[go: up one dir, main page]

JP2005146937A - Fluid machine and manufacturing method thereof - Google Patents

Fluid machine and manufacturing method thereof Download PDF

Info

Publication number
JP2005146937A
JP2005146937A JP2003383544A JP2003383544A JP2005146937A JP 2005146937 A JP2005146937 A JP 2005146937A JP 2003383544 A JP2003383544 A JP 2003383544A JP 2003383544 A JP2003383544 A JP 2003383544A JP 2005146937 A JP2005146937 A JP 2005146937A
Authority
JP
Japan
Prior art keywords
shell
stator
fluid machine
manufacturing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383544A
Other languages
Japanese (ja)
Inventor
Hidenobu Shintaku
秀信 新宅
Yasushi Aeba
靖 饗場
Tetsushi Yonekawa
哲史 米川
Toshihiro Nishioka
敏浩 西岡
Kenji Shimada
賢志 嶋田
Shinichi Yoshizuka
信一 吉塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003383544A priority Critical patent/JP2005146937A/en
Publication of JP2005146937A publication Critical patent/JP2005146937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

【課題】容器1となる胴シェル4に固定子6を焼きバメまたは溶接固定する際に生じていた、固定子6の巻線7や絶縁部材8の焼損を防止する。
【解決手段】胴シェル4に固定子6を焼きバメまたは溶接固定する際、冷却手段21で固定子6を冷却しながら行う事により、固定子6が高温となる事を防止し、固定子6の巻線7の被覆、絶縁部材8などの熱に弱い部品を焼損することなく、固定子6を胴シェル4に確実に固定できる。また、胴シェル4の冷却も短時間で終了するため、生産性を向上することができる。
【選択図】図1
An object of the present invention is to prevent a winding 7 and an insulating member 8 of a stator 6 from being burned out when a stator 6 is shrink-fitted or welded to a shell shell 4 serving as a container 1.
When a stator 6 is shrink-fitted or welded to a shell shell 4, the stator 6 is cooled while being cooled by a cooling means 21 to prevent the stator 6 from becoming high temperature. The stator 6 can be securely fixed to the shell 4 without burning out heat-sensitive parts such as the covering of the winding 7 and the insulating member 8. Further, since the cooling of the shell 4 is completed in a short time, the productivity can be improved.
[Selection] Figure 1

Description

本発明は家庭用の冷凍サイクル応用機器などに使用される電動機を内蔵した流体機械及びその製造方法に関するもので、特には、冷媒(作動流体)として二酸化炭素等を用いるような密閉容器内部が特に高圧となる流体機械及びその製造方法に関するものである。   The present invention relates to a fluid machine incorporating an electric motor used for household refrigeration cycle application equipment and the like, and a method of manufacturing the fluid machine. The present invention relates to a high-pressure fluid machine and a manufacturing method thereof.

近年、環境保護の観点からアンモニアや二酸化炭素などの自然冷媒が見直され始めており、中でも二酸化炭素冷媒は毒性も低く可燃性もないため極めて扱いやすい冷媒として注目されており、ヒートポンプ式給湯機などへの応用が進んでいる。それらの機器には一般に電動機を内蔵した流体機械である密閉型圧縮機が用いられている。その圧縮機構にはスクロール式、ロータリ式等が良く用いられている。   In recent years, natural refrigerants such as ammonia and carbon dioxide have begun to be reviewed from the viewpoint of environmental protection. Among them, carbon dioxide refrigerant has attracted attention as an extremely easy-to-handle refrigerant because it is not toxic and flammable. Application is progressing. In these devices, a hermetic compressor which is a fluid machine with a built-in electric motor is generally used. A scroll type, a rotary type or the like is often used as the compression mechanism.

従来のR22、R410A等の冷媒を圧縮するスクロール式を用いた圧縮機の縦断面図を図5に示す。図5に示すように、密閉容器1は電動機2や圧縮機構3を取りつけた筒状の胴シェル4と、この両端に密着配置された上シェル5aと下シェル5bとを密着部を全周にわたって溶接して形成されている。密閉容器1は板厚約3mmの鋼板で構成されており、加熱され膨張した胴シェル4に固定子6を挿入することで、固定子6が胴シェル4に焼バメ固定されている(例えば、特許文献1参照)。   FIG. 5 shows a longitudinal sectional view of a conventional compressor using a scroll type that compresses refrigerant such as R22 and R410A. As shown in FIG. 5, the sealed container 1 includes a cylindrical shell shell 4 to which an electric motor 2 and a compression mechanism 3 are attached, and an upper shell 5 a and a lower shell 5 b that are disposed in close contact with both ends of the sealed container 1 over the entire circumference. It is formed by welding. The sealed container 1 is made of a steel plate having a thickness of about 3 mm, and the stator 6 is fixed to the shell 4 by shrinkage by inserting the stator 6 into the heated shell shell 4 (for example, Patent Document 1).

二酸化炭素冷媒を使用した冷凍サイクル等のような高圧や高圧縮比を要求される用途の密閉型圧縮機では、密閉容器1内の圧力が高圧となる為、耐圧強度を確保する必要があり、そのために密閉容器1の胴シェル4や上、下シェル5a,5bの板厚を厚くするとともに、密閉容器1となる胴シェル4等と各部材の接合部を確実に強固に溶接等で接合、固定する必要がある。
特開2002−161856号公報
In a hermetic compressor that requires high pressure and a high compression ratio, such as a refrigeration cycle using a carbon dioxide refrigerant, the pressure in the hermetic container 1 is high, so it is necessary to ensure pressure resistance. For this purpose, the thickness of the shell shell 4 and the upper and lower shells 5a and 5b of the sealed container 1 is increased, and the joint portions of the shell shell 4 and the like to be the sealed container 1 and each member are securely and firmly joined by welding or the like. Need to be fixed.
JP 2002-161856 A

しかしながら、胴シェル4の厚みが厚くなることで次のような課題が生じていた。   However, as the thickness of the shell 4 is increased, the following problem has occurred.

図6は密閉型圧縮機の横断面図(図5の破線部A)であり、従来構成の胴シェル4の厚みを厚くした場合を示している。図5の従来の密閉型圧縮機の胴シェル4の板厚は、約3mm程度である。図5に示すように、巻線7は絶縁部材8をはさんで固定子6のスロット部9内に設置してある。このような構成で、胴シェル4の厚みが2倍以上の約7mmとなる場合、胴シェル4は熱容量が大きくなるため焼バメの加熱の際、胴シェル4から固定子6へ多大の熱量が流れ固定子6の温度が上昇し、固定子6の巻線7及びその絶縁部材8の焼損や、胴シェル4、固定子6が熱変形して電動機2の可動子2b(図5参照)とのすき間(エアギャップ)に狂いが生じるなど、信頼性や性能の不具合が生じていた。   FIG. 6 is a cross-sectional view of the hermetic compressor (broken line portion A in FIG. 5), and shows a case where the thickness of the shell shell 4 having the conventional configuration is increased. The plate thickness of the shell 4 of the conventional hermetic compressor of FIG. 5 is about 3 mm. As shown in FIG. 5, the winding 7 is installed in the slot portion 9 of the stator 6 with the insulating member 8 interposed therebetween. In such a configuration, when the thickness of the shell shell 4 is about 7 mm, which is twice or more, the heat capacity of the shell shell 4 increases, so that when the shrinkage is heated, a great amount of heat is transferred from the shell shell 4 to the stator 6. When the temperature of the flow stator 6 rises, the winding 7 of the stator 6 and its insulating member 8 are burned out, the body shell 4 and the stator 6 are thermally deformed, and the movable element 2b of the electric motor 2 (see FIG. 5). There were problems in reliability and performance, such as a gap in the gap (air gap).

また、胴シェルが厚くなるとその剛性が上がる為、焼バメの締め代を大きく取ると胴シェルより固定子側に締め代分の変形が生じる事となる。逆に締め代を小さく取ると、容器内部が高圧となる二酸化炭素等を冷媒に用いる場合、その圧力によって胴シェルの内径が伸び拡大し、固定子との間に締め代がなくなりすき間が生じ固定子の回転や脱落する場合があり、胴シェルと固定子の焼バメ代範囲は、上記従来の構造の場合より狭く管理する必要が生じていた。したがって、適切な締め代を確保する為に、従来例以上に胴シェル4の内径及び固定子6の外径には高い精度が必要となり、コスト面での課題を有していた。   Further, since the rigidity of the shell shell increases as the shell shell becomes thicker, if the tightening allowance of the shrinkage is increased, deformation of the tightening margin will occur on the stator side from the shell shell. On the other hand, if the tightening margin is small, when carbon dioxide, etc., which has a high pressure inside the container, is used for the refrigerant, the inner diameter of the shell shell expands and expands due to the pressure, and there is no clearance between the stator and the fixed gap. In some cases, the child rotates or falls off, and the shrinkage allowance range of the shell and the stator needs to be managed narrower than in the case of the conventional structure. Therefore, in order to ensure an appropriate tightening allowance, higher accuracy is required for the inner diameter of the shell 4 and the outer diameter of the stator 6 than in the conventional example, which has a problem in cost.

一方、固定子の温度上昇を緩和するために、焼バメ時の胴シェルの加熱温度を下げると、内径を焼バメ代に相当する量の熱膨張をさせる事ができず固定子が挿入できないという課題を生じていた。   On the other hand, to reduce the temperature rise of the stator, if the heating temperature of the shell is reduced during shrinkage, the inner diameter cannot be expanded by an amount equivalent to the shrinkage allowance and the stator cannot be inserted. There was a problem.

このような不具合を解消する為、例えば胴シェルを電動機や圧縮機構を固定する内筒と、耐圧性の高い外筒とからなる二重構造としたものが提案されている。   In order to eliminate such a problem, for example, a structure in which the shell is made into a double structure including an inner cylinder for fixing an electric motor and a compression mechanism and an outer cylinder having a high pressure resistance has been proposed.

この場合、焼バメや溶接時において外筒に熱が加わった場合、電動機への熱影響を抑えられるので、巻線や絶縁部材の焼損を防止できる。また、仮に外筒が熱変形したとしても、内筒の変形を抑えることができるので、電動機のエアギャップに狂いが生じることも防止できる構成となっている。   In this case, when heat is applied to the outer cylinder during shrinkage or welding, the influence of heat on the electric motor can be suppressed, so that the winding and the insulating member can be prevented from being burned out. In addition, even if the outer cylinder is thermally deformed, the deformation of the inner cylinder can be suppressed, so that the deviation of the air gap of the electric motor can be prevented.

しかしながら、このような二重構造を採用した構成では、構造が複雑となり、生産工数も増える為、生産性に課題を有していた。   However, the configuration employing such a double structure has a problem in productivity because the structure becomes complicated and the number of production steps increases.

本発明は、前記従来の課題を解決するもので、固定子の絶縁部材や電線を熱損傷から保護しつつ、高圧力に耐える厚い容器に確実に電動機が固定された流体機械及びその製造方法を提供することを目的としている。   The present invention solves the above-described conventional problems, and provides a fluid machine in which an electric motor is securely fixed to a thick container that can withstand high pressure while protecting an insulating member and an electric wire of a stator from thermal damage, and a manufacturing method thereof. It is intended to provide.

前記従来の課題を解決するために、本発明の流体機械の製造方法は、冷却手段により電動機の固定子を冷却しながら、加熱された胴シェルに固定子を挿入し焼きバメ固定するものである。これによって、固定子は冷却手段により冷却されつづけているので、焼バメ時に固定子が高温となることを防止できる。   In order to solve the above-described conventional problems, the method of manufacturing a fluid machine according to the present invention is to fix the shrinkage by inserting the stator into the heated shell shell while cooling the stator of the electric motor by the cooling means. . Thereby, since the stator is continuously cooled by the cooling means, it is possible to prevent the stator from becoming high temperature during shrinkage.

また、本発明の流体機械の製造方法は、冷却手段により電動機の固定子を冷却しながら、前記胴シェルに設けた貫通孔を介して前記胴シェルと前記固定子の溶接固定するものである。これによって、胴シェルと固定子の内外径に締め代ないまたは小さい場合でも、固定子は冷却手段により冷却されつづけているので、溶接時に固定子が高温となることを防止できる。   In the method for manufacturing a fluid machine according to the present invention, the body shell and the stator are welded and fixed through a through hole provided in the body shell while the stator of the electric motor is cooled by cooling means. Thus, even when the inner and outer diameters of the shell and the stator are not tight or small, the stator continues to be cooled by the cooling means, so that the stator can be prevented from becoming hot during welding.

さらに、本発明の流体機械は、胴シェルに設けたその板厚より小さい径の貫通孔を介して前記胴シェルと前記固定子の溶接固定するものである。これによって、上記のような特に冷却手段を用いなくとも、溶接時の熱を小さくする事ができるため、接合部の強度を確保するとともに固定子が高温となることを防止できる。   Furthermore, the fluid machine of the present invention is to fix the body shell and the stator by welding through a through-hole having a diameter smaller than the plate thickness provided in the body shell. Accordingly, since the heat during welding can be reduced without using a cooling means as described above, the strength of the joint can be ensured and the stator can be prevented from becoming high temperature.

本発明の流体機械の製造方法によれば、流体機械の電動機の固定子を胴シェルに焼バメまたは溶接固定する際に、固定子の温度がその巻線の被覆や絶縁部材などの熱に弱い部品を損傷するような危険な値まで上昇することを防止することができる。   According to the method for manufacturing a fluid machine of the present invention, when the stator of the motor of the fluid machine is shrink-fitted or welded to the shell, the temperature of the stator is weak to the heat of the coating of the winding or the insulating member. It is possible to prevent a rise to a dangerous value that may damage the parts.

したがって、樹脂材で構成された巻線の被覆、絶縁部材などの熱に弱い部品を損傷することなく、固定子を胴シェルに確実に固定する事が可能となり、また、胴シェルの冷却も短時間で終了するため、信頼性の高い流体機械を高い生産性で実現する事が可能となる。   Therefore, it is possible to securely fix the stator to the shell without damaging the heat-sensitive parts such as the winding covering made of resin material and the insulating member, and the shell shell can be cooled quickly. Since the process is completed in time, a highly reliable fluid machine can be realized with high productivity.

本願第1の発明は、筒状の胴シェルを有する容器内に流体搬送機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され固定される流体機械の製造方法であって、前記胴シェルを加熱したのち、前記固定子を冷却手段により冷却しながら、前記胴シェルと前記固定子の焼バメ固定を行うことにより、焼バメ時に胴シェルより
固定子に伝わった熱が、冷却ガスや冷却面を有する冷却手段により吸熱されるので、固定子の温度がその巻線の被覆や絶縁部材などの熱に弱い部品を損傷するような危険な値まで上昇することを防止することができる。
The first invention of the present application is to manufacture a fluid machine in which a fluid transport mechanism and an electric motor for driving the same are housed in a container having a cylindrical shell, and a stator of the motor is inserted and fixed in the shell. In the method, after the shell shell is heated, the shell shell and the stator are fixed by shrinkage while the stator is cooled by a cooling means, and the shell shell and the stator are fixed to the stator at the time of shrinkage. Since the heat generated is absorbed by the cooling means and the cooling means with the cooling surface, the temperature of the stator rises to a dangerous value that damages heat-sensitive components such as the coating of the windings and insulation members. Can be prevented.

第2の発明は、胴シェルと固定子を溶接固定し、第1の発明において焼バメの締め代が小さいまたは無い場合でも固定可能としたもので、筒状の胴シェルを有する密閉容器内に流体搬送機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され固定される流体機械の製造方法であって、前記固定子を冷却手段により冷却しながら、前記胴シェルに設けた貫通孔を介して前記胴シェルと前記固定子の溶接固定を行うことにより、溶接時に胴シェルより固定子に伝わった熱が、冷却ガスや冷却面を有する冷却手段により吸熱されるので、固定子の温度がその巻線の被覆や絶縁部材などの熱に弱い部品を損傷するような危険な値まで上昇することを防止することができる。また、締め代が少ないまたは無いので、固定子の変形や歪が少なく性能低下を防止できる。   In the second invention, the shell shell and the stator are fixed by welding, and in the first invention, the shell shell and the stator can be fixed even when the tightening allowance of the shrinkage is small or not. In a closed container having a cylindrical shell shell. A method of manufacturing a fluid machine that houses a fluid transport mechanism and an electric motor that drives the fluid transport mechanism, and a stator of the motor is inserted into and fixed to the trunk shell, while cooling the stator by cooling means, By performing welding and fixing of the shell shell and the stator through a through hole provided in the shell shell, heat transferred from the shell shell to the stator during welding is absorbed by a cooling means having a cooling gas or a cooling surface. Therefore, it is possible to prevent the temperature of the stator from rising to a dangerous value that damages a heat-sensitive component such as a coating of the winding or an insulating member. In addition, since there is little or no fastening allowance, there is little deformation or distortion of the stator, and performance degradation can be prevented.

第3の発明は、特に第1または第2の発明で冷却手段が、固定子の内径側に挿入され接触する冷却面を有することで、固定子のもっとも大きい放熱面である内径面から熱伝導で直接吸熱できるため、固定子の温度上昇を抑え、巻線の被覆や絶縁部材の損傷を防止する事ができる。   In the third invention, in particular, in the first or second invention, the cooling means has a cooling surface which is inserted into and comes into contact with the inner diameter side of the stator, so that heat conduction is performed from the inner diameter surface which is the largest heat radiating surface of the stator. Since the heat can be directly absorbed by this, the temperature rise of the stator can be suppressed and damage to the coating of the winding and the insulating member can be prevented.

第4の発明は、特に第1〜第3の発明で冷却手段が、固定子の近傍に冷却ガス供給手段を有することで、巻線の被覆や絶縁部材に直接冷却ガスが当たり、それらの表面から熱伝達で直接吸熱できるため、巻線の被覆や絶縁部材の損傷を防止する事ができる。   According to a fourth aspect of the invention, in particular, the cooling means in the first to third aspects has a cooling gas supply means in the vicinity of the stator, so that the cooling gas directly hits the coating of the winding or the insulating member, and the surfaces thereof. Since heat can be absorbed directly by heat transfer, damage to the coating of the winding and the insulating member can be prevented.

第5の発明は、特に第1〜第4の発明で圧縮される冷媒が二酸化炭素である場合であり、この場合、運転時に密閉容器内部が高圧になるので特に各部材の耐圧や接合及び固定強度の高い密閉容器や部材が要求されるが、本発明により内部の部品を損傷することなく高耐圧の密閉容器を提供することができる。   The fifth invention is particularly the case where the refrigerant compressed in the first to fourth inventions is carbon dioxide. In this case, since the inside of the sealed container becomes a high pressure during operation, the pressure resistance, joining and fixing of each member are particularly high. Although a sealed container or member having high strength is required, the present invention can provide a sealed container with high pressure resistance without damaging internal components.

第6の発明は筒状の胴シェルを有する密閉容器内に圧縮機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され、前記胴シェルに設けた貫通孔を介して前記胴シェルに前記固定子が溶接固定されたものであり、胴シェルと固定子の焼バメの締め代が小さいまたは無い場合でも固定可能となるため、焼バメの締め代による固定子の変形や歪を防止できる。   According to a sixth aspect of the present invention, a compression mechanism and an electric motor for driving the compression mechanism are housed in a sealed container having a cylindrical shell shell, and a stator of the motor is inserted into the shell shell, and a through hole provided in the shell shell The stator is welded and fixed to the shell shell via a screw, and can be fixed even if the tightening allowance between the shell shell and the stator is small or not. Can prevent deformation and distortion.

第7の発明は、特に第6の発明で貫通孔の内径を胴シェルの板厚より小さくしたものであり、これにより、胴シェルに固定子を溶接固定する際の固定子へ流熱を小さく抑えることができるため、特に冷却手段がなくても、溶接での固定子の温度上昇を抑えられ、巻線の被覆や絶縁部材の損傷を防止する事ができる。   In the seventh invention, in particular, in the sixth invention, the inner diameter of the through-hole is made smaller than the plate thickness of the shell shell, so that the heat flow to the stator is reduced when the stator is welded to the shell shell. Therefore, even if there is no cooling means, the temperature rise of the stator during welding can be suppressed, and damage to the coating of the winding and the insulating member can be prevented.

第8の発明は、特に第5〜第6の発明で圧縮される冷媒が二酸化炭素である場合であり、この場合、運転時に密閉容器内部が高圧になるので特に各部材の耐圧や接合及び固定強度の高い密閉容器や部材が要求されるが、本発明により内部の部品を損傷することなく高圧に耐える流体機械を提供することができる。   The eighth invention is particularly the case where the refrigerant compressed in the fifth to sixth inventions is carbon dioxide. In this case, since the inside of the sealed container becomes a high pressure during operation, the pressure resistance, joining and fixing of each member are particularly high. Although a sealed container or member having high strength is required, the present invention can provide a fluid machine that can withstand high pressure without damaging internal components.

以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下に記載する実施の形態により本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by embodiment described below.

(実施の形態1)
図1は、本発明第1の実施の形態における流体機械である密閉型圧縮機の製造方法を示す図であり、胴シェルと固定子の縦断面を示してある。図1において、冷却手段である冷
却装置21は、冷却機22と設置部23a、支持部23b、冷却面23cにより構成されており、固定子6の内径面に冷却面23cを挿入し下端面を支持部23bに支持し、固定子6をその内径側より冷却面23cで接触させて固定させ冷却する。この冷却された状態で固定された固定子6に、別途加熱された胴シェルをかぶせ挿入する。
(Embodiment 1)
FIG. 1 is a view showing a manufacturing method of a hermetic compressor that is a fluid machine according to a first embodiment of the present invention, and shows a longitudinal section of a shell and a stator. In FIG. 1, a cooling device 21 as a cooling means includes a cooler 22, an installation portion 23a, a support portion 23b, and a cooling surface 23c. The cooling surface 23c is inserted into the inner diameter surface of the stator 6 and the lower end surface is formed. The stator 6 is supported by the support portion 23b and fixed by being brought into contact with the cooling surface 23c from the inner diameter side to be cooled. A separately heated body shell is inserted into the stator 6 fixed in the cooled state and inserted.

固定子6に胴シェル4が挿入されると、胴シェル4からの熱が固定子6へ流入するが、冷却面23cにより固定子6は冷却されているため、その温度上昇が抑制される。固定子6の温度上昇が抑制される事で、熱に弱い巻線7の被覆や、絶縁部材8が損傷する事を防止できる。   When the shell shell 4 is inserted into the stator 6, heat from the shell shell 4 flows into the stator 6. However, since the stator 6 is cooled by the cooling surface 23c, the temperature rise is suppressed. By suppressing the temperature rise of the stator 6, it is possible to prevent the coating of the winding 7 that is weak against heat and the insulation member 8 from being damaged.

このとき、二酸化炭素冷媒を圧縮する為の密閉型圧縮機では、密閉容器内部が高圧になる為、胴シェル4は通常のフロン冷媒を圧縮するものに比べて板厚の大きな鉄板(即ち熱容量が大きい)で形成されており、胴シェル4と固定子6の焼バメ時に、多大な熱量が固定子6側に流入しないようにする必要があるが、上記構成の場合、その熱を十分吸収できるように固定子6を冷却する事ができる。巻線7の被覆17に熱損傷を与えることなく胴シェル4への固定子6の焼バメ固定を完了することができる。   At this time, in the hermetic compressor for compressing the carbon dioxide refrigerant, since the inside of the hermetic container becomes a high pressure, the shell 4 has an iron plate (that is, has a heat capacity larger than that of the ordinary compressor for compressing the fluorocarbon refrigerant). It is necessary to prevent a great amount of heat from flowing into the stator 6 when the shell 4 and the stator 6 are shrinked. In the case of the above configuration, the heat can be absorbed sufficiently. Thus, the stator 6 can be cooled. Fixing the shrinkage of the stator 6 to the shell 4 can be completed without causing thermal damage to the coating 17 of the winding 7.

(実施の形態2)
図2は、本発明第2の実施の形態における密閉型圧縮機の製造方法を示す図であり、胴シェルと固定子の縦断面を示してある。図3は、密閉型圧縮機の胴シェルと固定子の横断面図である。図2において、第1の実施の形態(図1参照)と異なるのは固定子6冷却手段に冷却ガスを用いた点である。
(Embodiment 2)
FIG. 2 is a view showing a manufacturing method of the hermetic compressor according to the second embodiment of the present invention, and shows a longitudinal section of a shell and a stator. FIG. 3 is a cross-sectional view of the shell and the stator of the hermetic compressor. 2 is different from the first embodiment (see FIG. 1) in that a cooling gas is used for the stator 6 cooling means.

図2において、冷却手段である冷却装置31は、ガス供給装置32と設置部33a、支持部33b、内径支持部33cにより構成されており、固定子6はその内径面を内径支持部33cが挿入され支持され、また下端面を支持部33bで支持されている。ガス供給装置32より供給された冷却ガス(例えば窒素)は、設置部33a内に設けられた第1ガス通路と、支持部33b、内径支持部33c内にもうけられた第2ガス通路35を通じて、各々矢印34a,35aの方向に流出する。   In FIG. 2, a cooling device 31 as a cooling means includes a gas supply device 32, an installation portion 33a, a support portion 33b, and an inner diameter support portion 33c. The inner diameter surface of the stator 6 is inserted into the inner diameter support portion 33c. The lower end surface is supported by the support portion 33b. The cooling gas (for example, nitrogen) supplied from the gas supply device 32 passes through the first gas passage provided in the installation portion 33a, and the second gas passage 35 provided in the support portion 33b and the inner diameter support portion 33c. It flows out in the direction of arrows 34a and 35a, respectively.

第1ガス通路の冷却ガスは、巻線の上下端部(図3の巻線7参照)を冷却するとともに、図3に示す固定子6の外周部の切り欠き部10、及び巻線が巻かれているスロット部9のすき間を図2の下方から上方に流れ、固定子6と巻線7及び絶縁部材8を冷却し、それらの温度上昇を抑制する。   The cooling gas in the first gas passage cools the upper and lower ends of the winding (see winding 7 in FIG. 3), and the notch 10 on the outer peripheral portion of the stator 6 shown in FIG. 2 flows upward from the lower side of FIG. 2 to cool the stator 6, the winding 7 and the insulating member 8, and suppress the temperature rise thereof.

また、第2ガス通路の冷却ガスは、図2、3に示す矢印35aの方向に中心から外側に向かって放出され、巻線7を冷却しスロット9の切り欠き部より矢印35bの方向に中心から外側に向かって流れ、スロット9内部の巻線7及び絶縁部材8を冷却する。   The cooling gas in the second gas passage is discharged from the center toward the outside in the direction of the arrow 35a shown in FIGS. 2 and 3, cools the winding 7 and is centered in the direction of the arrow 35b from the notch of the slot 9. The coil 7 and the insulating member 8 inside the slot 9 are cooled.

したがって、上記実施の形態によれば、固定子6に加熱された胴シェル4が挿入されると、胴シェル4からの熱が固定子6へ流入するが、第1、第2ガス通路の冷却ガス(矢印34a、35b)により、固定子6の巻線7および絶縁部材8が直接冷却されるため、熱に弱い巻線7の被覆や、絶縁部材8の温度上昇が抑制され、それらの損傷を防止できる。   Therefore, according to the above embodiment, when the heated shell 4 is inserted into the stator 6, the heat from the shell 4 flows into the stator 6, but the first and second gas passages are cooled. The gas (arrows 34a and 35b) directly cools the winding 7 and the insulating member 8 of the stator 6, so that the coating of the winding 7 that is vulnerable to heat and the temperature rise of the insulating member 8 are suppressed, and damage to them. Can be prevented.

なお、上記実施例では、冷却装置で冷却したガスを用いたが、それに限らず、常温のガスでも良く、ガス流量を多くする事で冷却作用を得る事ができる。冷却ガスには窒素ガスを用いたが、それに限らず、空気、アルゴン、ヘリウム、二酸化炭素などの不活性ガスや不燃性ガスを使用しても良い。   In the above embodiment, the gas cooled by the cooling device is used. However, the present invention is not limited to this, and a normal temperature gas may be used, and the cooling action can be obtained by increasing the gas flow rate. Nitrogen gas is used as the cooling gas. However, the present invention is not limited to this, and an inert gas or nonflammable gas such as air, argon, helium or carbon dioxide may be used.

尚、上記実施例に、第1の実施の形態をあわせて実施する事で、より確実に固定子6、
巻線7、絶縁部材8を冷却する事ができる。
In addition, by carrying out the first embodiment together with the above example, the stator 6 can be more reliably
The winding 7 and the insulating member 8 can be cooled.

(実施の形態3)
図4は、本発明第3の実施の形態における密閉型圧縮機の横断面図である。
(Embodiment 3)
FIG. 4 is a cross-sectional view of a hermetic compressor according to the third embodiment of the present invention.

第1及び第2の実施の形態(図1〜3参照)と異なる点は、固定子6が胴シェル4に設けられた貫通穴41を介して溶接(栓溶接)固定される点である。固定子6の冷却には、図1または図2に示す冷却手段を用いている。   The difference from the first and second embodiments (see FIGS. 1 to 3) is that the stator 6 is fixed by welding (plug welding) through a through hole 41 provided in the shell 4. The cooling means shown in FIG. 1 or 2 is used for cooling the stator 6.

図4は、固定子6が胴シェル4に挿入されて貫通穴41で溶接された栓溶接部41aで固定された状態を示した図で、固定子6は、その切り欠き部10がない外周面で貫通穴41の栓溶接部41aで胴シェル4に固定されている。   FIG. 4 is a view showing a state in which the stator 6 is inserted into the shell shell 4 and is fixed by a plug welded portion 41a welded by a through hole 41. The stator 6 has an outer periphery without the notch 10. The surface is fixed to the shell shell 4 by a plug welded portion 41a of the through hole 41.

栓溶接部41aが形成される際、栓溶接部41aから固定子6に溶接時の熱が流出するが、図1または図2に示す冷却手段を用いる事で、固定子6、巻線7、絶縁子8等の温度上昇が抑制され、それらの損傷を防止できる。したがって、胴シェル4及び固定子6の各々内径、外径が、従来と同等またはそれより低い精度でも固定できるため、低コストかが可能となる。   When the plug welded portion 41a is formed, heat at the time of welding flows from the plug welded portion 41a to the stator 6. By using the cooling means shown in FIG. 1 or 2, the stator 6, the winding 7, The rise in temperature of the insulator 8 or the like is suppressed, and damage to them can be prevented. Therefore, since the inner diameter and outer diameter of the shell 4 and the stator 6 can be fixed with the same or lower accuracy than the conventional one, the cost can be reduced.

また、第1及び第2の実施の形態の焼バメ固定の場合より、本実施の形態の栓溶接の方が胴シェル4に与えられる熱量が少なく、冷却に要する時間も短くなるため、生産性も向上することができる。   Further, the amount of heat given to the shell 4 is smaller in the plug welding of the present embodiment than in the case of the shrinkage fixing of the first and second embodiments, and the time required for cooling is also shortened. Can also be improved.

尚、本実施の形態の栓溶接での固定と、第1及び第2の実施の形態の焼バメ固定を併用しても良い事はいうまでもない。   Needless to say, the fixing by plug welding of the present embodiment and the shrinkage fixing of the first and second embodiments may be used in combination.

さらに、図4に示すように、貫通穴41の内径d小さくする事で、溶接部41aの熱量を小さくできる。特に、内径dを胴シェル4の板厚tより小さくする事で、溶接部の第1及び第2の実施の形態(図1および図2参照)の冷却装置21、31(冷却機22やガス供給装置32)を用いなくとも、固定子6へ流れる熱を小さくでき、巻線7の被覆や、絶縁部材8の温度上昇を抑制できるため、それらの損傷を防止できる。例えば、tが約6〜8mmの場合、dを約3〜5mmとし、3箇所の栓溶接を行っている。したがって、信頼性を確保すると共に生産性が高い密閉型圧縮機を、安価に提供する事ができる。   Furthermore, as shown in FIG. 4, the heat quantity of the welded portion 41 a can be reduced by reducing the inner diameter d of the through hole 41. In particular, by making the inner diameter d smaller than the plate thickness t of the shell 4, the cooling devices 21 and 31 (the cooler 22 and the gas) of the first and second embodiments (see FIGS. 1 and 2) of the welded portion. Even if the supply device 32) is not used, the heat flowing to the stator 6 can be reduced and the covering of the winding 7 and the temperature rise of the insulating member 8 can be suppressed. For example, when t is about 6 to 8 mm, d is about 3 to 5 mm, and plug welding is performed at three locations. Therefore, it is possible to provide a hermetic compressor that ensures reliability and high productivity at a low cost.

尚、内径dを小さくするに従い(例えば、tが約6〜8mmでdが約3mm以下の場合)、固定強度が下がるので、その場合は栓溶接部41aの溶接箇所を増やす事ことで固定に必要な強度を確保できる。   In addition, as the inner diameter d is reduced (for example, when t is about 6 to 8 mm and d is about 3 mm or less), the fixing strength decreases. In this case, the welding can be fixed by increasing the number of welded portions of the plug welded portion 41a. Necessary strength can be secured.

尚、上記第1から第3の実施の形態では、密閉型圧縮機を例に説明したが、本発明は、高圧液体などの高圧の作動流体を扱うポンプなど、電動機を内蔵した流体機械及びその製造等の用途にも適用できるものであることは言うまでもない。   In the first to third embodiments, the hermetic compressor has been described as an example. However, the present invention relates to a fluid machine having a built-in electric motor, such as a pump that handles high-pressure working fluid such as high-pressure liquid, and the like. Needless to say, the present invention can also be applied to uses such as manufacturing.

さらに、巻線の被覆や絶縁部材などのように熱に弱い部分を有する固定子を厚い胴シェルに固定する流体機械の製造に適用できる事は言うまでもない。   Furthermore, it goes without saying that the present invention can be applied to the manufacture of a fluid machine in which a stator having a heat-sensitive portion such as a winding covering or an insulating member is fixed to a thick shell shell.

以上のように、本発明にかかる流体機械の製造方法は、固定子の温度を抑制しながら固定子を胴シェルに焼きバメまたは溶接固定を確実に行うことが可能となるので、二酸化炭素冷媒圧縮機のような板厚の厚い高耐圧性の密閉容器を必要とする密閉型圧縮機及びその製造方法のみならず、高圧の作動流体を扱うポンプなど、電動機を内蔵し固定する流体機
械及びその製造等の用途にも適用できる。
As described above, the method of manufacturing a fluid machine according to the present invention makes it possible to securely shrink or weld and fix the stator to the shell while suppressing the temperature of the stator. Not only a hermetic compressor that requires a thick pressure-resistant airtight container like a machine and its manufacturing method, but also a fluid machine that incorporates and fixes an electric motor, such as a pump that handles high-pressure working fluid, and its manufacturing It can also be applied to other uses.

本発明第1の実施形態における密閉型圧縮機の製造方法を示す図The figure which shows the manufacturing method of the hermetic compressor in the 1st Embodiment of this invention. 本発明第2の実施形態における密閉型圧縮機の製造方法を示す図The figure which shows the manufacturing method of the hermetic compressor in the 2nd Embodiment of this invention. 本発明第2の実施形態における密閉型圧縮機の製造方法を示す図The figure which shows the manufacturing method of the hermetic compressor in the 2nd Embodiment of this invention. 本発明第4の実施形態における密閉型圧縮機の横断面図Cross-sectional view of a hermetic compressor according to a fourth embodiment of the present invention 従来の密閉型圧縮機の縦断面図Vertical section of a conventional hermetic compressor 従来の密閉型圧縮機の横断面図Cross-sectional view of a conventional hermetic compressor

符号の説明Explanation of symbols

1 密閉容器
2 電動機
3 圧縮機構
4 胴シェル
5a 上シェル
5b 下シェル
6 固定子
7 巻線
8 絶縁部材
9 スロット
10 切り欠き部
21、31 冷却装置(冷却手段)
22 冷却機
23c 冷却面
32 ガス供給装置
34 第1ガス通路
35 第2ガス通路
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric motor 3 Compression mechanism 4 Body shell 5a Upper shell 5b Lower shell 6 Stator 7 Winding 8 Insulation member 9 Slot 10 Notch 21, 31 Cooling device (cooling means)
22 Cooling machine 23c Cooling surface 32 Gas supply device 34 First gas passage 35 Second gas passage

Claims (8)

筒状の胴シェルを有する容器内に流体搬送機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され固定される流体機械の製造方法であって、前記胴シェルを加熱したのち、前記固定子を冷却手段により冷却しながら、前記胴シェルと前記固定子の焼バメ固定を行う流体機械の製造方法。 A fluid machine manufacturing method in which a fluid transport mechanism and an electric motor for driving the same are housed in a container having a cylindrical shell shell, and a stator of the motor is inserted and fixed in the shell shell. A method of manufacturing a fluid machine, wherein after the shell is heated, the trunk shell and the stator are fixed by shrinkage while the stator is cooled by a cooling means. 筒状の胴シェルを有する密閉容器内に流体搬送機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され固定される流体機械の製造方法であって、前記固定子を冷却手段により冷却しながら、前記胴シェルに設けた貫通孔を介して前記胴シェルと前記固定子の溶接固定を行う流体機械の製造方法。 A fluid machine manufacturing method in which a fluid conveyance mechanism and an electric motor that drives the fluid conveyance mechanism are housed in a sealed container having a cylindrical shell, and a stator of the motor is inserted into and fixed to the shell. A method for manufacturing a fluid machine, wherein the stator shell and the stator are welded and fixed through a through hole provided in the trunk shell while the stator is cooled by a cooling means. 冷却手段が、固定子の内径側に挿入され接触する冷却面を有する請求項1または2記載の流体機械の製造方法。 The method of manufacturing a fluid machine according to claim 1, wherein the cooling means has a cooling surface inserted into and in contact with the inner diameter side of the stator. 冷却手段が、固定子の近傍に冷却ガス供給手段を有する請求項1〜3記載の流体機械の製造方法。 The method of manufacturing a fluid machine according to claim 1, wherein the cooling means has a cooling gas supply means in the vicinity of the stator. 圧縮される冷媒が二酸化炭素である請求項1〜4記載の流体機械の製造方法。 The method for manufacturing a fluid machine according to claim 1, wherein the refrigerant to be compressed is carbon dioxide. 筒状の胴シェルを有する密閉容器内に圧縮機構とこれを駆動する電動機とを収納し、前記胴シェルに前記電動機の固定子が挿入され、前記胴シェルに設けた貫通孔を介して前記胴シェルに前記固定子が溶接固定された流体機械。 A compression mechanism and an electric motor that drives the compression mechanism are housed in a sealed container having a cylindrical shell shell, and a stator of the motor is inserted into the shell shell, and the barrel is inserted through a through hole provided in the shell shell. A fluid machine in which the stator is fixed to a shell by welding. 貫通孔の内径を胴シェルの板厚より小さくした請求項6記載の流体機械。 The fluid machine according to claim 6, wherein an inner diameter of the through hole is made smaller than a plate thickness of the shell. 圧縮される冷媒が二酸化炭素である請求項6または7記載の流体機械。
The fluid machine according to claim 6 or 7, wherein the refrigerant to be compressed is carbon dioxide.
JP2003383544A 2003-11-13 2003-11-13 Fluid machine and manufacturing method thereof Pending JP2005146937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383544A JP2005146937A (en) 2003-11-13 2003-11-13 Fluid machine and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383544A JP2005146937A (en) 2003-11-13 2003-11-13 Fluid machine and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005146937A true JP2005146937A (en) 2005-06-09

Family

ID=34692234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383544A Pending JP2005146937A (en) 2003-11-13 2003-11-13 Fluid machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005146937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239678A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008144665A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Hermetic compressor
JP2011080476A (en) * 2009-03-31 2011-04-21 Daikin Industries Ltd Compressor
US8816561B2 (en) 2009-03-31 2014-08-26 Daikin Industries, Ltd. Compressor
EP2144347B1 (en) * 2007-05-01 2021-04-07 Daikin Industries, Ltd. Rotating electric machine and compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239678A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008144665A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Hermetic compressor
EP2144347B1 (en) * 2007-05-01 2021-04-07 Daikin Industries, Ltd. Rotating electric machine and compressor
JP2011080476A (en) * 2009-03-31 2011-04-21 Daikin Industries Ltd Compressor
US8816561B2 (en) 2009-03-31 2014-08-26 Daikin Industries, Ltd. Compressor
US9534590B2 (en) 2009-03-31 2017-01-03 Daikin Industries, Ltd. Compressor

Similar Documents

Publication Publication Date Title
JP4483895B2 (en) Rotating electric machine and compressor
WO2010098336A1 (en) Armature core
CN105553137B (en) Compressor and compressor manufacturing method
JP6290065B2 (en) Compressor manufacturing apparatus and compressor manufacturing method
JP2005146937A (en) Fluid machine and manufacturing method thereof
JP2004360476A (en) Piping connection structure of compressor
JP2012013030A (en) Electric compressor
JP2011214572A (en) Compressor and refrigerating cycle device
JP4356568B2 (en) Hermetic compressor
WO2020235271A1 (en) Scroll compressor and refrigeration device provided with same
CN111486092A (en) Rotary compressor and method for manufacturing rotary compressor
JP2000083339A (en) Rotating electric machine coupled with rotating machine for ammonia
JP2002235669A (en) Hermetically sealed compressor
JP2006342676A (en) Hermetic compressor
JP5442146B2 (en) Hermetic compressor
JP4442387B2 (en) Hermetic compressor
JP4744305B2 (en) Hermetic rotary compressor
JP2005042613A (en) Manufacturing method of hermetic electric compressor
JP5506269B2 (en) Hermetic electric compressor
JP2007329082A (en) Glass tube heater and refrigerator
JP5220543B2 (en) Hermetic compressor
JP4062586B2 (en) Compressor for ammonia refrigerant
KR200167077Y1 (en) Cold water bucket for hot and cold water generator
JP2005133623A (en) Pressure vessel structure, closed type compressor and vapor compression type refrigerating machine
JPH11190277A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Effective date: 20081117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081125

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324