing the diameter and components with a time-of-flight mass spectrometer, and a quadrupole mass spectrometer that decomposes, excites, and ionizes suspended fine particles suspended in the atmosphere with high-frequency inductively coupled plasma, A method of analyzing by, for example, is known. An analysis method for quantitatively determining the particle size, the number of particles, components, etc. of fine particles such as nm particles and clusters having a particle size of about 1 to 100 nm has been devised and disclosed in Patent Document 1.
また、特願2003−97145号には「開口部を有する筐体内に配設された帯状の微粒子捕集体の所定領域を浮遊微粒子を含む気体中に所定時間暴露させて浮遊微粒子を捕集し、その所定領域を撮像し、撮像画像を画像処理して浮遊微粒子の形状、大きさ、性質、又は浮遊微粒子間の相対的な位置又は距離を測定する浮遊微粒子分析方法、及びそれに用いられる微粒子捕集装置」が記載されている。なお、特願2003−97145号に記載された微粒子分析方法において用いられる微粒子捕集体としては、ポリスチレン、ポリブタジエン、ポリエチレン等の合成樹脂性のフィルムや、ガラス繊維フィルタや石英繊維フィルタ、フッ素樹脂フィルタ等のフィルタを用いることが記載されている。
しかしながら、上記従来の技術では、以下のような課題を有していた。
(1)上述した従来の分析方法では、いずれも浮遊微粒子を一旦捕集し、さらに捕集した浮遊微粒子を気体や液体中で分散又はイオン化等により分離して分析するため、液体の浮遊微粒子を測定する場合はイオン化の際等に物質が溶け込んだ浮遊微粒子の溶媒が蒸発して浮遊微粒子の粒径が小さくなったり、その物質の濃度が高くなったりして正確に測定することができず液体微粒子の測定には適さないという課題を有していた。
(2)微粒子を捕集した際に、捕集された浮遊微粒子の種類によっては微粒子同士が反応してしまい大気中での浮遊状態とは異なる化合物になる可能性があり正確な分析を行うことができないという課題を有していた。
(3)大型且つ高価な分析装置を用いる必要があり、このため浮遊微粒子を捕集する現場において簡便且つ迅速に大気中の浮遊微粒子の分析を連続的に行うことが困難であり、建築構造物等の長寿命化対策や生態系への影響対策のために不可欠な局所的な大気中の浮遊微粒子に関わる環境データを得ることが困難であるという課題を有していた。
(4)特開2003−97145号に記載の微粒子捕集体では、ガラス繊維フィルタや石英繊維フィルタ、フッ素樹脂フィルタ等のフィルタを用いた場合であっても、捕集する浮遊微粒子を正確に分級して捕集することができ難いという課題を有していた。これは、フィルタ繊維の隙間に微粒子が入り込むため、捕集したままの状態で撮像して画像解析する際にフィルタ繊維と分離して解析することが困難であること、繊維の狭い隙間で微粒子の凝集が促進されるため解析時に微粒子同士の分離解析が困難になることによる。
However, the above conventional techniques have the following problems.
(1) In any of the conventional analysis methods described above, the suspended fine particles are once collected, and the collected suspended fine particles are dispersed and analyzed in gas or liquid by dispersion or ionization. When measuring, the solvent of suspended fine particles in which the substance is dissolved during ionization etc. evaporates, and the particle size of the suspended fine particles becomes small or the concentration of the substance becomes high, so it cannot be measured accurately. There was a problem that it was not suitable for the measurement of fine particles.
(2) When collecting fine particles, depending on the type of the collected floating fine particles, the fine particles may react with each other, resulting in a compound that is different from the floating state in the atmosphere. Had the problem of not being able to.
(3) It is necessary to use a large and expensive analyzer. Therefore, it is difficult to continuously and quickly analyze suspended particulates in the atmosphere at the site where suspended particulates are collected. It was difficult to obtain environmental data related to local suspended particles in the atmosphere, which is indispensable for measures such as prolonging the lifespan and other effects on ecosystems.
(4) In the fine particle collector described in Japanese Patent Application Laid-Open No. 2003-97145, even if a filter such as a glass fiber filter, a quartz fiber filter, or a fluororesin filter is used, the collected fine particles are classified accurately. The problem was that it was difficult to collect. This is because the fine particles enter the gaps between the filter fibers, so that it is difficult to separate and analyze the filter fibers when capturing and analyzing the image as it is collected. Because aggregation is promoted, separation analysis of fine particles becomes difficult during analysis.
本発明は上記従来の課題を解決するもので、浮遊微粒子を各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集用フィルタを提供することを目的とする。
また、本発明は上記従来の課題を解決するもので、浮遊微粒子を各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集方法を提供することを目的とする。
さらに、本発明は上記従来の課題を解決するもので、浮遊微粒子を捕集する現場において浮遊微粒子を簡便且つ迅速に分級して捕集することができ、個々の大きさや形状、性質、或いは個々の微粒子間の相対的な位置や微粒子間の距離等を正確に測定することができる浮遊微粒子分析方法を提供することを目的とする。
また、本発明は上記従来の課題を解決するもので、浮遊微粒子を捕集する現場において浮遊微粒子を簡便且つ迅速に分級して捕集することができると共に浮遊微粒子の捕集を連続して行うことができる浮遊微粒子捕集装置を提供することを目的とする。
The present invention solves the above-described conventional problems, and an object of the present invention is to provide a filter for collecting suspended particles that can be easily and quickly classified and collected in a state where the suspended particles are separated from each other.
Another object of the present invention is to solve the above-described conventional problems, and to provide a method for collecting suspended particles that can be easily and quickly classified and collected in a state where the suspended particles are separated from each other.
Furthermore, the present invention solves the above-mentioned conventional problems, and can easily and quickly classify and collect suspended particulates at a site where suspended particulates are collected, and can be collected in individual sizes, shapes, properties, or individual It is an object of the present invention to provide a method for analyzing suspended particles that can accurately measure the relative position between the particles and the distance between the particles.
In addition, the present invention solves the above-described conventional problems, and can easily and quickly classify and collect suspended particulates at a site where suspended particulates are collected and continuously collect suspended particulates. It is an object of the present invention to provide a floating particulate collection device that can perform the above-mentioned.
上記課題を解決するために本発明の浮遊微粒子捕集用フィルタ及びそれを用いた浮遊微粒子捕集方法、浮遊微粒子分析方法、並びに浮遊微粒子捕集装置は、以下の構成を有している。
本発明の請求項1に記載の浮遊微粒子捕集用フィルタは、疎水性有機溶媒に溶解する高分子化合物により形成された多数の孔部を有する厚みが0.1μm〜20μmの多孔膜からなり、前記孔部の孔径が20μm以下、好ましくは0.1μm〜10μmで、前記多孔膜の開孔率が45%〜75%である構成を有している。
In order to solve the above-described problems, a suspended particulate collection filter, a suspended particulate collection method, a suspended particulate analysis method, and a suspended particulate collection apparatus using the same have the following configurations.
The filter for collecting suspended particulates according to claim 1 of the present invention comprises a porous film having a thickness of 0.1 μm to 20 μm having a large number of pores formed of a polymer compound dissolved in a hydrophobic organic solvent, The pore diameter of the pores is 20 μm or less, preferably 0.1 μm to 10 μm, and the porosity of the porous membrane is 45% to 75%.
この構成により、以下のような作用を有する。
(1)浮遊微粒子捕集用フィルタが多数の孔部を有する多孔膜からなるので、各々の孔部で浮遊微粒子を個別に捕捉し、各々分離した状態で捕集することができる。
(2)孔部の孔径が20μm以下、好ましくは0.1μm〜10μmに形成されているので、大気等の気体中に浮遊する海塩粒子や黄砂、金属系酸化物、硫黄酸化物、花粉、塵埃、バクテリア等の浮遊微粒子を正確に分級して捕集することができる。特に、捕集対象となる浮遊微粒子の粒径分布は7μm付近及び0.5μm付近にピークがあるため、浮遊微粒子の捕集に好適に用いることができる。
(3)多孔膜の開孔率が45%〜75%となるように形成されているので、浮遊微粒子を含む大気等の気体を通過させながら浮遊微粒子を正確に分級して捕集することができ、孔径より小さい粒径の浮遊微粒子が引っ掛かったり目詰まりが生じたりし難い。
(4)孔部の孔径を20μm以下、好ましくは0.1μm〜10μmの範囲内で適宜設定することにより、種々の浮遊微粒子をその粒径毎に分級して捕集することができる。
(5)多孔膜に規則的に整列して形成された孔部に浮遊微粒子を捕捉するため、浮遊微粒子を補足した孔部の検知が容易であり、例えば、塞がれた孔部をカウントすることで微粒子の個数のカウントが迅速にできる。また、捕捉した浮遊微粒子の位置が孔部の位置と一致するため正確に検知でき、詳細解析時のプローブの位置決めも容易になる。
This configuration has the following effects.
(1) Since the filter for collecting floating particulates is composed of a porous film having a large number of pores, the suspended particulates can be individually captured at each pore and collected in a separated state.
(2) Since the hole diameter of the hole is 20 μm or less, preferably 0.1 μm to 10 μm, sea salt particles or yellow sand floating in a gas such as the atmosphere, metal oxide, sulfur oxide, pollen, It is possible to accurately classify and collect airborne particles such as dust and bacteria. In particular, since the particle size distribution of the floating fine particles to be collected has peaks near 7 μm and 0.5 μm, it can be suitably used for collecting the floating fine particles.
(3) Since the porosity of the porous film is 45% to 75%, it is possible to accurately classify and collect suspended fine particles while passing a gas such as air containing suspended fine particles. The suspended fine particles having a particle size smaller than the pore size are not easily caught or clogged.
(4) By appropriately setting the hole diameter of the hole within a range of 20 μm or less, preferably 0.1 μm to 10 μm, various suspended fine particles can be classified and collected for each particle diameter.
(5) Since suspended particles are trapped in the holes formed regularly aligned with the porous film, it is easy to detect the holes supplemented with the suspended particles. For example, the number of blocked holes is counted. This makes it possible to quickly count the number of fine particles. Further, since the position of the trapped suspended fine particles coincides with the position of the hole, it can be detected accurately, and the probe can be easily positioned during the detailed analysis.
ここで、疎水性有機溶媒としては、ベンゼンやトルエン、p−キシレン等の芳香族炭化水素、モノクロロベンゼンやo−ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、クロロホルムや四塩化炭素、塩化メチレン、トリクロロエチレン、パークロロエチレン等のハロゲン化脂肪族炭化水素、ペンタンやヘキサン、ヘプタン、オクタン等の脂肪族炭化水素等が用いられる。
高分子化合物としては、ポリスチレンやポリメチルメタクリレート、ポリブチルメタクリレート等の汎用性高分子や、ポリスルホンやポリカーボネートなどのエンジニアリングプラスチック、ポリイオンコンプレックスや熱可塑性エラストマー(例えば、1,4−ブタジエンポリマー等)、ポリ乳酸、ポリヒドロキシ酪酸、グリコール酸−乳酸共重合体等の生分解性高分子、耐熱性及び耐薬品性を有するポリイミド等が用いられる。高分子化合物としては上述した疎水性有機溶媒に溶解するものであれば種々のものを用いることができる。
多孔膜の作成方法としては、上述したような高分子化合物を疎水性有機溶媒に溶解した溶液を基板上に流延し、高湿度空気を吹き付け、疎水性有機溶媒を蒸発させる方法が用いられる。なお、高分子化合物と共に両親媒性高分子化合物を疎水性有機溶媒に溶解してもよい。高分子化合物と両親媒性高分子化合物との混合比としては重量比で例えば5:1〜20:1が用いられる。両親媒性高分子化合物としては、両親媒性ポリアクリルアミド等が用いられる。
多孔膜の厚さとしては0.1μm〜20μmに形成される。
孔部の孔径としては20μm以下、好ましくは0.1μm〜10μmが用いられる。孔部の孔径が10μmより大きくなるにつれ、粒径の大きな浮遊微粒子しか捕集できなくなり、捕集できる浮遊微粒子が限定され、孔径が20μmより大きくなるとその傾向が著しくなるため好ましくない。
多孔膜の開孔率としては45%〜75%が用いられる。多孔膜の開孔率が45%より小さくなるにつれ孔径より小さい粒径の浮遊微粒子が引っ掛かったり目詰まりが生じたりするため好ましくない。多孔膜の開孔率が75%より大きくなるにつれフィルタとしての強度及び耐久性に欠けるため好ましくない。
なお、ガラス繊維フィルタや石英繊維フィルタ等をバックアップフィルタとし、その上面に1乃至複数の多孔膜を貼着して浮遊微粒子捕集用フィルタを形成することもできる。ガラス繊維フィルタや石英繊維フィルタと多孔膜、或いは多孔膜同士を貼着する方法としては、熱圧着、融着、接着剤による接着等が用いられる。
Here, examples of the hydrophobic organic solvent include aromatic hydrocarbons such as benzene, toluene, and p-xylene, halogenated aromatic hydrocarbons such as monochlorobenzene, o-dichlorobenzene, and trichlorobenzene, chloroform, carbon tetrachloride, and chloride. Halogenated aliphatic hydrocarbons such as methylene, trichlorethylene, and perchloroethylene, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane are used.
Examples of the polymer compound include general-purpose polymers such as polystyrene, polymethyl methacrylate, and polybutyl methacrylate, engineering plastics such as polysulfone and polycarbonate, polyion complexes, thermoplastic elastomers (eg, 1,4-butadiene polymer), poly Biodegradable polymers such as lactic acid, polyhydroxybutyric acid, glycolic acid-lactic acid copolymer, polyimide having heat resistance and chemical resistance, and the like are used. As the polymer compound, various compounds can be used as long as they are soluble in the above-described hydrophobic organic solvent.
As a method for producing the porous film, a method in which a solution in which the above-described polymer compound is dissolved in a hydrophobic organic solvent is cast on a substrate, sprayed with high-humidity air, and the hydrophobic organic solvent is evaporated is used. Note that the amphiphilic polymer compound may be dissolved in the hydrophobic organic solvent together with the polymer compound. As a mixing ratio of the polymer compound and the amphiphilic polymer compound, a weight ratio of, for example, 5: 1 to 20: 1 is used. As the amphiphilic polymer compound, amphiphilic polyacrylamide or the like is used.
The thickness of the porous film is 0.1 μm to 20 μm.
The hole diameter is 20 μm or less, preferably 0.1 μm to 10 μm. As the hole diameter of the hole portion becomes larger than 10 μm, only the suspended fine particles having a large particle diameter can be collected, and the suspended fine particles that can be collected are limited. When the pore diameter is larger than 20 μm, the tendency becomes remarkable, which is not preferable.
The porosity of the porous film is 45% to 75%. As the open area ratio of the porous film becomes smaller than 45%, suspended fine particles having a particle diameter smaller than the pore diameter are caught or clogged, which is not preferable. As the open area ratio of the porous film becomes larger than 75%, the strength and durability as a filter are lacking, which is not preferable.
In addition, a glass fiber filter, a quartz fiber filter, etc. can be used as a backup filter, and a filter for collecting suspended particles can be formed by attaching one or more porous films on the upper surface thereof. As a method for adhering the glass fiber filter or the quartz fiber filter to the porous film or the porous films, thermocompression bonding, fusion, bonding with an adhesive, or the like is used.
また、多孔膜又は分離多孔膜は帯状に形成されることが好ましい。これにより、帯状の多孔膜又は分離多孔膜を例えば一対に支持軸に両端部を巻着し、支持軸を回動させて所定領域を送り出すことができ、浮遊微粒子を含んだ気体に開口した開口部に新しい領域を順次送り出して連続して浮遊微粒子を捕集することができ、浮遊微粒子の時間的な変動が把握できる。帯状に形成する方法としては、多孔膜を作成する際に、ベルト状の基板を用い、高分子化合物を疎水性有機溶媒に溶解した溶液を流延した基板を送りながら、続く工程で高湿度空気を吹き付け疎水性有機溶媒を蒸発させる連続プロセスを利用することで、帯状の浮遊微粒子捕集用フィルタを得ることができる。或いは、帯状のガラス繊維フィルタ等からなる支持フィルタに矩形もしくは円形の多孔膜を等間隔に接着することで、帯状の浮遊微粒子捕集用フィルタを得ることができる。 The porous membrane or the separation porous membrane is preferably formed in a band shape. Thus, for example, a pair of band-shaped porous membranes or separation porous membranes can be wound around a support shaft at both ends, and the support shaft can be rotated to send out a predetermined region, and an opening opened to a gas containing suspended fine particles It is possible to sequentially collect new suspended areas and collect suspended particles continuously, and to grasp temporal fluctuations of suspended particles. As a method for forming the belt, a belt-shaped substrate is used when creating a porous film, and a substrate in which a solution in which a polymer compound is dissolved in a hydrophobic organic solvent is fed, and high humidity air is used in the subsequent process. By using a continuous process of spraying and evaporating the hydrophobic organic solvent, it is possible to obtain a band-shaped filter for collecting floating particles. Alternatively, by adhering a rectangular or circular porous film to a support filter made of a band-shaped glass fiber filter or the like at equal intervals, a band-shaped floating particulate collection filter can be obtained.
本発明の請求項2に記載の浮遊微粒子捕集用フィルタは、請求項1に記載の発明において、前記孔部が上下に開口部を有する球形又は多角形の空洞部からなり、前記多孔膜が、前記球形又は多角形の空洞部が最密構造で充填された形状に形成された構成を有している。 The filter for collecting suspended particulates according to claim 2 of the present invention is the filter according to claim 1, wherein the hole comprises a spherical or polygonal cavity having openings above and below, and the porous membrane comprises The spherical or polygonal cavity is formed into a shape filled with a close-packed structure.
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)高分子化合物を疎水性有機溶媒に溶解した溶液を基板上に流延し、高湿度空気を吹き付け、疎水性有機溶媒を蒸発させることにより形成することができる。
(2)孔部が上下に開口部を有する球形又は多角形の空洞部からなり、多孔膜が空洞部が最密構造で充填された形状に形成されているので、多孔膜がその厚さ方向の中間部で切断し易く、上下に容易に切断分離することができる。
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) It can be formed by casting a solution in which a polymer compound is dissolved in a hydrophobic organic solvent on a substrate, blowing high-humidity air, and evaporating the hydrophobic organic solvent.
(2) Since the hole is composed of a spherical or polygonal cavity having openings at the top and bottom, and the porous film is formed in a shape in which the cavity is filled with a close-packed structure, the porous film has a thickness direction. It is easy to cut at the middle part of the above, and can be easily cut and separated up and down.
ここで、疎水性有機溶媒の種類を適宜選択したり、多孔膜を成膜した後、延伸させたりすることにより、孔部の形状を球形だけでなく多角形や太鼓状、樽状等の形状に形成することができる。 Here, by selecting the type of hydrophobic organic solvent as appropriate or by forming a porous film and then stretching it, the shape of the hole is not only spherical, but also polygonal, drum-shaped, barrel-shaped, etc. Can be formed.
本発明の請求項3に記載の浮遊微粒子捕集用フィルタは、請求項2に記載の発明において、前記多孔膜を厚み方向から上下に切断分離して形成された分離多孔膜からなる構成を有している。 According to a third aspect of the present invention, there is provided a filter for collecting suspended particulates according to the second aspect of the present invention, comprising a separation porous membrane formed by cutting and separating the porous membrane in the thickness direction from top to bottom. doing.
この構成により、請求項2の作用に加え、以下のような作用を有する。
(1)多孔膜を上下に切断分離して形成された分離多孔膜からなるので、厚さを薄くすることができ、重ね合わせて用いても厚肉にならず複数重ね合わせて用いることができる。孔部の孔径の異なる分離多孔膜を2乃至複数重ね合わせることにより多段階の分級ができ、孔部の孔径が同一の分離多孔膜を各々の孔部の中心をずらして2乃至複数重ね合わることにより、孔部の孔径より小さい粒径の浮遊微粒子を捕捉できる。
With this configuration, in addition to the operation of the second aspect, the following operation is provided.
(1) Since it consists of a separation porous membrane formed by cutting and separating the porous membrane up and down, the thickness can be reduced, and even when used in a stacked manner, it can be used in a stacked manner without becoming thick. . By separating two or more separation porous membranes having different pore diameters, multi-stage classification can be performed, and two or more separation porous membranes having the same pore diameter are displaced and the center of each pore portion is shifted. Thus, suspended fine particles having a particle diameter smaller than the hole diameter of the hole can be captured.
本発明の請求項4に記載の浮遊微粒子捕集用フィルタは、請求項1乃至3の内いずれか1項に記載の発明であって、前記孔部の少なくとも内周部が正又は負の極性を有する構成を有している。 The filter for collecting suspended particulates according to claim 4 of the present invention is the filter according to any one of claims 1 to 3, wherein at least the inner periphery of the hole has a positive or negative polarity. It has the composition which has.
この構成により、請求項1乃至3の内いずれか1項の作用に加え、以下のような作用を有する。
(1)孔部の少なくとも内周部が正又は負の極性を有するので、孔径より大きい粒径の浮遊微粒子を異なる極性に極性化させて、或いは浮遊微粒子が分極して、孔部に吸着し易くしたり、孔径より小さい粒径の浮遊微粒子を同極性に極性化させて孔部の周囲に引っ掛かり難くしたりでき、分級精度を向上できる。
With this configuration, in addition to the operation of any one of claims 1 to 3, the following operation is provided.
(1) Since at least the inner periphery of the hole has a positive or negative polarity, the suspended fine particles having a particle size larger than the pore diameter are polarized to different polarities, or the suspended fine particles are polarized and adsorbed to the holes. It is possible to make it easier or to polarize suspended fine particles having a particle size smaller than the pore diameter to the same polarity to make it difficult to be caught around the pores, thereby improving classification accuracy.
ここで、孔部の内周部を含む多孔膜の表面に正又は負の極性を付与する方法としては、浮遊微粒子捕集用フィルタが溶解しない溶媒にカチオン高分子或いはアニオン高分子を溶解し、その溶液に浮遊微粒子捕集用フィルタ1を浸漬してディップコーティングする方法や、多孔膜の素材となる高分子化合物として極性基を有する高分子化合物を用いる方法等が用いられる。なお、前者においてカチオン高分子やアニオン高分子を適宜選択することにより、極性を付与するだけでなく、親水性や疎水性を付与することもできる。 Here, as a method for imparting a positive or negative polarity to the surface of the porous membrane including the inner peripheral portion of the pore, the cationic polymer or the anionic polymer is dissolved in a solvent in which the filter for collecting suspended particles is not dissolved, For example, a method of dip-coating by immersing the filter 1 for collecting suspended fine particles in the solution, a method of using a polymer compound having a polar group as a polymer compound serving as a material for the porous film, and the like are used. In the former case, by appropriately selecting a cationic polymer or an anionic polymer, not only can polarity be imparted, but also hydrophilicity and hydrophobicity can be imparted.
本発明の請求項5に記載の浮遊微粒子捕集用フィルタは、請求項1乃至4の内いずれか1項に記載の発明であって、前記孔部の孔径の異なる前記多孔膜又は前記分離多孔膜が2乃至複数重ね合わされて形成された構成を有している。 The filter for collecting suspended particulates according to claim 5 of the present invention is the filter according to any one of claims 1 to 4, wherein the porous membrane or the separated pores having different pore diameters are used. It has a configuration in which two or more films are formed to overlap each other.
この構成により、請求項1乃至4の内いずれか1項の作用に加え、以下のような作用を有する。
(1)孔部の孔径の異なる多孔膜又は分離多孔膜を2乃至複数重ね合わせ、上段の多孔膜又は分離多孔膜として孔部の孔径が例えば10μmのもの用い、下段の多孔膜又は分離多孔膜として孔部の孔径が上段より小さい例えば4μmのものを用いることにより、上段の多孔膜で粒径が10μm以上の浮遊微粒子を分級して捕集し、下段の多孔膜で粒径が4μm以上の浮遊微粒子を分級して捕集でき、多段階の分級ができ、粒径分布を測定することができる。
With this configuration, in addition to the operation of any one of claims 1 to 4, the following operation is provided.
(1) Two or more porous membranes or separation porous membranes having different pore diameters are overlapped, and an upper porous membrane or separation porous membrane having a pore diameter of, for example, 10 μm is used, and a lower porous membrane or separation porous membrane is used. By using, for example, a 4 μm pore having a pore diameter smaller than that of the upper stage, floating particles having a particle diameter of 10 μm or more are classified and collected by the upper porous film, and the particle diameter of 4 μm or more is collected by the lower porous film. Airborne particles can be classified and collected, multistage classification can be performed, and particle size distribution can be measured.
本発明の請求項6に記載の浮遊微粒子捕集用フィルタは、請求項1乃至4の内いずれか1項に記載の発明であって、前記孔部の孔径が同一の前記多孔膜又は前記分離多孔膜が前記孔部の中心をずらして2乃至複数重ね合わされて形成された構成を有している。 The filter for collecting suspended particulates according to claim 6 of the present invention is the invention according to any one of claims 1 to 4, wherein the porous membrane or the separation having the same hole diameter is used. The porous membrane has a configuration in which two or more porous membranes are overlapped while shifting the center of the hole.
この構成により、請求項1乃至4の内いずれか1項の作用に加え、以下のような作用を有する。
(1)孔部の孔径が同一の多孔膜又は分離多孔膜を各々の孔部の中心をずらして2乃至複数重ね合わることにより、孔部の孔径より小さい粒径の浮遊微粒子を捕捉でき、中心をずらす程度を適宜可変することにより、種々の粒径の浮遊微粒子を分級捕集できる。
With this configuration, in addition to the operation of any one of claims 1 to 4, the following operation is provided.
(1) Two or more porous membranes or separation porous membranes having the same pore diameter can be trapped by shifting the center of each pore, thereby trapping suspended fine particles having a particle size smaller than the pore diameter of the pore. By varying the degree of shifting appropriately, suspended fine particles having various particle sizes can be classified and collected.
本発明の請求項7に記載の浮遊微粒子捕集方法は、請求項1乃至6の内いずれか1項に記載の浮遊微粒子捕集用フィルタを風路にセットするセット工程と、浮遊微粒子を含む気体を前記風路に吸引する吸引工程と、を備えた構成を有している。 The suspended particulate collection method according to claim 7 of the present invention includes a setting step of setting the suspended particulate collection filter according to any one of claims 1 to 6 in an air passage, and suspended particulates. And a suction step for sucking gas into the air passage.
この構成により、以下のような作用を有する。
(1)セット工程において風路にセットした浮遊微粒子捕集用フィルタに吸引工程において浮遊微粒子を含む気体を通過させることで、浮遊微粒子をフィルタの孔部に各々分離した状態で簡便且つ迅速に分級して捕集することができる。
This configuration has the following effects.
(1) By passing a gas containing suspended fine particles in the suction process through a filter for collecting suspended particulates set in the air passage in the setting process, the suspended particulates are classified easily and quickly in a state where the suspended particulates are separated into the pores of the filter. And can be collected.
ここで、吸引工程おける吸引手段としては風路の下流に配設されたマイクロポンプや吸引ポンプ等が用いられる。なお、吸引手段による単位時間あたりの大気の吸引流量及び吸引時間を適宜設定することにより、吸引した気体量すなわちフィルタを通過した気体量を算出でき、この気体量と捕集された浮遊微粒子の個数や種類から捕集場所における大気汚染の程度や大気汚染物質等を測定することができる。 Here, as a suction means in the suction process, a micro pump, a suction pump or the like disposed downstream of the air passage is used. In addition, by appropriately setting the suction flow rate and suction time of the air per unit time by the suction means, it is possible to calculate the amount of sucked gas, that is, the amount of gas that has passed through the filter, and this amount of gas and the number of trapped fine particles collected It is possible to measure the degree of air pollution and air pollutants at the collection site based on the type and type.
本発明の請求項8に記載の浮遊微粒子分析方法は、請求項1乃至6の内いずれか1項に記載の浮遊微粒子捕集用フィルタの所定領域に浮遊微粒子を含む気体を通過させ前記浮遊微粒子を分級して捕集する微粒子捕集工程と、前記浮遊微粒子が捕集された前記所定領域を撮像する撮像工程と、前記撮像工程において撮像された撮像画像を画像処理して前記浮遊微粒子の形状、大きさ、性質、又は前記浮遊微粒子間の相対的な位置或いは距離を測定する微粒子測定工程と、を備えた構成を有している。 The method for analyzing suspended particulates according to claim 8 of the present invention is such that a gas containing suspended particulates is passed through a predetermined region of the filter for collecting suspended particulates according to any one of claims 1 to 6. A particulate collection step for classifying and collecting the particles, an imaging step for imaging the predetermined area where the suspended particulates are collected, and a shape of the suspended particulates by performing image processing on the captured image captured in the imaging step And a fine particle measuring step for measuring a size, a property, or a relative position or distance between the suspended fine particles.
この構成により、以下のような作用を有する。
(1)微粒子捕集工程において、浮遊微粒子を浮遊微粒子捕集用フィルタの孔部に各々分離した状態で簡便且つ迅速に分級して捕集することができる。
(2)撮像工程において浮遊微粒子捕集用フィルタの浮遊微粒子が捕集された領域を撮像装置により撮像することにより、その微粒子像を撮像することができる。
(3)微粒子測定工程において撮像工程で撮像された撮像画像のイメージデータを撮像装置から画像処理装置に読み出して画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定することができる。
(4)更に、微粒子捕集工程、撮像画像を順次繰り返して行い、撮像画像に形成された全ての微粒子像の形状や大きさに関する測定値を集約することで、気体中の浮遊微粒子の粒度分布等を求めることができる。
This configuration has the following effects.
(1) In the particulate collection step, the suspended particulates can be classified and collected easily and quickly in a state of being separated into the pores of the suspended particulate collection filter.
(2) In the imaging step, the image of the fine particles can be picked up by picking up an image of the area where the fine particles of the filter for collecting the fine particles are collected by the image pickup device.
(3) In the fine particle measurement process, the image data of the captured image captured in the imaging process is read from the imaging device to the image processing device, image processing is performed, and the shape, size, or relative relationship between the captured microparticle images Position, distance, or properties can be measured.
(4) Furthermore, the particle size distribution of airborne particles in the gas is performed by sequentially repeating the particle collection process and the captured image, and collecting the measurement values related to the shape and size of all the particle images formed in the captured image. Etc. can be obtained.
ここで、微粒子捕集工程の後に、浮遊微粒子捕集用フィルタの浮遊微粒子を捕集した領域を移動させ風路から外し、付着物のない新たな領域を風路に移動させるフィルタ送り工程を備えてもよい。これにより、浮遊微粒子をある領域に捕集した後、フィルタを送り出して新たに浮遊微粒子の捕集を行うことができ、連続して捕集を行うことができる。
なお、微粒子捕集工程において浮遊微粒子捕集用フィルタの所定領域に浮遊微粒子を捕集し、フィルタ送り工程においてその領域を送り出した後、撮像工程においてその領域を撮像するようにしてもよい。また、微粒子捕集工程において浮遊微粒子を捕集してフィルタ送り工程において浮遊微粒子捕集用フィルタを送るという動作を複数回繰り返して行い、浮遊微粒子の捕集を連続して行って複数の領域に浮遊微粒子を捕集した後、撮像工程において浮遊微粒子が捕集された複数の領域をまとめて撮像するようにしてもよい。
Here, after the particulate collection step, a filter feeding step is provided in which the region where the suspended particulates of the suspended particulate collection filter are collected is moved away from the air passage, and a new region without deposits is moved to the air passage. May be. As a result, after collecting the suspended fine particles in a certain region, the filter can be sent out to newly collect the suspended fine particles, and can be collected continuously.
It should be noted that the floating particles may be collected in a predetermined area of the filter for collecting the suspended particles in the particulate collection process, and the area may be imaged in the imaging process after the area is sent out in the filter feeding process. In addition, the operation of collecting suspended particulates in the particulate collection process and sending the suspended particulate collection filter in the filter feeding process is repeated a plurality of times, and the collection of suspended particulates is continuously performed in a plurality of regions. After collecting the suspended particles, a plurality of areas where the suspended particles are collected in the imaging step may be collectively imaged.
本発明の請求項9に記載の浮遊微粒子分析方法は、請求項8に記載の発明において、前記浮遊微粒子捕集用フィルタの前記浮遊微粒子が捕集された前記所定領域を転写用シートの接着面に重ね合わせ捕集した前記浮遊微粒子を前記接着面に転写する転写工程を備えた構成を有している。 According to a ninth aspect of the present invention, there is provided the method for analyzing suspended particulates according to the eighth aspect, wherein the predetermined area where the suspended particulates of the suspended particulate collecting filter are collected is defined as an adhesive surface of the transfer sheet. And a transfer step of transferring the suspended particulates collected and collected onto the adhesive surface.
この構成により、請求項8の作用に加え、以下のような作用を有する。
(1)捕集した浮遊微粒子が転写された転写用シートに発色反応試薬又は発光反応試薬を塗布することにより、浮遊微粒子をその成分又はそれに含まれる成分により発色反応又は発光反応させ、その色や発光色或いはその濃淡等により浮遊微粒子のpH等の性質を測定したりその成分を特定したりすることができる。
With this configuration, in addition to the operation of the eighth aspect, the following operation is provided.
(1) A coloring reaction reagent or a luminescence reaction reagent is applied to a transfer sheet onto which the collected suspended particulates are transferred, thereby causing the suspended particulates to undergo a coloring reaction or a luminescence reaction with the component or a component contained therein. The properties such as pH of the suspended fine particles can be measured and the components can be specified by the luminescent color or its density.
ここで、転写用シートとしては、合成樹脂製のフィルム等が用いられる。
発色反応試薬としては、pH指示薬やキレート化剤等が用いられる。pH指示薬としては、チモールブルー、ブロモフェノールブルー、ブロモクレゾールグリーン等が用いられる。キレート化剤としては、ジエチルジチオカルバミン酸塩、ジチゾン等が用いられる。また、発光反応試薬としては、アルカリ性溶液に対して青緑色に発光するルミノール等が用いられる。なお、発色反応試薬又は発光反応試薬としては、可視領域で発色又は発光するものだけでなく、紫外領域やX線等の可視領域以外で発色又は発光するものを用いることができる。この場合、浮遊微粒子が転写された転写用シートに紫外光やX線等を照射して撮像装置等により撮像して測定することが好ましい。
Here, a synthetic resin film or the like is used as the transfer sheet.
As the color reaction reagent, a pH indicator, a chelating agent, or the like is used. As the pH indicator, thymol blue, bromophenol blue, bromocresol green or the like is used. As the chelating agent, diethyldithiocarbamate, dithizone and the like are used. Moreover, as a luminescent reaction reagent, luminol etc. which light-emit blue-green with respect to an alkaline solution are used. As the coloring reaction reagent or the luminescence reaction reagent, not only one that emits or emits light in the visible region, but also one that emits or emits light outside the visible region such as the ultraviolet region or X-rays can be used. In this case, it is preferable to measure by irradiating the transfer sheet on which the suspended fine particles have been transferred with ultraviolet light, X-rays or the like, and imaging with an imaging device or the like.
本発明の請求項10に記載の浮遊微粒子捕集装置は、開口部を有する筐体と、所定領域が前記開口部から露出するように前記筐体内部に配設された請求項1乃至6の内いずれか1項に記載の浮遊微粒子捕集用フィルタと、前記筐体内部に対向して各々回動自在に配設され前記浮遊微粒子捕集用フィルタの両端部が各々巻着される一対の支持軸を有し前記支持軸を回動させることにより前記開口部に前記浮遊微粒子捕集用フィルタの新しい所定領域を送り出すフィルタ送り部と、を備えた構成を有している。 According to a tenth aspect of the present invention, there is provided a suspended particulate collection device according to any one of the first to sixth aspects, wherein the casing has an opening and the inside of the casing is disposed so that a predetermined region is exposed from the opening. A pair of the suspended particulate collection filter according to any one of the above, and a pair of the particulate collection filters that are rotatably disposed opposite to the inside of the casing, and each end of the suspended particulate collection filter is wound around each. And a filter feed section that feeds a new predetermined area of the filter for collecting suspended particulates to the opening by rotating the support shaft.
この構成により、以下のような作用を有する。
(1)浮遊微粒子捕集用フィルタの開口部から露出した所定領域において、浮遊微粒子を孔部に各々分離した状態で簡便且つ迅速に分級して捕集することができる。
(2)フィルタ送り部により浮遊微粒子捕集用フィルタの浮遊微粒子を捕集した領域を移動させ開口部から外し、付着物のない新たな領域を開口部に移動させ露出させることができ、新たに浮遊微粒子の捕集を行うことができ、連続して捕集を行うことができる。
(3)浮遊微粒子を連続して捕集することができるので、浮遊微粒子を捕集する現場において簡便且つ迅速に捕集することができる。また、連続捕集後に、捕集した浮遊微粒子を時系列的に詳細分析することにより、浮遊微粒子の時間空間分布を正確に把握することができる。
This configuration has the following effects.
(1) In a predetermined region exposed from the opening of the filter for collecting suspended particles, the suspended particles can be classified and collected easily and quickly in a state where they are separated into the holes.
(2) The filter feed unit moves the area where the suspended particulates are collected from the filter and removes it from the opening, and a new area without deposits can be moved to the opening and exposed. The suspended fine particles can be collected and can be collected continuously.
(3) Since suspended particulates can be collected continuously, they can be collected easily and quickly at the site where suspended particulates are collected. In addition, after the continuous collection, the time and space distribution of the suspended fine particles can be accurately grasped by detailed analysis of the collected suspended fine particles in time series.
ここで、フィルタ送り部は、巻き取り側の支持軸を回転させるレバー等を設けて手動により巻き取り側の支持軸を回転させて浮遊微粒子捕集用フィルタの所定領域を送り出してもよく、或いは駆動部を設けて自動で所定領域を送り出すようにしてもよい。この場合、制御装置を設けて駆動部を制御することにより、所定領域を所定の時間間隔で逐次送り出すようにしてもよい。 Here, the filter feed section may be provided with a lever or the like for rotating the support shaft on the take-up side, and manually rotate the support shaft on the take-up side to send out a predetermined region of the filter for collecting suspended particles, or A predetermined area may be automatically sent out by providing a drive unit. In this case, a predetermined area may be sequentially sent out at predetermined time intervals by providing a control device and controlling the drive unit.
本発明の請求項11に記載の浮遊微粒子捕集装置は、請求項10に記載の発明であって、前記浮遊微粒子捕集用フィルタの前記開口部に露出した所定領域を撮像する撮像装置を備えた構成を有している。 The suspended particulate collection device according to an eleventh aspect of the present invention is the invention according to the tenth aspect, comprising an imaging device that captures an image of a predetermined area exposed at the opening of the suspended particulate collection filter. It has a configuration.
この構成により、請求項10の作用に加え、以下のような作用を有する。
(1)浮遊微粒子捕集用フィルタの浮遊微粒子が捕集された領域を撮像装置により撮像することにより、その微粒子像を撮像することができ、撮像された撮像画像のイメージデータを撮像装置から画像処理装置に読み出して画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定することができる。これにより、浮遊微粒子の形状、大きさ、性質、分布が即時に把握でき、大気環境モニター用センサーとして使用することができる。
With this configuration, in addition to the operation of the tenth aspect, the following operation is provided.
(1) By capturing an image of an area where airborne particles of the airborne particle collecting filter are collected by an image pickup device, the image of the fine particle can be picked up, and image data of the picked up image is obtained from the image pickup device. The image can be read out to the processing device and image processing can be performed to measure the shape, size, or relative position, distance, or property of the captured particle image. Thereby, the shape, size, property, and distribution of the suspended fine particles can be immediately grasped and used as an atmospheric environment monitoring sensor.
撮像装置としてはCCDカメラ等が用いられる。なお、捕集される浮遊微粒子の大きさや撮像装置の解像度に合わせて、光学顕微鏡や電子顕微鏡等により好適な倍率で拡大して撮像することが好ましい。走査型電子顕微鏡を用いて電子像を撮像することもできる。 A CCD camera or the like is used as the imaging device. Note that it is preferable to magnify and image at an appropriate magnification using an optical microscope, an electron microscope, or the like in accordance with the size of the suspended fine particles to be collected and the resolution of the imaging device. An electronic image can also be taken using a scanning electron microscope.
以上説明したように本発明の浮遊微粒子分析方法及びそれに用いられる浮遊微粒子捕集装置によれば、以下のような有利な効果が得られる。 As described above, according to the suspended particle analysis method of the present invention and the suspended particle collection apparatus used therefor, the following advantageous effects can be obtained.
請求項1に記載の発明によれば、
(1)浮遊微粒子捕集用フィルタが多数の孔部を有する多孔膜からなるので、各々の孔部で浮遊微粒子を個別に捕捉し、各々分離した状態で捕集することができ、浮遊微粒子が他の浮遊微粒子等と反応して異なる化合物に変化することがなく、精度の高い分析ができるる浮遊微粒子捕集用フィルタを提供することができる。
(2)孔部の孔径が20μm以下、好ましくは0.1μm〜10μmに形成されているので、大気等の気体中に浮遊する海塩粒子や黄砂、金属系酸化物、硫黄酸化物、花粉、塵埃、バクテリア等の浮遊微粒子を正確に分級して捕集することができる分級性能に優れた浮遊微粒子捕集用フィルタを提供することができる。
(3)多孔膜の開孔率が45%〜75%となるように形成されているので、浮遊微粒子を含む大気等の気体を通過させながら浮遊微粒子を正確に分級して捕集することができ、孔径より小さい粒径の浮遊微粒子が引っ掛かったり目詰まりが生じたりし難い浮遊微粒子捕集用フィルタを提供することができる。
(4)孔部の孔径を20μm以下、好ましくは0.1μm〜10μmの範囲内で適宜設定することにより、種々の浮遊微粒子をその粒径毎に分級して捕集することができる浮遊微粒子捕集用フィルタを提供することができる。
(5)多孔膜に規則的に整列して形成された孔部に浮遊微粒子を捕捉するため、浮遊微粒子を補足した孔部の検知が容易であり、例えば、塞がれた孔部をカウントすることで微粒子の個数のカウントが迅速にできる。また、捕捉した浮遊微粒子の位置が孔部の位置と一致するため正確に検知でき、詳細解析時のプローブの位置決めも容易にできる浮遊微粒子捕集用フィルタを提供することができる。
According to the invention of claim 1,
(1) Since the filter for collecting suspended particles is composed of a porous film having a large number of pores, the suspended particles can be individually captured in each of the holes and collected in a separated state. It is possible to provide a filter for collecting suspended particles that can be analyzed with high accuracy without reacting with other suspended particles or the like to change into a different compound.
(2) Since the hole diameter of the hole is 20 μm or less, preferably 0.1 μm to 10 μm, sea salt particles or yellow sand floating in a gas such as the atmosphere, metal oxide, sulfur oxide, pollen, It is possible to provide a filter for collecting suspended fine particles having excellent classification performance capable of accurately classifying and collecting suspended particulates such as dust and bacteria.
(3) Since the porosity of the porous film is 45% to 75%, it is possible to accurately classify and collect suspended fine particles while passing a gas such as air containing suspended fine particles. In addition, it is possible to provide a filter for collecting suspended particles that is less likely to be trapped or clogged by suspended particles having a particle diameter smaller than the pore diameter.
(4) By appropriately setting the hole diameter of the hole within a range of 20 μm or less, preferably 0.1 μm to 10 μm, it is possible to classify and collect various suspended particles according to their particle diameters. A collection filter can be provided.
(5) Since suspended particles are trapped in the holes formed regularly aligned with the porous film, it is easy to detect the holes supplemented with the suspended particles. For example, the number of blocked holes is counted. This makes it possible to quickly count the number of fine particles. In addition, it is possible to provide a filter for collecting suspended particles that can be accurately detected because the position of the trapped suspended particles coincides with the position of the hole, and that the probe can be easily positioned during detailed analysis.
請求項2に記載の発明によれば、請求項1の効果に加え、
(1)孔部が上下に開口部を有する球形又は多角形の空洞部からなり、多孔膜が空洞部が最密構造で充填された形状に形成されているので、多孔膜がその厚さ方向の中間部で切断し易く、上下に容易に切断分離することができる浮遊微粒子捕集用フィルタを提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the hole is composed of a spherical or polygonal cavity having openings at the top and bottom, and the porous film is formed in a shape in which the cavity is filled with a close-packed structure, the porous film has a thickness direction. It is possible to provide a filter for collecting suspended particulates that can be easily cut at the middle part of the above and can be easily cut and separated in the vertical direction.
請求項3に記載の発明によれば、請求項2の効果に加え、
(1)多孔膜を上下に切断分離して形成された分離多孔膜からなるので、厚さを薄くすることができ、重ね合わせて用いても厚肉にならず複数重ね合わせて用いることができる浮遊微粒子捕集用フィルタを提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 2,
(1) Since it consists of a separation porous membrane formed by cutting and separating the porous membrane up and down, the thickness can be reduced, and even when used in a stacked manner, it can be used in a stacked manner without becoming thick. A filter for collecting suspended particles can be provided.
請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項の効果に加え、
(1)孔部の少なくとも内周部が正又は負の極性を有するので、孔径より大きい粒径の浮遊微粒子を異なる極性に極性化させて、或いは浮遊微粒子が分極して、孔部に吸着し易くしたり、孔径より小さい粒径の浮遊微粒子を同極性に極性化させて孔部の周囲に引っ掛かり難くしたりでき、分級精度を向上できる浮遊微粒子捕集用フィルタを提供することができる。
According to invention of Claim 4, in addition to the effect of any one of Claims 1 to 3,
(1) Since at least the inner periphery of the hole has a positive or negative polarity, the suspended fine particles having a particle size larger than the pore diameter are polarized to different polarities, or the suspended fine particles are polarized and adsorbed to the holes. It is possible to provide a filter for collecting suspended particles, which can be easily made, or the suspended particles having a particle diameter smaller than the pore diameter can be polarized with the same polarity so that the suspended particles are not easily caught around the pores.
請求項5に記載の発明によれば、請求項1乃至4の内いずれか1項の効果に加え、
(1)孔部の孔径の異なる多孔膜又は分離多孔膜を2乃至複数重ね合わせ、上段の多孔膜又は分離多孔膜として孔部の孔径が例えば10μmのもの用い、下段の多孔膜又は分離多孔膜として孔部の孔径が上段より小さい例えば4μmのものを用いることにより、上段の多孔膜で粒径が10μm以上の浮遊微粒子を分級して捕集し、下段の多孔膜で粒径が4μm以上の浮遊微粒子を分級して捕集でき、多段階の分級ができる分級性能に優れた浮遊微粒子捕集用フィルタを提供することができる。
According to the invention of claim 5, in addition to the effect of any one of claims 1 to 4,
(1) Two or more porous membranes or separation porous membranes having different pore diameters are overlapped, and an upper porous membrane or separation porous membrane having a pore diameter of, for example, 10 μm is used, and a lower porous membrane or separation porous membrane is used. By using, for example, a 4 μm pore having a pore diameter smaller than that of the upper stage, floating particles having a particle diameter of 10 μm or more are classified and collected by the upper porous film, and the particle diameter of 4 μm or more is collected by the lower porous film. It is possible to provide a filter for collecting suspended particulates that can classify and collect suspended particulates and has excellent classification performance that can perform multi-stage classification.
請求項6に記載の発明によれば、請求項1乃至4の内いずれか1項の効果に加え、
(1)孔部の孔径が同一の多孔膜又は分離多孔膜を各々の孔部の中心をずらして2乃至複数重ね合わることにより、孔部の孔径より小さい粒径の浮遊微粒子を捕捉でき、中心をずらす程度を適宜可変することにより、種々の粒径の浮遊微粒子を分級捕集できる分級性能に優れた浮遊微粒子捕集用フィルタを提供することができる。
According to invention of Claim 6, in addition to the effect of any one of Claims 1 to 4,
(1) Two or more porous membranes or separation porous membranes having the same pore diameter can be trapped by shifting the center of each pore, thereby trapping suspended fine particles having a particle size smaller than the pore diameter of the pore. By appropriately varying the degree of shifting, it is possible to provide a filter for collecting suspended particles excellent in classification performance capable of classifying and collecting suspended particles having various particle diameters.
請求項7に記載の発明によれば、
(1)セット工程において風路にセットした浮遊微粒子捕集用フィルタに吸引工程において浮遊微粒子を含む気体を通過させることで、浮遊微粒子をフィルタの孔部に各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集方法を提供することができる。
According to the invention of claim 7,
(1) By passing a gas containing suspended fine particles in the suction process through a filter for collecting suspended particulates set in the air passage in the setting process, the suspended particulates are classified easily and quickly in a state where the suspended particulates are separated into the pores of the filter. Thus, it is possible to provide a method for collecting suspended fine particles that can be collected.
請求項8に記載の発明によれば、
(1)微粒子捕集工程において、浮遊微粒子を浮遊微粒子捕集用フィルタの孔部に各々分離した状態で簡便且つ迅速に分級して捕集、撮像工程において浮遊微粒子捕集用フィルタの浮遊微粒子が捕集された領域を撮像装置により撮像することにより、その微粒子像を撮像することができ、微粒子測定工程において撮像工程で撮像された撮像画像のイメージデータを撮像装置から画像処理装置に読み出して画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定することができるので、従来のように捕集した浮遊微粒子を溶媒中等に分散させる工程が不要で省力性に優れると共に、浮遊微粒子が他の浮遊微粒子等と反応して異なる化合物に変化することがなく、精度の高い分析ができる浮遊微粒子分析方法を提供することができる。
According to the invention described in claim 8,
(1) In the particulate collection process, the suspended particulates are separated and collected in the holes of the suspended particulate collection filter in a simple and quick manner, and the suspended particulates in the suspended particulate collection filter are collected in the imaging process. By capturing an image of the collected area with an imaging device, the particle image can be captured, and image data of the captured image captured in the imaging step in the particulate measurement process is read from the imaging device to the image processing device. Since it is possible to measure the shape, size, or relative position, distance, or nature of the captured microparticle images, the suspended particles collected as before can be collected in a solvent. The process of dispersing is unnecessary and excellent in labor savings, and the suspended particulates do not react with other suspended particulates and change into different compounds, enabling highly accurate analysis. It is possible to provide a 遊微 particle analysis method.
請求項9に記載の発明によれば、請求項8の効果に加え、
(1)捕集した浮遊微粒子が転写された転写用シートに発色反応試薬又は発光反応試薬を塗布することにより、浮遊微粒子をその成分又はそれに含まれる成分により発色反応又は発光反応させ、その色や発光色或いはその濃淡等により浮遊微粒子のpH等の性質を測定したりその成分を特定したりすることができる分析性能に優れた浮遊微粒子分析方法を提供することができる。
According to the invention of claim 9, in addition to the effect of claim 8,
(1) A coloring reaction reagent or a luminescence reaction reagent is applied to a transfer sheet onto which the collected suspended particulates are transferred, thereby causing the suspended particulates to undergo a coloring reaction or a luminescence reaction with the component or a component contained therein. It is possible to provide a suspended particulate analysis method excellent in analytical performance capable of measuring properties such as pH of suspended particulates and specifying their components by the luminescent color or the density thereof.
請求項10に記載の発明によれば、
(1)浮遊微粒子捕集用フィルタの開口部から露出した所定領域において、浮遊微粒子を孔部に各々分離した状態で簡便且つ迅速に分級して捕集することができ、フィルタ送り部により浮遊微粒子捕集用フィルタの浮遊微粒子を捕集した領域を移動させ開口部から外し、付着物のない新たな領域を開口部に移動させ露出させることができ、新たに浮遊微粒子の捕集を行うことができ、連続して捕集を行うことができ、浮遊微粒子を連続して捕集することができるので、浮遊微粒子を捕集する現場において簡便且つ迅速に捕集することができる浮遊微粒子捕集装置を提供することができる。
(2)連続捕集後に、捕集した浮遊微粒子を時系列的に詳細分析することにより、浮遊微粒子の時間空間分布を正確に把握することができる浮遊微粒子捕集装置を提供することができる。
According to the invention of claim 10,
(1) In a predetermined region exposed from the opening of the filter for collecting suspended particulates, the suspended particulates can be easily and quickly classified and collected while being separated into holes, and the suspended particulates are collected by the filter feed section. The area where the suspended particulates of the collection filter are collected can be moved and removed from the opening, and a new area with no deposits can be moved to the opening to be exposed. Can be continuously collected, and suspended particulates can be collected continuously, so that the suspended particulate collection device can easily and quickly collect suspended particulates at the site where they are collected. Can be provided.
(2) It is possible to provide a suspended particulate collection device capable of accurately grasping the temporal and spatial distribution of suspended particulates by analyzing the collected suspended particulates in time series in detail after continuous collection.
請求項11に記載の発明によれば、請求項10の効果に加え、
(1)浮遊微粒子捕集用フィルタの浮遊微粒子が捕集された領域を撮像装置により撮像することにより、その微粒子像を撮像することができ、撮像された撮像画像のイメージデータを撮像装置から画像処理装置に読み出して画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定することができ、測定された性質等から捕集された浮遊微粒子を特定できる浮遊微粒子捕集装置を提供することができる。
(2)浮遊微粒子の形状、大きさ、性質、分布が即時に把握でき、大気環境モニター用センサーとして使用することができる浮遊微粒子捕集装置を提供することができる。
According to the invention of claim 11, in addition to the effect of claim 10,
(1) By capturing an image of an area where airborne particles of the airborne particle collecting filter are collected by an image pickup device, the image of the fine particle can be picked up, and image data of the picked up image is obtained from the image pickup device. The image can be read out to the processing device and processed to measure the shape, size, or relative position, distance, or properties of the captured microparticle images and collected from the measured properties. It is possible to provide a suspended particulate collection device that can identify the suspended particulate.
(2) It is possible to provide a suspended particulate collection device that can immediately grasp the shape, size, property, and distribution of suspended particulates and can be used as a sensor for atmospheric environment monitoring.
以下、本発明の一実施の形態について、図を用いて説明する。
(実施の形態1)
図1は本実施の形態1における浮遊微粒子捕集用フィルタの平面図であり、図2は本実施の形態1における浮遊微粒子捕集用フィルタの一部破断要部斜視図であり、図3(a)は本実施の形態1における浮遊微粒子捕集用フィルタの切断分離を説明する要部斜視図であり、図3(b)は上下に切断分離した浮遊微粒子捕集用フィルタの要部斜視図である。
図中、1は帯状に形成された多孔膜からなる浮遊微粒子捕集用フィルタ、2は浮遊微粒子捕集用フィルタ1の全面に渡って形成された孔部、3は浮遊微粒子捕集用フィルタ1を上下に切断分離する切断線、4a,4bは上下に切断分離されて形成された浮遊微粒子捕集用フィルタ、Xは浮遊微粒子である。
ここで、図2に示すように、孔部2は上下に円形の開口部を有する太鼓状や樽状の空洞部からなる。また、浮遊微粒子捕集用フィルタ1には全面に渡って孔部2が最密に形成されている。すなわち、浮遊微粒子捕集用フィルタ1の上面や下面においては孔部2同士は接していないが、浮遊微粒子捕集用フィルタ1の厚さ方向の中間部においては、孔部2同士は略接するように形成されている。
なお、浮遊微粒子捕集用フィルタ1の下面にガラス繊維フィルタや石英繊維フィルタ等をバックアップフィルタとして貼着してすることもでき、フィルタの強度を高めることができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a plan view of the suspended particulate collection filter according to the first embodiment, and FIG. 2 is a partially broken perspective view of the suspended particulate collection filter according to the first embodiment. FIG. 3A is a perspective view of a main part for explaining the separation and separation of the filter for collecting suspended particulates according to the first embodiment, and FIG. 3B is a perspective view of the relevant part of the filter for capturing particulate suspended and cut up and down. It is.
In the figure, reference numeral 1 is a filter for collecting floating particles made of a porous film formed in a band shape, 2 is a hole formed over the entire surface of the filter 1 for collecting floating particles, and 3 is a filter 1 for collecting floating particles. The cutting lines 4a and 4b are formed by cutting and separating vertically, and X is a floating particulate.
Here, as shown in FIG. 2, the hole 2 is composed of a drum-like or barrel-like cavity having circular openings on the top and bottom. Further, the hole 2 is formed in the airtight particle collecting filter 1 in a close-packed manner over the entire surface. That is, the holes 2 are not in contact with each other on the upper and lower surfaces of the suspended particulate collection filter 1, but the holes 2 are substantially in contact with each other in the middle portion in the thickness direction of the suspended particulate collection filter 1. Is formed.
In addition, a glass fiber filter, a quartz fiber filter, etc. can also be stuck as a backup filter on the lower surface of the filter 1 for collecting floating particulates, and the strength of the filter can be increased.
以上のように構成された本実施の形態1における浮遊微粒子捕集用フィルタ1について、以下その作成方法の一例を説明する。
疎水性有機溶媒に可溶の高分子化合物と両親媒性高分子化合物を所定の割合で混合した疎水性有機溶媒溶液(ポリマー濃度としては0.1〜2wt%)を、ガラス基板やセラミックス基板等の基板上に流延(キャスト)し、高湿度空気を吹き付け、疎水性有機溶媒を蒸発させる。ここで、疎水性有機溶媒は蒸発する際に流延された疎水性有機溶媒溶液の潜熱を奪うため、溶液表面の温度が下がり、微小な水の液滴が溶液表面に凝集し付着する。この水の液滴は溶液表面に最密に整列された状態で付着し、流延された溶液中に上下に貫通した空洞部を形成する。疎水性有機溶媒が全て蒸発し高分子化合物が固化した後、水の液滴を蒸発させることにより、液滴が付着していた部分に孔部2が形成される。このようにして、厚みが0.1μm〜20μm、孔部2の孔径が0.1μm〜10μm、開孔率が45%〜75%の浮遊微粒子捕集用フィルタ1が作成される。
ここで、疎水性有機溶媒としては、ベンゼンやトルエン、p−キシレン等の芳香族炭化水素、モノクロロベンゼンやo−ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、クロロホルムや四塩化炭素、塩化メチレン、トリクロロエチレン、パークロロエチレン等のハロゲン化脂肪族炭化水素、ペンタンやヘキサン、ヘプタン、オクタン等の脂肪族炭化水素等が用いられる。
疎水性有機溶媒に可溶の高分子化合物としてはポリスチレンやポリメチルメタクリレート、ポリブチルメタクリレート等の汎用性高分子や、ポリスルホンやポリカーボネートなどのエンジニアリングプラスチック、ポリイオンコンプレックスや熱可塑性エラストマー(例えば、1,4−ブタジエンポリマー等)、ポリ乳酸、ポリヒドロキシ酪酸、グリコール酸−乳酸共重合体、ポリ−ε−カプロラクトン等の生分解性高分子、耐熱性及び耐薬品性を有するポリイミド等が用いられる。
両親媒性高分子化合物としては、両親媒性ポリアクリルアミド等が用いられる。高分子化合物と両親媒性高分子化合物との混合比としては重量比で例えば5:1〜20:1が用いられる。
また、高湿度空気の相対湿度としては、30%〜80%が用いられる。なお、溶液表面に空気中の水分を結露させることができる湿度であればよく、空気に限らず窒素やアルゴン等の不活性ガスを用いてもよい。また、高湿度空気を吹き付ける際の雰囲気温度としては、疎水性有機溶媒が蒸発する温度であればよく、5〜80℃が用いられる。
孔部2の孔径は、高分子化合物の疎水性有機溶媒溶液の濃度、基板上に流延する溶液の量、疎水性有機溶媒の種類、吹き付ける高湿度空気の相対湿度、温度、流量を変更することにより、20μm以下、好ましくは0.1μm〜10μmの範囲内で適宜設定することができる。例えば、高湿度空気の相対湿度を高くすることにより、溶液表面に結露した液滴が成長し易くなるため、孔部2の孔径を大きくすることができる。
なお、孔部2の内周部を含む浮遊微粒子捕集用フィルタ1の表面に正又は負の極性を付与することもできる。この場合、浮遊微粒子捕集用フィルタ1が溶解しない溶媒にカチオン高分子或いはアニオン高分子を溶解し、その溶液に浮遊微粒子捕集用フィルタ1を浸漬してディップコーティングすることにより、表面に正又は負の極性を付与することができる。これにより、孔径より大きい粒径の浮遊微粒子Xを異なる極性に極性化させて孔部2に吸着し易くしたり、孔径より小さい粒径の浮遊微粒子Xを同極性に極性化させて孔部2の周囲に引っ掛かり難くしたりでき、分級精度を向上できる。なお、カチオン高分子としては、ポリ(L−リジン)等が用いられ、アニオン高分子としてはポリスルホン酸ナトリウム等が用いられる。本実施の形態1においては、ポリ(L−リジン)の50mg/Lの水溶液に浮遊微粒子捕集用フィルタ1を10分間浸漬し、引き上げた後、2回洗浄を行って、表面に極性を付与した浮遊微粒子捕集用フィルタ1を作成した。
An example of a method for creating the suspended particulate collection filter 1 according to the first embodiment configured as described above will be described below.
Hydrophobic organic solvent solution (polymer concentration is 0.1 to 2 wt%) in which a polymer compound soluble in a hydrophobic organic solvent and an amphiphilic polymer compound are mixed at a predetermined ratio, glass substrate, ceramic substrate, etc. The substrate is cast (cast) and sprayed with high-humidity air to evaporate the hydrophobic organic solvent. Here, since the hydrophobic organic solvent takes away the latent heat of the hydrophobic organic solvent solution cast when it evaporates, the temperature of the solution surface decreases, and minute water droplets aggregate and adhere to the solution surface. The water droplets adhere to the surface of the solution in a close-packed state, and form a hollow portion penetrating vertically in the cast solution. After all of the hydrophobic organic solvent is evaporated and the polymer compound is solidified, the water droplets are evaporated to form the hole 2 in the portion where the droplets are attached. In this manner, the suspended particulate collection filter 1 having a thickness of 0.1 μm to 20 μm, a hole diameter of the hole 2 of 0.1 μm to 10 μm, and an open area ratio of 45% to 75% is produced.
Here, examples of the hydrophobic organic solvent include aromatic hydrocarbons such as benzene, toluene, and p-xylene, halogenated aromatic hydrocarbons such as monochlorobenzene, o-dichlorobenzene, and trichlorobenzene, chloroform, carbon tetrachloride, and chloride. Halogenated aliphatic hydrocarbons such as methylene, trichlorethylene, and perchloroethylene, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane are used.
Polymer compounds soluble in hydrophobic organic solvents include general-purpose polymers such as polystyrene, polymethyl methacrylate, and polybutyl methacrylate, engineering plastics such as polysulfone and polycarbonate, polyion complexes, and thermoplastic elastomers (for example, 1, 4 -Butadiene polymer, etc.), polylactic acid, polyhydroxybutyric acid, glycolic acid-lactic acid copolymer, biodegradable polymers such as poly-ε-caprolactone, polyimide having heat resistance and chemical resistance, and the like are used.
As the amphiphilic polymer compound, amphiphilic polyacrylamide or the like is used. As a mixing ratio of the polymer compound and the amphiphilic polymer compound, a weight ratio of, for example, 5: 1 to 20: 1 is used.
Further, 30% to 80% is used as the relative humidity of the high humidity air. It should be noted that the humidity is sufficient as long as moisture in the air can be condensed on the solution surface, and not limited to air, an inert gas such as nitrogen or argon may be used. Moreover, as atmospheric temperature at the time of blowing high humidity air, what is necessary is just the temperature which a hydrophobic organic solvent evaporates, and 5-80 degreeC is used.
The hole diameter of the hole 2 changes the concentration of the hydrophobic organic solvent solution of the polymer compound, the amount of the solution cast on the substrate, the type of the hydrophobic organic solvent, the relative humidity of the high-humidity air to be blown, the temperature, and the flow rate. Accordingly, the thickness can be appropriately set within a range of 20 μm or less, preferably within a range of 0.1 μm to 10 μm. For example, by increasing the relative humidity of the high-humidity air, droplets condensed on the solution surface can easily grow, so that the hole diameter of the hole 2 can be increased.
A positive or negative polarity can be imparted to the surface of the suspended particulate collection filter 1 including the inner periphery of the hole 2. In this case, a cationic polymer or an anionic polymer is dissolved in a solvent in which the suspended particulate collection filter 1 is not dissolved, and the suspended particulate collection filter 1 is immersed in the solution and dip-coated, so that the surface is positive or negative. Negative polarity can be imparted. As a result, the suspended fine particles X having a particle diameter larger than the pore diameter are polarized to have different polarities so as to be easily adsorbed to the pores 2, or the suspended fine particles X having a particle diameter smaller than the pore diameter are polarized to the same polarity. It is possible to make it difficult to get caught around and improve the classification accuracy. Note that poly (L-lysine) or the like is used as the cationic polymer, and sodium polysulfonate or the like is used as the anionic polymer. In the first embodiment, the suspended particulate collection filter 1 is immersed in a 50 mg / L aqueous solution of poly (L-lysine) for 10 minutes, pulled up, and then washed twice to impart polarity to the surface. The suspended particulate collection filter 1 was prepared.
また、図3(a)に示すように、作成した浮遊微粒子捕集用フィルタ1を厚さ方向の中間部の切断線3で切断分離し、図3(b)に示すように、多孔膜を上下に切断分離した分離多孔膜からなる浮遊微粒子捕集用フィルタ4a,4bとすることもできる。なお、浮遊微粒子捕集用フィルタ1の厚さ方向の中間部においては、隣接する孔部2は略接しているため、隣接する孔部2の間の高分子化合物の厚さは極めて薄く容易に切断できる。これにより、厚さの薄い浮遊微粒子捕集用フィルタ4a,4bを得ることができる。 Further, as shown in FIG. 3 (a), the prepared suspended particulate collection filter 1 is cut and separated at the cutting line 3 in the middle in the thickness direction, and as shown in FIG. It can also be set as the filter 4a, 4b for collection of floating particulates which consists of a separation porous membrane cut and separated up and down. In addition, in the middle part in the thickness direction of the filter 1 for collecting suspended particulates, the adjacent holes 2 are substantially in contact with each other, so that the thickness of the polymer compound between the adjacent holes 2 is extremely thin and easy. Can be cut. Thereby, the filter 4a, 4b for collecting suspended particulates having a small thickness can be obtained.
次に、浮遊微粒子捕集用フィルタ1或いは浮遊微粒子捕集用フィルタ4a,4bを用いた浮遊微粒子捕集方法について説明する。
まず、上部が浮遊微粒子Xを含む気体に開放された風路に浮遊微粒子捕集用フィルタ1をセットする(セット工程)。ここで、浮遊微粒子捕集用フィルタ1は風路の例えば開口部を覆うように配設される。次に、風路の下部に配設された吸引ポンプにより浮遊微粒子Xを含む気体を風路に吸引し浮遊微粒子捕集用フィルタ1に気体を通過させる(吸引工程)。これにより、浮遊微粒子捕集用フィルタ1の孔部2の孔径より大きい粒径の浮遊微粒子Xは各々の孔部2に個別に分離捕捉される。孔部2の孔径より小さい粒径の浮遊微粒子Xは孔部2を通過して吸引ポンプから外気に排出される。なお、本実施の形態1においては、浮遊微粒子捕集用フィルタ1の風路における露出部分は直径16mmの円形とし、吸引ポンプによる吸引流量としては100L/h〜1000L/h程度を用いた。吸引時間は気体中の浮遊微粒子Xの個数によって適宜設定することが好ましい。例えば、浮遊微粒子Xが多いすなわち大気汚染の程度が大きい工場敷地内等で捕集する場合は、吸引時間を短く設定して、浮遊微粒子捕集用フィルタ1の1つの孔部2に2以上の浮遊微粒子Xが捕捉されたり、目詰まりが発生したりしないようにすることが好ましい。
Next, a method for collecting suspended particles using the suspended particulate collection filter 1 or the suspended particulate collection filters 4a and 4b will be described.
First, the suspended particulate collection filter 1 is set in an air passage open to a gas containing suspended particulates X (set process). Here, the suspended particulate collection filter 1 is disposed so as to cover, for example, an opening of the air passage. Next, the gas containing the suspended fine particles X is sucked into the air passage by the suction pump disposed in the lower part of the air passage, and the gas is passed through the suspended particulate collecting filter 1 (suction process). Thereby, the floating fine particles X having a particle diameter larger than the hole diameter of the hole 2 of the filter 1 for collecting floating particles are separated and captured in each hole 2 individually. The suspended fine particles X having a particle diameter smaller than the hole diameter of the hole 2 pass through the hole 2 and are discharged from the suction pump to the outside air. In the first embodiment, the exposed portion in the air passage of the filter 1 for collecting suspended particulates has a circular shape with a diameter of 16 mm, and the suction flow rate by the suction pump is about 100 L / h to 1000 L / h. The suction time is preferably set as appropriate depending on the number of suspended fine particles X in the gas. For example, when collecting in a factory premises where there is a large amount of suspended particulate X, that is, the degree of air pollution is large, the suction time is set short, and 2 or more in one hole 2 of the suspended particulate collecting filter 1 It is preferable to prevent the suspended fine particles X from being trapped or clogged.
以上のように本実施の形態1における浮遊微粒子捕集用フィルタ1及び浮遊微粒子捕集方法は構成されているので、以下のような作用を有する。
(1)浮遊微粒子捕集用フィルタ1が多数の孔部2を有する多孔膜からなるので、各々の孔部で浮遊微粒子Xを個別に捕捉し、各々分離した状態で捕集することができる。
(2)孔部2の孔径が2μm〜20μm、好ましくは4μm〜10μmに形成されているので、大気等の気体中に浮遊する海塩粒子や黄砂、金属系酸化物、硫黄酸化物、花粉、塵埃、バクテリア等の浮遊微粒子を正確に分級して捕集することができる。
(3)浮遊微粒子捕集用フィルタ1は、開孔率が45%〜65%となるように形成されているので、浮遊微粒子Xを含む大気等の気体を通過させながら浮遊微粒子Xを正確に分級して捕集することができ、孔径より小さい粒径の浮遊微粒子Xが引っ掛かったり目詰まりが生じたりし難い。
(4)孔部2の孔径を2μm〜20μm、好ましくは4μm〜10μmの範囲内で適宜設定することにより、種々の浮遊微粒子をその粒径毎に分級して捕集することができる。
(5)浮遊微粒子捕集用フィルタ1は、孔部2が上下に開口部を有する球形の空洞部からなり、その空洞部が最密構造で充填された形状に形成されているので、その厚さ方向の中間部で切断し易く、上下に容易に切断分離することができ、厚さを薄くすることができ、また、重ね合わせて用いて厚肉にならず複数重ね合わせて用いることができる。
(6)セット工程において風路にセットした浮遊微粒子捕集用フィルタ1に吸引工程において浮遊微粒子Xを含む気体を通過させることで、浮遊微粒子Xを浮遊微粒子捕集用フィルタ1の孔部2に各々分離した状態で簡便且つ迅速に分級して捕集することができる。
(7)規則的に整列して形成された孔部2に浮遊微粒子Xを捕捉するため、浮遊微粒子Xを補足した孔部2の検知が容易であり、例えば、塞がれた孔部2をカウントすることで微粒子Xの個数のカウントが迅速にできる。また、捕捉した浮遊微粒子Xの位置が孔部2の位置と一致するため正確に検知でき、詳細解析時のプローブの位置決めも容易にできる。
As described above, the suspended particulate collection filter 1 and the suspended particulate collection method according to Embodiment 1 are configured, and thus have the following effects.
(1) Since the filter 1 for collecting floating particulates is composed of a porous film having a large number of pores 2, the suspended particulates X can be individually captured in each pore and collected in a separated state.
(2) Since the hole diameter of the hole 2 is 2 μm to 20 μm, preferably 4 μm to 10 μm, sea salt particles or yellow sand floating in a gas such as the atmosphere, metal oxide, sulfur oxide, pollen, It is possible to accurately classify and collect airborne particles such as dust and bacteria.
(3) The suspended particulate collection filter 1 is formed so as to have a porosity of 45% to 65%. Therefore, the suspended particulate X can be accurately detected while passing a gas such as the atmosphere containing the suspended particulate X. The particles can be classified and collected, and the suspended fine particles X having a particle diameter smaller than the pore diameter are hardly caught or clogged.
(4) By appropriately setting the hole diameter of the hole 2 within the range of 2 μm to 20 μm, preferably 4 μm to 10 μm, various suspended fine particles can be classified and collected for each particle diameter.
(5) The suspended particulate collection filter 1 is formed in a shape in which the hole portion 2 is formed of a spherical cavity portion having upper and lower openings, and the cavity portion is filled with a close-packed structure. It is easy to cut at the middle part in the vertical direction, can be cut and separated easily up and down, the thickness can be made thin, and it can be used by overlapping and not overlapping to be used. .
(6) By passing the gas containing the floating fine particles X in the suction step through the filter 1 for collecting floating fine particles set in the air passage in the setting step, the floating fine particles X are passed through the holes 2 of the filter 1 for collecting the fine floating particles. Each separated state can be easily and quickly classified and collected.
(7) Since the suspended fine particles X are trapped in the holes 2 that are regularly arranged, the holes 2 supplemented with the suspended fine particles X can be easily detected. By counting, the number of particles X can be quickly counted. In addition, since the position of the trapped suspended particulate X coincides with the position of the hole 2, it can be detected accurately, and the probe can be easily positioned during the detailed analysis.
(実施の形態2)
図4は本実施の形態2における浮遊微粒子捕集用フィルタの要部斜視図である。
図4において、1aは浮遊微粒子捕集用フィルタ、1bは浮遊微粒子捕集用フィルタ1aの下部に配設された浮遊微粒子捕集用フィルタ、2aは浮遊微粒子捕集用フィルタ1aの孔部、2bは浮遊微粒子捕集用フィルタ1bの孔部、X,Yは浮遊微粒子である。
浮遊微粒子捕集用フィルタ1a,1bは実施の形態1で説明した作成方法により作成されたものであり、孔部2aの孔径は10μmに形成され、孔部2bの孔径は4μmに形成されている。なお、浮遊微粒子捕集用フィルタ1a,1bとしては、実施の形態1において説明した分離多孔膜からなるものを用いることもできる。
なお、本実施の形態2における浮遊微粒子捕集用フィルタ1a,1bを用いた浮遊微粒子捕集方法は実施の形態1で説明したものと同様であるので説明を省略する。
(Embodiment 2)
FIG. 4 is a perspective view of the main part of the filter for collecting suspended particulates according to the second embodiment.
In FIG. 4, 1a is a filter for collecting suspended particles, 1b is a filter for collecting suspended particles disposed below the filter for collecting suspended particles 1a, 2a is a hole portion of the filter for collecting suspended particles 1a, 2b Is the hole of the filter 1b for collecting suspended particles, and X and Y are suspended particles.
The suspended particulate collection filters 1a and 1b are produced by the production method described in the first embodiment. The hole diameter of the hole 2a is 10 μm, and the hole diameter of the hole 2b is 4 μm. . As the suspended particulate collection filters 1a and 1b, the filter composed of the separation porous membrane described in the first embodiment can be used.
The suspended particulate collection method using the suspended particulate collection filters 1a and 1b in the second embodiment is the same as that described in the first embodiment, and a description thereof will be omitted.
以上のように本実施の形態2における浮遊微粒子捕集用フィルタ1a,1bは構成されているので、実施の形態1の作用に加え、以下のような作用を有する。
(1)上段の浮遊微粒子捕集用フィルタ1aとして孔部2aの孔径が10μmのもの用い、下段の浮遊微粒子捕集用フィルタ1bとして孔部2bの孔径が上段より小さい4μmのものを用いることにより、上段の浮遊微粒子捕集用フィルタ1aで粒径が10μm以上の浮遊微粒子Xを分級して捕集し、下段の浮遊微粒子捕集用フィルタ1bで粒径が4μm〜10μmの浮遊微粒子Yを分級して捕集でき、多段階の分級ができる。
As described above, since the suspended particulate collection filters 1a and 1b in the second embodiment are configured, in addition to the operations in the first embodiment, the following operations are provided.
(1) By using a filter having a pore diameter of 10 μm as the upper-stage floating particulate collection filter 1a and using a filter having a pore diameter of 4 μm smaller than the upper stage as the lower-stage suspended particulate collection filter 1b. The floating particulate collection filter 1a in the upper stage classifies and collects the suspended particulate X having a particle size of 10 μm or more, and the floating particulate collection unit 1b in the lower stage classifies the floating particulate Y having a particle diameter of 4 μm to 10 μm. Can be collected and classified in multiple stages.
(実施の形態3)
図5は本実施の形態3における浮遊微粒子捕集用フィルタの要部平面図である。
図5において、1cは浮遊微粒子捕集用フィルタ、1dは浮遊微粒子捕集用フィルタ1cの下部に重ね合わせられた浮遊微粒子捕集用フィルタ、2cは浮遊微粒子捕集用フィルタ1cの孔部、2dは浮遊微粒子捕集用フィルタ1dの孔部である。
浮遊微粒子捕集用フィルタ1c,1dは実施の形態1で説明した作成方法により作成されたものであり、孔部2cの孔径と孔部2dの孔径は同一に形成されている。
また、浮遊微粒子捕集用フィルタ1cと浮遊微粒子捕集用フィルタ1dは、孔部2cの中心と孔部2dの中心をずらして重ね合わせられている。なお、浮遊微粒子捕集用フィルタ1c,1dとしては、実施の形態1において説明した分離多孔膜からなるものを用いることが好ましい。これにより、浮遊微粒子捕集用フィルタ1c,1dが薄肉に形成できるので、重ね合わせても精度良く分級することができる。
なお、チャネリングを防止するために、浮遊微粒子捕集用フィルタ1cと浮遊微粒子捕集用フィルタ1dとは熱圧着、融着されるか、又は間隔が捕集する浮遊微粒子より小さくなるように配設される。
(Embodiment 3)
FIG. 5 is a plan view of the main part of the filter for collecting suspended particulates according to the third embodiment.
In FIG. 5, 1c is a filter for collecting suspended particles, 1d is a filter for collecting suspended particles superimposed on the lower part of the filter for collecting suspended particles 1c, 2c is a hole portion of the filter for collecting suspended particles 1c, 2d Is a hole of the filter 1d for collecting suspended particles.
The suspended particulate collection filters 1c and 1d are produced by the production method described in the first embodiment, and the hole diameter of the hole 2c and the hole diameter of the hole 2d are formed to be the same.
The suspended particulate collection filter 1c and the suspended particulate collection filter 1d are overlapped with the center of the hole 2c shifted from the center of the hole 2d. In addition, it is preferable to use what consists of the separation porous membrane demonstrated in Embodiment 1 as the filter 1c and 1d for collection of floating particulates. As a result, the suspended particulate collection filters 1c and 1d can be formed thin, so that they can be classified with high accuracy even when they are overlapped.
In order to prevent channeling, the suspended particulate collection filter 1c and the suspended particulate collection filter 1d are thermocompression bonded, fused, or arranged so that the interval is smaller than the suspended particulate collection. Is done.
以上のように本実施の形態2における浮遊微粒子捕集用フィルタ1a,1bは構成されているので、実施の形態1の作用に加え、以下のような作用を有する。
(1)孔部2c,2dの孔径が同一の浮遊微粒子捕集用フィルタ1c,1dを各々の孔部2c,2dの中心をずらして重ね合わることにより、孔部2c,2dの孔径より小さい粒径の浮遊微粒子を捕捉でき、中心をずらす程度を適宜可変することにより、種々の粒径の浮遊微粒子を分級捕集できる。
As described above, since the suspended particulate collection filters 1a and 1b in the second embodiment are configured, in addition to the operations in the first embodiment, the following operations are provided.
(1) Particles smaller than the hole diameters of the holes 2c and 2d are obtained by overlapping the suspended particle collection filters 1c and 1d having the same hole diameters of the holes 2c and 2d while shifting the centers of the holes 2c and 2d. Suspended fine particles of various diameters can be classified and collected by appropriately varying the degree of shifting the center.
(実施の形態4)
図6は本実施の形態4における浮遊微粒子捕集装置の内部透視模式図である。
図6において、10は浮遊微粒子捕集装置、11は直方体状に形成された浮遊微粒子捕集装置10の筐体、12は筐体11の上面の中央部に矩形状に開口された開口部、13は後述の巻き取り側支持軸と送り側支持軸に一端部側と他端部側が各々巻回され筐体11の内部に配設された帯状の浮遊微粒子捕集用フィルタ、14aは筐体11内部に巻き取り自在に配設され浮遊微粒子捕集用フィルタ13の一端部側が巻回された巻き取り側支持軸、14bは筐体11内部に巻き取り側支持軸14aに対向して回動自在に配設され浮遊微粒子捕集用フィルタ13の他端部側が巻回された送り側支持軸、14cは巻き取り側支持軸14aと送り側支持軸14bを有し、巻き取り側支持軸14aを回転させて開口部12に浮遊微粒子捕集用フィルタ13の所定領域を送り出すフィルタ送り部、15は開口部12の下部に配設された小型ファン等の吸引手段、16は筐体11の下面に形成された排気口部、20は開口部12の斜め上から開口部12から露出した浮遊微粒子捕集用フィルタ13の所定領域を撮像する撮像装置、21は巻き取り側支持軸14aを回転駆動させるモータ等の駆動部、22は撮像装置20により撮像された撮像画像の画像処理や駆動部21の制御を行う制御装置、Xは浮遊微粒子である。
(Embodiment 4)
FIG. 6 is a schematic internal perspective view of the suspended particulate collection device according to the fourth embodiment.
In FIG. 6, 10 is a suspended particulate collection device, 11 is a casing of the suspended particulate collection device 10 formed in a rectangular parallelepiped shape, 12 is an opening opening in a rectangular shape at the center of the upper surface of the casing 11, Reference numeral 13 denotes a belt-like suspended particulate collection filter disposed on the inside of the casing 11 with one end and the other end wound around a winding-side support shaft and a feed-side support shaft, respectively, and 14a is a casing. 11 is a winding-side support shaft that is disposed inside 11 so as to be freely wound and wound around one end of the filter 13 for collecting suspended particulates, and 14b is turned inside the housing 11 so as to face the winding-side support shaft 14a. A feed-side support shaft 14c that is freely disposed and on which the other end of the suspended particulate collection filter 13 is wound, 14c has a take-up-side support shaft 14a and a feed-side support shaft 14b, and the take-up-side support shaft 14a. The filter 13 for collecting suspended particles in the opening 12 by rotating the A filter feed section for feeding out a predetermined area, 15 is a suction means such as a small fan disposed in the lower part of the opening 12, 16 is an exhaust port formed in the lower surface of the housing 11, and 20 is obliquely above the opening 12. An imaging device that images a predetermined region of the filter 13 for collecting the suspended particulates exposed from the opening 12, 21 is a drive unit such as a motor that rotationally drives the winding-side support shaft 14 a, and 22 is imaged by the imaging device 20. A control device that performs image processing of a captured image and control of the drive unit 21, X is floating particulates.
ここで、浮遊微粒子捕集用フィルタ13は、実施の形態1で説明したものと同一の方法で作成されたものを用いた。
フィルタ送り部14cは、巻き取り側支持軸14aを回転させるレバー等を設けて手動により巻き取り側支持軸14aを回転させて微粒子捕集面13aの所定領域を送り出してもよく、駆動部21により自動で微粒子捕集面13aの所定領域を送り出すようにしてもよい。この場合、制御装置22で駆動部21を制御することにより、浮遊微粒子捕集用フィルタ13の所定領域を所定の時間間隔で逐次送り出すようにしてもよい。
吸引手段15としては、小型ファン、マイクロポンプ等が用いられる。
Here, the filter 13 for collecting suspended particulates was prepared by the same method as that described in the first embodiment.
The filter feeding unit 14c may be provided with a lever or the like that rotates the winding-side support shaft 14a and manually rotates the winding-side support shaft 14a to feed a predetermined region of the particulate collection surface 13a. A predetermined region of the particulate collection surface 13a may be automatically sent out. In this case, the control unit 22 may control the drive unit 21 to sequentially send out a predetermined region of the suspended particulate collection filter 13 at a predetermined time interval.
As the suction means 15, a small fan, a micro pump, or the like is used.
以上のように構成された浮遊微粒子捕集装置10を用いた浮遊微粒子分析方法について、以下その各工程を図を用いて説明する。
まず、浮遊微粒子捕集装置10の巻き取り側支持軸14aを巻き取り方向に回転させる等して、開口部12から浮遊微粒子捕集用フィルタ13の付着物のない領域を露出させ、露出した領域に測定対象である浮遊微粒子Xを含む気体を吸引し、浮遊微粒子捕集用フィルタ13に浮遊微粒子Xを吸着させて捕集する(微粒子捕集工程)。浮遊微粒子捕集用フィルタ13への気体の吸引は、吸引手段15を用い、開口部12から気体を吸引し排気口部16から排気することにより行うことができる。なお、吸引する気体中に浮遊微粒子Xの個数が極めて多い場合は、開口部12に開閉自在に取り付けられたシャッタ等を設けて、フィルタ送り部14cにより浮遊微粒子捕集用フィルタ13を所定領域の長さ送る際に浮遊微粒子捕集用フィルタ13に気体を吸引させないようにすることが好ましい。
With respect to the suspended particulate analysis method using the suspended particulate collection apparatus 10 configured as described above, each step will be described below with reference to the drawings.
First, the region where no adhering matter of the suspended particulate collection filter 13 is exposed is exposed from the opening 12 by rotating the winding support shaft 14a of the suspended particulate collection device 10 in the winding direction. Then, the gas containing the suspended fine particles X, which is the measurement object, is sucked, and the suspended fine particles X are adsorbed and collected by the suspended fine particle collecting filter 13 (fine particle collecting step). The suction of the gas to the filter 13 for collecting the suspended particulates can be performed by sucking the gas from the opening 12 and exhausting it from the exhaust port 16 using the suction means 15. When the number of suspended particulates X in the gas to be sucked is extremely large, a shutter or the like attached to the opening 12 so as to be freely opened and closed is provided, and the suspended particulate collecting filter 13 is placed in a predetermined area by the filter feeding section 14c. It is preferable that the suspended particulate collection filter 13 does not suck the gas when the length is sent.
次に、浮遊微粒子捕集装置10の巻き取り側支持軸14aを巻き取り方向に回転させる等して、微粒子捕集工程において浮遊微粒子Xを捕集した浮遊微粒子捕集用フィルタ13の所定領域を巻き取り側支持軸14a側へ移動させると共に、開口部12に付着物のない新たな領域を露出させる(フィルタ送り工程)。なお、浮遊微粒子捕集用フィルタ13は、少なくとも浮遊微粒子Xを捕集した所定領域が、開口部12から外れるまで送られる。
なお、浮遊微粒子捕集用フィルタ13の所定領域を開口部12に所定時間露出させた後、撮像装置20により浮遊微粒子が捕集された所定領域を撮像し(撮像工程)、その後フィルタ送り部14cにより浮遊微粒子捕集用フィルタ13を送り出すようにしてもよい。なお、撮像工程においては、捕集された浮遊微粒子Xの大きさや撮像装置の解像度に合わせて、光学顕微鏡や電子顕微鏡等により好適な倍率で拡大して撮像することが好ましい。
撮像された撮像画像は撮像装置20からイメージデータとして制御装置22に読み出される。制御装置22は読み出されたイメージデータの画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定する(微粒子測定工程)。なお、ここで行われる画像処理では、画像の階調を調整した上で画像を2値化画像に変換し、各種の2値化処理により個々の浮遊微粒子Xの微粒子像の分離と個数計測、浮遊微粒子Xの中心位置の決定、微粒子像の測定による、面積、微粒子長径、短径の測定、これらの測定結果による形状の峻別等が行われる。
また、X線マイクロアナライザーを用いて浮遊微粒子捕集用フィルタ13の浮遊微粒子Xが捕集された領域に高速電子線を照射し、それぞれの分析点で検出される特性X線の強度をデジタル信号としてX−Y座標に対応させて記録し、面方向での元素(或いは組成)分布をマッピング像として出力することもできる。
Next, the predetermined region of the filter 13 for collecting the floating particles X in which the suspended particles X are collected in the particulate collection process, for example, by rotating the winding side support shaft 14a of the suspended particulate collection device 10 in the winding direction. While moving to the winding-side support shaft 14a side, a new area free from deposits is exposed in the opening 12 (filter feeding step). The suspended particulate collection filter 13 is sent until at least a predetermined area where the suspended particulate X is collected is removed from the opening 12.
In addition, after exposing the predetermined area | region of the filter 13 for collection of floating particulates to the opening part 12 for a predetermined period of time, the predetermined area | region where the suspended particulate was collected by the imaging device 20 is imaged (imaging process), and the filter sending part 14c after that. May be used to send out the suspended particulate collection filter 13. In the imaging step, it is preferable to magnify the image with a suitable magnification using an optical microscope, an electron microscope, or the like according to the size of the collected suspended fine particles X and the resolution of the imaging device.
The captured image is read from the imaging device 20 to the control device 22 as image data. The control device 22 performs image processing on the read image data, and measures the shape, size, or relative position, distance, or property of the captured particle image (particle measurement step). In the image processing performed here, after adjusting the gradation of the image, the image is converted into a binarized image, and separation and number counting of individual fine particle images of individual floating particles X are performed by various binarization processes. Determination of the center position of the suspended fine particle X, measurement of the area, fine particle long diameter and short diameter by measurement of the fine particle image, distinction of the shape by these measurement results, and the like are performed.
In addition, a high-speed electron beam is irradiated to the region where the suspended particulate X of the suspended particulate collection filter 13 is collected using an X-ray microanalyzer, and the intensity of the characteristic X-rays detected at each analysis point is converted into a digital signal. Can be recorded corresponding to the XY coordinates, and the element (or composition) distribution in the plane direction can be output as a mapping image.
また、浮遊微粒子捕集用フィルタ13の所定領域に浮遊微粒子Xを捕集した後、その領域に転写用シート(図示せず)の接着面を当接させ、浮遊微粒子Xを転写用シートに転写することもでき、転写用シートを用いて、浮遊微粒子Xの撮像や測定、分析を行うことができる。さらに、浮遊微粒子捕集用フィルタ13から浮遊微粒子Xが転写された転写用シートに発色反応試薬又は発光反応試薬を塗布することにより、浮遊微粒子Xをその成分又はそれに含まれる成分により発色反応又は発光反応させ、その色や発光色或いはその濃淡等により浮遊微粒子のpH等の性質を測定したりその成分を特定したりすることができる。なお、転写用シートの接着面としては、ポリビニルアルコール等の接着材を塗布したもの等が用いられる。 Further, after collecting the suspended fine particles X in a predetermined region of the suspended particulate collecting filter 13, the adhesive surface of a transfer sheet (not shown) is brought into contact with the region, and the suspended particulate X is transferred to the transfer sheet. It is also possible to perform imaging, measurement, and analysis of the suspended fine particles X using the transfer sheet. Furthermore, by applying a coloring reaction reagent or a luminescence reaction reagent to the transfer sheet on which the suspended particles X are transferred from the filter 13 for collecting the suspended particles, the floating particles X are subjected to a color reaction or light emission by the components or components contained therein. By reacting, the properties such as pH of the suspended fine particles can be measured and the components can be specified by the color, light emission color, lightness or the like. In addition, as an adhesive surface of the transfer sheet, one applied with an adhesive such as polyvinyl alcohol is used.
以上のように本実施の形態4における浮遊微粒子分析方法及び浮遊微粒子捕集装置10は構成されているので、以下のような作用を有する。
(1)微粒子捕集工程において、浮遊微粒子Xを浮遊微粒子捕集用フィルタ13の孔部2に各々分離した状態で簡便且つ迅速に分級して捕集することができ、撮像工程において浮遊微粒子捕集用フィルタ13の浮遊微粒子が捕集された領域を撮像装置20により撮像することにより、その微粒子像を撮像することができ、撮像された撮像画像のイメージデータを撮像装置20から制御装置22に読み出して画像処理を行い、撮像された微粒子像の形状、大きさ、又は微粒子像間の相対的な位置や距離、或いは性質を測定することができる。
(2)フィルタ送り工程において、フィルタ送り部14cにより浮遊微粒子捕集用フィルタ13の浮遊微粒子Xを捕集した領域を移動させ開口部12から外し、付着物のない新たな領域を開口部12に移動させ露出させることができ、新たに浮遊微粒子Xの捕集を行うことができ、連続して捕集を行うことができる。また、浮遊微粒子Xを連続して捕集することができるので、浮遊微粒子Xを捕集する現場において簡便且つ迅速に捕集することができる。
(3)捕集した浮遊微粒子が転写された転写用シートに発色反応試薬又は発光反応試薬を塗布することにより、浮遊微粒子をその成分又はそれに含まれる成分により発色反応又は発光反応させ、その色や発光色或いはその濃淡等により浮遊微粒子のpH等の性質を測定したりその成分を特定したりすることができる。
As described above, the suspended particulate analysis method and suspended particulate collection apparatus 10 according to the fourth embodiment are configured, and thus have the following effects.
(1) In the particulate collection process, the suspended particulate X can be easily and quickly classified and collected in the state where the suspended particulate X is separated into the holes 2 of the suspended particulate collection filter 13. By capturing an area of the collection filter 13 where the suspended particulates are collected by the imaging device 20, the particulate image can be captured, and image data of the captured image is transferred from the imaging device 20 to the control device 22. It is possible to read out and perform image processing to measure the shape and size of the captured fine particle image, or the relative position, distance, or property between the fine particle images.
(2) In the filter feeding step, the area where the suspended particulate X of the suspended particulate collecting filter 13 is collected by the filter feeding section 14c is moved to be removed from the opening 12, and a new area free from adhering matter is formed in the opening 12. It can be moved and exposed, the suspended particulate X can be newly collected, and can be collected continuously. In addition, since the suspended fine particles X can be continuously collected, the suspended fine particles X can be easily and quickly collected at the site where the suspended fine particles X are collected.
(3) A coloring reaction reagent or a luminescence reaction reagent is applied to the transfer sheet onto which the collected suspended particulates are transferred, thereby causing the suspended particulates to undergo a coloring reaction or a luminescence reaction with the component or a component contained therein. The properties such as pH of the suspended fine particles can be measured and the components can be specified by the luminescent color or its density.
次に本発明の実施例を説明する。但し、本発明はこれらの実施例に限定されるものではない。
(実施例1)
平均分子量7万〜10万のポリ−ε−カプロラクトンと両親媒性ポリアクリルアミドを重量比で10:1の割合で混合したクロロホルム溶液(ポリマー濃度としては0.1〜2wt%)を、ガラス基板やセラミックス基板等の基板上に8mLを流延(キャスト)し、相対湿度30%〜80%の高湿度空気を毎分1〜20Lの流量で吹き付け、クロロホルムを蒸発させることによって、厚みが0.1μm〜20μm、孔部2の孔径が10μm、開孔率が45%〜65%の浮遊微粒子捕集用フィルタ1を得た。この浮遊微粒子捕集用フィルタ1をガラス繊維フィルタ上に貼着固定したものを断面が直径16mmの円形の風路にセットし、該風路に吸引流速1000L/hで2h大気を吸引した。吸引手段としては吸引ポンプを用いた。吸引後に捕集された浮遊微粒子Xを走査型電子顕微鏡を用いて撮像し、図7に示すような微粒子像を得た。図7は実施例1における浮遊微粒子Xの微粒子像である。
図7から、孔部2の孔径が10μmの浮遊微粒子捕集用フィルタ1により、粒径が10μm以上の大気中の浮遊微粒子Xを分級して捕集できることがわかった。
(実施例2)
実施例1と同様にして孔部2の孔径が10μmの浮遊微粒子捕集用フィルタ1を得ると共に、実施例1において溶液を5mLを流延(キャスト)したこと以外は同様にして孔部の孔径が4μmの浮遊微粒子捕集用フィルタを得た。この浮遊微粒子捕集用フィルタ1を、孔径が10μmのものを上段、孔径が4μmのものを下段にして重ね合わせ、ガラス繊維フィルタの上面に貼着固定したものを断面が直径16mmの円形の風路にセットし、該風路に吸引流速1000L/hで2h大気を吸引した。吸引手段としては吸引ポンプを用いた。吸引後に捕集された浮遊微粒子Xを走査電子顕微鏡を用いて撮像し、図8に示す微粒子像を得た。図8は実施例2における浮遊微粒子Xの微粒子像である。
図8から、孔部2の孔径が10μmの浮遊微粒子捕集用フィルタ1により、粒径が10μm以上の大気中の浮遊微粒子Xを分級して捕集でき、孔部の孔径が4μmの浮遊微粒子捕集用フィルタにより、粒径が4μm〜10μmの大気中の浮遊微粒子を分級して捕集できることがわかった。
また、浮遊微粒子が捕集された領域を電解放射型走査型電子顕微鏡(FE−SEM)とX線マイクロアナライザーを用いて撮像、画像処理することで、NaCl、金属酸化物、硫黄化合物等の同定ができる。例として特性X線解析により硫黄元素のマッピング像が挙げられる。図9は特性X線解析による硫黄元素のマッピング像である。図9から、本実施例2において下段の孔径4μmの浮遊微粒子捕集用シートに捕捉された4μm〜10μmの浮遊微粒子が硫黄化合物であることがわかった。
Next, examples of the present invention will be described. However, the present invention is not limited to these examples.
(Example 1)
A chloroform solution (0.1-2 wt% as the polymer concentration) in which poly-ε-caprolactone having an average molecular weight of 70,000 to 100,000 and amphiphilic polyacrylamide are mixed at a weight ratio of 10: 1 is used for a glass substrate or Casting 8 mL onto a substrate such as a ceramic substrate, blowing high-humidity air with a relative humidity of 30% to 80% at a flow rate of 1 to 20 L / min, and evaporating chloroform to a thickness of 0.1 μm A filter 1 for collecting suspended particles having a diameter of ˜20 μm, a hole diameter of 10 μm, and a hole area ratio of 45% to 65% was obtained. This airborne particle collecting filter 1 adhered and fixed on a glass fiber filter was set in a circular air passage having a cross section of 16 mm in diameter, and air was sucked into the air passage at a suction flow rate of 1000 L / h for 2 h. A suction pump was used as the suction means. The suspended fine particles X collected after the suction were imaged using a scanning electron microscope to obtain a fine particle image as shown in FIG. FIG. 7 is a fine particle image of the suspended fine particles X in Example 1.
From FIG. 7, it was found that airborne particulate X having a particle diameter of 10 μm or more can be classified and collected by the suspended particulate collection filter 1 having a pore diameter of 10 μm.
(Example 2)
In the same manner as in Example 1, a suspended particulate collection filter 1 with a pore size of 10 μm was obtained, and the pore size of the pores was the same as in Example 1 except that 5 mL of the solution was cast. Obtained a filter for collecting suspended fine particles of 4 μm. This airborne particle collecting filter 1 is a circular wind having a cross section of 16 mm in diameter, which is affixed to the upper surface of a glass fiber filter with a pore diameter of 10 μm on the top and a pore diameter of 4 μm on the bottom. The air was sucked into the air passage at a suction flow rate of 1000 L / h for 2 hours. A suction pump was used as the suction means. The suspended fine particles X collected after the suction were imaged using a scanning electron microscope to obtain a fine particle image shown in FIG. FIG. 8 is a fine particle image of the suspended fine particles X in Example 2.
From FIG. 8, airborne particulate X having a particle diameter of 10 μm or more can be classified and collected by the suspended particulate collection filter 1 having a pore diameter of 10 μm, and the suspended particulate having a pore diameter of 4 μm. It was found that airborne fine particles having a particle diameter of 4 μm to 10 μm can be classified and collected by the collection filter.
In addition, the area where suspended particulates are collected is imaged and image processed using an electrolytic emission scanning electron microscope (FE-SEM) and an X-ray microanalyzer to identify NaCl, metal oxides, sulfur compounds, etc. Can do. An example is a mapping image of sulfur element by characteristic X-ray analysis. FIG. 9 is a mapping image of sulfur element by characteristic X-ray analysis. From FIG. 9, it was found that the suspended fine particles of 4 μm to 10 μm captured in the suspended fine particle collecting sheet having a pore diameter of 4 μm in the lower stage in Example 2 are sulfur compounds.
以上説明したように、本発明は、大気中等に浮遊する固体又は液体の浮遊微粒子を容易に捕集し、捕集された浮遊微粒子の個々の形状や大きさ、浮遊微粒子間の相対的な位置や距離を測定することができる浮遊微粒子捕集用フィルタ及びそれを用いた浮遊微粒子捕集方法、浮遊微粒子分析方法、並びに浮遊微粒子捕集分析装置に関し、特に本発明によれば、浮遊微粒子を各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集用フィルタを提供することができる。
また、本発明によれば、浮遊微粒子を各々分離した状態で簡便且つ迅速に分級して捕集することができる浮遊微粒子捕集方法を提供することができる。
さらに、本発明によれば、浮遊微粒子を捕集する現場において浮遊微粒子を簡便且つ迅速に分級して捕集することができ、個々の大きさや形状、性質、或いは個々の微粒子間の相対的な位置や微粒子間の距離等を正確に測定することができる浮遊微粒子分析方法を提供することができる。
また、本発明によれば、浮遊微粒子を捕集する現場において浮遊微粒子を簡便且つ迅速に分級して捕集することができると共に浮遊微粒子の捕集を連続して行うことができる浮遊微粒子捕集装置を提供することができる。
As described above, the present invention easily collects solid or liquid suspended fine particles floating in the atmosphere and the like, the individual shape and size of the collected suspended fine particles, and the relative position between the suspended fine particles. In particular, according to the present invention, each of the suspended particulates can be measured by a filter for collecting suspended particulates and a suspended particulate collecting method, a suspended particulate collection method, and a suspended particulate collection and analysis apparatus using the same. It is possible to provide a filter for collecting suspended fine particles that can be classified and collected easily and quickly in a separated state.
In addition, according to the present invention, it is possible to provide a method for collecting suspended fine particles that can be classified and collected easily and quickly in a state where the suspended fine particles are separated from each other.
Furthermore, according to the present invention, it is possible to easily and quickly classify and collect suspended particulates at a site where suspended particulates are collected, and the individual sizes, shapes, properties, or relative relationships between individual particulates. It is possible to provide a suspended particle analysis method capable of accurately measuring a position, a distance between particles, and the like.
In addition, according to the present invention, the floating particulate collection that can easily and quickly classify and collect the suspended particulates at the site where the suspended particulates are collected and can continuously collect the suspended particulates. An apparatus can be provided.
1,1a,1b,1c,1d 浮遊微粒子捕集用フィルタ
2,2a,2b,2c,2d 孔部
3 切断線
4a,4b 浮遊微粒子捕集用フィルタ
10 浮遊微粒子捕集装置
11 筐体
12 開口部
13 浮遊微粒子捕集用フィルタ
14a 巻き取り側支持軸
14b 送り側支持軸
14c フィルタ送り部
15 吸引手段
16 排気口部
20 撮像装置
21 駆動部
22 制御装置
X,Y 浮遊微粒子
1, 1a, 1b, 1c, 1d Floating particulate collection filter 2, 2a, 2b, 2c, 2d Hole 3 Cutting line 4a, 4b Floating particulate collection filter 10 Floating particulate collection device 11 Housing 12 Opening DESCRIPTION OF SYMBOLS 13 Floating particulate collection filter 14a Winding side support shaft 14b Feeding side support shaft 14c Filter feed portion 15 Suction means 16 Exhaust port portion 20 Imaging device 21 Drive portion 22 Control device X, Y Floating particulate
Claims (11)
前記浮遊微粒子が捕集された前記所定領域を撮像する撮像工程と、
前記撮像工程において撮像された撮像画像を画像処理して前記浮遊微粒子の形状、大きさ、性質、又は前記浮遊微粒子間の相対的な位置或いは距離を測定する微粒子測定工程と、
を備えていることを特徴とする浮遊微粒子分析方法。 A particulate collection step of passing a gas containing suspended particulates through a predetermined region of the suspended particulate collection filter according to any one of claims 1 to 6 to classify and collect the suspended particulates;
An imaging step of imaging the predetermined area where the suspended particulates are collected;
A fine particle measurement step for measuring the shape, size, and properties of the floating fine particles, or the relative position or distance between the floating fine particles by performing image processing on the captured image captured in the imaging step;
A method for analyzing suspended particulates, comprising:
所定領域が前記開口部から露出するように前記筐体内部に配設された請求項1乃至6の内いずれか1項に記載の浮遊微粒子捕集用フィルタと、
前記筐体内部に対向して各々回動自在に配設され前記浮遊微粒子捕集用フィルタの両端部が各々巻着される一対の支持軸を有し前記支持軸を回動させることにより前記開口部に前記浮遊微粒子捕集用フィルタの新しい所定領域を送り出すフィルタ送り部と、
を備えていることを特徴とする浮遊微粒子捕集装置。 A housing having an opening;
The suspended particulate collection filter according to any one of claims 1 to 6, wherein the filter is disposed inside the housing so that a predetermined region is exposed from the opening.
There is a pair of support shafts that are rotatably arranged opposite to the inside of the housing and on which both ends of the filter for collecting suspended particulates are respectively wound, and the openings are formed by rotating the support shafts. A filter feed unit that sends out a new predetermined area of the filter for collecting suspended particulates to the unit;
A suspended particulate collection device characterized by comprising:
The floating particle collecting apparatus according to claim 10, further comprising an imaging device that images a predetermined area exposed at the opening of the filter for collecting floating particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398246A JP2005152849A (en) | 2003-11-27 | 2003-11-27 | Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398246A JP2005152849A (en) | 2003-11-27 | 2003-11-27 | Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005152849A true JP2005152849A (en) | 2005-06-16 |
Family
ID=34723146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003398246A Pending JP2005152849A (en) | 2003-11-27 | 2003-11-27 | Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005152849A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023469A (en) * | 2006-07-21 | 2008-02-07 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Airborne particulate collection device |
JP2009047461A (en) * | 2007-08-15 | 2009-03-05 | Hymo Corp | Adhesive pitch analysis method |
JP2012523575A (en) * | 2009-04-14 | 2012-10-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | High concentration of organic micro-objects for microscopic imaging |
WO2014203997A1 (en) * | 2013-06-21 | 2014-12-24 | 国立大学法人鳥取大学 | In-atmosphere material flying-state determination device, filter for collecting flying material, and flying state determination program |
JP2016142722A (en) * | 2015-02-05 | 2016-08-08 | 新日鐵住金株式会社 | Fine particle sampling method, and fine particle analysis method |
WO2018003476A1 (en) * | 2016-06-30 | 2018-01-04 | 富士フイルム株式会社 | Cell-suspension membrane separation method and cell culture device |
KR20180095441A (en) * | 2015-12-18 | 2018-08-27 | 인텔리전트 바이러스 이미징 아이엔씨. | High-precision quantification of sub-visible |
JP2018524555A (en) * | 2015-05-04 | 2018-08-30 | ザ ヨーロピアン ユニオン、リプレゼンテッド バイ ザ ヨーロピアン コミッションThe European Union,represented by the European Commission | Screening of nanoparticle properties |
JP2022528701A (en) * | 2019-03-25 | 2022-06-15 | ホワイト ラボ エスエイエル | Systems and methods for tracking aerial particles |
-
2003
- 2003-11-27 JP JP2003398246A patent/JP2005152849A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023469A (en) * | 2006-07-21 | 2008-02-07 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Airborne particulate collection device |
JP2009047461A (en) * | 2007-08-15 | 2009-03-05 | Hymo Corp | Adhesive pitch analysis method |
JP2012523575A (en) * | 2009-04-14 | 2012-10-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | High concentration of organic micro-objects for microscopic imaging |
US9128016B2 (en) | 2009-04-14 | 2015-09-08 | Koninklijke Philips N.V. | Up-concentration of organic microobjects for microscopic imaging |
WO2014203997A1 (en) * | 2013-06-21 | 2014-12-24 | 国立大学法人鳥取大学 | In-atmosphere material flying-state determination device, filter for collecting flying material, and flying state determination program |
JP5791063B2 (en) * | 2013-06-21 | 2015-10-07 | 国立大学法人鳥取大学 | Apparatus for determining the flying state of substances in the atmosphere, a filter for collecting flying substances, and a program for determining flying conditions |
JP2016142722A (en) * | 2015-02-05 | 2016-08-08 | 新日鐵住金株式会社 | Fine particle sampling method, and fine particle analysis method |
JP2018524555A (en) * | 2015-05-04 | 2018-08-30 | ザ ヨーロピアン ユニオン、リプレゼンテッド バイ ザ ヨーロピアン コミッションThe European Union,represented by the European Commission | Screening of nanoparticle properties |
KR20180095441A (en) * | 2015-12-18 | 2018-08-27 | 인텔리전트 바이러스 이미징 아이엔씨. | High-precision quantification of sub-visible |
KR102150748B1 (en) | 2015-12-18 | 2020-09-01 | 인텔리전트 바이러스 이미징 아이엔씨. | High-precision quantification of sub-visibles |
WO2018003476A1 (en) * | 2016-06-30 | 2018-01-04 | 富士フイルム株式会社 | Cell-suspension membrane separation method and cell culture device |
US11492578B2 (en) | 2016-06-30 | 2022-11-08 | Fujifilm Corporation | Membrane separation method of cell suspension, and cell culture device |
JP2022528701A (en) * | 2019-03-25 | 2022-06-15 | ホワイト ラボ エスエイエル | Systems and methods for tracking aerial particles |
JP7499786B2 (en) | 2019-03-25 | 2024-06-14 | ダブリューラボ リミテッド | Systems and methods for tracking airborne particles - Patents.com |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102478581B1 (en) | Systems and methods for rapid and autonomous detection of aerosol particles | |
US7578973B2 (en) | Devices for continuous sampling of airborne particles using a regenerative surface | |
US7113277B2 (en) | System and method of aerosolized agent capture and detection | |
JP2005152849A (en) | Floating particulate collection filter, suspended particulate collection method using the same, suspended particulate analysis method, and suspended particulate collection apparatus | |
US7518710B2 (en) | Optical devices for biological and chemical detection | |
KR101792363B1 (en) | Textile colorimetric sensors and member with dye anchored one dimensional polymer nanofibers for decting hydrogen sulfide gas and manufacturing method thereof | |
US20020157993A1 (en) | Method for surface deposition of concentrated airborne particles | |
CN1539543A (en) | Filtering membrane for traping granular substance and sampler using same and analyzer for granular substance | |
JP2015224991A (en) | Measuring apparatus and measuring method | |
US20130141722A1 (en) | System and method for analyzing pore sizes of substrates | |
CN107850540A (en) | Prepare the method that fluid sample carries out LIBS and imaging analysis | |
JP3945770B2 (en) | Suspended particulate analysis method and suspended particulate collection device used therefor | |
US20110293151A1 (en) | Method and device for quantifying surface particulate contaminants by improved analysis | |
JP6540064B2 (en) | Microparticle sampling method and microparticle analysis method | |
JP2005134270A (en) | Particulate matter analyzer | |
JP2003315245A (en) | System and method for measuring fine particles in ultrapure water | |
WO2022201658A1 (en) | Optical inspection device and optical inspection method | |
KR20150117198A (en) | Sensor for spectroscopic analysis | |
US20230245876A1 (en) | Systems and methods of rapid and autonomous detection of aerosol particles | |
JP2005249546A (en) | Analysis method for metal element on wafer surface | |
US20240379337A1 (en) | Systems and methods of rapid and autonomous detection of aerosol particles | |
KR20250079450A (en) | Real-time airborne microorganism detection system | |
JP2017072593A (en) | Microparticle analysis method | |
JP2006308284A (en) | Suspended particulate collector and method for producing the same | |
Lombardo | Development and characterization of sensors for human health |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061031 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090323 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091215 |