[go: up one dir, main page]

JP2005142499A - Semiconductor light-receiving element - Google Patents

Semiconductor light-receiving element Download PDF

Info

Publication number
JP2005142499A
JP2005142499A JP2003380033A JP2003380033A JP2005142499A JP 2005142499 A JP2005142499 A JP 2005142499A JP 2003380033 A JP2003380033 A JP 2003380033A JP 2003380033 A JP2003380033 A JP 2003380033A JP 2005142499 A JP2005142499 A JP 2005142499A
Authority
JP
Japan
Prior art keywords
layer
light
light receiving
optical filter
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003380033A
Other languages
Japanese (ja)
Inventor
Masanobu Kato
昌伸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosemi Corp
Original Assignee
Kyosemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosemi Corp filed Critical Kyosemi Corp
Priority to JP2003380033A priority Critical patent/JP2005142499A/en
Publication of JP2005142499A publication Critical patent/JP2005142499A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for improving a wavelength selection ratio by suppressing the effect of noise carrier diffusion for a semiconductor light-receiving element capable of selectively receiving long-wavelength optical signals out of a mixture of short-wavelength and long-wavelength lights. <P>SOLUTION: A semi-insulating layer is formed between the NCE layer and the contact layer of the second conductivity type in this semiconductor light-receiving element, wherein the NCE layer selectively absorbs short-wavelength lights only and converts a generated noise carrier into a long wavelength light not to be absorbed by the light-receiving layer for the extinction of the noise carrier. The NCE layer and the light-receiving layer are electrically isolated from each other in this structure for the prevention of noise carrier diffusion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体受光素子に関し、特に光通信用半導体受光素子に関するものである。 The present invention relates to a semiconductor light receiving element, and more particularly to a semiconductor light receiving element for optical communication.

光通信システムの中でもPONシステムに代表される光アクセス系においては、1.3μm帯、1.5μm帯などの波長の光信号が一本の光ファイバ内を行き来している。そのため、信号認識エラーを起こさないためにも、受光素子には各波長を選択的に受光できるものが要求される。 In an optical access system typified by a PON system among optical communication systems, optical signals having wavelengths of 1.3 μm band, 1.5 μm band, and the like travel through a single optical fiber. Therefore, in order not to cause a signal recognition error, the light receiving element is required to be able to selectively receive each wavelength.

長波長(例えば1.5μm帯)光を受光せず、短波長(例えば1.3μm帯)光を選択的に受光するためには、受光層のバンドギャップ波長(λg)を長波長光と短波長光の間(例えば、λg=1.4μm)にすれば容易に実現する。 In order to selectively receive short wavelength (eg, 1.3 μm band) light without receiving long wavelength (eg, 1.5 μm band) light, the band gap wavelength (λg) of the light receiving layer is set to long wavelength light and short wavelength light. It can be easily realized by setting the interval between (for example, λg = 1.4 μm).

短波長(例えば1.3μm帯)光は受光せず、長波長(例えば1.5μm帯)光のみを選択的に受光するのは比較的困難で、これを実現可能にした受光素子として、本件発明者出願の特願2002−270371号がある。 It is relatively difficult to selectively receive only long-wavelength (eg, 1.5 μm band) light without receiving short-wavelength (eg, 1.3 μm band) light. There is Japanese Patent Application No. 2002-270371.

前記公報記載の受光素子では、短波長(ノイズ)光を光フィルタ層内の第1、第2半導体(InGaAsP)層で吸収し、発生したノイズキャリアを第3半導体(InGaAs)層に拡散させ、前記InGaAs層において発光再結合させている。このInGaAs層は受光層よりもバンドギャップ波長を長く設定してあるため、再結合光は受光層で吸収されることなく、効果的にノイズキャリアを消滅させることが可能となる。また、長波長(シグナル)光は、光フィルタ層内でほとんど吸収されることなく受光層に到達するため、長波長光を選択的に受光することが可能になる。以下、本半導体多層構造の光フィルタ層をNCE(Noise Carrier Extinction)層と呼ぶことにする。 In the light receiving element described in the publication, short wavelength (noise) light is absorbed by the first and second semiconductor (InGaAsP) layers in the optical filter layer, and generated noise carriers are diffused in the third semiconductor (InGaAs) layer, Light emission is recombined in the InGaAs layer. Since this InGaAs layer has a band gap wavelength longer than that of the light receiving layer, the recombination light is not absorbed by the light receiving layer, and noise carriers can be effectively eliminated. Further, since the long wavelength (signal) light reaches the light receiving layer with almost no absorption in the optical filter layer, the long wavelength light can be selectively received. Hereinafter, the optical filter layer having the semiconductor multilayer structure is referred to as an NCE (Noise Carrier Extension) layer.

図1に試作したサンプルの断面模式図を示す。図1(a)は、InGaAsP層17のみで光フィルタ層を構成した受光素子である。また、図1(b)は、NCE層2で光フィルタ層を構成した(前記公報記載の)受光素子である。両者の光フィルタ層厚は共に4.3μmとし、受光層5厚も共に2.5μmとした。これにより、光フィルタ層の短波長(ノイズ)光透過率、受光層5での長波長(シグナル)光吸収率は、両者共にほぼ同じである。 FIG. 1 shows a schematic cross-sectional view of a prototype sample. FIG. 1A shows a light receiving element in which an optical filter layer is constituted only by an InGaAsP layer 17. FIG. 1B shows a light receiving element (described in the publication) in which an optical filter layer is configured by the NCE layer 2. Both optical filter layer thicknesses were 4.3 μm, and the light receiving layer 5 thickness was also 2.5 μm. Thereby, the short wavelength (noise) light transmittance of the optical filter layer and the long wavelength (signal) light absorption rate of the light receiving layer 5 are substantially the same.

図2は波長選択比の周波数依存性を比較した結果である。この結果から図2(b)のNCE層2内蔵の受光素子の方が波長選択比を5dB程度改善していることが分かる。NCE層2内蔵の受光素子では、低周波域で−13dB程度、20MHz以上の高周波域で−20dB程度の波長選択比が得られた。ちなみに、長波長光の受光感度に対する短波長光の受光感度の比を波長選択比と呼び、dB単位で表される。数1は波長選択比の計算式である。長波長光選択受光素子の場合は、この値が小さいほど波長選択比が良いことになる。 FIG. 2 shows the result of comparing the frequency dependence of the wavelength selection ratio. From this result, it can be seen that the wavelength selective ratio of the light receiving element incorporating the NCE layer 2 in FIG. 2B is improved by about 5 dB. In the light receiving element incorporating the NCE layer 2, a wavelength selection ratio of about −13 dB in the low frequency range and about −20 dB in the high frequency range of 20 MHz or higher was obtained. Incidentally, the ratio of the light-receiving sensitivity of short-wavelength light to the light-receiving sensitivity of long-wavelength light is called a wavelength selection ratio and is expressed in dB. Equation 1 is a formula for calculating the wavelength selection ratio. In the case of a long wavelength light selective light receiving element, the smaller this value, the better the wavelength selection ratio.

短波長光起因のノイズは、主に(1)光フィルタ層透過光、(2)光フィルタ層内再結合光、(3)拡散ノイズキャリア、によると考えられる。(1)は短波長(ノイズ)光が光フィルタ層内で吸収されきらず受光層にまで到達することで波長選択比を劣化させる。(2)は光フィルタ層内のInGaAsP層で発光再結合し、再結合光が受光層で吸収されることで波長選択比を劣化させる。(3)は光フィルタ層内で発生したノイズキャリアが受光層まで拡散することで波長選択比を劣化させる。 The noise caused by the short wavelength light is considered to be mainly due to (1) light transmitted through the optical filter layer, (2) recombination light within the optical filter layer, and (3) diffuse noise carrier. In (1), short wavelength (noise) light is not completely absorbed in the optical filter layer and reaches the light receiving layer, thereby degrading the wavelength selection ratio. In (2), light emission is recombined by the InGaAsP layer in the optical filter layer, and the wavelength selective ratio is deteriorated by the recombination light being absorbed by the light receiving layer. (3) deteriorates the wavelength selection ratio by diffusing noise carriers generated in the optical filter layer to the light receiving layer.

図2の評価結果を解析すると、低周波成分21と高周波成分22とで構成されていることが分かる。低周波成分21は、応答速度の遅い前記(3)の拡散ノイズキャリアに起因していると考えられる。高周波成分22は、応答速度の速い前記(1)と(2)の光に起因していると考えられる。 When the evaluation result of FIG. 2 is analyzed, it can be seen that it is composed of a low frequency component 21 and a high frequency component 22. The low frequency component 21 is considered to be caused by the diffusion noise carrier (3) having a slow response speed. The high frequency component 22 is considered to be caused by the light (1) and (2) having a high response speed.

前記公報記載のNCE層内蔵の受光素子では、その構造から前記(2)の光フィルタ層内再結合光と前記(3)の拡散ノイズキャリアの低減が可能である。従って、図2の評価結果のように、低周波域、高周波域共に波長選択比を5dB程度改善することができている。
特願2002−270371号
The light receiving element with a built-in NCE layer described in the above publication can reduce the recombination light in the optical filter layer (2) and the diffusion noise carrier (3) due to its structure. Therefore, as shown in the evaluation results of FIG. 2, the wavelength selection ratio can be improved by about 5 dB in both the low frequency range and the high frequency range.
Japanese Patent Application No. 2002-270371

前記NCE層内蔵の受光素子において波長選択比が改善されているが、前記(3)の拡散ノイズキャリアは完全に消滅しきれておらず、また、前記(1)の光フィルタ層透過光起因のノイズも発生してしまう。更なる波長選択比改善のためには、前記(1)、(3)の低減が必須であり、とりわけ前記(3)の拡散ノイズキャリアの消滅が波長選択比改善の鍵となる。 Although the wavelength selection ratio is improved in the light receiving element with a built-in NCE layer, the diffusion noise carrier in (3) is not completely extinguished. Noise is also generated. In order to further improve the wavelength selection ratio, it is essential to reduce the above (1) and (3). In particular, the disappearance of the diffusion noise carrier in (3) is the key to the improvement of the wavelength selection ratio.

前記(1)の光フィルタ層透過光の低減には、NCE層厚を厚くすること、NCE層内のInGaAsP層のバンドギャップ波長を長波側にシフトして短波長光の吸収率を上げることなどが考えられる。しかし、試作品のエピ総厚(InP基板1上にエピタキシャル成長した総厚:NCE層2、InP第2コンタクト層4、受光層5、InP第1コンタクト層6を加算した厚み)でも10μm程度とエピタキシャル成長の限界に近い厚みになっているため、これ以上、NCE層厚を厚くすることは不可能に近い。また、バンドギャップ波長の調整による手法も、長波長(シグナル)光の透過率との兼ね合いから、大幅な波長選択比の改善は望めない、と言う問題があった。 For the reduction of the light transmitted through the optical filter layer (1), the NCE layer thickness is increased, the band gap wavelength of the InGaAsP layer in the NCE layer is shifted to the long wave side, and the absorptance of short wavelength light is increased. Can be considered. However, the total epitaxial thickness of the prototype (total thickness epitaxially grown on the InP substrate 1: thickness obtained by adding the NCE layer 2, the InP second contact layer 4, the light receiving layer 5, and the InP first contact layer 6) is about 10 μm. Therefore, it is almost impossible to increase the thickness of the NCE layer. In addition, the method of adjusting the band gap wavelength also has a problem that it cannot be expected to greatly improve the wavelength selection ratio in consideration of the transmittance of long wavelength (signal) light.

また、前記(3)の拡散ノイズキャリアの低減には、InP第2コンタクト層4の厚みを厚くすること、InP第2コンタクト層4のn型キャリア濃度を高くし、NCE層内のInGaAs層との価電子帯ギャップを大きくしてノイズキャリアの拡散を妨げることなどが考えられる。しかし、前述のように層厚を厚くすることは困難である。また、試作品のInP第2コンタクト層のキャリア濃度は1.7E+18cm-3と比較的高めに設定してあるため、これ以上のキャリア濃度を望むのは難しい、と言う問題があった。 For reducing the diffusion noise carrier in (3), the thickness of the InP second contact layer 4 is increased, the n-type carrier concentration of the InP second contact layer 4 is increased, and the InGaAs layer in the NCE layer It is conceivable to increase the valence band gap of hindering the diffusion of noise carriers. However, as described above, it is difficult to increase the layer thickness. Further, since the carrier concentration of the prototype InP second contact layer is set to a relatively high value of 1.7E + 18 cm −3 , there is a problem that it is difficult to desire a carrier concentration higher than this.

上記問題を解決するために、本願第1の発明からなる半導体受光素子は、前記NCE層と前記InP第2コンタクト層との間に絶縁層又は半絶縁層を形成することを特徴とする。 In order to solve the above problem, the semiconductor light receiving element according to the first invention of the present application is characterized in that an insulating layer or a semi-insulating layer is formed between the NCE layer and the InP second contact layer.

本願第2の発明からなる半導体受光素子は、前記公報記載のNCE層やInGaAsP層などの光フィルタ層を持つエピウェハ(エピタキシャル成長したウェハ)を使用して受光領域以外の受光層を取り除き、素子内部で光を反射させて、光が光フィルタ層を2回以上通過するように設定する。また、受光領域と光フィルタ層第1次通過位置を10μm以上離すことを特徴とする。 The semiconductor light-receiving device according to the second invention of the present application uses an epi-wafer (epitaxially grown wafer) having an optical filter layer such as the NCE layer or the InGaAsP layer described in the above publication, removes the light-receiving layer other than the light-receiving region, The light is reflected so that the light passes through the optical filter layer twice or more. Further, the light receiving region and the optical filter layer primary passage position are separated by 10 μm or more.

本願第3の発明からなる半導体受光素子は、第2の発明からなる半導体受光素子において、光フィルタ層第1次通過位置と受光領域との間の光フィルタ層を除去してしまうことを特徴とする。 The semiconductor light-receiving element according to the third invention of the present application is characterized in that in the semiconductor light-receiving element according to the second invention, the optical filter layer between the first pass position of the optical filter layer and the light-receiving region is removed. To do.

本願第4の発明からなる半導体受光素子は、第2の発明からなる半導体受光素子の光の反射位置又はその近傍にpn接合を形成することを特徴とする。 The semiconductor light-receiving element according to the fourth invention of the present application is characterized in that a pn junction is formed at or near the light reflection position of the semiconductor light-receiving element according to the second invention.

本願第1の発明からなる半導体受光素子では、前記NCE層と前記InP第2コンタクト層との間に絶縁層又は半絶縁層を形成することにより、NCE層と受光層とを電気的に独立させることが可能になり、NCE層で発生したノイズキャリアが拡散して受光層に入り込むことがなくなる。結果的に拡散ノイズキャリアによる低周波域の波長選択比劣化を抑えることが可能になる。 In the semiconductor light receiving element according to the first invention of the present application, the NCE layer and the light receiving layer are made electrically independent by forming an insulating layer or a semi-insulating layer between the NCE layer and the InP second contact layer. Therefore, noise carriers generated in the NCE layer do not diffuse and enter the light receiving layer. As a result, it is possible to suppress degradation of the wavelength selection ratio in the low frequency range due to the diffuse noise carrier.

本願第2の発明からなる半導体受光素子では、素子内部で光を反射させて、光が光フィルタ層を2回以上通過するように設定することで、見かけ上の光フィルタ層の総厚を稼ぐことが可能になり、前記(1)の光フィルタ透過光を低減することで波長選択比を改善することができる。更に、受光領域と光フィルタ層第1次通過位置が離れることにより、前記(3)の拡散ノイズキャリアが受光領域まで到達できなくなり、低周波域の波長選択比も改善できる。また、光フィルタ層に前述のNCE層ではなくInGaAsP層を使用した場合でも、発生したノイズキャリアが発光再結合したとしても、受光領域と光フィルタ層第1次通過位置が離れることにより受光領域に入り込む立体角が小さくなり、前記(2)の発光再結合光の影響もほとんど受けずに波長選択比が改善する。 In the semiconductor light receiving element according to the second invention of the present application, the total thickness of the apparent optical filter layer is gained by reflecting the light inside the element and setting the light to pass through the optical filter layer twice or more. The wavelength selection ratio can be improved by reducing the light transmitted through the optical filter of (1). Furthermore, since the light receiving region and the first pass position of the optical filter layer are separated, the diffusion noise carrier (3) cannot reach the light receiving region, and the wavelength selection ratio in the low frequency region can be improved. Even when an InGaAsP layer is used as the optical filter layer instead of the NCE layer described above, even if the generated noise carriers are recombined with light emission, the light receiving region and the optical filter layer primary passage position are separated, so that the light receiving region is separated. The solid angle that enters is reduced, and the wavelength selection ratio is improved almost without being affected by the light emission recombination light of (2).

本願第3の発明からなる半導体受光素子では、光が光フィルタ層を通過する箇所と受光層との間の光フィルタ層を除去することにより、光フィルタ層内部で発生したノイズキャリアが光フィルタ層内を拡散して受光部に入り込むことを防ぐことができる。これにより、前記拡散ノイズキャリアによる低周波域の波長選択比劣化を防ぐことが可能になり、更に波長選択比を向上できる。 In the semiconductor light receiving element according to the third invention of the present application, by removing the optical filter layer between the portion where the light passes through the optical filter layer and the light receiving layer, noise carriers generated inside the optical filter layer are removed from the optical filter layer. It is possible to prevent the light from diffusing into the light receiving portion. As a result, it is possible to prevent deterioration of the wavelength selection ratio in the low frequency range due to the diffuse noise carrier, and further improve the wavelength selection ratio.

本願第4の発明からなる半導体受光素子では、光の反射位置又はその近傍にpn接合を形成することにより、光フィルタ層内で発生した拡散ノイズキャリアをトラップして消滅させることが可能になる。これにより、第1の発明よりも波長選択比の向上が期待できる。 In the semiconductor light receiving element according to the fourth aspect of the present invention, by forming a pn junction at or near the light reflection position, it becomes possible to trap and eliminate the diffuse noise carriers generated in the optical filter layer. Thereby, an improvement in the wavelength selection ratio can be expected as compared with the first invention.

本願の実施例を以下に示す。 Examples of the present application are shown below.

本願第1の発明の実施例を以下に示す。図3は、本実施例の受光素子断面図であり、裏面入射型の受光素子を例示した。 An embodiment of the first invention of the present application will be described below. FIG. 3 is a cross-sectional view of the light receiving element of this embodiment, and illustrates a back-illuminated light receiving element.

本受光素子は、InP基板1上に、NCE層2、FeドープInP半絶縁層3、n+型InP第2コンタクト層4、n-型InGaAs受光層5、n-型InP層7が順次形成されたエピウェハを加工して作製される。n-型InP層7のpn接合を作りたい領域だけにZnなどを拡散してp+型InP第1コンタクト層6を形成する。ここでn-型InP層7はp+型のジャンクションエピウェハを使用しても良い。NCE層2は、InGaAsP第1ノイズ光吸収層9、InGaAsP第2ノイズ光吸収層10、InGaAsノイズキャリア消滅層11、InP拡散キャリア障壁層12とからなり、図1に示すような多層構造になっている。受光領域8以外のn-型InP層7を塩酸系エッチング液などで除去し、受光層5を硫酸系エッチング液などで除去する。 In this light receiving element, an NCE layer 2, an Fe-doped InP semi-insulating layer 3, an n + type InP second contact layer 4, an n − type InGaAs light receiving layer 5 and an n − type InP layer 7 are sequentially formed on an InP substrate 1. The manufactured epi-wafer is processed. A p + -type InP first contact layer 6 is formed by diffusing Zn or the like only in a region where the pn junction of the n − -type InP layer 7 is to be formed. Here, the n − -type InP layer 7 may be a p + -type junction epi wafer. The NCE layer 2 includes an InGaAsP first noise light absorption layer 9, an InGaAsP second noise light absorption layer 10, an InGaAs noise carrier extinction layer 11, and an InP diffusion carrier barrier layer 12, and has a multilayer structure as shown in FIG. ing. The n − type InP layer 7 other than the light receiving region 8 is removed with a hydrochloric acid etching solution or the like, and the light receiving layer 5 is removed with a sulfuric acid etching solution or the like.

バンドギャップ波長は、第1ノイズ光吸収層9が1.39μm、第2ノイズ光吸収層10が1.43μm、ノイズキャリア消滅層11が1.83μm、受光層5が1.65μmとした。 The band gap wavelengths were 1.39 μm for the first noise light absorption layer 9, 1.43 μm for the second noise light absorption layer 10, 1.83 μm for the noise carrier extinction layer 11, and 1.65 μm for the light receiving layer 5.

p電極13は第1コンタクト層6上に形成され、n電極14は第2コンタクト層4上に形成されている。p電極13以外の第1コンタクト層6上面とn-型InP層7上面と端面、受光層5端面及びn電極14以外の第2コンタクト層4上面にはパシベーション膜15としてシリコン窒化膜などの絶縁膜が形成されている。また、InP基板1のエピタキシャル成長面とは反対側の面上(受光素子裏面)にはシグナル光である1.55μm用の反射防止膜16が形成されている。この反射防止膜16には屈折率が1.9前後のシリコン窒化膜を使用する。 The p electrode 13 is formed on the first contact layer 6, and the n electrode 14 is formed on the second contact layer 4. The top surface of the first contact layer 6 other than the p electrode 13, the top surface and end surface of the n − -type InP layer 7, the end surface of the light receiving layer 5, and the top surface of the second contact layer 4 other than the n electrode 14 are insulated as a passivation film 15 such as a silicon nitride film. A film is formed. An antireflection film 16 for 1.55 μm of signal light is formed on the surface opposite to the epitaxial growth surface of the InP substrate 1 (back surface of the light receiving element). A silicon nitride film having a refractive index of about 1.9 is used for the antireflection film 16.

本実施例の受光素子の裏面からシグナル光である1.55μm光が入射した場合は、NCE層2ではほとんど吸収されずに透過して、受光層5に到達し吸収される。一方、ノイズ光である1.31μm光が入射すると、NCE層2内で吸収されノイズキャリアを発生させる。このノイズキャリアは素子裏面側に近いほど発生確率が高いため、無バイアス下でも受光層5側にむけて電位勾配を形成する。これによりノイズキャリアは拡散するが、その多くはNCE層2内のノイズキャリア消滅層11で発光再結合して消滅する。しかし、消滅しきれなかったノイズキャリアは電位勾配に沿って拡散し受光層5に入り込もうとするが、半絶縁層3によって電気的に遮断されているため、受光層5に入り込むことは不可能になる。従って、拡散ノイズキャリアによる低周波域の波長選択比劣化の低減が実現する。ちなみに、InP基板1にFeドープの半絶縁性基板を使用すると、基板内での吸収損失が低減できるため、シグナル光の高受光感度を確保することもできる。本実施例は素子サイズを大きくできない場合に有効であるが、半絶縁層をエピタキシャル成長した場合のモホロジーなどの結晶欠陥が問題となる場合がある。 When 1.55 μm light as signal light is incident from the back surface of the light receiving element of this embodiment, the light is transmitted through the NCE layer 2 without being absorbed and reaches the light receiving layer 5 and is absorbed. On the other hand, when 1.31 μm light as noise light is incident, it is absorbed in the NCE layer 2 and generates noise carriers. Since this noise carrier has a higher probability of occurrence as it is closer to the back side of the element, a potential gradient is formed toward the light receiving layer 5 even under no bias. As a result, although noise carriers are diffused, most of them disappear due to recombination of light emission in the noise carrier extinction layer 11 in the NCE layer 2. However, the noise carriers that could not be eliminated diffuse along the potential gradient and try to enter the light receiving layer 5, but are electrically blocked by the semi-insulating layer 3 and therefore cannot enter the light receiving layer 5. Become. Therefore, it is possible to reduce the deterioration of the wavelength selection ratio in the low frequency range due to the diffuse noise carrier. Incidentally, when an Fe-doped semi-insulating substrate is used for the InP substrate 1, the absorption loss in the substrate can be reduced, and thus high light receiving sensitivity of signal light can be ensured. Although this embodiment is effective when the element size cannot be increased, crystal defects such as morphology when the semi-insulating layer is epitaxially grown may be a problem.

本願第2の発明の実施例を以下に示す。図4は、本実施例の受光素子断面図であり、端面入射型の受光素子を例示した。また、光フィルタ層は前記NCE層で例示した。 An embodiment of the second invention of the present application will be described below. FIG. 4 is a cross-sectional view of the light receiving element of this embodiment, and illustrates an end face incident type light receiving element. The optical filter layer is exemplified by the NCE layer.

本受光素子は、InP基板1上に、NCE層2、n+型InP第2コンタクト層4、n-型InGaAs受光層5、n-型InP層7が順次形成されたエピウェハを加工して作製される。n-型InP層7のpn接合を作りたい領域だけにZnなどを拡散してp+型InP第1コンタクト層6を形成する。ここでn-型InP層7はp+型のジャンクションエピウェハを使用しても良い。NCE層2は、実施例1と同様のものを使用する。InP基板1裏面を臭素系エッチング液などでエッチングすることでメサ面19を形成する。ここでメサ面19は、エッチング液の種類、形成方法(ドライエッチング、ダイサーでの加工など)の種別を問わず、順テーパーを形成していれば良い。また、受光領域8以外のn-型InP層7を塩酸系エッチング液で除去し、受光層5を硫酸系エッチング液で除去する。ここもエッチング液の種類や形成方法は問わず、第2コンタクト層4上面又はNCE層2上面が露出すれば良い。p電極13は第1コンタクト層6上に形成され、n電極14は第2コンタクト層4上に形成されている。p電極13以外の第1コンタクト層6上面とn-型InP層7上面と端面、受光層5端面にはシリコン窒化膜などの絶縁膜がパシベーション膜15として形成される。また、n電極14以外の第2コンタクト層4上面とInP基板1裏面には、シリコン窒化膜などの絶縁膜(シリコン酸化膜やポリイミド、SOGなどでも可、また、InP基板1裏面と第2コンタクト層4上面とには、異なる種類及び異なる膜厚の絶縁膜を形成しても良い)が形成され、反射膜18として機能する。光の入射面に相当するメサ面19上には、シグナル光である1.55μm用の反射防止膜16が形成される。この反射防止膜16にはシリコン窒化膜などの絶縁膜(シリコン酸化膜など)を形成する。メサ面19の頂点からダイサーや劈開機などでチップ化することで、本受光素子が完成する。 This light receiving element is manufactured by processing an epi-wafer in which an NCE layer 2, an n + type InP second contact layer 4, an n − type InGaAs light receiving layer 5 and an n − type InP layer 7 are sequentially formed on an InP substrate 1. Is done. A p + -type InP first contact layer 6 is formed by diffusing Zn or the like only in a region where the pn junction of the n − -type InP layer 7 is to be formed. Here, the n − -type InP layer 7 may be a p + -type junction epi wafer. The NCE layer 2 is the same as in the first embodiment. The mesa surface 19 is formed by etching the back surface of the InP substrate 1 with a bromine-based etchant or the like. Here, the mesa surface 19 only needs to form a forward taper regardless of the type of etching solution and the type of formation method (dry etching, processing with a dicer, etc.). Further, the n − type InP layer 7 other than the light receiving region 8 is removed with a hydrochloric acid-based etching solution, and the light receiving layer 5 is removed with a sulfuric acid-based etching solution. Again, the type of etching solution and the formation method are not limited, and the upper surface of the second contact layer 4 or the upper surface of the NCE layer 2 may be exposed. The p electrode 13 is formed on the first contact layer 6, and the n electrode 14 is formed on the second contact layer 4. An insulating film such as a silicon nitride film is formed as a passivation film 15 on the upper surface of the first contact layer 6 other than the p electrode 13, the upper surface and the end surface of the n − -type InP layer 7, and the end surface of the light receiving layer 5. Further, an insulating film such as a silicon nitride film (a silicon oxide film, polyimide, SOG, or the like may be used on the upper surface of the second contact layer 4 other than the n-electrode 14 and the back surface of the InP substrate 1, and the back surface of the InP substrate 1 and the second contact. On the upper surface of the layer 4, insulating films having different types and different film thicknesses may be formed, and function as the reflective film 18. On the mesa surface 19 corresponding to the light incident surface, an antireflection film 16 for signal light of 1.55 μm is formed. An insulation film (silicon oxide film or the like) such as a silicon nitride film is formed on the antireflection film 16. The light receiving element is completed by chipping from the apex of the mesa surface 19 with a dicer or a cleavage machine.

本実施例の受光素子底面に対して光が平行に入射する場合、シグナル光である1.55μm光は、メサ面19で屈折して本受光素子内部に入る。本受光素子の場合メサ面19のテーパー角が54°程度になるため、1.55μm光に対するInPの屈折率が3.17程度とすると、メサ面に対する屈折角は10.7°になる。つまり、受光素子底面に対しては25.3°の角度で光が上方に進むことになる。素子内部を進行する光は、NCE層2を透過して第2コンタクト層4と反射膜18の界面にまで到達する。この界面に対する光の入射角は64.7°になる。反射膜18の屈折率が1.9程度とすると、反射膜18の厚みが3618Å以上であれば全反射することになる。全反射した光は、再びNCE層2を透過して素子裏面のInP基板1と反射膜18の界面で全反射して再び上方に進む。三度NCE層2を透過した光は、受光層5にて吸収される。一方、ノイズ光である1.31μm光も同様のプロセスを経るが、三度のNCE層2通過中にほぼ完全に吸収されてしまう。以上より、光フィルタ層透過光による波長選択比劣化を抑えることが可能になる。 When light is incident in parallel to the bottom surface of the light receiving element of this embodiment, 1.55 μm light as signal light is refracted by the mesa surface 19 and enters the inside of the light receiving element. In the case of this light receiving element, the taper angle of the mesa surface 19 is about 54 °. Therefore, when the refractive index of InP with respect to 1.55 μm light is about 3.17, the refraction angle with respect to the mesa surface is 10.7 °. That is, the light travels upward at an angle of 25.3 ° with respect to the bottom surface of the light receiving element. The light traveling inside the element passes through the NCE layer 2 and reaches the interface between the second contact layer 4 and the reflective film 18. The incident angle of light to this interface is 64.7 °. Assuming that the refractive index of the reflective film 18 is about 1.9, total reflection occurs when the thickness of the reflective film 18 is 3618 mm or more. The totally reflected light passes through the NCE layer 2 again, is totally reflected at the interface between the InP substrate 1 and the reflective film 18 on the back surface of the element, and travels upward again. The light transmitted through the NCE layer 2 three times is absorbed by the light receiving layer 5. On the other hand, 1.31 μm light, which is noise light, goes through a similar process, but is almost completely absorbed while passing through the NCE layer 2 three times. As described above, it is possible to suppress deterioration of the wavelength selection ratio due to light transmitted through the optical filter layer.

また、本実施例で受光素子総厚150μmの場合、受光領域8と光フィルタ層第1次通過位置24とが600μm程度と極めて長くなる。1.31μm光起因のノイズキャリアは、光フィルタ層第1次通過位置24近傍のNCE層2で大量に発生するため、受光領域と600μm以上も離れていれば、拡散されて入り込むことは考え難い。よって、本実施例では、拡散ノイズキャリアによる影響も抑えることができるため、低周波域の波長選択比の改善が可能になる。 Further, in this embodiment, when the total thickness of the light receiving element is 150 μm, the light receiving region 8 and the optical filter layer primary passage position 24 are extremely long as about 600 μm. Since a large amount of noise carriers due to 1.31 μm light are generated in the NCE layer 2 in the vicinity of the optical filter layer primary passage position 24, it is difficult to think that it will diffuse and enter if it is more than 600 μm away from the light receiving region. Therefore, in this embodiment, since the influence of the diffuse noise carrier can be suppressed, the wavelength selection ratio in the low frequency region can be improved.

本実施例の場合、光の経路が長くなるため、InP基板1にn+InP基板を使用すると基板での吸収損失が甚大になる。よって、FeドープInP半絶縁性基板を使用する方が良い。Feドープの半絶縁性基板を使用し、受光素子の総厚を150μmとし、NCE層を4μm、受光層を2.5μmとした場合、計算上では1.55μm光の受光感度が0.89A/W、波長選択比が-41.4dBと、極めて良好な数値になる。 In the case of the present embodiment, since the light path becomes long, if an n + InP substrate is used for the InP substrate 1, the absorption loss in the substrate becomes large. Therefore, it is better to use a Fe-doped InP semi-insulating substrate. When a Fe-doped semi-insulating substrate is used, the total thickness of the light receiving element is 150 μm, the NCE layer is 4 μm, and the light receiving layer is 2.5 μm, the calculated light receiving sensitivity of 1.55 μm light is 0.89 A / W, wavelength The selectivity is -41.4dB, which is a very good value.

ちなみに本実施例ではメサ面を受光面として利用した端面入射型を例示したが、図5に示すような表面入射型や裏面入射型、その他の端面入射型でも、光が光フィルタ層を数回通過し、受光位置と光フィルタ層第1次通過位置とが10μm以上離れていれば同様の結果が得られる。また本実施例は、実施例1のエピウェハを使用しても同様の結果が得られる。尚、本実施例の場合、光の入射方法によって素子サイズが大きくなるため、実装上の制約などを考慮する必要がある。 By the way, in this embodiment, the end face incident type using the mesa surface as the light receiving surface is exemplified. However, the light enters the optical filter layer several times in the front side incident type, the back side incident type, and other end face incident types as shown in FIG. The same result can be obtained if the light-receiving position and the optical filter layer primary passage position are separated by 10 μm or more. In this example, the same result can be obtained even when the epi-wafer of Example 1 is used. In the case of the present embodiment, the element size increases depending on the light incident method, so it is necessary to consider mounting restrictions.

本願第3の発明の実施例を以下に示す。図6は、本実施例の受光素子断面図であり、端面入射型の受光素子を例示した。 An embodiment of the third invention of the present application will be described below. FIG. 6 is a cross-sectional view of the light receiving element of this embodiment, and illustrates an end face incident type light receiving element.

本受光素子は、第2の実施例で例示した受光素子の光フィルタ層除去領域23のn+型InP第2コンタクト層4とNCE層2とを臭素系エッチング液などでエッチングすることで除去している。ここで、光フィルタ層除去領域23は、エッチング液の種類や除去方法(ドライエッチング、ダイサー加工など)の種別を問わず、受光領域8と光フィルタ層第1次通過位置24との間のNCE層2を除去していれば良い。 This light receiving element is removed by etching the n + -type InP second contact layer 4 and the NCE layer 2 in the optical filter layer removal region 23 of the light receiving element exemplified in the second embodiment with a bromine-based etchant or the like. ing. Here, the optical filter layer removal region 23 is an NCE between the light receiving region 8 and the optical filter layer primary passage position 24 regardless of the type of etching solution and the type of removal method (dry etching, dicer processing, etc.). The layer 2 may be removed.

本実施例の場合、拡散ノイズキャリアがNCE層2中を拡散して、受光層に入ることを防止することができる。InP基板1にFeドープの半絶縁性基板を採用している場合は、拡散ノイズキャリアの発生元と受光領域とを、電気的に完全に分離することが可能になる。よって、拡散ノイズキャリアによる影響を完全に無視できるため、低周波域の波長選択比劣化はなくなる。但し、光フィルタ層除去分の加工費が第2の発明よりも掛かってしまうため、コストアップは避けられない。 In the case of the present embodiment, it is possible to prevent diffusion noise carriers from diffusing in the NCE layer 2 and entering the light receiving layer. When a Fe-doped semi-insulating substrate is used for the InP substrate 1, it is possible to electrically separate the generation source of the diffuse noise carrier from the light receiving region. Therefore, the influence of the diffuse noise carrier can be completely ignored, and the wavelength selection ratio deterioration in the low frequency region is eliminated. However, since the processing cost for removing the optical filter layer is higher than that of the second invention, an increase in cost is inevitable.

本願第4の発明の実施例を以下に示す。図7は、本実施例の受光素子断面図であり、端面入射型の受光素子を例示した。 An embodiment of the fourth invention of the present application will be described below. FIG. 7 is a cross-sectional view of the light receiving element of this embodiment, and illustrates an end face incident type light receiving element.

図7(a)の受光素子は、第2の実施例で例示した受光素子の反射領域25のn+型InP第2コンタクト層4にZnなどを拡散してp+型にし、pn接合26を形成している。このpn接合26はNCE層2中に形成されても構わない。また、図7(b)のように反射領域25の近傍にpn接合26を形成しても効果は同様である。 In the light receiving element of FIG. 7A, Zn or the like is diffused into the n + -type InP second contact layer 4 in the reflection region 25 of the light-receiving element exemplified in the second embodiment to form a p + -type, and the pn junction 26 is formed. Forming. This pn junction 26 may be formed in the NCE layer 2. Further, even if a pn junction 26 is formed in the vicinity of the reflection region 25 as shown in FIG.

本実施例の場合、光の反射位置又はその近傍にpn接合26を形成することにより、第2コンタクト層4中を拡散して受光層に入り込もうとする拡散ノイズキャリアをトラップして消滅させることが可能になる。よって、拡散ノイズキャリアによる影響を低減できるため、低周波域の波長選択比劣化を抑えられる。但し、拡散工程分のコストアップは避けられない。 In the case of the present embodiment, by forming the pn junction 26 at or near the light reflection position, it is possible to trap and extinguish diffusion noise carriers that diffuse in the second contact layer 4 and enter the light receiving layer. It becomes possible. Therefore, since the influence by the diffusion noise carrier can be reduced, it is possible to suppress deterioration of the wavelength selection ratio in the low frequency range. However, the cost increase for the diffusion process is inevitable.

上記、実施例2、3、4では、NCE層に特化したが、光フィルタ層としてInGaAsP層の単層などを使用しても、発生ノイズキャリアが受光領域まで到達することがほとんど無くなる上に、発光再結合しても受光領域とに距離があるために立体角が小さくなり、受光領域に入り込むノイズ起因の光は微弱になる。結果的に、光フィルタ層にInGaAsP層を採用しても、NCE層と大差のない波長選択比が得られる。 In Examples 2, 3, and 4, the NCE layer has been specialized. However, even if an InGaAsP layer or the like is used as the optical filter layer, the generated noise carrier hardly reaches the light receiving region. Even if the light emission is recombined, the solid angle becomes small due to the distance to the light receiving region, and the light caused by noise entering the light receiving region becomes weak. As a result, even when an InGaAsP layer is employed as the optical filter layer, a wavelength selection ratio that is not significantly different from that of the NCE layer can be obtained.

尚、実施例2、3、4と類似構造の出願も数件見受けられるが、本願では、素子内部にて光を反射させることで実効的な光フィルタ層厚を稼ぐこと、光フィルタ層第一次通過位置と受光領域とを離して発生ノイズキャリアの受光領域到達を妨げることが特徴であり、これを主目的としている出願は見受けられない。これらの特徴は、本願発明者の実験及び試作から図2のノイズ成分の分析が行われたことによって初めて効果が予測できたものであり、本願発案の新規性は高いと言える。 Although there are several applications similar in structure to Examples 2, 3, and 4, in the present application, an effective optical filter layer thickness is obtained by reflecting light inside the device. The feature is that the next passing position and the light receiving area are separated from each other to prevent the generated noise carrier from reaching the light receiving area, and there is no application whose main purpose is this. These characteristics can be predicted for the first time by the analysis of the noise component of FIG. 2 from the experiments and trial manufactures of the present inventor, and it can be said that the inventive idea of the present application is high.

Figure 2005142499
Figure 2005142499

長波長光選択受光素子の試作サンプル断面模式図(背景技術)Cross-sectional schematic diagram of a prototype sample of a long wavelength light selective light receiving element (background technology) 波長選択比の周波数依存性実測値(背景技術)Measured frequency dependence of wavelength selection ratio (background technology) 第1の発明の実施例である裏面入射型受光素子断面図(実施例1)Cross-sectional view of a back-illuminated light receiving element according to an embodiment of the first invention (Example 1) 第2の発明の実施例である端面入射型受光素子断面図(実施例2)Sectional view of an edge-incident type light receiving element according to an embodiment of the second invention (Example 2) 第2の発明の応用例(実施例2)Application example of the second invention (Example 2) 第3の発明の実施例である端面入射型受光素子断面図(実施例3)Sectional view of an end-face incident type light receiving element according to an embodiment of the third invention (Example 3) 第4の発明の実施例である端面入射型受光素子断面図(実施例4)Sectional view of an end face incident type light receiving element according to an embodiment of the fourth invention (Embodiment 4)

符号の説明Explanation of symbols

1:InP基板
2:NCE層
3:FeドープInP半絶縁層
4:n+型InP第2コンタクト層
5:n-型InGaAs受光層
6:p+型InP第1コンタクト層
7:n-型InP層
8:受光領域
9:InGaAsP第1ノイズ光吸収層
10:InGaAsP第2ノイズ光吸収層
11:InGaAsノイズキャリア消滅層
12:InP拡散ノイズキャリア障壁層
13:p電極
14:n電極
15:パシベーション膜
16:反射防止膜
17:InGaAsP光フィルタ層
18:反射膜
19:メサ面
20:光 (シグナル光、ノイズ光)
21:低周波成分
22:高周波成分
23:光フィルタ層除去領域
24:光フィルタ層第1次通過位置
25:反射領域
26:pn接合

1: InP substrate 2: NCE layer 3: Fe-doped InP semi-insulating layer 4: n + type InP second contact layer 5: n− type InGaAs light receiving layer 6: p + type InP first contact layer 7: n− type InP Layer 8: Light receiving region 9: InGaAsP first noise light absorption layer 10: InGaAsP second noise light absorption layer 11: InGaAs noise carrier extinction layer 12: InP diffusion noise carrier barrier layer 13: p electrode 14: n electrode 15: passivation film 16: Antireflection film 17: InGaAsP optical filter layer 18: Reflective film 19: Mesa surface 20: Light (signal light, noise light)
21: Low frequency component 22: High frequency component 23: Optical filter layer removal region 24: Optical filter layer primary passage position 25: Reflection region 26: pn junction

Claims (5)

第1光(短波長)と第2光(長波長)とが入射する場合において、光の進行方向に対して光フィルタ層と受光層を形成し、前記光フィルタ層にはバンドギャップ波長が前記第1光の波長と前記第2光の波長の間にある第1半導体層と、前記第1半導体層よりもバンドギャップ波長が長い第2半導体層と、前記第2光の波長よりもバンドギャップ波長が長い第3半導体層とが含まれており、前記受光層は前記第3半導体層よりもバンドギャップ波長が短い第4半導体層から成り、前記光フィルタ層と前記受光層との間に絶縁又は半絶縁層を形成して前記光フィルタ層と前記受光層とを電気的に分離させ、前記第1光を前記光フィルタ層で吸収し、前記第3半導体層において発光再結合させて前記受光層で受光しない光に変換し、変換しきれなかったノイズキャリアが拡散して前記受光層に入り込むことを前記絶縁又は半絶縁層によって防止し、前記光フィルタ層を透過した前記第2光のみを前記受光層において選択的に受光することを特徴とする半導体受光素子。 In the case where the first light (short wavelength) and the second light (long wavelength) are incident, an optical filter layer and a light receiving layer are formed in the traveling direction of the light, and the band gap wavelength is set in the optical filter layer. A first semiconductor layer located between the wavelength of the first light and the wavelength of the second light; a second semiconductor layer having a band gap wavelength longer than that of the first semiconductor layer; and a band gap greater than the wavelength of the second light. A third semiconductor layer having a longer wavelength, and the light receiving layer is formed of a fourth semiconductor layer having a shorter band gap wavelength than the third semiconductor layer, and is insulated between the optical filter layer and the light receiving layer. Alternatively, a semi-insulating layer is formed to electrically separate the optical filter layer and the light receiving layer, the first light is absorbed by the optical filter layer, and light is recombined in the third semiconductor layer to receive the light. The light is not received by the layer and cannot be converted The noise carrier is prevented from diffusing and entering the light receiving layer by the insulating or semi-insulating layer, and only the second light transmitted through the optical filter layer is selectively received by the light receiving layer. Semiconductor light receiving element. 第1光(短波長)と第2光(長波長)とが入射する場合において、第1光を吸収する光フィルタ層を持つ半導体受光素子において、素子内部にて光を反射させて前記光フィルタ層を複数回通過させることによって見掛け上の前記光フィルタ層厚をかせぎ、且つ、前記光フィルタ層の第1次通過位置が受光領域から離れることによって、前記光フィルタ層で発生したノイズキャリアが拡散して受光領域に到達するのを防ぐことを特徴とする半導体受光素子。 When the first light (short wavelength) and the second light (long wavelength) are incident, in the semiconductor light-receiving element having an optical filter layer that absorbs the first light, the light filter reflects the light inside the element. The apparent thickness of the optical filter layer is increased by passing through the layer a plurality of times, and the primary passing position of the optical filter layer is separated from the light receiving region, so that noise carriers generated in the optical filter layer are diffused. A semiconductor light receiving element that prevents the light from reaching the light receiving region. 前記光フィルタ層の第1次通過位置と前記受光領域との間の光フィルタ層を除去することにより、光フィルタ層内を伝播するノイズキャリアを防ぐことを特徴とする請求項2記載の半導体受光素子。 3. The semiconductor light receiving device according to claim 2, wherein noise carriers propagating in the optical filter layer are prevented by removing the optical filter layer between a primary passage position of the optical filter layer and the light receiving region. element. 光の反射位置又はその近傍にpn接合を形成することにより、ノイズキャリアを前記pn接合で消滅させることを特徴とする請求項2記載の半導体受光素子。 3. The semiconductor light receiving element according to claim 2, wherein a noise carrier is eliminated at the pn junction by forming a pn junction at or near the light reflection position. 前記光フィルタ層に、第1光を吸収して発生したノイズキャリアを受光層では吸収されない波長の光に変換して消滅させる請求項1記載の半導体多層構造の光フィルタ層を採用することを特徴とした請求項2、3、4記載の半導体受光素子。
The optical filter layer having a semiconductor multilayer structure according to claim 1, wherein noise carriers generated by absorbing the first light are converted into light having a wavelength that is not absorbed by the light receiving layer and disappears in the optical filter layer. The semiconductor light receiving element according to claim 2, 3, or 4.
JP2003380033A 2003-11-10 2003-11-10 Semiconductor light-receiving element Withdrawn JP2005142499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380033A JP2005142499A (en) 2003-11-10 2003-11-10 Semiconductor light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380033A JP2005142499A (en) 2003-11-10 2003-11-10 Semiconductor light-receiving element

Publications (1)

Publication Number Publication Date
JP2005142499A true JP2005142499A (en) 2005-06-02

Family

ID=34689898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380033A Withdrawn JP2005142499A (en) 2003-11-10 2003-11-10 Semiconductor light-receiving element

Country Status (1)

Country Link
JP (1) JP2005142499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640944B2 (en) 2015-09-08 2017-05-02 Fuji Xerox Co., Ltd. Method of manufacturing optical semiconductor element
JP2018190798A (en) * 2017-04-28 2018-11-29 住友電気工業株式会社 Infrared sensing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640944B2 (en) 2015-09-08 2017-05-02 Fuji Xerox Co., Ltd. Method of manufacturing optical semiconductor element
JP2018190798A (en) * 2017-04-28 2018-11-29 住友電気工業株式会社 Infrared sensing semiconductor device

Similar Documents

Publication Publication Date Title
JP4609430B2 (en) Avalanche photodiode
US6885075B2 (en) Photodiode
KR102500932B1 (en) Germanium photodetector embedded in a multi-mode interferometer
KR101777225B1 (en) Avalanche photo diode and manufacturing method of the same
JP2007227546A (en) Photodetector
JP2005251890A (en) Top-illuminated light-receiving element array
JP2006066488A (en) Semiconductor light receiving element and manufacturing method thereof
US6909083B2 (en) Photodetector and unit mounted with photodetector
US20220271182A1 (en) Backside illuminated avalanche photodiode and manufacturing method thereof
US8519501B2 (en) Semiconductor light detecting element with grooved substrate
KR20110068041A (en) Avalanche Photo Detector with Integrated Micro Lens
KR100464333B1 (en) Photo detector and method for fabricating thereof
JP5228922B2 (en) Semiconductor photo detector
KR100698829B1 (en) Optical receiver manufacturing method
JP4985298B2 (en) Avalanche photodiode
JP2005142499A (en) Semiconductor light-receiving element
JP2000150923A (en) Back-thinned type light receiving device and method of manufacturing the same
JP3386011B2 (en) Semiconductor light receiving element
US6693311B2 (en) Wavelength selective detector
JP3046970B1 (en) Semiconductor light receiving element
JPH0272679A (en) Semiconductor photodetector having optical waveguide
JP2004241746A (en) High-speed light receiving element and method of manufacturing the same
JP2005340504A (en) Manufacturing method of semiconductor device
JP2006269978A (en) Photodiode
JP2005327810A (en) Forward mesa photodetector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206