JP2005146229A - Epoxy resin composition for sealing and semiconductor device by using the same - Google Patents
Epoxy resin composition for sealing and semiconductor device by using the same Download PDFInfo
- Publication number
- JP2005146229A JP2005146229A JP2003390193A JP2003390193A JP2005146229A JP 2005146229 A JP2005146229 A JP 2005146229A JP 2003390193 A JP2003390193 A JP 2003390193A JP 2003390193 A JP2003390193 A JP 2003390193A JP 2005146229 A JP2005146229 A JP 2005146229A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- sealing
- inorganic filler
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 101
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 100
- 239000000203 mixture Substances 0.000 title claims abstract description 59
- 238000007789 sealing Methods 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 239000011256 inorganic filler Substances 0.000 claims abstract description 33
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 33
- 230000009477 glass transition Effects 0.000 claims abstract description 20
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 238000000465 moulding Methods 0.000 abstract description 15
- 239000003063 flame retardant Substances 0.000 abstract description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 239000007822 coupling agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 229910002026 crystalline silica Inorganic materials 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- XZKLXPPYISZJCV-UHFFFAOYSA-N 1-benzyl-2-phenylimidazole Chemical compound C1=CN=C(C=2C=CC=CC=2)N1CC1=CC=CC=C1 XZKLXPPYISZJCV-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000013872 montan acid ester Nutrition 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
本発明は、半導体装置の封止用エポキシ樹脂組成物に関し、又、それを用いた半導体装置に関する。 The present invention relates to an epoxy resin composition for sealing a semiconductor device, and also relates to a semiconductor device using the same.
従来、ダイオード、トランジスタ、集積回路等の電気、電子部品や、半導体装置等の封止方法として、例えばエポキシ樹脂やシリコン樹脂等による封止方法やガラス、金属、セラミック等を用いたハーメチックシール法が採用されていたが、近年では信頼性の向上と共に大量生産が可能な、又、コストメリットのあるトランスファー成形による樹脂封止が主流を占めている。 Conventionally, as a sealing method for electrical and electronic parts such as diodes, transistors, and integrated circuits, and semiconductor devices, for example, a sealing method using an epoxy resin or a silicon resin, or a hermetic sealing method using glass, metal, ceramic, or the like has been used. In recent years, resin sealing by transfer molding, which can be mass-produced with improved reliability and cost-effective, has been the mainstream in recent years.
上記トランスファー成形による樹脂封止方法に用いられる樹脂組成物においては、エポキシ樹脂と、硬化剤としてフェノール樹脂を主成分とする樹脂組成物からなる封止材料が一般的に使用されている。 In the resin composition used for the resin sealing method by the transfer molding, a sealing material made of an epoxy resin and a resin composition mainly containing a phenol resin as a curing agent is generally used.
現在、パワーデバイスなどの素子を保護する目的で使用されるエポキシ樹脂組成物は、素子が放出する多量の熱に対応するため、結晶シリカなどの無機充填材を高密度に充填している。 Currently, an epoxy resin composition used for the purpose of protecting an element such as a power device is filled with an inorganic filler such as crystalline silica at a high density in order to cope with a large amount of heat released from the element.
又、近年、パワーデバイスは、ICの技術を組み込んだインテリジェント化が進んでおり、例えばワンチップで構成されるものやモジュールタイプなどがあり、封止材料に対する熱放散性、熱膨張性の更なる向上が望まれている。 In recent years, power devices are becoming more intelligent by incorporating IC technology, for example, one-chip devices and module types, which further improve heat dissipation and thermal expansion properties for sealing materials. Improvement is desired.
これらの要求に対応するべく、熱膨張率を低減するために非晶質シリカの含有率を増したり、又、熱伝導率を向上するために結晶シリカ、窒化珪素、窒化アルミ(特許文献1)、球状アルミナ粉末(特許文献2)を使用するといった試みがなされているが、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるといった問題が生じる。 In order to meet these requirements, the content of amorphous silica is increased to reduce the thermal expansion coefficient, and crystalline silica, silicon nitride, and aluminum nitride are used to improve the thermal conductivity (Patent Document 1). Attempts have been made to use spherical alumina powder (Patent Document 2), but if the content of the inorganic filler is increased, the fluidity decreases with increasing viscosity during molding, and the moldability is impaired. Occurs.
更には大容量のパワーデバイスやICをモジュール化し、封止するため、封止面積が大型化され、又、放熱特性を向上するために大型の放熱フィンを有し、その片側に樹脂封止された製品が開発されており、これらのパッケージでは樹脂組成物の成形、硬化時の、いわゆる成形収縮の影響により、反りが発生し易いという問題点がある。 Furthermore, large-capacity power devices and ICs are modularized and sealed, so the sealing area is enlarged, and in order to improve heat dissipation characteristics, there are large heat-dissipating fins that are sealed with resin on one side. In these packages, there is a problem that warpage is likely to occur due to the influence of so-called molding shrinkage during molding and curing of the resin composition.
この反りを低減するには成形収縮を小さくし、ガラス転移温度を高くすることが重要であるが、その方法として、多官能型樹脂を使用し、高活性の硬化触媒を使用することにより、ガラス転移温度を高くし、成形収縮を小さくして反りを低減する手法(特許文献3)が開示されている。 In order to reduce this warpage, it is important to reduce molding shrinkage and raise the glass transition temperature. As a method for this, glass is produced by using a polyfunctional resin and using a highly active curing catalyst. A technique (Patent Document 3) is disclosed that raises the transition temperature, reduces the molding shrinkage, and reduces the warpage.
しかしながら、多官能型樹脂を使用すると難燃性が悪化し、又、粘度が高くなって金線流れが発生し易くなり、更に、高活性の硬化触媒を使用することで硬化反応が不安定となり、分子量分布のばらつき等が大きくなって封止剤としての信頼性が低下する傾向があった。
従って、本発明の目的は、上記問題点を解消し、難燃性を損なうことなく、成形性、信頼性に優れ、熱伝導率が高く、熱膨張率が低く、耐熱性に優れた、パッケージの反りを小さくすることのできる封止用エポキシ樹脂組成物を提供し、更にそれを用いた半導体装置を提供することである。 Therefore, the object of the present invention is to solve the above-mentioned problems, have excellent moldability and reliability without impairing flame retardancy, have high thermal conductivity, low thermal expansion coefficient, and excellent heat resistance. It is to provide an epoxy resin composition for sealing capable of reducing the warpage of the semiconductor, and further to provide a semiconductor device using the same.
上記課題を解決するために、本発明の封止用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、及び無機充填材を必須成分とする封止用エポキシ樹脂組成物であって、該無機充填材が球状の外形を有し、熱伝導率が5W/m・K以上で含有量が80〜95質量%であることが必要で、該封止用エポキシ樹脂組成物の硬化物が、
A)熱伝導率が3W/m・K以上
B)線膨張係数α1が13ppm以下
C)ガラス転移温度が185℃以上
の特性を有することが必要である。
In order to solve the above-mentioned problems, the epoxy resin composition for sealing of the present invention is an epoxy resin composition for sealing containing an epoxy resin, a curing agent, and an inorganic filler as essential components, and the inorganic filler Needs to have a spherical outer shape, a thermal conductivity of 5 W / m · K or more and a content of 80 to 95% by mass, and a cured product of the sealing epoxy resin composition,
A) Thermal conductivity is 3 W / m · K or more B) Linear expansion coefficient α1 is 13 ppm or less C) Glass transition temperature must be 185 ° C. or more.
上記課題を解決するために、本発明の封止用エポキシ樹脂組成物は、多官能エポキシ樹脂の含有率が5質量%以下であることが望ましい。 In order to solve the above problems, the epoxy resin composition for sealing of the present invention desirably has a polyfunctional epoxy resin content of 5% by mass or less.
又、上記課題を解決するために、本発明の半導体装置は、上記の封止用エポキシ樹脂組成物を用いてなるものであることが望ましい。 Moreover, in order to solve the said subject, it is desirable that the semiconductor device of this invention is what uses said epoxy resin composition for sealing.
本発明の封止用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、及び無機充填材を必須成分とする封止用エポキシ樹脂組成物であって、該無機充填材が球状の外形を有し、熱伝導率が5W/m・K以上で含有量が80〜95質量%であり、該封止用エポキシ樹脂組成物の硬化物が、
A)熱伝導率が3W/m・K以上
B)線膨張係数α1が13ppm以下
C)ガラス転移温度が185℃以上
の特性を有することを特徴としており、成形性、信頼性に優れ、熱伝導率が高く、熱膨張率が低く、耐熱性に優れた、パッケージの反りを小さくすることのできる封止用エポキシ樹脂組成物が提供される。
The epoxy resin composition for sealing of the present invention is an epoxy resin composition for sealing containing an epoxy resin, a curing agent, and an inorganic filler as essential components, and the inorganic filler has a spherical outer shape, The thermal conductivity is 5 W / m · K or more and the content is 80 to 95% by mass, and the cured product of the epoxy resin composition for sealing is,
A) Thermal conductivity is 3 W / m · K or higher B) Linear expansion coefficient α1 is 13 ppm or lower C) Glass transition temperature is 185 ° C. or higher, excellent in moldability and reliability, heat conduction A sealing epoxy resin composition having a high rate, a low coefficient of thermal expansion, excellent heat resistance and capable of reducing the warpage of a package is provided.
本発明の封止用エポキシ樹脂組成物は、多官能エポキシ樹脂の含有率が5質量%以下であることを特徴としており、難燃性を損なうことなくガラス転移温度を高くし、成形収縮を小さくして反りを低減することができる。 The epoxy resin composition for sealing of the present invention is characterized in that the content of the polyfunctional epoxy resin is 5% by mass or less, increases the glass transition temperature without impairing flame retardancy, and reduces molding shrinkage. Thus, warpage can be reduced.
又、本発明の半導体装置は、上記の封止用エポキシ樹脂組成物を用いてなることを特徴としており、信頼性、耐熱性に優れ、反りの小さなパッケージを備えた半導体装置が提供される。 In addition, a semiconductor device of the present invention is characterized by using the above-mentioned sealing epoxy resin composition, and a semiconductor device having a package with excellent reliability and heat resistance and small warpage is provided.
本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、及び球状無機充填材を必須成分とする。エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するものであればどのようなものでも良く、半導体装置で一般的にその封止用に用いられているエポキシ樹脂を使用できる。例えば、オルソクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン環を有するエポキシ樹脂等を挙げることができる。又、難燃性付与のため、ブロム等のハロゲンを含有した含ハロゲンエポキシ樹脂を併用しても良い。 The epoxy resin composition of the present invention contains an epoxy resin, a curing agent, and a spherical inorganic filler as essential components. Any epoxy resin may be used as long as it has two or more epoxy groups in one molecule, and an epoxy resin generally used for sealing in a semiconductor device can be used. For example, orthocresol novolac type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin having naphthalene ring, etc. it can. In order to impart flame retardancy, a halogen-containing epoxy resin containing halogen such as bromine may be used in combination.
本発明のエポキシ樹脂組成物は、多官能型エポキシ樹脂を5質量%以下の範囲で含有させることができる。多官能型エポキシ樹脂を含有することでエポキシ樹脂硬化物のガラス転移温度を高くし、成形収縮を小さくして反りを低減する効果を得ることができる。但し、後述するように、同様の効果を無機充填材の高密度充填によっても達成できるため、多官能型エポキシ樹脂は必須成分ではない。5質量%を超えると難燃性が悪化し、好ましくない。 The epoxy resin composition of the present invention can contain a polyfunctional epoxy resin in the range of 5% by mass or less. By containing a polyfunctional epoxy resin, it is possible to increase the glass transition temperature of the cured epoxy resin, reduce molding shrinkage, and obtain an effect of reducing warpage. However, as will be described later, since the same effect can be achieved by high-density filling with an inorganic filler, the polyfunctional epoxy resin is not an essential component. If it exceeds 5% by mass, the flame retardancy deteriorates, which is not preferable.
本発明のエポキシ樹脂組成物の必須成分の一つである硬化剤は、1分子中に2個以上のフェノール水酸基を有するものであればいずれのものでも良く、例えばフェノールノボラック樹脂が代表的であるが、その他、ナフトール樹脂、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等が使用可能である。これらは単独で使用しても良く、又、2種以上併用しても良い。 The curing agent that is one of the essential components of the epoxy resin composition of the present invention may be any one as long as it has two or more phenolic hydroxyl groups in one molecule, for example, a phenol novolac resin is typical. However, naphthol resins, dicyclopentadiene type phenol resins, phenol aralkyl resins and the like can be used. These may be used alone or in combination of two or more.
本発明のエポキシ樹脂組成物では、エポキシ樹脂と硬化剤の配合比率は、エポキシ−フェノール当量比で0.9〜1.5の範囲であることが好ましい。この範囲外では硬化後も未反応のエポキシ基、又はフェノール水酸基が残留し、封止機能に関しての信頼性が低下するため好ましくない。 In the epoxy resin composition of this invention, it is preferable that the compounding ratio of an epoxy resin and a hardening | curing agent is the range of 0.9-1.5 in an epoxy-phenol equivalent ratio. Outside this range, unreacted epoxy groups or phenolic hydroxyl groups remain even after curing, which is not preferable because the reliability of the sealing function is lowered.
本発明のエポキシ樹脂組成物では、エポキシ樹脂として含ハロゲンエポキシ樹脂や多官能型エポキシ樹脂を併用する場合、それぞれのエポキシ当量を基準として、エポキシ−フェノール当量比が好ましい範囲となるよう配合割合を決めるのが望ましく、又、硬化剤として上述した2種以上を併用する場合も同様に、それらのフェノール当量を基準に配合割合を決定することが望ましい。 In the epoxy resin composition of the present invention, when a halogen-containing epoxy resin or a polyfunctional epoxy resin is used in combination as an epoxy resin, the blending ratio is determined so that the epoxy-phenol equivalent ratio is in a preferable range based on the epoxy equivalent of each. In addition, when two or more of the above-described curing agents are used in combination, it is also desirable to determine the blending ratio based on their phenol equivalents.
本発明のエポキシ樹脂組成物では、球状無機充填材を配合することが必要である。使用する球状無機充填材は熱伝導率が5W/m・K以上であることが必要で、アルミナ、窒化アルミニウム、結晶シリカ等が好適に使用される。その他、必要に応じて形状に関係なく無定形無機充填材として例えば溶融シリカ、結晶シリカなどを併用しても良い。 In the epoxy resin composition of the present invention, it is necessary to blend a spherical inorganic filler. The spherical inorganic filler used needs to have a thermal conductivity of 5 W / m · K or more, and alumina, aluminum nitride, crystalline silica, and the like are preferably used. In addition, for example, fused silica, crystalline silica, or the like may be used in combination as an amorphous inorganic filler regardless of the shape as necessary.
本発明に使用する球状無機充填材の添加量は、エポキシ樹脂組成物に対して80〜95質量%であることが必要である。添加量が80質量%未満では高い熱伝導性、低い熱膨張性といった本発明が目的とする効果を発揮できず、又、95質量%を超えると粘度が高くなり、成形性が悪化するため好ましくない。 The addition amount of the spherical inorganic filler used in the present invention needs to be 80 to 95% by mass with respect to the epoxy resin composition. If the addition amount is less than 80% by mass, the intended effects of the present invention such as high thermal conductivity and low thermal expansibility cannot be achieved, and if it exceeds 95% by mass, the viscosity increases and the moldability deteriorates. Absent.
本発明に使用する無機充填材は、球状の外形を有することが必要である。又、その直径はできるだけ均一であることが好ましい。これにより、面心立方構造や六方稠密構造等の最密充填構造をとり易く、充分な充填量を得ることができる。球形でない場合、充填量が増えると充填材同士の摩擦が増え、上記の上限に達する前に流動性が極端に低下して粘度が高くなり、成形性が悪化するため好ましくない。 The inorganic filler used in the present invention needs to have a spherical outer shape. The diameter is preferably as uniform as possible. Thereby, it is easy to take a close-packed structure such as a face-centered cubic structure or a hexagonal close-packed structure, and a sufficient filling amount can be obtained. In the case of a non-spherical shape, when the filling amount is increased, friction between the fillers is increased, and before reaching the above upper limit, the fluidity is extremely lowered to increase the viscosity and the moldability is deteriorated.
本発明のエポキシ樹脂組成物では、熱伝導率が5W/m・K以上の値を示すような高い熱伝導性を有した球状無機充填材を高密度に充填することで熱変化に対する安定性が向上する。即ち、熱膨張が小さくなり、185℃以上の高いガラス転移温度を示す、耐熱性の良い封止用エポキシ樹脂組成物が得られる。 In the epoxy resin composition of the present invention, stability against heat change is achieved by filling a spherical inorganic filler having a high thermal conductivity with a thermal conductivity of 5 W / m · K or more at a high density. improves. That is, an epoxy resin composition for sealing with good heat resistance that exhibits low thermal expansion and a high glass transition temperature of 185 ° C. or higher is obtained.
本発明のエポキシ樹脂組成物においては、封止用エポキシ樹脂組成物に一般的に用いられる硬化触媒が使用できる。例えば、トリフェニルホスフィン、トリメチルホスフィン等の有機リン化合物類、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニルイミダゾール、1ベンジル−2−フェニルイミダゾールなどのイミダゾール類を挙げることができる。1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の3級アミン類等も使用可能である。これらは単独で用いても良く、併用しても良い。 In the epoxy resin composition of this invention, the curing catalyst generally used for the epoxy resin composition for sealing can be used. For example, organic phosphorus compounds such as triphenylphosphine and trimethylphosphine, and imidazoles such as 2-methylimidazole, 2-phenyl-4-methylimidazole, 2-phenylimidazole, and 1benzyl-2-phenylimidazole can be exemplified. . Tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine and benzyldimethylamine can also be used. These may be used alone or in combination.
上記硬化触媒の添加量は、エポキシ樹脂(難燃剤としての含ハロゲンエポキシ樹脂を含む)と硬化剤の合計に対して、0.1〜2.0質量%が好ましい。0.1質量%未満ではゲル化時間が遅くなって硬化時の剛性低下による作業性の低下をもたらし、逆に2.0質量%を超えると成形途中で硬化が進んでしまい、未充填が発生し易くなる。 The addition amount of the curing catalyst is preferably 0.1 to 2.0% by mass with respect to the total of the epoxy resin (including the halogen-containing epoxy resin as a flame retardant) and the curing agent. If it is less than 0.1% by mass, the gelation time is delayed, resulting in a decrease in workability due to a decrease in rigidity at the time of curing. Conversely, if it exceeds 2.0% by mass, curing proceeds during molding and unfilling occurs. It becomes easy to do.
本発明のエポキシ樹脂組成物においては、封止用エポキシ樹脂組成物に一般的に用いられる離型剤としてワックスが使用できる。ワックスとしては、例えばステアリン酸、モンタン酸、モンタン酸エステル、リン酸エステル等が使用可能である。 In the epoxy resin composition of the present invention, a wax can be used as a release agent generally used for an epoxy resin composition for sealing. As the wax, for example, stearic acid, montanic acid, montanic acid ester, phosphoric acid ester and the like can be used.
本発明のエポキシ樹脂組成物においては、無機充填材と樹脂成分の接着力を向上させるため、封止用エポキシ樹脂組成物に一般的に用いられるカップリング剤を用いることができる。カップリング剤としては、例えばエポキシシランが使用可能である。カップリング剤の添加量は、封止用エポキシ樹脂組成物に対して、0.1〜2.0質量%が好ましい。0.1質量%未満では樹脂と基材のなじみが悪く成形性が悪くなり、逆に2.0質量%を超えると連続成形性での成形品汚れが生じる。 In the epoxy resin composition of this invention, in order to improve the adhesive force of an inorganic filler and a resin component, the coupling agent generally used for the epoxy resin composition for sealing can be used. As the coupling agent, for example, epoxy silane can be used. As for the addition amount of a coupling agent, 0.1-2.0 mass% is preferable with respect to the epoxy resin composition for sealing. If it is less than 0.1% by mass, the compatibility between the resin and the base material is poor, and the moldability deteriorates. Conversely, if it exceeds 2.0% by mass, the molded product is soiled by continuous moldability.
以上の他、一般的に封止用エポキシ樹脂組成物に使用可能なものを適宜配合して用いることができる。例えば、リン系難燃剤、ブロム化合物や三酸化アンチモン等の難燃剤、及びカーボンブラックや有機染料等の着色剤等を使用することができる。 In addition to the above, those that can generally be used in the epoxy resin composition for sealing can be appropriately mixed and used. For example, phosphorus-based flame retardants, flame retardants such as bromine compounds and antimony trioxide, and colorants such as carbon black and organic dyes can be used.
本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機充填材と、カップリング剤以外のその他の成分をミキサー等によって均一に混合した後、カップリング剤を添加し、加熱ロール、ニーダー等によって混練して製造する。カップリング剤以外の成分の配合順序には特に制限はない。更に又、混練後に溶融混練物の粉砕を行い、パウダー化することやタブレット化することも可能である。 The epoxy resin composition of the present invention is prepared by uniformly mixing an epoxy resin, a curing agent, an inorganic filler, and other components other than the coupling agent with a mixer, and then adding a coupling agent, a heating roll, a kneader, etc. Kneaded and manufactured. There is no restriction | limiting in particular in the mixing | blending order of components other than a coupling agent. Furthermore, after kneading, the melt-kneaded product can be pulverized to be powdered or tableted.
本発明のエポキシ樹脂組成物は、特に半導体装置に封止用として用いられる。 The epoxy resin composition of the present invention is particularly used for sealing in semiconductor devices.
以下、本発明を、実施例、比較例にて説明する。但し、本発明はここに記載した実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiments described herein.
[評価用サンプル試作]
(実施例1〜5)
表1に示す成分を配合し、ミキサーで十分混合した後、カップリング剤を添加して加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ実施例1〜5の封止用エポキシ樹脂組成物を得た。
(比較例1、2)
表1に示す成分を配合し、ミキサーで十分混合した後、カップリング剤を添加して加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ比較例1、2の封止用エポキシ樹脂組成物を得た。
[Evaluation sample prototype]
(Examples 1-5)
After blending the components shown in Table 1 and mixing thoroughly with a mixer, the coupling agent was added, and the mixture kneaded with a heating roll for about 5 minutes was cooled, crushed, and the sealing epoxy of Examples 1 to 5, respectively. A resin composition was obtained.
(Comparative Examples 1 and 2)
After mixing the components shown in Table 1 and mixing well with a mixer, the coupling agent was added and the mixture kneaded for about 5 minutes with a heating roll was cooled and crushed, and the sealing epoxies of Comparative Examples 1 and 2, respectively. A resin composition was obtained.
表1の無機充填材比率は、配合された成分全量に対する無機充填材の質量%を示す。又、多官能型エポキシ樹脂含有率は、同様に配合された成分全量に対する多官能型エポキシ樹脂の質量%を示す。 The inorganic filler ratio in Table 1 indicates mass% of the inorganic filler with respect to the total amount of the blended components. The polyfunctional epoxy resin content indicates mass% of the polyfunctional epoxy resin with respect to the total amount of components similarly blended.
[評価]
(1)熱伝導率
熱伝導率は、金型を用い、実施例1〜5、比較例1、2で得られたエポキシ樹脂組成物を、温度175℃、注入時間10秒、加圧時間100秒、注入圧力7MPaの成形条件でトランスファー成形した後、175℃で6時間アフターキュアしてφ100、厚さ25±5mmの円盤状の評価用サンプルを作製した。得られた評価用サンプルを京都電子工業(株)製QTM−D3迅速熱伝導率計を用いて非定常熱線法により測定した。結果は表1に示した。
(2)線膨張係数、ガラス転移温度
線膨張係数は、実施例1〜5、比較例1、2で得られたエポキシ樹脂組成物を用いて性能評価用のJIS成形品を作製し、175℃で6時間アフターキュアした後、理学電機(株)製の測定器を用いTMAの圧縮法にて50〜100℃の温度範囲で測定して求めた。ガラス転移温度は、同じサンプル、同じ測定器にて3℃/min.の昇温速度で測定して求めた。線膨張係数、ガラス転移温度の測定結果は表1に示した。
(3)成形収縮率
成形収縮率の評価は、実施例1〜5、比較例1、2で得られたエポキシ樹脂組成物を用いて、温度175℃、注入時間7秒、加圧時間120秒、注入圧力7MPaの成形条件でトランスファー成形してJIS成形品を作製し、成形品寸法を測定し、金型との寸法比率を成形収縮率とした。結果は表1に示した。
(4)耐熱信頼性
耐熱信頼性は、以下の方法で評価した。
3μmのアルミニウム配線を施したTEG(Test Experimental Group)を用い、16DIP(Dual In−line Package)用の金型を使用し、実施例1〜5、比較例1、2で得られたエポキシ樹脂組成物をトランスファー成形して成形品を作製した。なお、成形条件は、温度175℃、注入時間7秒、加圧時間120秒、注入圧力7MPaとした。この成形品を175℃で6時間アフターキュアし、性能評価用の16DIPの半導体装置を得た。この性能評価用の半導体装置を温度サイクル(−65℃、30分⇔150℃、30分)の条件で試験し、50%不良発生サイクル数(TEGのアルミニウム配線の50%が通電不良となるまでのサイクル数=時間)を測定した。結果は表1に示した。
[Evaluation]
(1) Thermal conductivity Using a mold, the thermal conductivity of the epoxy resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was set at a temperature of 175 ° C., an injection time of 10 seconds, and a pressurization time of 100. Second, transfer molding was performed under molding conditions of an injection pressure of 7 MPa, and after-curing at 175 ° C. for 6 hours, a disk-shaped evaluation sample having a diameter of 100 and a thickness of 25 ± 5 mm was produced. The obtained sample for evaluation was measured by the unsteady hot wire method using a QTM-D3 rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. The results are shown in Table 1.
(2) Linear expansion coefficient, glass transition temperature The linear expansion coefficient is a JIS molded product for performance evaluation using the epoxy resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 and 2, and 175 ° C. And after-curing for 6 hours, and using a measuring device manufactured by Rigaku Denki Co., Ltd., measurement was performed in the temperature range of 50 to 100 ° C. by the TMA compression method. The glass transition temperature is 3 ° C./min. It measured and calculated | required with the temperature increase rate of. The measurement results of the linear expansion coefficient and glass transition temperature are shown in Table 1.
(3) Mold Shrinkage The mold shrinkage was evaluated using the epoxy resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 and 2, at a temperature of 175 ° C., an injection time of 7 seconds, and a pressurization time of 120 seconds. Then, transfer molding was performed under molding conditions of an injection pressure of 7 MPa to produce a JIS molded product, the size of the molded product was measured, and the dimensional ratio with the mold was taken as the molding shrinkage rate. The results are shown in Table 1.
(4) Heat resistance reliability The heat resistance reliability was evaluated by the following method.
The epoxy resin composition obtained in Examples 1 to 5 and Comparative Examples 1 and 2 using a TEG (Test Experimental Group) with 3 μm aluminum wiring and using a 16 DIP (Dual In-line Package) mold The product was transfer molded to produce a molded product. The molding conditions were a temperature of 175 ° C., an injection time of 7 seconds, a pressurization time of 120 seconds, and an injection pressure of 7 MPa. This molded product was after-cured at 175 ° C. for 6 hours to obtain a 16 DIP semiconductor device for performance evaluation. This semiconductor device for performance evaluation was tested under the condition of a temperature cycle (−65 ° C., 30 minutes to 150 ° C., 30 minutes), and the number of 50% defective generation cycles (until 50% of the TEG aluminum wiring was poorly energized) Cycle number = hour). The results are shown in Table 1.
熱伝導率の大きな無機充填材を含有する実施例1〜4の封止用エポキシ樹脂組成物成形品は、比較例1,2の封止用エポキシ樹脂組成物成形品と比べて3倍以上の熱伝導率を示し、その結果、耐熱信頼性において3000サイクル問題なしという十分優れた結果を示した。 The epoxy resin composition molded article for sealing of Examples 1 to 4 containing an inorganic filler having a large thermal conductivity is three times or more compared to the molded epoxy resin composition for sealing of Comparative Examples 1 and 2. As a result, it showed a sufficiently excellent result that there was no problem of 3000 cycles in heat resistance reliability.
これに対し、含有する無機充填材の熱伝導率が低い比較例1,2の封止用エポキシ樹脂組成物成形品は、それぞれ1000サイクル、1500サイクルで不良が50%を超え、その時点で測定を中止した。 On the other hand, the sealing epoxy resin composition molded products of Comparative Examples 1 and 2 having low thermal conductivity of the inorganic filler contained therein had a defect exceeding 50% at 1000 cycles and 1500 cycles, respectively, and were measured at that time. Canceled.
実施例1と実施例2を比較すると、無機充填材の含有量の違いによる効果の差が現れており、即ち、無機充填材の含有量が多いほど熱伝導率が高く、線膨張係数が低く、ガラス転移温度が高く、成形収縮率が小さいことが判る。 When Example 1 and Example 2 are compared, a difference in effect due to the difference in the content of the inorganic filler appears, that is, the greater the content of the inorganic filler, the higher the thermal conductivity and the lower the linear expansion coefficient. It can be seen that the glass transition temperature is high and the molding shrinkage is small.
実施例3は、無機充填材の含有量が実施例1と2の間で、エポキシ樹脂の種類が異なるが、実施例3の測定データは前記実施例1と実施例2の中間と見なしてよく、エポキシ樹脂の種類よりも無機充填材の含有量で特性が決まることが判る。 In Example 3, the content of the inorganic filler is different between Examples 1 and 2, and the type of epoxy resin is different. However, the measurement data of Example 3 may be regarded as intermediate between Example 1 and Example 2. It can be seen that the characteristics are determined by the content of the inorganic filler rather than the type of the epoxy resin.
実施例4は、実施例2に使用したオルトクレゾールノボラック型エポキシ樹脂の配合量を減らし、減量分を多官能型エポキシ樹脂に置き換えたもので、多官能型エポキシ樹脂の効果でガラス転移温度が上昇していることが判る。 In Example 4, the blending amount of the ortho-cresol novolac type epoxy resin used in Example 2 was reduced, and the weight loss was replaced with a polyfunctional epoxy resin. The glass transition temperature increased due to the effect of the polyfunctional epoxy resin. You can see that
多官能型エポキシ樹脂の効果は、比較例1と比較例2のデータからも明らかで、ガラス転移温度が実施例2、4の場合よりも大きな差となって現れている。この結果は無機充填材の違いによるものであり、実施例2、4の場合、無機充填材の効果で元々のガラス転移温度が高いため、多官能型エポキシ樹脂の効果が現れ難いと考えられる。 The effect of the polyfunctional epoxy resin is also apparent from the data of Comparative Example 1 and Comparative Example 2, and the glass transition temperature appears as a larger difference than in Examples 2 and 4. This result is due to the difference in the inorganic filler. In the case of Examples 2 and 4, since the original glass transition temperature is high due to the effect of the inorganic filler, it is considered that the effect of the polyfunctional epoxy resin hardly appears.
実施例5は硬化触媒の違いであり、ガラス転移温度を高くするために有効な手法として高活性のイミダゾール系触媒を使用するが、ガラス転移温度が大きく変化しない。このことから熱伝導率が5W/m・K以上の値を示すような高い熱伝導性を有した球状無機充填材を高密度に充填することで熱変化に対する安定性が向上し、185℃以上の高いガラス転移温度を示す、耐熱性の良い封止用エポキシ樹脂組成物が得られる。 Example 5 is a difference in the curing catalyst, and a highly active imidazole catalyst is used as an effective technique for increasing the glass transition temperature, but the glass transition temperature does not change greatly. From this, the stability against heat change is improved by filling the spherical inorganic filler having high thermal conductivity such that the thermal conductivity is 5 W / m · K or more at a high density, and 185 ° C. or more. An epoxy resin composition for sealing having a high glass transition temperature and good heat resistance is obtained.
本発明の封止用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、及び無機充填材を必須成分とする封止用エポキシ樹脂組成物であって、該無機充填材が球状の外形を有し、熱伝導率が5W/m・K以上で含有量が80〜95質量%であり、該封止用エポキシ樹脂組成物の硬化物が、
A)熱伝導率が3W/m・K以上
B)線膨張係数α1が13ppm以下
C)ガラス転移温度が185℃以上
の特性を有することを特徴としており、成形性、信頼性に優れ、熱伝導率が高く、熱膨張率が低く、耐熱性に優れた、パッケージの反りを小さくすることのできる封止用エポキシ樹脂組成物が提供される。
The epoxy resin composition for sealing of the present invention is an epoxy resin composition for sealing containing an epoxy resin, a curing agent, and an inorganic filler as essential components, and the inorganic filler has a spherical outer shape, The thermal conductivity is 5 W / m · K or more and the content is 80 to 95% by mass, and the cured product of the epoxy resin composition for sealing is,
A) Thermal conductivity is 3 W / m · K or higher B) Linear expansion coefficient α1 is 13 ppm or lower C) Glass transition temperature is 185 ° C. or higher, excellent in moldability and reliability, heat conduction A sealing epoxy resin composition having a high rate, a low coefficient of thermal expansion, excellent heat resistance and capable of reducing the warpage of a package is provided.
本発明の封止用エポキシ樹脂組成物は、多官能エポキシ樹脂の含有率が5質量%以下であることを特徴としており、難燃性を損なうことなくガラス転移温度を高くし、成形収縮を小さくして反りを低減することができる。 The epoxy resin composition for sealing of the present invention is characterized in that the content of the polyfunctional epoxy resin is 5% by mass or less, increases the glass transition temperature without impairing flame retardancy, and reduces molding shrinkage. Thus, warpage can be reduced.
又、本発明の半導体装置は、上記の封止用エポキシ樹脂組成物を用いてなることを特徴としており、信頼性、耐熱性に優れ、反りの小さなパッケージを備えた半導体装置が提供される。 In addition, a semiconductor device of the present invention is characterized by using the above-mentioned sealing epoxy resin composition, and a semiconductor device having a package with excellent reliability and heat resistance and small warpage is provided.
Claims (3)
A)熱伝導率が3W/m・K以上
B)線膨張係数α1が13ppm以下
C)ガラス転移温度が185℃以上
の特性を有することを特徴とする封止用エポキシ樹脂組成物。 An epoxy resin composition for sealing comprising an epoxy resin, a curing agent, and an inorganic filler as essential components, wherein the inorganic filler has a spherical outer shape and has a thermal conductivity of 5 W / m · K or more. The amount is 80 to 95% by mass, and the cured product of the sealing epoxy resin composition is
A) Thermal conductivity is 3 W / m · K or more B) Linear expansion coefficient α1 is 13 ppm or less C) Glass transition temperature is 185 ° C. or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390193A JP2005146229A (en) | 2003-11-20 | 2003-11-20 | Epoxy resin composition for sealing and semiconductor device by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390193A JP2005146229A (en) | 2003-11-20 | 2003-11-20 | Epoxy resin composition for sealing and semiconductor device by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005146229A true JP2005146229A (en) | 2005-06-09 |
Family
ID=34696656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003390193A Pending JP2005146229A (en) | 2003-11-20 | 2003-11-20 | Epoxy resin composition for sealing and semiconductor device by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005146229A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049064A (en) * | 2005-08-12 | 2007-02-22 | Taiyo Ink Mfg Ltd | Insulating curable composition, cured product thereof, and printed wiring board using the same |
JP2009084325A (en) * | 2007-09-27 | 2009-04-23 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing semiconductor, and semiconductor device |
US20120014069A1 (en) * | 2010-07-15 | 2012-01-19 | Jian-Hong Zeng | Power module |
-
2003
- 2003-11-20 JP JP2003390193A patent/JP2005146229A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049064A (en) * | 2005-08-12 | 2007-02-22 | Taiyo Ink Mfg Ltd | Insulating curable composition, cured product thereof, and printed wiring board using the same |
JP2009084325A (en) * | 2007-09-27 | 2009-04-23 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing semiconductor, and semiconductor device |
US20120014069A1 (en) * | 2010-07-15 | 2012-01-19 | Jian-Hong Zeng | Power module |
US8472196B2 (en) * | 2010-07-15 | 2013-06-25 | Delta Electronics, Inc. | Power module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011184650A (en) | Resin composition for electronic component encapsulation and electronic component device using the same | |
KR20130064000A (en) | Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same | |
JP6307352B2 (en) | Resin composition for optical semiconductor encapsulation and optical semiconductor device | |
JP5290659B2 (en) | Epoxy resin composition for semiconductor encapsulation of power module and power module | |
JP2004307545A (en) | Epoxy resin composition and sealed semiconductor device | |
JP2005146229A (en) | Epoxy resin composition for sealing and semiconductor device by using the same | |
JPH10173103A (en) | Epoxy resin compsn. for sealing semiconductor | |
JP3989349B2 (en) | Electronic component sealing device | |
JP4950010B2 (en) | Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device | |
JP2005264037A (en) | Epoxy resin composition for sealing and resin-sealed semiconductor device | |
JP3396363B2 (en) | Resin composition for ball grid array | |
JP5547680B2 (en) | Epoxy resin composition for sealing and semiconductor device | |
JP5275697B2 (en) | Epoxy resin composition for sealing and method for producing the same | |
JP2002194064A (en) | Resin composition for encapsulating semiconductor and semiconductor device using the same | |
JP3582771B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003176336A (en) | Resin composition for ball grid array | |
JP3803033B2 (en) | Semiconductor sealing resin composition and semiconductor device using the same | |
JP5102095B2 (en) | Semiconductor-encapsulated epoxy resin composition for compression molding and semiconductor device using the same | |
KR20190081995A (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same | |
JP2002097344A (en) | Epoxy resin composition and semiconductor device | |
KR102408095B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same | |
JP2004018786A (en) | Sealing resin composition and electronic component sealing device | |
JP4270059B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
KR20190070200A (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same | |
JP3973137B2 (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20070119 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070130 |
|
A521 | Written amendment |
Effective date: 20070309 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070410 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070608 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070807 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20071218 Free format text: JAPANESE INTERMEDIATE CODE: A02 |