[go: up one dir, main page]

JP2005144726A - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
JP2005144726A
JP2005144726A JP2003382092A JP2003382092A JP2005144726A JP 2005144726 A JP2005144726 A JP 2005144726A JP 2003382092 A JP2003382092 A JP 2003382092A JP 2003382092 A JP2003382092 A JP 2003382092A JP 2005144726 A JP2005144726 A JP 2005144726A
Authority
JP
Japan
Prior art keywords
film
laminated film
polylactic acid
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003382092A
Other languages
Japanese (ja)
Inventor
Takeshi Kanzawa
岳史 神澤
Hiroshige Matsumoto
太成 松本
Hiroshi Niinumadate
浩 新沼舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003382092A priority Critical patent/JP2005144726A/en
Publication of JP2005144726A publication Critical patent/JP2005144726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated film having sufficient easy tear properties imparted thereto only by altering a crystalline resin to be laminated without largely changing the film forming conditions of a crystalline polylactic acid or a laminated film having solvent resistance not achieved heretofore only by a single layer of a polylactic acid resin. <P>SOLUTION: This laminated film is composid of a layer A based on a crystalline polylactic acid polymer A with a glass transition temperature Tg(A) and a melting point Tm(A) and a layer B based on a crystalline resin composition B with a glass transition temperature Tg(B) and a crystallization temperature Tc(B) and characterized in that the relation between Tg(A), Tm(A), Tg(B) and Tc(B) is Tg(A) ≥ Tg(B) and Tm(A) ≥ Tc(B), the crystal melting calorie (ΔHm) of the film in DSC temperature rising measurement is 15 J/g or above and a layered constitution is at least 3 layers including A/B/A or B/A/B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層フィルムに関し、さらに詳細には結晶性ポリ乳酸と結晶性樹脂組成物の積層により、優れた手切れ性すなわち易開封性が付与された包装用フィルム、もしくは耐溶剤性、印刷適性、加工適性が付与された工業材料用フィルムに関するものである。   The present invention relates to a laminated film, and more specifically, a packaging film imparted with excellent hand cutting property, that is, easy-opening property by laminating crystalline polylactic acid and a crystalline resin composition, or solvent resistance and printability. Further, the present invention relates to a film for industrial materials to which processability is imparted.

従来、プラスチック廃棄物は主に焼却や埋め立てにより処理されてきたが、焼却による有害副産物の生成・排出や埋立地の減少、さらには不法投棄による環境汚染などの問題が顕在化してきている。このようなプラスチック廃棄物の処理問題について社会的に関心が高まるにつれて、酵素や微生物で分解される生分解性を有するプラスチックの研究開発が盛んに行われており、その中でも、脂肪族ポリエステルが注目されている。最近、特に積極的な研究開発が行われている生分解性の脂肪族ポリエステルとして、ポリ乳酸が挙げられる。   Conventionally, plastic waste has been mainly treated by incineration or landfill. However, problems such as generation and discharge of harmful by-products due to incineration, reduction of landfill sites, and environmental pollution due to illegal dumping have become apparent. As social concerns about such plastic waste disposal problems increase, research and development of biodegradable plastics that are decomposed by enzymes and microorganisms has been actively carried out. Has been. Recently, polylactic acid is an example of a biodegradable aliphatic polyester that has been particularly actively researched and developed.

ポリ乳酸は、トウモロコシや芋類などから得られるでんぷんなどを原料として乳酸を製造しさらに化学合成により得られる重合体であり、脂肪族ポリエステルの中でも機械的物性や耐熱性、透明性に優れているため、フィルム、シート、テープ、繊維、ロープ、不織布、容器などの各種成形品への展開を目的とした研究開発が盛んに行われている。しかしながら、ポリ乳酸は未延伸シート(無配向状態)は堅くて脆いため薄いフィルムでは包装用として実用性がなかった。これに対しては、シートを延伸し、配向させることにより大幅な物性改良が可能ではあるが、ポリ乳酸はPET等に代表される芳香族系樹脂に比べガラス転移温度が比較的低く、この温度以上での熱変形や剛性低下が大きいことや、芳香族環を有していないために分子間力が小さく、耐熱性、耐溶剤性等でPETに劣るため、PETに変わりうる機能性樹脂として大きく展開できていないのが現状である。   Polylactic acid is a polymer obtained by producing lactic acid using starch obtained from corn, potatoes, etc. as a raw material, and by chemical synthesis, and is excellent in mechanical properties, heat resistance, and transparency among aliphatic polyesters. Therefore, research and development for the purpose of developing various molded products such as films, sheets, tapes, fibers, ropes, non-woven fabrics, and containers have been actively conducted. However, since polylactic acid is hard and brittle in an unstretched sheet (non-oriented state), a thin film was not practical for packaging. On the other hand, although the physical properties can be greatly improved by stretching and orienting the sheet, polylactic acid has a relatively low glass transition temperature compared to aromatic resins represented by PET and the like. As a functional resin that can be changed to PET because of its large thermal deformation and rigidity reduction as described above, low intermolecular force because it does not have an aromatic ring, and inferior to PET in heat resistance, solvent resistance, etc. The current situation is that it has not expanded significantly.

これに対し、ポリ乳酸のもつ特性を生かし、積層化によりポリ乳酸フィルムの機能性付与を試みている例がいくつか挙げられる。例えば、低融点ポリマーと高融点のポリ乳酸を2層に積層化し、ヒートシール性を付与する技術が開示されている(例えば、特許文献1〜3)。   On the other hand, there are several examples of making use of the characteristics of polylactic acid to try to impart functionality to the polylactic acid film by lamination. For example, a technique for laminating a low melting point polymer and a high melting point polylactic acid into two layers to impart heat sealability is disclosed (for example, Patent Documents 1 to 3).

また、内層に低融点あるいは非晶ポリ乳酸、外層に高融点ポリ乳酸を積層し、低融点の温度以上で熱処理することで手切れ性すなわち易引裂き性を付与する技術が開示されている(例えば、特許文献4)。しかしながら、低融点ポリ乳酸の融点が異なるグレードを用いた場合、グレードごとに熱処理温度の変更を要し、精密な熱処理温度制御が必要となるという問題だけでなく、低融点、非晶性のポリ乳酸は結晶性が低く、ブロッキングが生じやすくなるため、ハンドリング性、操業性が低下するという問題があった。さらに、耐溶剤性層として結晶性ポリ乳酸層、インキ受容層として非晶ポリ乳酸層を積層する技術が開示されている(例えば、特許文献5〜6)。しかしながら、結晶性ポリ乳酸層の有する耐溶剤性はPET等に代表される芳香族系樹脂の耐溶剤性に比べ劣るものであり、その性能は不十分であると言わざるを得ないものであった。   Further, a technique is disclosed in which a low melting point or amorphous polylactic acid is laminated on the inner layer, and a high melting point polylactic acid is laminated on the outer layer, and heat treatment is performed at a temperature of a low melting point or higher to provide hand tearability, that is, easy tearing (for example Patent Document 4). However, when grades with different melting points of low-melting polylactic acid are used, not only the problem of requiring changes in the heat treatment temperature for each grade and precise heat treatment temperature control is required, but also low melting point, non-crystalline polylactic acid. Since lactic acid has low crystallinity and is likely to be blocked, there is a problem that handling property and operability are lowered. Furthermore, a technique of laminating a crystalline polylactic acid layer as a solvent resistant layer and an amorphous polylactic acid layer as an ink receiving layer is disclosed (for example, Patent Documents 5 to 6). However, the solvent resistance of the crystalline polylactic acid layer is inferior to the solvent resistance of aromatic resins typified by PET and the like, and its performance is inadequate. It was.

以上のように、ポリ乳酸フィルムを積層化し、ポリ乳酸単層にはない高機能性、すなわち易引裂き性あるいは耐溶剤性を付与する試みはなされていたものの、ハンドリング性、生産性、性能の面で高いポテンシャルを有する積層フィルムに関する技術については未だ達成されていないのが実状であった。
特開平8−323946号公報([0001]〜[0015]段落) 特開2002−273845号公報([0001]〜[0006]段落) 特開2003−80655号公報([0001]〜[0009]段落) 特開2001−191407号公報([0001]〜[0007]段落) 特開2002−103550号公報([0007]〜[0038]段落) 特開2003−94586号公報([0004]〜[0016]段落)
As described above, although a polylactic acid film was laminated, an attempt was made to impart high functionality that is not found in a polylactic acid single layer, that is, easy tearing or solvent resistance, but in terms of handling properties, productivity, and performance. In fact, the technology related to the laminated film having a high potential has not been achieved yet.
JP-A-8-323946 (paragraphs [0001] to [0015]) JP 2002-273845 A (paragraphs [0001] to [0006]) JP 2003-80655 A (paragraphs [0001] to [0009]) JP 2001-191407 A (paragraphs [0001] to [0007]) JP 2002-103550 A (paragraphs [0007] to [0038]) JP 2003-94586 A (paragraphs [0004] to [0016])

本発明の課題は、結晶性ポリ乳酸の製膜条件を大きく変化させることなく、積層させる結晶性樹脂を変更するのみで、充分な易引裂き性が付与された積層フィルム、または、ポリ乳酸系樹脂で単層のみではこれまでなし得なかった耐溶剤性が付与された積層フィルムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a laminated film or a polylactic acid-based resin that has been provided with sufficient tearability only by changing the crystalline resin to be laminated without greatly changing the film forming conditions of crystalline polylactic acid. The object of the present invention is to provide a laminated film imparted with solvent resistance that could not be achieved by a single layer alone.

上記課題を解決するため本発明の積層フィルムは、主として次の構成を有する。すなわち、
ガラス転移温度Tg(A)、融点Tm(A)である結晶性ポリ乳酸系重合体Aを主成分とするA層と、ガラス転移温度Tg(B)、結晶化温度Tc(B)である結晶性樹脂組成物Bを主成分とするB層からなる積層フィルムであって、Tg(A)、Tm(A)、Tg(B)およびTc(B)の関係が、
Tg(A)≧Tg(B) かつ Tm(A)≧Tc(B)
であり、DSC昇温測定における該フィルムの結晶融解熱量(ΔHm)が15J/g以上かつ、層の構成がA/B/A、あるいはB/A/Bの構成を含む3層以上であることを特徴とする積層フィルム。
である。
In order to solve the above problems, the laminated film of the present invention mainly has the following configuration. That is,
A layer mainly composed of crystalline polylactic acid polymer A having glass transition temperature Tg (A) and melting point Tm (A), and crystal having glass transition temperature Tg (B) and crystallization temperature Tc (B) A laminated film composed of a B layer mainly composed of a conductive resin composition B, wherein the relationship between Tg (A), Tm (A), Tg (B) and Tc (B) is
Tg (A) ≧ Tg (B) and Tm (A) ≧ Tc (B)
The heat of crystal fusion (ΔHm) of the film in DSC temperature rise measurement is 15 J / g or more, and the layer structure is A / B / A or 3 layers including B / A / B. A laminated film characterized by
It is.

本発明の積層フィルムは、結晶性ポリ乳酸の製膜条件を大きく変化させることなく、積層させる結晶性樹脂を変更するのみで、充分な易引裂き性あるいは耐溶剤性が付与された積層フィルムであり、優れた易開封性が必要とされる包装材料、もしくは耐溶剤性、印刷適性、加工適性必要とされる工業材料用フィルムに関するものである。さらに、本発明の積層フィルムは、従来のプラスチックに対して自然環境中での生分解性が高く、使用後は自然環境中で比較的容易に分解されるという利点を有する。本発明の脂肪族ポリエステル樹脂は、産業界およびプラスチック廃棄物に係る環境問題の解決に寄与するところが非常に大きい。   The laminated film of the present invention is a laminated film provided with sufficient tearability or solvent resistance only by changing the crystalline resin to be laminated without greatly changing the film forming conditions of crystalline polylactic acid. The present invention relates to a packaging material that requires excellent easy-openability, or a film for industrial materials that requires solvent resistance, printability, and processing suitability. Furthermore, the laminated film of the present invention has an advantage that biodegradability in a natural environment is higher than that of a conventional plastic and is relatively easily decomposed in a natural environment after use. The aliphatic polyester resin of the present invention greatly contributes to solving environmental problems related to industry and plastic waste.

本発明の積層フィルムのA層は、ガラス転移温度Tg(A)、融点Tm(A)である結晶性ポリ乳酸系重合体Aを主成分とするが、結晶性ポリ乳酸系重合体Aとは、L−乳酸および/またはD―乳酸を主成分とし、重合体中の乳酸由来の成分が70重量%以上のものを示し、実質的にL−乳酸および/またはD―乳酸からなるホモポリ乳酸が好ましく用いられる。また、本発明における結晶性ポリ乳酸系重合体のガラス転移温度Tg(A)とは、DSC(示差走査熱量分析装置)測定において、溶融状態から急冷させたサンプルを窒素雰囲気下、−50℃で5分間保持後20℃/分の昇温速度で測定を行った場合に観測されるガラス転移温度であり、融点Tm(A)とは、DSC曲線から求められる吸熱曲線の極小点(すなわち微分値が0となる点)を示すピーク温度である。また、ピーク温度が2種類以上存在する場合は、最も高温側をTm(A)と定義する。ポリ乳酸系重合体として、例えば均一なホモポリ乳酸を用いる場合にはその光学純度が70%以上のホモポリ乳酸を使用すればよい。あるいは、フィルムとして使用する際の用途によっては、必要な機能の付与あるいは向上を目的として、光学純度の異なる2種以上のホモポリ乳酸を併用してもよく、例えば、結晶性を有するホモポリ乳酸と非晶性のホモポリ乳酸を併用することも可能である。この場合、非晶性のホモポリ乳酸の割合は本発明の効果を損ねない範囲で決定すれば良い。また、通常、ホモポリ乳酸は光学純度が高いほど融点が高く、例えば光学純度が98%以上のポリL−乳酸では融点が約170℃程度であるが、フィルムとした際に高い耐熱性を付与したい際には、使用するポリ乳酸重合体のうち少なくとも1種に光学純度が95%以上のポリ乳酸を含むことが好ましい。   The layer A of the laminated film of the present invention is mainly composed of a crystalline polylactic acid polymer A having a glass transition temperature Tg (A) and a melting point Tm (A). What is the crystalline polylactic acid polymer A? L-lactic acid and / or D-lactic acid as a main component, and the lactic acid-derived component in the polymer is 70% by weight or more, and homopolylactic acid substantially consisting of L-lactic acid and / or D-lactic acid is Preferably used. The glass transition temperature Tg (A) of the crystalline polylactic acid-based polymer in the present invention is a sample rapidly quenched from a molten state in a DSC (Differential Scanning Calorimetry) measurement at −50 ° C. in a nitrogen atmosphere. This is the glass transition temperature observed when measured at a heating rate of 20 ° C./min after holding for 5 minutes, and the melting point Tm (A) is the minimum point of the endothermic curve obtained from the DSC curve (ie, the differential value). Is a peak temperature indicating a point at which becomes 0). When two or more types of peak temperatures exist, the highest temperature side is defined as Tm (A). For example, when uniform homopolylactic acid is used as the polylactic acid polymer, homopolylactic acid having an optical purity of 70% or more may be used. Alternatively, depending on the application when used as a film, two or more types of homopolylactic acid having different optical purities may be used in combination for the purpose of imparting or improving a required function. It is also possible to use crystalline homopolylactic acid in combination. In this case, the proportion of amorphous homopolylactic acid may be determined within a range that does not impair the effects of the present invention. In general, the higher the optical purity of homopolylactic acid, the higher the melting point. For example, poly L-lactic acid having an optical purity of 98% or more has a melting point of about 170 ° C. In this case, it is preferable that at least one of the polylactic acid polymers to be used contains polylactic acid having an optical purity of 95% or more.

ポリ乳酸の製造方法には、L−乳酸、D−乳酸、DL−乳酸(ラセミ体)を原料として一旦環状2量体であるラクチドを生成せしめ、その後開環重合を行う2段階のラクチド法と、当該原料を溶媒中で直接脱水縮合を行う一段階の直接重合法が知られている。本発明においてホモポリ乳酸を用いる場合はいずれの製法によって得られたものであってもよいが、ラクチド法によって得られるポリマーの場合にはポリマー中に含有されるラクチドが成形時に気化して、例えば溶融製膜時にはキャストドラム汚れやフィルム表面の平滑性低下の原因となるため、溶融製膜以前の段階でポリマー中に含有されるラクチドの含有量を0.3重量%以下とすることが望ましい。また、直接重合法の場合にはラクチドに起因する問題が実質的にないため、製膜性の観点からはより好適である。本発明におけるポリ乳酸系重合体(A)の重量平均分子量は、通常少なくとも5万、好ましくは8万〜30万、さらに好ましくは10万〜20万である。平均分子量をかかる範囲とする場合には、フィルムとした場合の強度物性を優れたものとすることができる。   The polylactic acid production method includes a two-stage lactide method in which L-lactic acid, D-lactic acid, and DL-lactic acid (racemic) are used as raw materials to once generate lactide, which is a cyclic dimer, and then ring-opening polymerization is performed. A one-step direct polymerization method in which the raw material is directly subjected to dehydration condensation in a solvent is known. In the present invention, when homopolylactic acid is used, it may be obtained by any production method. However, in the case of a polymer obtained by the lactide method, the lactide contained in the polymer is vaporized at the time of molding, for example, melted. At the time of film formation, it causes cast drum contamination and film surface smoothness deterioration, so that the content of lactide contained in the polymer before the melt film formation is preferably 0.3% by weight or less. Further, in the case of the direct polymerization method, there is substantially no problem caused by lactide, so that it is more preferable from the viewpoint of film forming property. The weight average molecular weight of the polylactic acid polymer (A) in the present invention is usually at least 50,000, preferably 80,000 to 300,000, and more preferably 100,000 to 200,000. When the average molecular weight is in such a range, the strength physical properties in the case of a film can be made excellent.

また、本発明における結晶性ポリ乳酸系重合体は、L−乳酸、D−乳酸のほかにエステル形成能を有するその他の単量体成分を共重合した共重合ポリ乳酸であってもよい。共重合可能な単量体成分としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸等の分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。なお、ポリ乳酸系重合体(A)の共重合成分としては、生分解性を有する成分を選択することが好ましい。   The crystalline polylactic acid-based polymer in the present invention may be a copolymerized polylactic acid obtained by copolymerizing other monomer components having ester forming ability in addition to L-lactic acid and D-lactic acid. Examples of copolymerizable monomer components include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, and other hydroxycarboxylic acids, as well as ethylene glycol, propylene glycol, and butane. Compounds containing a plurality of hydroxyl groups in the molecule such as diol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol or derivatives thereof, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 , 6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid and the like, or compounds containing a plurality of carboxylic acid groups in the molecule. In addition, as a copolymerization component of a polylactic acid-type polymer (A), it is preferable to select the component which has biodegradability.

本発明の積層フィルムのB層は、ガラス転移温度Tg(B)、結晶化温度Tc(B)、融点Tm(A)である結晶性樹脂組成物Bを主成分とするが、結晶性樹脂組成物Bのガラス転移温度Tg(B)とは、前記したようなDSC測定において、溶融状態から急冷させたサンプルを窒素雰囲気下、−50℃で5分間保持後20℃/分の昇温速度で測定を行った場合に観測されるガラス転移温度であり、結晶化温度Tc(B)とは、DSC曲線から求められる発熱曲線の極大点(すなわち微分値が0となる点)を示すピーク温度であり、融点Tm(B)とは、DSC曲線から求められる吸熱曲線の極小点(すなわち微分値が0となる点)を示すピーク温度である。また、ピーク温度が2種類以上存在する場合は、最も高温側をTc(B)およびTm(B)と定義する。   The layer B of the laminated film of the present invention is mainly composed of the crystalline resin composition B having a glass transition temperature Tg (B), a crystallization temperature Tc (B), and a melting point Tm (A). The glass transition temperature Tg (B) of the product B is a temperature increase rate of 20 ° C./min after holding the sample rapidly cooled from the molten state in a nitrogen atmosphere at −50 ° C. for 5 minutes in the DSC measurement as described above. This is the glass transition temperature observed when the measurement is performed, and the crystallization temperature Tc (B) is a peak temperature indicating the maximum point of the exothermic curve obtained from the DSC curve (that is, the point at which the differential value becomes 0). The melting point Tm (B) is a peak temperature indicating the minimum point of the endothermic curve obtained from the DSC curve (that is, the point at which the differential value becomes 0). When two or more types of peak temperatures exist, the highest temperature side is defined as Tc (B) and Tm (B).

熱可塑性樹脂の延伸は、通常、樹脂のガラス転移点以上結晶化温度以下の温度で行うことが一般的である。結晶性ポリ乳酸の延伸について例を挙げると、光学純度が98%以上で融点が約170℃程度である結晶性ポリ乳酸のガラス転移温度は約60℃、結晶化温度は約130℃程度であるため、延伸温度は60〜130℃の範囲、好ましくは70〜100℃の範囲で行うことが知られている。延伸後の熱処理温度に関しても、ガラス転移温度以上融点以下の任意の温度で行うことが一般的であり、好ましくは100〜150℃の範囲で行う。本発明の積層フィルムは、結晶性ポリ乳酸の製膜条件を大きく変えることなく、各種易引裂き性、耐溶剤性等、様々な特性を付与できることを大きな特徴としており、このような観点から、上記したTg(A)、Tm(A)、Tg(B)およびTc(B)の関係が、
Tg(A)≧Tg(B) かつ Tm(A)≧Tc(B)
となることが必要となる。Tg(A)<Tg(B)となる場合は、結晶性ポリ乳酸重合体Aの延伸条件で製膜することが困難、すなわち、積層フィルムの延伸条件をTg(B)以上の条件を新たに設定する必要性が生じ、生産性の面から好ましくない。また、Tm(A)<Tc(B)となる場合も、積層フィルムを延伸後、熱処理を行う際に結晶性ポリ乳酸重合体Aの熱処理温度では結晶性樹脂Bの結晶化が充分進行せず、本発明で得られる特徴的な特性、すなわち易引裂き性や耐溶剤性が付与できなくなり、好ましくない。
The stretching of the thermoplastic resin is generally performed at a temperature not lower than the glass transition point of the resin and not higher than the crystallization temperature. As an example of stretching of crystalline polylactic acid, the glass transition temperature of crystalline polylactic acid having an optical purity of 98% or more and a melting point of about 170 ° C. is about 60 ° C., and the crystallization temperature is about 130 ° C. Therefore, it is known that the stretching temperature is in the range of 60 to 130 ° C, preferably in the range of 70 to 100 ° C. Regarding the heat treatment temperature after stretching, it is generally carried out at an arbitrary temperature not lower than the glass transition temperature and not higher than the melting point, preferably in the range of 100 to 150 ° C. The laminated film of the present invention is characterized by being capable of imparting various properties such as various easy tear properties and solvent resistance without greatly changing the film formation conditions of crystalline polylactic acid. The relationship between Tg (A), Tm (A), Tg (B) and Tc (B)
Tg (A) ≧ Tg (B) and Tm (A) ≧ Tc (B)
It is necessary to become. When Tg (A) <Tg (B), it is difficult to form a film under the stretching condition of the crystalline polylactic acid polymer A, that is, the stretching condition of the laminated film is newly set to a condition equal to or higher than Tg (B). The necessity to set arises and it is not preferable from the surface of productivity. Also, when Tm (A) <Tc (B), the crystallization of the crystalline resin B does not proceed sufficiently at the heat treatment temperature of the crystalline polylactic acid polymer A when the heat treatment is performed after stretching the laminated film. The characteristic properties obtained by the present invention, that is, easy tearability and solvent resistance cannot be imparted, which is not preferable.

本発明の積層フィルムは、B層に積層される結晶性樹脂組成物Bによって各種特性が付与できる点を特徴とする。また、B層に積層される樹脂によって各種特性が付与できるメカニズムとしては、、例えば、易引裂き性および耐溶剤性を付与する場合について以下のようなコンセプトにより説明することが可能である。   The laminated film of the present invention is characterized in that various characteristics can be imparted by the crystalline resin composition B laminated on the B layer. Moreover, as a mechanism which can provide various characteristics with the resin laminated | stacked on B layer, it can be demonstrated by the following concepts about the case where easy tear property and solvent resistance are provided, for example.

[易引裂き性付与のコンセプトおよび技術の開示]
結晶性をもつフィルムを無配向状態で結晶化させると脆さが大きくなりフィルムの伸びが低下し、非常に切れやすいものとなる。一方、フィルムを配向させたのちに結晶化させることで大幅な物性向上が可能となり、強度、伸度および耐熱性を保持したフィルムを得ることができるようになる。また、延伸条件と配向状態との関係も一義には決定されないものの、延伸温度を結晶性樹脂のガラス転移温度よりも大幅に高い温度に設定すると、フィルムの配向が小さくなる傾向となる。これは、ガラス転移温度以上で開始する分子鎖の運動が高温になるにつれて大きくなり、延伸しても配向が緩和してしまうことに要因があると推定される。すなわち、ガラス転移温度を大きく超える高温で延伸し、結晶化させると無配向状態に近く、伸びの小さいフィルムができるようになる。
[Disclosure of concept and technology for imparting easy tearability]
When a crystallizable film is crystallized in a non-oriented state, the brittleness increases and the elongation of the film decreases, making it very easy to cut. On the other hand, crystallizing after orienting the film makes it possible to greatly improve the physical properties and to obtain a film having strength, elongation and heat resistance. Further, although the relationship between the stretching conditions and the orientation state is not uniquely determined, when the stretching temperature is set to a temperature significantly higher than the glass transition temperature of the crystalline resin, the orientation of the film tends to be reduced. This is presumed to be due to the fact that the movement of the molecular chain starting at or above the glass transition temperature increases as the temperature rises, and that orientation is relaxed even when stretched. That is, when the film is stretched and crystallized at a temperature that greatly exceeds the glass transition temperature, it becomes a non-oriented state and a film having a small elongation can be obtained.

そこで本発明の発明者らは以上のことに注目し、結晶性ポリ乳酸系重合体Aと、Aのガラス転移温度Tg(A)より低いガラス転移温度Tg(B)を有する結晶性樹脂組成物Bを積層し、Tg(A)以上の温度、すなわちTg(B)を大きく超える温度で延伸させることで、A層は配向結晶化し、強度、伸度および耐熱性を保持した層として機能し、B層はほとんど配向せず、フィルムの伸びを低下させた層として機能させ、両層の効果により易引裂き性を付与された積層フィルムが得られることを見出し、ここに開示するものである。   Accordingly, the inventors of the present invention pay attention to the above, and a crystalline polylactic acid-based polymer A and a crystalline resin composition having a glass transition temperature Tg (B) lower than the glass transition temperature Tg (A) of A. By laminating B and stretching at a temperature equal to or higher than Tg (A), that is, a temperature greatly exceeding Tg (B), the A layer is oriented and crystallized, and functions as a layer that retains strength, elongation, and heat resistance. The B layer is hardly oriented and functions as a layer with reduced elongation of the film, and it is found that a laminated film imparted with an easy tear property by the effect of both layers is disclosed and disclosed herein.

上記の観点から、さらにTg(A)≧Tg(B)+10であることが好ましく、Tg(A)≧Tg(B)+20であることがさらに好ましい。   From the above viewpoint, Tg (A) ≧ Tg (B) +10 is more preferable, and Tg (A) ≧ Tg (B) +20 is further preferable.

また、易引裂き性の有無を判断する方法の1つとして、フィルムを切断する際にフィルムにかかる荷重を相対的に算出する方法が挙げられ、詳しくは、JIS K7161およびJIS K7127に準じ、23℃の雰囲気下でて、テンシロン万能試験機を用い、引張速度300mm/分条件で行う試験で得られたフィルム破断強度(MPa)とフィルム厚み(μm)の積の値から求める方法である。破断強度と厚みの積が小さいほど破断時にフィルムにかかる荷重が小さい、すなわち小さい荷重でフィルムを破断でき易引裂き性を有することを表す。この観点から、破断強度と厚みの積は3000以下であることが好ましく、さらに好ましくは2500以下、特に好ましくは2000以下である。   In addition, as one of methods for determining the presence or absence of easy tearing, there is a method of relatively calculating the load applied to the film when the film is cut. Specifically, in accordance with JIS K7161 and JIS K7127, 23 ° C. It is the method of calculating | requiring from the value of the product of the film breaking strength (MPa) and the film thickness (micrometer) obtained by the test done on tension | pulling speed 300mm / min conditions using a Tensilon universal testing machine. The smaller the product of the breaking strength and the thickness, the smaller the load applied to the film at the time of breaking, that is, the film can be broken with a small load and has an easy tear property. From this viewpoint, the product of the breaking strength and the thickness is preferably 3000 or less, more preferably 2500 or less, and particularly preferably 2000 or less.

[耐溶剤性付与のコンセプトおよび技術の開示]
従来、プラスチックを加工したフィルムやシートはトルエン、キシレン、酢酸エチル、アセトン、メチルエチルエーテル等の炭化水素系の溶剤を用いた印刷インキを用いて印刷を施されることが多いが、フィルムが溶剤により変形、膨潤等により浸されると印刷性の悪化や印刷後の美麗性を損ねることがあった。この傾向は、フィルムが結晶化していない場合や芳香族環をもたない脂肪族系ポリマーを用いた場合に特に顕著となる。例えば、ポリ乳酸フィルムを用いた場合でも、非晶性のポリ乳酸フィルムに比べ結晶化させたポリ乳酸フィルムのほうが格段に耐溶剤性が優れていた。また、結晶性ポリマーを用いた場合でも、ポリ乳酸フィルムに比べ、PET等に代表される芳香族系フィルムの方が耐溶剤性に優れていた。これは、芳香族環が上記溶剤に対して優れた耐溶剤性を有することに要因があると推定される。すなわち、芳香族環を有する樹脂により耐溶剤性が格段に向上させることができるようになる。
[Disclosure of concept and technology for imparting solvent resistance]
Conventionally, plastic processed films and sheets are often printed with printing inks using hydrocarbon solvents such as toluene, xylene, ethyl acetate, acetone, methyl ethyl ether, etc. If soaked by deformation, swelling, etc., the printability may be deteriorated and the beauty after printing may be impaired. This tendency becomes particularly remarkable when the film is not crystallized or when an aliphatic polymer having no aromatic ring is used. For example, even when a polylactic acid film is used, the crystallized polylactic acid film has much better solvent resistance than the amorphous polylactic acid film. Even when a crystalline polymer was used, an aromatic film represented by PET or the like was superior in solvent resistance compared to a polylactic acid film. This is presumed to be due to the fact that the aromatic ring has excellent solvent resistance to the solvent. That is, the solvent resistance can be remarkably improved by the resin having an aromatic ring.

そこで本発明の発明者らは以上のことに注目し、結晶性ポリ乳酸系重合体Aと、Aのガラス転移温度Tg(A)より低いガラス転移温度Tg(B)を有しかつ、A層よりも耐溶剤性に優れた結晶性樹脂組成物Bを積層し、Tg(A)以上の温度で延伸することで、A層のみでは発現の困難な優れた耐溶剤性が付与された積層フィルムが得られることを見出し、ここに開示するものである。   Accordingly, the inventors of the present invention pay attention to the above and have a crystalline polylactic acid-based polymer A, a glass transition temperature Tg (B) lower than the glass transition temperature Tg (A) of A, and an A layer. A laminated film provided with excellent solvent resistance that is difficult to express only by the A layer by laminating the crystalline resin composition B having superior solvent resistance and stretching at a temperature of Tg (A) or higher. Is disclosed and disclosed herein.

耐溶剤性の有無を判断する方法の1つとしては、溶媒処理前後のフィルムヘイズ変化を観察する方法が挙げられる。詳しくは、トルエン、キシレン、酢酸エチル、アセトン、メチルエチルエーテル等の溶剤をフィルム上に滴下し、その後ガーゼにより一定圧力下でフィルム表面を拭き取る処理を行い、フィルム表面のヘイズ上昇を観察する方法である。耐溶剤性が良好であるほど溶剤処理後のヘイズ上昇が抑えられる。この観点から、処理前後のヘイズ上昇は5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。   One method for determining the presence or absence of solvent resistance is to observe changes in film haze before and after the solvent treatment. Specifically, a solvent such as toluene, xylene, ethyl acetate, acetone, methyl ethyl ether is dropped on the film, and then the film surface is wiped off with a gauze under a constant pressure, and the haze increase on the film surface is observed. is there. The better the solvent resistance, the lower the haze rise after solvent treatment. From this viewpoint, the haze increase before and after the treatment is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.

本発明の積層フィルムは、DSC昇温測定における結晶融解熱量(ΔHm)が15J/g以上であることが必要である。15J/g未満であると、フィルムの結晶化が不十分となり、上記したような優れた易引裂き性、耐溶剤性を付与することができなくなる。この観点から、ΔHmは20J/g以上であることが好ましく、30J/g以上であることがさらに好ましい。   The laminated film of the present invention needs to have a heat of crystal melting (ΔHm) of 15 J / g or more in DSC temperature rise measurement. If it is less than 15 J / g, the crystallization of the film becomes insufficient, and the above-described excellent easy tearing and solvent resistance cannot be imparted. In this respect, ΔHm is preferably 20 J / g or more, and more preferably 30 J / g or more.

さらに、本発明の積層フィルムの層の構成は、A/B/A、もしくはB/A/Bの構成を含む3層以上であることが必要である。層の構成がA/Bの2層のみの場合は上記したような易引裂き性、耐溶剤性の付与が不十分となり好ましくない。A/B/A、もしくはB/A/Bのどちらの構成をとるかは、求められるフィルム特性によって適宜決定することができる。例えば、易引裂き性を付与する場合には強度、伸度および耐熱性を保持した層を外層とする構成、すなわちA/B/A構成をとることができ、耐溶剤性を付与する場合には、耐溶剤性を有する層を外層とする構成、すなわちB/A/B構成をとることができる。フィルム構成としては、これに限られるものではなく、最外層に易滑性、接着性、粘着性、耐熱性、耐候性など新たな機能を付与するためのあらたな層を積層構成に加えてもよい。例えば、上記A層およびB層に、樹脂または添加剤の組成の異なるC層、D層を積層した場合には、C/A/B/A、C/B/A/B、D/A/B/A、D/B/A/B等のの4層、C/A/B/A/C、C/B/A/B/C、D/A/B/A/D、D/B/A/B/D、C/A/B/A/D、C/B/A/B/D等の5層などが例として挙げられる。さらには必要に応じて5層より多層の積層構成であってもよく、各層の積層厚み比も任意に設定できる。   Furthermore, the layer structure of the laminated film of the present invention needs to be three or more layers including A / B / A or B / A / B. When the layer structure is only two layers of A / B, the above-described easy tearing and solvent resistance are insufficient, which is not preferable. Whether A / B / A or B / A / B is adopted can be appropriately determined depending on the required film properties. For example, in the case of imparting easy tearability, it is possible to adopt a configuration in which a layer retaining strength, elongation and heat resistance is an outer layer, that is, an A / B / A configuration, and in the case of imparting solvent resistance. Further, it is possible to adopt a configuration in which a layer having solvent resistance is an outer layer, that is, a B / A / B configuration. The film configuration is not limited to this, and a new layer for adding new functions such as slipperiness, adhesiveness, tackiness, heat resistance, and weather resistance to the outermost layer may be added to the laminated configuration. Good. For example, when the C layer and D layer having different resin or additive compositions are laminated on the A layer and B layer, C / A / B / A, C / B / A / B, D / A / 4 layers such as B / A, D / B / A / B, C / A / B / A / C, C / B / A / B / C, D / A / B / A / D, D / B Examples include five layers such as / A / B / D, C / A / B / A / D, and C / B / A / B / D. Furthermore, if necessary, it may be a multi-layered structure with more than five layers, and the thickness ratio of each layer can also be set arbitrarily.

本発明の積層フィルムは、B層に積層される結晶性樹脂組成物Bによって各種特性が付与できる点を特徴とする。B層に積層される結晶性樹脂組成物Bとしては、ポリオレフィン、ポリアミド、ポリエステル等、各種熱可塑性樹脂からなる組成物が挙げられるが、結晶性ポリ乳酸系重合体Aを主成分とするA層との層間密着性すなわち層間の親和性を向上させる観点から、ポリエステル樹脂組成物であることが好ましい。また、易引裂き性を付与させる観点から、さらに好ましくはジオールとジカルボン酸成分とを重縮合したポリエステルを含む樹脂組成物あるいはポリ乳酸系重合体を主成分とする樹脂組成物であり、熱処理時にB層の結晶化を充分に進行させる観点および耐溶剤性を付与させる観点から、特に好ましくはジカルボン酸に芳香族ジカルボン酸成分が含まれる。なお、本発明の樹脂組成物Bは、生分解性を有することが好ましい。以上の観点から、樹脂組成物Bは、ポリ乳酸重合体を始めとするヒドロキシカルボン酸重合体を主成分とする樹脂組成物、あるいはテレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸成分、および/または、シュウ酸、マロン酸、コハク酸、アジピン酸等の脂肪族ジカルボン酸成分をエチレングリコール、プロピレングリコール、1,4−ブタンジオール1,6−ヘキサンジオール、1,4−シクロヘキサンジオール等のジオール成分と重縮合した脂肪族または芳香族−脂肪族ポリエステル等が好ましく用いられる。   The laminated film of the present invention is characterized in that various characteristics can be imparted by the crystalline resin composition B laminated on the B layer. Examples of the crystalline resin composition B laminated on the B layer include compositions made of various thermoplastic resins such as polyolefins, polyamides, polyesters, etc., but the A layer mainly comprises the crystalline polylactic acid polymer A. From the viewpoint of improving the interlaminar adhesion, that is, the interlaminar affinity, a polyester resin composition is preferable. Further, from the viewpoint of imparting easy tearability, it is more preferably a resin composition containing a polyester obtained by polycondensation of a diol and a dicarboxylic acid component or a resin composition containing a polylactic acid-based polymer as a main component. From the viewpoint of sufficiently promoting the crystallization of the layer and imparting solvent resistance, the dicarboxylic acid particularly preferably contains an aromatic dicarboxylic acid component. In addition, it is preferable that the resin composition B of this invention has biodegradability. From the above viewpoints, the resin composition B is a resin composition mainly composed of a hydroxycarboxylic acid polymer such as a polylactic acid polymer, or an aromatic such as terephthalic acid, isophthalic acid, phthalic acid, or naphthalenedicarboxylic acid. Dicarboxylic acid components and / or aliphatic dicarboxylic acid components such as oxalic acid, malonic acid, succinic acid, adipic acid, etc. are converted into ethylene glycol, propylene glycol, 1,4-butanediol 1,6-hexanediol, 1,4- An aliphatic or aromatic-aliphatic polyester polycondensed with a diol component such as cyclohexanediol is preferably used.

また、本発明の積層フィルムは、少なくともA層を配向させ、透明性を保持したまま結晶化を促進させることが可能となることから、延伸して用いることが好ましい。延伸倍率は、少なくとも一軸方向に1.1倍以上であることが好ましく、さらに好ましくは少なくとも一軸方向に1.1〜10倍である。例えばフィルムの延伸条件は、目的とする熱収縮特性、寸法安定性、強度、弾性率などに応じて、適宜調整し任意の方法で行うことができるが、例えば延伸温度は、用いる樹脂のガラス転移温度以上、結晶化温度以下で行うことが、延伸性や透明性の点で好ましい。延伸倍率は、長手方向、幅方向にそれぞれ1.1倍〜10倍の範囲の任意とすることが好ましく、特に延伸倍率は長手方向、幅方向のどちらかを大きくしてもよく、同一であってもよい。なお、一軸方向の延伸倍率が10倍を超えると、延伸性が低下してフィルムの破断が頻発し、安定した延伸性を得られないことがある。また、延伸温度や延伸(変形)速度などの条件によっては不均一延伸となる場合もあり、一軸方向の好ましい延伸倍率は好ましくは2倍以上、さらに好ましくは2.5倍以上である。また、例えば二軸延伸フィルムとする場合の延伸倍率としては、延伸前後のフィルムの面積割合である面積倍率として、好ましくは4倍以上、さらに好ましくは7倍以上である。   In addition, the laminated film of the present invention is preferably used after being stretched because at least the A layer is oriented and crystallization can be promoted while maintaining transparency. The draw ratio is preferably 1.1 times or more in at least uniaxial direction, and more preferably 1.1 to 10 times in at least uniaxial direction. For example, the stretching conditions of the film can be adjusted appropriately according to the desired heat shrinkage characteristics, dimensional stability, strength, elastic modulus, etc., and can be carried out by any method. For example, the stretching temperature is the glass transition of the resin used. It is preferable to carry out at a temperature above the crystallization temperature in terms of stretchability and transparency. The draw ratio is preferably arbitrarily selected from the range of 1.1 times to 10 times in the longitudinal direction and the width direction, respectively. In particular, the draw ratio may be the same in the longitudinal direction or the width direction, and is the same. May be. In addition, when the draw ratio of a uniaxial direction exceeds 10 times, a drawability will fall, the fracture | rupture of a film will occur frequently and the stable drawability may not be acquired. Depending on conditions such as stretching temperature and stretching (deformation) speed, non-uniform stretching may occur, and the preferred stretching ratio in the uniaxial direction is preferably 2 times or more, and more preferably 2.5 times or more. For example, the draw ratio in the case of forming a biaxially stretched film is preferably 4 times or more, more preferably 7 times or more, as an area ratio that is an area ratio of the film before and after stretching.

また、積層フィルムに耐溶剤性を付与する場合には、A層に加えB層も結晶化させておくことが好ましく、透明性を維持したまま結晶化させておくことがさらに好ましく、延伸時に透明性と結晶化を両立させることが特に好ましい。延伸時に透明結晶化させることでより溶剤に浸されにくいものとなる。延伸時に透明結晶化させる方法は、Tg(A)≧Tg(B)を満たす範囲内でTg(A)とTg(B)をできるだけ近い範囲に調節することや、延伸温度をTg(A)を超える範囲でできるだけ低温側に調節する(具体的には、延伸温度を好ましくはTg(A)+30℃以下、さらに好ましくはTg(A)+25℃以下、特に好ましくはTg(A)+20℃以下に設定する)ことや、延伸時の透明結晶性が高い結晶性樹脂組成物Bを選択する方法等が挙げられるが、これらの中でもTg(A)≧Tg(B)を満たす範囲内でTg(A)とTg(B)をできるだけ近い範囲に調節することが特に好ましく、より具体的には、好ましくはTg(B)≦Tg(A)≦Tg(B)+25、さらに好ましくはTg(B)≦Tg(A)≦Tg(B)+20、特に好ましくはTg(B)≦Tg(A)≦Tg(B)+15を満たす結晶性樹脂組成物Bを選択するとよい。A層およびB層が透明結晶化していることを判断する基準は、例えば、製膜後のフィルムのDSC昇温測定を行った際、第1回目の昇温時に結晶化ピークが観測されずに融解ピークのみ観測され、かつフィルムヘイズが10%以下であることを判断基準とすることができ、より簡易的には、製膜後の積層フィルムをTc(B)以上のTm(A)以下の任意の温度に設定したオーブン中に1時間以上放置し、放置前後のフィルムヘイズが変化しないことから判断できる。   In addition, when imparting solvent resistance to the laminated film, it is preferable to crystallize the B layer in addition to the A layer, and it is more preferable to crystallize while maintaining the transparency. It is particularly preferable to satisfy both properties and crystallization. Transparent crystallization at the time of stretching makes it difficult to be immersed in a solvent. The method of transparent crystallization at the time of stretching is to adjust Tg (A) and Tg (B) as close as possible within the range satisfying Tg (A) ≧ Tg (B), and to set the stretching temperature to Tg (A). The temperature is adjusted as low as possible within the range (specifically, the stretching temperature is preferably Tg (A) + 30 ° C. or lower, more preferably Tg (A) + 25 ° C. or lower, particularly preferably Tg (A) + 20 ° C. or lower). And a method of selecting a crystalline resin composition B having high transparent crystallinity at the time of stretching, etc. Among these, Tg (A) is within the range satisfying Tg (A) ≧ Tg (B). ) And Tg (B) are particularly preferably adjusted to the closest possible range, more specifically, preferably Tg (B) ≦ Tg (A) ≦ Tg (B) +25, more preferably Tg (B) ≦. Tg (A) ≦ Tg (B) +20 Particularly preferably may be selected to Tg (B) ≦ Tg (A) crystalline resin composition B satisfying ≦ Tg (B) +15. The criterion for judging that the A layer and the B layer are transparently crystallized is, for example, that when the DSC temperature rise measurement of the film after film formation is performed, the crystallization peak is not observed at the first temperature rise. Only the melting peak is observed and the film haze can be determined to be 10% or less, and more simply, the laminated film after film formation has a Tm (A) of Tc (B) or more. It can be judged from the fact that the film haze before and after being left undisturbed after being left in an oven set at an arbitrary temperature for 1 hour or longer.

なお、本発明の積層フィルムを用いる場合、延伸を伴わない場合も含めて、例えばタルクなどの無機系あるいはエルカ酸アミドなどの有機系核剤を併用すると、延伸時の配向結晶化と同様に、A層あるいはB層の結晶化を促進することができる場合がある。   In addition, when using the laminated film of the present invention, including when not accompanied by stretching, for example, together with an inorganic nucleating agent such as talc or an organic nucleating agent such as erucic acid amide, as in the case of oriented crystallization during stretching, In some cases, crystallization of the A layer or the B layer can be promoted.

本発明の積層フィルムは、Tg(A)≧Tg(B)なるガラス転移温度を有する結晶性樹脂組成物Bを主成分とするB層を積層することが必要であるが、Tg(A)≧Tg(B)を達成するには、可塑剤を用いても構わない。この場合、使用する結晶性樹脂自体は自体はTg(A)≧Tg(B)とならない場合でも、可塑剤を含有した結晶性樹脂組成物Bとすることで、Tg(A)≧Tg(B)を満たすことが可能となり、使用できる樹脂の範囲が広がることから、特に好ましい。   In the laminated film of the present invention, it is necessary to laminate a B layer mainly composed of the crystalline resin composition B having a glass transition temperature of Tg (A) ≧ Tg (B), but Tg (A) ≧ In order to achieve Tg (B), a plasticizer may be used. In this case, even if the crystalline resin itself used does not satisfy Tg (A) ≧ Tg (B), Tg (A) ≧ Tg (B This is particularly preferable because the range of resins that can be used is widened.

結晶性樹脂組成物Bに含有される可塑剤はフタル酸系、ポリエステル系、ポリエーテル系、ポリエーテルエステル系、公知のものを使用することができ、添加量も求めるTg(B)によって適宜設定することができるが、結晶性樹脂組成物Bがポリ乳酸系重合体を主成分とするポリエステル樹脂組成物を用いる場合は、一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、ポリエーテル系および/またはポリエステル系セグメントを有する可塑剤を用いることが好ましい。この場合、可塑剤の有するポリ乳酸セグメントが母材であるポリ乳酸系重合体から形成される結晶中に取り込まれることで可塑剤の分子を母材につなぎ止める作用を生じ、この作用によって可塑剤の揮発や滲出、抽出(ブリードアウト)を十分に抑制することができる。また、可塑剤中のポリ乳酸セグメントの分子量は通常、10,000未満である。分子量が10,000以上の場合、可塑化効率が低くなり、実用的な柔軟性の付与が困難となる場合がある。   As the plasticizer contained in the crystalline resin composition B, a phthalic acid type, a polyester type, a polyether type, a polyether ester type, or a known one can be used, and the addition amount is appropriately set according to the Tg (B) for which the amount to be added is required. However, when the crystalline resin composition B uses a polyester resin composition whose main component is a polylactic acid polymer, one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule It is preferable to use a plasticizer having polyether-based and / or polyester-based segments. In this case, the polylactic acid segment of the plasticizer is incorporated into the crystal formed from the polylactic acid polymer as the base material, thereby causing the plasticizer molecule to be anchored to the base material. Volatilization, exudation, and extraction (bleed out) can be sufficiently suppressed. Further, the molecular weight of the polylactic acid segment in the plasticizer is usually less than 10,000. When the molecular weight is 10,000 or more, the plasticizing efficiency is lowered, and it may be difficult to impart practical flexibility.

なお、本発明の積層フィルムは、本発明の効果を損なわない範囲で上記した以外の成分を含有してもよい。例えば、公知の各種可塑剤、酸化防止剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、離型剤、抗酸化剤、イオン交換剤あるいは着色顔料等として無機微粒子や有機化合物を必要に応じて添加してもよい。公知の可塑剤としては、例えば、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジシクロヘキシルなどのフタル酸エステル系、アジピン酸ジ−1−ブチル、アジピン酸ジ−n−オクチル、セバシン酸ジ−n−ブチル、アゼライン酸ジ−2−エチルヘキシルなどの脂肪族二塩基酸エステル系、リン酸ジフェニル−2−エチルヘキシル、リン酸ジフェニルオクチルなどのリン酸エステル系、アセチルクエン酸トリブチル、アセチルクエン酸トリ−2−エチルヘキシル、クエン酸トリブチルなどのヒドロキシ多価カルボン酸エステル系、アセチルリシノール酸メチル、ステアリン酸アミルなどの脂肪酸エステル系、グリセリントリアセテート、トリエチレングリコールジカプリレートなどの多価アルコールエステル系、エポキシ化大豆油、エポキシ化アマニ油脂肪酸ブチルエステル、エポキシステアリン酸オクチルなどのエポキシ系可塑剤、ポリプロピレングリコールセバシン酸エステルなどのポリエステル系可塑剤、ポリアルキレンエーテル系、エーテルエステル系、アクリレート系などが挙げられる。なお、安全性の面から、米食品衛生局(FDA)の認可がなされている可塑剤を用いることが好ましい。酸化防止剤としてはヒンダードフェノール系、ヒンダードアミン系などが例示される。着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料等を使用することができる。また、成形品の易滑性や耐ブロッキング性の向上を目的として、無機微粒子を添加するする際には、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウムなどを用いることができる。その平均粒径は、特に限定されないが、0.01〜5μmが好ましく、より好ましくは0.05〜3μm、最も好ましくは0.08〜2μmである。   In addition, the laminated | multilayer film of this invention may contain components other than having mentioned above in the range which does not impair the effect of this invention. For example, various known plasticizers, antioxidants, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, mold release agents, antioxidants, ion exchange agents Alternatively, inorganic fine particles or organic compounds may be added as necessary as coloring pigments. Known plasticizers include, for example, phthalate esters such as diethyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, di-n-butyl sebacate , Aliphatic dibasic acid esters such as di-2-ethylhexyl azelate, phosphate esters such as diphenyl-2-ethylhexyl phosphate and diphenyloctyl phosphate, tributyl acetylcitrate, tri-2-ethylhexyl acetylcitrate , Hydroxy polycarboxylic acid esters such as tributyl citrate, fatty acid esters such as methyl acetylricinoleate and amyl stearate, polyhydric alcohol esters such as glycerin triacetate and triethylene glycol dicaprylate, epoxidized soybean oil, Epo Shi linseed oil fatty acid butyl ester, epoxy plasticizers such as epoxy stearic octyl, polyester plasticizers such as polypropylene glycol sebacic acid ester, polyalkylene ether, ether ester type, and the like acrylate. From the viewpoint of safety, it is preferable to use a plasticizer that is approved by the US Food and Drug Administration (FDA). Examples of the antioxidant include hindered phenols and hindered amines. Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, and quinocridone. Organic pigments such as thioindigo can be used. In addition, when adding inorganic fine particles for the purpose of improving the slipperiness and blocking resistance of a molded product, for example, silica, colloidal silica, alumina, alumina sol, kaolin, talc, mica, calcium carbonate, etc. are used. be able to. The average particle diameter is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.05 to 3 μm, and most preferably 0.08 to 2 μm.

さらに、本発明の積層フィルムのA層あるいはB層は、溶融粘度を低減させたりあるいは生分解性を向上させるなどの目的で、本発明の効果を損なわない範囲で上記した以外の樹脂を含有しても良い。上記した以外の樹脂としては、ポリグリコール酸、ポリ(3−ヒドロキシブチレート)、ポリ(3−ヒドロキシブチレート・3−ヒドロキシバリレート)、ポリカプロラクトン、あるいはエチレングリコール、1,4−ブタンジオールなどの脂肪族ジオールとコハク酸、アジピン酸などの脂肪族ジカルボン酸よりなるポリエステル、ポリグリコール酸などの脂肪族ポリヒドロキシカルボン酸などが挙げられる。   Furthermore, the A layer or the B layer of the laminated film of the present invention contains a resin other than those described above within a range not impairing the effects of the present invention for the purpose of reducing the melt viscosity or improving the biodegradability. May be. Examples of the resin other than those described above include polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate · 3-hydroxyvalerate), polycaprolactone, ethylene glycol, 1,4-butanediol, and the like. And aliphatic dihydroxy acids such as succinic acid and adipic acid, and polyglycolic acid.

本発明の積層フィルムは既存の溶融成形法により得ることができるが、特に易引裂き性、耐溶剤性を付与する方法を含めて、例として以下に説明する。   The laminated film of the present invention can be obtained by an existing melt molding method, and will be described below as an example, particularly including a method for imparting easy tearability and solvent resistance.

フィルムでは、インフレーション法、逐次二軸延伸法、同時二軸延伸法などの既存の延伸フィルムの製造法により得ることが出来る。逐次二軸延伸法や同時二軸延伸法でのフィルムの製造においては、結晶性ポリ乳酸重合体Aおよび結晶性樹脂組成物Bを充分乾燥させた後、AとBを別々の押出機に供給し、3層Tダイ口金に導いてシート状に溶融押出をする等公知の方法で押し出しすることができるが、押出し機やポリマー配管、口金などの温度は250℃以下が好ましく、240℃以下がさらに好ましく、230℃以下が特に好ましい。また、結晶性ポリ乳酸重合体Aおよび結晶性樹脂組成物Bが押出し機内で溶融されてから口金より吐出されるまでの滞留時間は20分以下であることが好ましく、10分以下であることがさらに好ましく、5分以下であることがより好ましい。押出されたシート状の溶融物はキャスティングドラムに密着させて冷却固化せしめて未延伸フィルムを得る。かかる方法で得た未延伸フィルムを連続して少なくとも一方向に延伸した後、必要に応じて1段目延伸方向と直交する方向に延伸する。   The film can be obtained by an existing stretched film manufacturing method such as an inflation method, a sequential biaxial stretching method, or a simultaneous biaxial stretching method. In the production of films by the sequential biaxial stretching method and the simultaneous biaxial stretching method, after sufficiently drying the crystalline polylactic acid polymer A and the crystalline resin composition B, supply A and B to separate extruders. And it can be extruded by a known method such as guiding to a three-layer T die die and melt extrusion into a sheet, but the temperature of the extruder, polymer piping, die, etc. is preferably 250 ° C. or less, preferably 240 ° C. or less. Further preferred is 230 ° C. or less. The residence time from when the crystalline polylactic acid polymer A and the crystalline resin composition B are melted in the extruder until they are discharged from the die is preferably 20 minutes or less, and preferably 10 minutes or less. More preferably, it is more preferably 5 minutes or less. The extruded sheet-like melt is brought into close contact with a casting drum and cooled and solidified to obtain an unstretched film. The unstretched film obtained by this method is continuously stretched in at least one direction, and then stretched in a direction perpendicular to the first-stage stretching direction as necessary.

易引裂き性を付与するためには、上記したようなTg(B)がTg(A)を大きく下回る結晶性樹脂組成物Bを選択し、Tg(A)以上の温度で、好ましくはTg+10℃以上の温度で延伸し、B層の配向を小さくしておくことが好ましい。   In order to impart easy tearability, a crystalline resin composition B having Tg (B) as described above that is significantly lower than Tg (A) is selected, and at a temperature equal to or higher than Tg (A), preferably Tg + 10 ° C. or higher. It is preferable that the orientation of the B layer is kept small by stretching at a temperature of.

また、耐溶剤性を付与するためには、上記したように、Tg(A)≧Tg(B)を満たす範囲内でTg(A)とTg(B)をできるだけ近い範囲になる結晶性樹脂組成物Bを選択し、Tg(A)以上の温度で延伸し、A層およびB層を透明結晶化させておくことが好ましい。   Moreover, in order to provide solvent resistance, as described above, a crystalline resin composition in which Tg (A) and Tg (B) are as close as possible within a range satisfying Tg (A) ≧ Tg (B). It is preferable that the product B is selected and stretched at a temperature equal to or higher than Tg (A) to transparently crystallize the A layer and the B layer.

延伸に引き続いてあるいは一旦巻き取った後、Tc(B)以上Tm(A)以下の温度範囲で、好ましくは100℃以上のより高い温度で、10秒以上のより長時間熱処理しA層およびB層の結晶化度を充分大きくしておくことが好ましい。   Subsequent to stretching or after winding, the layers A and B are subjected to heat treatment for a longer period of time of 10 seconds or longer at a temperature range of Tc (B) or higher and Tm (A), preferably higher temperature of 100 ° C. or higher. It is preferable to keep the crystallinity of the layer sufficiently large.

さらに、フィルムに成形した後に、印刷性、ラミネート適性、コーティング適性などを向上させる目的で各種の表面処理を施しても良い。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理、酸処理などが挙げられ、いずれの方法をも用いることができが、連続処理が可能であり、既存の製膜設備への装置設置が容易な点や処理の簡便さからコロナ放電処理が最も好ましいものとして例示できる。   Furthermore, after forming into a film, various surface treatments may be applied for the purpose of improving printability, laminate suitability, coating suitability, and the like. Examples of surface treatment methods include corona discharge treatment, plasma treatment, flame treatment, acid treatment, etc., and any method can be used, but continuous treatment is possible, and equipment for existing film forming equipment is used. Corona discharge treatment can be exemplified as the most preferable because of its easy installation and simple processing.

本発明のフィルムの厚さは特に制限はなく、用途に応じて要求される性能、例えば、耐溶剤性、易引裂き性、強度、透明性、生分解速度、価格などにより適宜な厚さにすればよいが、通常5μm以上、1mm以下であり、特に5μm以上、200μm以下の範囲が好んで選択される。   The thickness of the film of the present invention is not particularly limited, and may be set to an appropriate thickness depending on performance required according to the application, for example, solvent resistance, easy tearability, strength, transparency, biodegradation speed, price, and the like. Usually, it is 5 μm or more and 1 mm or less, and a range of 5 μm or more and 200 μm or less is particularly preferred.

本発明の積層フィルムは、フィルムヘイズ値が0.2〜15%であることが好ましい。フィルムヘイズ値は、実施例に記載の方法にて評価され、実際の測定値から比例計算によりフィルム厚さが10μmの場合に換算して得られる値をいう。特に耐溶剤性積層フィルム、中でも印刷基材用フィルムの用途においては、フィルムヘイズ値が0.2〜15%であれば印刷物の美麗性を損なうことなく使用でき、好適である。フィルムヘイズ値の好ましい範囲としては、0.2〜10%であり、さらに好ましい範囲は0.2〜5%である。また、実際の測定値においても15%以下であることが好ましい。さらに、ゴミ袋や農業用マルチフィルムなどむしろ一定の隠蔽性が必要とされたり、光線透過率が低いあるいは太陽光などの吸収率が高い方が好ましい用途においては、必要に応じて例えば着色顔料などを添加すると良い。   The laminated film of the present invention preferably has a film haze value of 0.2 to 15%. The film haze value is evaluated by the method described in the Examples, and refers to a value obtained by converting the actual measured value when the film thickness is 10 μm by proportional calculation. In particular, in the use of a solvent-resistant laminated film, especially a film for a printing substrate, a film haze value of 0.2 to 15% is preferable because it can be used without impairing the beauty of the printed matter. A preferable range of the film haze value is 0.2 to 10%, and a more preferable range is 0.2 to 5%. Moreover, it is preferable that it is 15% or less also in an actual measured value. Furthermore, in applications where a certain level of concealment is required, such as garbage bags or agricultural multi-films, or where it is preferable that the light transmittance is low or the absorption rate of sunlight is high, for example, coloring pigments, etc. It is good to add.

本発明の積層フィルムは、実用的にポリ乳酸フィルム単層にはない優れた易引裂き性あるいは耐溶剤性が保持された積層フィルムであるため、従来以上に広い分野での利用が可能である。例えば、従来セロファンが使用されていた粘着テープ、薬包装などの包装材料用途、または印刷等の有機溶剤での表面加工を必要とする各種のフィルム、シート、合成紙等の工業材料用途などが挙げらる。   The laminated film of the present invention is a laminated film that retains excellent easy tearability or solvent resistance, which is not practically found in a single layer of polylactic acid film, and therefore can be used in a wider field than before. For example, it can be used for packaging materials such as pressure-sensitive adhesive tapes, medicine packaging, etc. where cellophane has been used in the past, or for industrial materials such as various films, sheets, and synthetic papers that require surface treatment with organic solvents such as printing. Raru.

以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例により限定されるものではない。なお、実施例中の物性および評価結果は次の方法および基準でで測定および判断した値である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by a following example. The physical properties and evaluation results in the examples are values measured and judged by the following methods and standards.

(1)製膜性
積層フィルム製膜時の製膜性は、以下の基準で判断した。
(1) Film forming property The film forming property at the time of forming a laminated film was judged according to the following criteria.

○:押出機内や延伸時のブロッキング、粘着および破れ等がなく安定して積層フィルムを得ることができた
×:押出機内や延伸時のブロッキング、粘着および破れ等が発生し、安定して積層フィルムを得ることができなかった。
○: A laminated film was stably obtained without blocking, sticking and tearing in the extruder or during stretching. ×: Blocking, sticking and tearing occurred in the extruder or during stretching, and the laminated film was stable. Could not get.

(2)積層フィルムの結晶融解熱量
積層フィルムの吸熱量は、試料5mgを、セイコー電子工業(株)製示差走査熱量計RDC220型を用い、窒素雰囲気下、−50℃で5分間保持後20℃/分の昇温速度下での測定から求めた。
(2) Heat of crystal melting of laminated film The amount of heat absorbed by the laminated film was 20 ° C. after 5 mg of sample was held at −50 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter RDC220 manufactured by Seiko Denshi Kogyo Co., Ltd. It was determined from the measurement at a heating rate of 1 minute.

(3)積層フィルムの破断強度[MPa]
フィルムサンプルを長手方向150mm、幅方向10mmに切り出し、あらかじめ温度23℃、湿度65%RHの雰囲気下で24時間調湿した。この試料を23℃の雰囲気下でJIS K7161およびJIS K7127に準じて、テンシロン万能試験機UTC−100型(株式会社オリエンテック)を用い、初期長50mm、引張速度300mm/分条件で引張試験を行い、破断時の強度求めた。試験は計5回を行い、その平均値を破断強度とした。
(3) Breaking strength of laminated film [MPa]
A film sample was cut into a longitudinal direction of 150 mm and a width direction of 10 mm, and conditioned for 24 hours in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH in advance. This sample was subjected to a tensile test under the conditions of an initial length of 50 mm and a tensile speed of 300 mm / min using a Tensilon universal tester UTC-100 type (Orientec Co., Ltd.) in an atmosphere of 23 ° C. according to JIS K7161 and JIS K7127. The strength at break was determined. The test was performed 5 times in total, and the average value was defined as the breaking strength.

(4)易引裂き性評価
積層フィルムの易引裂き性評価は、フィルムサンプル厚みと(3)で得られた破断強度との積から、下記基準にて判断した。
(4) Easy tear property evaluation The easy tear property evaluation of the laminated film was judged according to the following criteria from the product of the film sample thickness and the break strength obtained in (3).

○:厚みと破断強度の積が2500以下
△:厚みと破断強度の積が2500〜3000
×:厚みと破断強度の積が3000を超える。
○: Product of thickness and breaking strength is 2500 or less Δ: Product of thickness and breaking strength is 2500 to 3000
X: The product of thickness and breaking strength exceeds 3000.

(5)フィルムヘイズ値[%]
積層フィルムサンプルの透明性の指標として、あらかじめ厚みを測定したフィルムサンプルのヘイズ値をヘイズメーターHGM−2DP型(スガ試験機株式会社製)を用いて測定した。測定は1水準につき5回行い、5回の測定の平均値から厚み10μmのフィルムとした場合の換算値としてフィルムヘイズ値[%]を求めた。
(5) Film haze value [%]
As an index of transparency of the laminated film sample, the haze value of the film sample whose thickness was measured in advance was measured using a haze meter HGM-2DP type (manufactured by Suga Test Instruments Co., Ltd.). The measurement was performed 5 times per level, and the film haze value [%] was determined as a conversion value when a film having a thickness of 10 μm was obtained from the average value of the 5 measurements.

(6)フィルム厚み
フィルム厚みは、ダイヤルゲージ形マイクロメータを用い、JIS C2111に準じて測定した。
(6) Film thickness The film thickness was measured according to JIS C2111 using a dial gauge type micrometer.

(7)透明結晶化有無
積層フィルムの透明結晶化の有無は、(2)および(5)に準じてフィルムサンプルのDSC測定およびフィルムヘイズ測定を行い、下記基準にて判断した。
(7) Presence / absence of transparent crystallization The presence / absence of transparent crystallization of the laminated film was determined according to the following criteria by performing DSC measurement and film haze measurement of the film sample according to (2) and (5).

○:第1回目の昇温時に結晶化ピークが観測されずに融解ピークのみ観測され、かつフィルムヘイズが10%以下である
×:上記以外
(8)耐溶剤性評価
積層フィルムの耐溶剤性評価は、あらかじめ30mm×50mmに切り出した積層フィルム上に酢酸エチルを5ml滴下後、コットン製ガーゼを用いて200g加重下でフィルム表面を5往復拭き取る処理を行い、処理後のフィルムヘイズ上昇値から、下記基準にて判断した。
○: No crystallization peak is observed at the first temperature rise, only a melting peak is observed, and the film haze is 10% or less. X: Other than above (8) Solvent resistance evaluation Solvent resistance evaluation of laminated film Is a process of wiping the surface of the film 5 times under a load of 200 g using a cotton gauze after dropping 5 ml of ethyl acetate on a laminated film previously cut into 30 mm × 50 mm. From the increase in film haze after treatment, Judged by criteria.

○:処理後のヘイズ上昇値が5%以下
×:処理後のヘイズ上昇値が5%を超える。
○: Haze increase value after treatment is 5% or less ×: Haze increase value after treatment exceeds 5%.

本実施例で用いたポリ乳酸系重合体A、結晶性樹脂は次のとおりにして得られた。
[ポリ乳酸系重合体]
<P1(高融点ポリ乳酸)>
L−ラクチド100重量部に対しオクチル酸錫を0.1重量部、ラウリルアルコールを0.1重量部混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で15分間重合し、さらに二軸混練押出し機にてチップ化した後、140℃の窒素雰囲気下で3時間固相重合してポリ乳酸系重合体P1を得た。P1についてDSC測定を行ったところ、P1は結晶性を有し、ガラス転移温度62℃、融点は172℃であった。
The polylactic acid-based polymer A and crystalline resin used in this example were obtained as follows.
[Polylactic acid polymer]
<P1 (high melting point polylactic acid)>
0.1 parts by weight of octylate and 0.1 parts by weight of lauryl alcohol are mixed with 100 parts by weight of L-lactide, and polymerized in a reaction vessel equipped with a stirrer at 190 ° C. for 15 minutes in a nitrogen atmosphere. After chipping with a shaft kneading extruder, solid-phase polymerization was performed in a nitrogen atmosphere at 140 ° C. for 3 hours to obtain a polylactic acid polymer P1. When DSC measurement was performed on P1, P1 had crystallinity, a glass transition temperature of 62 ° C., and a melting point of 172 ° C.

<P2(低融点ポリ乳酸)>
L−ラクチド92重量部およびDL−ラクチド8重量部に対しオクチル酸錫を0.1重量部、ラウリルアルコールを0.1重量部混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で3時間重合し、さらに二軸混練押出し機にてチップ化してポリ乳酸系重合体P2を得た。P2についてDSC測定を行ったところ、P2は結晶性を示し、ガラス転移温度58℃、融点は149℃であった。
<P2 (low melting point polylactic acid)>
A mixture of 92 parts by weight of L-lactide and 8 parts by weight of DL-lactide was mixed with 0.1 parts by weight of tin octylate and 0.1 parts by weight of lauryl alcohol, and in a reaction vessel equipped with a stirrer at 190 ° C. in a nitrogen atmosphere. Polymerization was carried out for 3 hours, and further chipped with a biaxial kneading extruder to obtain a polylactic acid polymer P2. When DSC measurement was performed on P2, P2 exhibited crystallinity, and had a glass transition temperature of 58 ° C and a melting point of 149 ° C.

<P3(非晶ポリ乳酸)>
L−ラクチド65重量部およびDL−ラクチド35重量部に対しオクチル酸錫を0.1重量部、ラウリルアルコールを0.1重量部混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で3時間重合し、さらに二軸混練押出し機にてチップ化してポリ乳酸系重合体P3を得た。P3についてDSC測定を行ったところ、ガラス転移温度58℃で、P3は結晶性を示さず、結晶化温度および融点は観測されなかった。
<P3 (amorphous polylactic acid)>
0.1 part by weight of octylate and 0.1 part by weight of lauryl alcohol are mixed with 65 parts by weight of L-lactide and 35 parts by weight of DL-lactide, and the mixture is stirred at 190 ° C. in a nitrogen atmosphere in a reaction vessel equipped with a stirrer. Polymerization was carried out for 3 hours, and further chipped with a biaxial kneading extruder to obtain a polylactic acid polymer P3. When DSC measurement was performed on P3, P3 did not exhibit crystallinity at a glass transition temperature of 58 ° C., and no crystallization temperature and melting point were observed.

[結晶性樹脂]
<P4(イソフタル酸共重合PET)>
ジメチルテレフタレート90重量部、ジメチルイソフタレート10重量部、エチレングリコール60重量部の混合物に、酢酸マグネシウム0.09重量部、三酸化二アンチモン0.03重量部を添加して、常法により加熱昇温してエステル交換反応を行なった。次いで、該エステル交換反応生成物に、リン酸トリメチル0.026重量部を添加した後、重縮合反応層に移行する。次いで、加熱昇温しながら反応系を徐々に減圧して1mmHgの減圧下、290℃で常法により重合しP4を得た。P4についてDSC測定を行ったところ、P4は結晶性を示し、ガラス転移温度72℃、結晶化温度182℃、融点230℃であった。
[Crystalline resin]
<P4 (isophthalic acid copolymerized PET)>
To a mixture of 90 parts by weight of dimethyl terephthalate, 10 parts by weight of dimethyl isophthalate, and 60 parts by weight of ethylene glycol, 0.09 part by weight of magnesium acetate and 0.03 part by weight of antimony trioxide are added, and the temperature is raised by a conventional method. Then, a transesterification reaction was performed. Next, 0.026 part by weight of trimethyl phosphate is added to the transesterification reaction product, and then transferred to a polycondensation reaction layer. Next, the reaction system was gradually depressurized while being heated and heated, and polymerization was conducted at 290 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain P4. When DSC measurement was performed on P4, P4 exhibited crystallinity, and had a glass transition temperature of 72 ° C, a crystallization temperature of 182 ° C, and a melting point of 230 ° C.

<P5(PPT)>
ジメチルテレフタレート100重量部、トリメチレングリコール80重量部の混合物に、酢酸マグネシウム0.09重量部、三酸化二アンチモン0.03重量部を添加して、常法により加熱昇温してエステル交換反応を行なった。次いで、該エステル交換反応生成物に、リン酸トリメチル0.026重量部を添加した後、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して1mmHgの減圧下、270℃で常法により重合しP5を得た。P5についてDSC測定を行ったところ、P5は結晶性を示し、ガラス転移温度50℃、結晶化温度74℃、融点230℃であった。
<P5 (PPT)>
To a mixture of 100 parts by weight of dimethyl terephthalate and 80 parts by weight of trimethylene glycol, 0.09 part by weight of magnesium acetate and 0.03 part by weight of diantimony trioxide are added, and the temperature is raised by a conventional method to carry out a transesterification reaction. I did it. Next, 0.026 part by weight of trimethyl phosphate was added to the transesterification reaction product, and then transferred to a polycondensation reaction layer. Subsequently, the reaction system was gradually depressurized while being heated and heated, and polymerization was performed at 270 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain P5. When DSC measurement was performed on P5, P5 exhibited crystallinity, and had a glass transition temperature of 50 ° C., a crystallization temperature of 74 ° C., and a melting point of 230 ° C.

<P6(コハク酸共重合PET1)>
ジメチルテレフタレート76重量部、コハク酸ジメチル24重量部、エチレングリコール60重量部の混合物に、酢酸マグネシウム0.09重量部、三酸化二アンチモン0.03重量部を添加して、常法により加熱昇温してエステル交換反応を行なった。次いで、該エステル交換反応生成物に、リン酸トリメチル0.026重量部を添加した後、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して1mmHgの減圧下、260℃で常法により重合しP7を得た。P5についてDSC測定を行ったところ、P7は結晶性を示し、ガラス転移温度42℃、結晶化温度137℃、融点200℃であった。
<P6 (succinic acid copolymerized PET1)>
To a mixture of 76 parts by weight of dimethyl terephthalate, 24 parts by weight of dimethyl succinate and 60 parts by weight of ethylene glycol, 0.09 parts by weight of magnesium acetate and 0.03 parts by weight of antimony trioxide are added, and the temperature is raised by a conventional method. Then, a transesterification reaction was performed. Next, 0.026 part by weight of trimethyl phosphate was added to the transesterification reaction product, and then transferred to a polycondensation reaction layer. Subsequently, the reaction system was gradually depressurized while being heated and heated, and polymerization was conducted at 260 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain P7. When DSC measurement was performed on P5, P7 exhibited crystallinity, and had a glass transition temperature of 42 ° C., a crystallization temperature of 137 ° C., and a melting point of 200 ° C.

<P7(コハク酸共重合PET2)>
ジメチルテレフタレート84重量部、コハク酸ジメチル16重量部、エチレングリコール60重量部の混合物に、酢酸マグネシウム0.09重量部、三酸化二アンチモン0.03重量部を添加して、常法により加熱昇温してエステル交換反応を行なった。次いで、該エステル交換反応生成物に、リン酸トリメチル0.026重量部を添加した後、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して1mmHgの減圧下、260℃で常法により重合しP6を得た。P5についてDSC測定を行ったところ、P6は結晶性を示し、ガラス転移温度57℃、結晶化温度134℃、融点210℃であった。
<P7 (succinic acid copolymerized PET2)>
To a mixture of 84 parts by weight of dimethyl terephthalate, 16 parts by weight of dimethyl succinate and 60 parts by weight of ethylene glycol, 0.09 parts by weight of magnesium acetate and 0.03 parts by weight of antimony trioxide are added, and the temperature is raised by a conventional method. Then, a transesterification reaction was performed. Next, 0.026 part by weight of trimethyl phosphate was added to the transesterification reaction product, and then transferred to a polycondensation reaction layer. Subsequently, the reaction system was gradually depressurized while being heated and heated, and polymerization was carried out at 260 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain P6. When DSC measurement was performed on P5, P6 exhibited crystallinity, and had a glass transition temperature of 57 ° C., a crystallization temperature of 134 ° C., and a melting point of 210 ° C.

[可塑剤]
<可塑剤(S1)>
平均分子量10,000のポリエチレングリコール71重量部とL−ラクチド29重量部に対し、オクチル酸錫0.07重量部を混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で60分間重合し、平均分子量2,000のポリ乳酸セグメントを有する、ポリエチレングリコールとポリ乳酸のブロック共重合物S1を得た。
[Plasticizer]
<Plasticizer (S1)>
0.07 part by weight of tin octylate is mixed with 71 parts by weight of polyethylene glycol having an average molecular weight of 10,000 and 29 parts by weight of L-lactide, and polymerization is carried out at 190 ° C. for 60 minutes in a nitrogen atmosphere in a reaction vessel equipped with a stirrer. Thus, a block copolymer S1 of polyethylene glycol and polylactic acid having a polylactic acid segment having an average molecular weight of 2,000 was obtained.

(実施例1)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。10torrの高真空下、100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)17重量部および可塑剤(S1)28重量部と、10torrの高真空下、50℃で48時間減圧乾燥した非晶ポリ乳酸(P3)55重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化し、結晶性樹脂組成物Bを得た。この組成物Bを80℃24時間、5torrの真空下で減圧乾燥した後、結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度190℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Example 1)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. 17 parts by weight of high melting point polylactic acid (P1) and 28 parts by weight of plasticizer (S1) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and non-dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr. A mixture of 55 parts by weight of crystalline polylactic acid (P3) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was subjected to melt kneading using a twin-screw kneading extruder with a cylinder temperature of 200 ° C. After homogenization, chips were formed to obtain a crystalline resin composition B. The composition B was dried under reduced pressure at 80 ° C. for 24 hours under a vacuum of 5 torr, and then the crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm and a cylinder temperature of 200 ° C. The product B is fed to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 190 ° C., led to a three-layer T die die set at a die temperature of 200 ° C., extruded into a film, and cooled on a drum at 5 ° C. An unstretched film was produced by applying an electrostatic force to the film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

Figure 2005144726
Figure 2005144726

(実施例2)
積層フィルム厚みを40μmとした以外は実施例1と全く同様にして積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Example 2)
A laminated film was obtained in the same manner as in Example 1 except that the laminated film thickness was 40 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

(実施例3)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。10torrの高真空下、100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)59重量部および可塑剤(S1)14重量部と、10torrの高真空下、50℃で48時間減圧乾燥した非晶ポリ乳酸(P3)27重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化し、結晶性樹脂組成物Bを得た。この組成物Bを80℃24時間、5torrの真空下で減圧乾燥した後、結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度190℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Example 3)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. 59 parts by weight of high melting point polylactic acid (P1) and 14 parts by weight of plasticizer (S1) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and non-dried under reduced pressure for 48 hours at 50 ° C. under a high vacuum of 10 torr. A mixture of 27 parts by weight of crystalline polylactic acid (P3) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is supplied to a twin-screw kneading extruder with a cylinder temperature of 200 ° C. and melt-kneaded. After homogenization, chips were formed to obtain a crystalline resin composition B. The composition B was dried under reduced pressure at 80 ° C. for 24 hours under a vacuum of 5 torr, and then the crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm and a cylinder temperature of 200 ° C. The product B is fed to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 190 ° C., led to a three-layer T die die set at a die temperature of 200 ° C., extruded into a film, and cooled on a drum at 5 ° C. An unstretched film was produced by applying an electrostatic force to the film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

(実施例4)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。120℃で5時間減圧乾燥したコハク酸共重合PET1(P6)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
Example 4
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. Crystalline resin composition B was a mixture of succinic acid copolymerized PET1 (P6) dried under reduced pressure at 120 ° C. for 5 hours and 0.3 part by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

(比較例1)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに与し、口金温度200℃に設定したTダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの単層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して単層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Comparative Example 1)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. The crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C., led to a T die die set at a die temperature of 200 ° C., extruded into a film shape, and cooled to 5 ° C. An unstretched film was produced by electrostatic application casting on a drum. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was heat-treated at 140 ° C. for 20 seconds while being stretched by 0.times. And fixed in the width direction to obtain a single-layer film having a thickness of 25 μm. At this time, a single layer film could be obtained with very stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

(比較例2)
積層フィルム厚みを40μmとした以外は実施例1と全く同様にして単層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して単層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Comparative Example 2)
A single layer film was obtained in the same manner as in Example 1 except that the thickness of the laminated film was 40 μm. At this time, a single layer film could be obtained with very stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 1.

(比較例3)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。130℃で5時間減圧乾燥したイソフタル酸共重合PET(P4)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の予熱温度で長手方向に、75℃の予熱温度で横方向に延伸しようと試みたが、フィルムが破けて積層フィルムを得ることが出来なかった。
(Comparative Example 3)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. A mixture of isophthalic acid copolymerized PET (P4) dried under reduced pressure at 130 ° C. for 5 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co. was used as the crystalline resin composition B. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. Attempts were made to continuously stretch in the longitudinal direction at a preheating temperature of 85 ° C. and in the transverse direction at a preheating temperature of 75 ° C., but the film was broken and a laminated film could not be obtained.

(比較例4)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。10torrの高真空下、50℃で48時間減圧乾燥した非晶ポリ乳酸(P3)100重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をB層の原料である組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、組成物Bをシリンダー温度190℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した二層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/Bが1/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出機内や延伸時に組成物Bのブロッキング、粘着が非常に多く見られ、安定して製膜を行うことができなかった。得られたフィルムの評価結果を表1に示した。
(Comparative Example 4)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. A mixture of 100 parts by weight of amorphous polylactic acid (P3) dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation It was set as the composition B which is the raw material of a layer. The crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C, and the composition B was fed to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 190 ° C. Then, the film was led into a two-layer T-die die set at a die temperature of 200 ° C., extruded into a film shape, and casted electrostatically on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B was ½. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, the blocking and adhesion of the composition B were very much observed in the extruder and during stretching, and the film could not be formed stably. The evaluation results of the obtained film are shown in Table 1.

(比較例5)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。10torrの高真空下、60℃で48時間減圧乾燥した低融点ポリ乳酸(P2)100重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、組成物Bをシリンダー温度190℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表1に示した。
(Comparative Example 5)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. A mixture of 100 parts by weight of low melting point polylactic acid (P2) dried under reduced pressure at 60 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation was crystallized. Resin composition B. The crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C, and the composition B was fed to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 190 ° C. Then, the film was led to a three-layer T-die die set at a base temperature of 200 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with stable extrusion and stretching. The evaluation results of the obtained film are shown in Table 1.

(比較例6)
10torrの高真空下、60℃で48時間減圧乾燥した低融点ポリ乳酸(P2)100重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸重合体Aとした。10torrの高真空下、50℃で48時間減圧乾燥した非晶ポリ乳酸(P3)100重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をB層の原料である組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Aに、組成物Bをシリンダー温度190℃に設定したスクリュー系50mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をA/B/Aが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸した後、幅方向に固定した状態で140℃、20秒間の熱処理を行おうと試みたが、フィルムが破けて積層フィルムを得ることが出来なかった。
(Comparative Example 6)
A mixture of 100 parts by weight of low melting point polylactic acid (P2) dried under reduced pressure at 60 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation was crystallized. Polylactic acid polymer A. A mixture of 100 parts by weight of amorphous polylactic acid (P3) dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation It was set as the composition B which is the raw material of a layer. The crystalline polylactic acid polymer A was fed to a single screw extruder A with a screw system of 30 mm set at a cylinder temperature of 200 ° C, and the composition B was fed to a single screw extruder B with a screw system of 50 mm set at a cylinder temperature of 190 ° C. Then, the film was led to a three-layer T-die die set at a base temperature of 200 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that A / B / A was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. After stretching by a factor of 0, an attempt was made to heat-treat at 140 ° C. for 20 seconds with the film fixed in the width direction, but the film was broken and a laminated film could not be obtained.

(実施例5)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。130℃で5時間減圧乾燥したコハク酸共重合PET1(P6)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系50mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系30mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をB/A/Bが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表2に示した。
(Example 5)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. Crystalline resin composition B was a mixture of succinic acid copolymerized PET1 (P6) dried under reduced pressure at 130 ° C. for 5 hours and 0.3 part by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 50 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 30 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that B / A / B was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 2.

Figure 2005144726
Figure 2005144726

(実施例6)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。130℃で5時間減圧乾燥したコハク酸共重合PET2(P7)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系50mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系30mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をB/A/Bが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表2に示した。
(Example 6)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. Crystalline resin composition B was a mixture of succinic acid copolymerized PET2 (P7) dried under reduced pressure at 130 ° C. for 5 hours and 0.3 part by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 50 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 30 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that B / A / B was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 2.

(実施例7)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。130℃で5時間減圧乾燥したPPT(P5)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系50mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系30mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をB/A/Bが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出状況も延伸状況も非常に安定して積層フィルムを得ることができた。得られたフィルムの評価結果を表2に示した。
(Example 7)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. Crystalline resin composition B was a mixture of PPT (P5) dried under reduced pressure at 130 ° C. for 5 hours and 0.3 part by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 50 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 30 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that B / A / B was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, it was possible to obtain a laminated film with extremely stable extrusion and stretching conditions. The evaluation results of the obtained film are shown in Table 2.

(比較例7)
比較例1と同様の方法で単層フィルムを作成した。得られたフィルムの評価結果を表2に示した。
(Comparative Example 7)
A single layer film was prepared in the same manner as in Comparative Example 1. The evaluation results of the obtained film are shown in Table 2.

(比較例8)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。130℃で5時間減圧乾燥したイソフタル酸共重合PET(P4)、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性樹脂組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系50mmの単軸押出機Aに、結晶性樹脂組成物Bをシリンダー温度250℃に設定したスクリュー系30mmの単軸押出機Bにそれぞれ与し、口金温度240℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をB/A/Bが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。連続して85℃の予熱温度で長手方向に、75℃の予熱温度で横方向に延伸しようと試みたが、フィルムが破けて積層フィルムを得ることが出来なかった。
(Comparative Example 8)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. A mixture of isophthalic acid copolymerized PET (P4) dried under reduced pressure at 130 ° C. for 5 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co. was used as the crystalline resin composition B. The crystalline polylactic acid polymer A is applied to a single screw extruder A with a screw system of 50 mm set at a cylinder temperature of 200 ° C., and the crystalline resin composition B is applied to a single screw extruder B with a screw system of 30 mm set at a cylinder temperature of 250 ° C. The film was fed to a three-layer T-die die set at a base temperature of 240 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that B / A / B was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. Attempts were made to continuously stretch in the longitudinal direction at a preheating temperature of 85 ° C. and in the transverse direction at a preheating temperature of 75 ° C., but the film was broken and a laminated film could not be obtained.

(比較例9)
100℃で6時間減圧乾燥した高融点ポリ乳酸(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を結晶性ポリ乳酸系重合体Aとした。10torrの高真空下、50℃で48時間減圧乾燥した非晶ポリ乳酸(P3)100重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をB層の原料である組成物Bとした。結晶性ポリ乳酸重合体Aをシリンダー温度200℃に設定したスクリュー系50mmの単軸押出機Aに、組成物Bをシリンダー温度200℃に設定したスクリュー系30mmの単軸押出機Bにそれぞれ与し、口金温度200℃に設定した三層Tダイ口金に導きフィルム状に押し出し、5℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。このとき、押出機AとBの押し出し量をB/A/Bが2/6/2となるよう調整した。連続して85℃の加熱ロール間で長手方向に3.0倍延伸した後、得られた一軸延伸フィルムをクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.0倍延伸し、幅方向に固定した状態で140℃、20秒間の熱処理を行い、厚さ25μmの積層フィルムを得た。このとき、押出機内で組成物Bのブロッキング、粘着が非常に多く見られ、安定して製膜を行うことができなかった。得られたフィルムの評価結果を表2に示した。
(Comparative Example 9)
A mixture of 100 parts by weight of high melting point polylactic acid (P1) dried under reduced pressure at 100 ° C. for 6 hours and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. is used as a crystalline polylactic acid polymer A It was. A mixture of 100 parts by weight of amorphous polylactic acid (P3) dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation It was set as the composition B which is the raw material of a layer. The crystalline polylactic acid polymer A is fed to a single screw extruder A with a screw system of 50 mm set at a cylinder temperature of 200 ° C., and the composition B is fed to a single screw extruder B with a screw system of 30 mm set at a cylinder temperature of 200 ° C. Then, the film was led to a three-layer T-die die set at a base temperature of 200 ° C., extruded into a film shape, and electrostatically cast on a drum cooled to 5 ° C. to prepare an unstretched film. At this time, the extrusion amounts of the extruders A and B were adjusted so that B / A / B was 2/6/2. After continuously stretching 3.0 times in the longitudinal direction between heating rolls at 85 ° C., the obtained uniaxially stretched film is gripped with a clip and guided into a tenter, and heated in a temperature of 75 ° C. and 3 in the lateral direction. The film was stretched by a factor of 0 and fixed in the width direction at 140 ° C. for 20 seconds to obtain a laminated film having a thickness of 25 μm. At this time, very much blocking and adhesion of the composition B were observed in the extruder, and the film formation could not be performed stably. The evaluation results of the obtained film are shown in Table 2.

本発明は、各種包装材料、各種産業資材用、各種工業材料用フィルムなどに応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied to various packaging materials, various industrial materials, films for various industrial materials, and the like, but the application range is not limited thereto.

Claims (13)

ガラス転移温度Tg(A)、融点Tm(A)である結晶性ポリ乳酸系重合体Aを主成分とするA層と、ガラス転移温度Tg(B)、結晶化温度Tc(B)である結晶性樹脂組成物Bを主成分とするB層からなる積層フィルムであって、Tg(A)、Tm(A)、Tg(B)およびTc(B)の関係が、
Tg(A)≧Tg(B) かつ Tm(A)≧Tc(B)
であり、DSC昇温測定における該フィルムの結晶融解熱量(ΔHm)が15J/g以上かつ、層の構成がA/B/A、あるいはB/A/Bの構成を含む3層以上であることを特徴とする積層フィルム。
A layer mainly composed of crystalline polylactic acid polymer A having glass transition temperature Tg (A) and melting point Tm (A), and crystal having glass transition temperature Tg (B) and crystallization temperature Tc (B) A laminated film composed of a B layer mainly composed of a conductive resin composition B, wherein the relationship between Tg (A), Tm (A), Tg (B) and Tc (B) is
Tg (A) ≧ Tg (B) and Tm (A) ≧ Tc (B)
The heat of crystal fusion (ΔHm) of the film in DSC temperature rise measurement is 15 J / g or more, and the layer structure is A / B / A or 3 layers including B / A / B. A laminated film characterized by
積層フィルムが少なくとも一軸方向に1.1倍以上延伸して得られることを特徴とする請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the laminated film is obtained by stretching at least 1.1 times in a uniaxial direction. ΔHmが30J/g以上であることを特徴とする請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein ΔHm is 30 J / g or more. さらにTg(A)≧Tg(B)+10を満たすことを特徴とする請求項1〜3のいずれかに記載の積層フィルム。 The laminated film according to claim 1, further satisfying Tg (A) ≧ Tg (B) +10. さらにTg(A)≦Tg(B)+25を満たすことを特徴とする請求項1〜3のいずれかに記載の積層フィルム。 The laminated film according to claim 1, further satisfying Tg (A) ≦ Tg (B) +25. 結晶性樹脂組成物Bがポリエステル樹脂組成物であることを特徴とする請求項1〜5のいずれかに記載の積層フィルム。 6. The laminated film according to claim 1, wherein the crystalline resin composition B is a polyester resin composition. ポリエステル樹脂組成物が、ジオール成分とジカルボン酸成分とを重縮合したポリエステルを含む組成物であることを特徴とする請求項6に記載の積層フィルム。 The laminated film according to claim 6, wherein the polyester resin composition is a composition containing a polyester obtained by polycondensation of a diol component and a dicarboxylic acid component. ジカルボン酸成分が芳香族ジカルボン酸成分を含むことを特徴とする請求項7に記載の積層フィルム。 The laminated film according to claim 7, wherein the dicarboxylic acid component includes an aromatic dicarboxylic acid component. ポリエステル樹脂組成物が、ポリ乳酸系重合体を主成分とするポリエステル樹脂組成物であることを特徴とする請求項6に記載の積層フィルム。 The laminated film according to claim 6, wherein the polyester resin composition is a polyester resin composition containing a polylactic acid-based polymer as a main component. 結晶性樹脂組成物Bに可塑剤が含有されていることを特徴とする請求項1〜9のいずれかに記載の積層フィルム。 The laminated resin according to claim 1, wherein the crystalline resin composition B contains a plasticizer. フィルムヘイズ値が0.2〜10%であることを特徴とする請求項1〜10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein a film haze value is 0.2 to 10%. 請求項1〜11のいずれかに記載の積層フィルムが、Tg(A)+10℃以上の温度で延伸し、Tc(B)以上Tm(A)以下の温度範囲で熱処理を行うことでB層を結晶化させて得られ、かつ、該フィルムの23℃における引張試験で得られたフィルム破断強度(MPa)と厚み(μm)の積の値が3000以下であることを特徴とする積層フィルム。 The laminated film according to any one of claims 1 to 11 is stretched at a temperature of Tg (A) + 10 ° C or higher and subjected to a heat treatment in a temperature range of Tc (B) or higher and Tm (A) or lower to form the B layer. A laminated film obtained by crystallizing and having a product of film breaking strength (MPa) and thickness (μm) obtained by a tensile test at 23 ° C. of the film of 3000 or less. 請求項1〜11のいずれかに記載の積層フィルムが、B層が透明結晶化してなり、かつ、該フィルムをトルエン、キシレン、酢酸エチル、アセトン、メチルエチルケトンから選ばれる少なくとも1種以上の有機溶剤で処理後のフィルムヘイズ上昇値が5%以下であることを特徴とする積層フィルム。 The laminated film according to any one of claims 1 to 11, wherein the B layer is transparently crystallized, and the film is made of at least one organic solvent selected from toluene, xylene, ethyl acetate, acetone, and methyl ethyl ketone. A laminated film having a film haze increase value of 5% or less after treatment.
JP2003382092A 2003-11-12 2003-11-12 Laminated film Pending JP2005144726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382092A JP2005144726A (en) 2003-11-12 2003-11-12 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382092A JP2005144726A (en) 2003-11-12 2003-11-12 Laminated film

Publications (1)

Publication Number Publication Date
JP2005144726A true JP2005144726A (en) 2005-06-09

Family

ID=34691256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382092A Pending JP2005144726A (en) 2003-11-12 2003-11-12 Laminated film

Country Status (1)

Country Link
JP (1) JP2005144726A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026489A1 (en) * 2005-08-31 2007-03-08 Toray Industries, Inc. Polylactic acid resin multilayer sheet and molded body thereof
JP2007268841A (en) * 2006-03-31 2007-10-18 Fuji Seal International Inc Laminated shrink label
JP2009226608A (en) * 2008-03-19 2009-10-08 Toppan Printing Co Ltd Vegetable-derived decorative sheet
WO2009145165A1 (en) 2008-05-29 2009-12-03 三菱瓦斯化学株式会社 Composite molded article having two-layer structure
WO2022075233A1 (en) * 2020-10-07 2022-04-14 株式会社カネカ Multilayer film and packaging material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151907A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001191407A (en) * 2000-01-07 2001-07-17 Mitsubishi Plastics Ind Ltd Polylactic acid based film
JP2003191425A (en) * 2001-10-03 2003-07-08 Toray Ind Inc Flexible polylactic acid resin stretched film and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151907A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001191407A (en) * 2000-01-07 2001-07-17 Mitsubishi Plastics Ind Ltd Polylactic acid based film
JP2003191425A (en) * 2001-10-03 2003-07-08 Toray Ind Inc Flexible polylactic acid resin stretched film and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026489A1 (en) * 2005-08-31 2007-03-08 Toray Industries, Inc. Polylactic acid resin multilayer sheet and molded body thereof
JPWO2007026489A1 (en) * 2005-08-31 2009-03-05 東レ株式会社 Polylactic acid-based resin laminate sheet and molded article thereof
JP5162900B2 (en) * 2005-08-31 2013-03-13 東レ株式会社 Polylactic acid-based resin laminate sheet and molded article thereof
US8431212B2 (en) 2005-08-31 2013-04-30 Toray Industries, Inc. Laminate sheet of polylactic acid-based resin and thermoformed plastic thereof
JP2007268841A (en) * 2006-03-31 2007-10-18 Fuji Seal International Inc Laminated shrink label
JP2009226608A (en) * 2008-03-19 2009-10-08 Toppan Printing Co Ltd Vegetable-derived decorative sheet
WO2009145165A1 (en) 2008-05-29 2009-12-03 三菱瓦斯化学株式会社 Composite molded article having two-layer structure
WO2022075233A1 (en) * 2020-10-07 2022-04-14 株式会社カネカ Multilayer film and packaging material

Similar Documents

Publication Publication Date Title
US7351785B2 (en) Poly (lactic acid) base polymer composition, molding thereof and film
EP1627893B1 (en) Biodegradable resin film or sheet and process for producing the same
WO2005032818A1 (en) Biodegradable layered sheet
KR20160037940A (en) Polyester sheet, molded article produced from polyester sheet, and card
JP4949604B2 (en) Heat-shrinkable polylactic acid-based laminated film
JP3862557B2 (en) Transparent impact-resistant polylactic acid-based stretched film or sheet and method for producing the same
KR20030077392A (en) Polyester Multilayer Film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP2003292642A (en) Biodegradable film
JP4626137B2 (en) Polylactic acid resin stretched film and method for producing the same
JP3718636B2 (en) Heat-shrinkable film
JP2005144726A (en) Laminated film
JP2004131726A (en) Biodegradable matte film
JP2004217289A (en) Biodegradable blister pack
JP4375764B2 (en) Aromatic polyester resin release film
JP2005139280A (en) Polyester resin composition and film
JP2005105150A (en) Polyester film
JP2005219487A (en) Laminated film
JP4242109B2 (en) Adhesive tape
JPWO2014106934A1 (en) Polylactic acid-based sheet and method for producing the same
JP2005193438A (en) Polylactic acid-based biaxially stretched laminated film
JP2007106996A (en) Wrap film and its manufacturing method
JP3730504B2 (en) Biodegradable conductive composite sheet, molded body and carrier tape using the same
JP2004359948A (en) Biaxially oriented polylactic acid film for forming and container
JP2008200860A (en) Method for producing polylactic acid resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525