JP2005139016A - Method for producing joined member, and micro chemical chip obtained by using the same - Google Patents
Method for producing joined member, and micro chemical chip obtained by using the same Download PDFInfo
- Publication number
- JP2005139016A JP2005139016A JP2003375476A JP2003375476A JP2005139016A JP 2005139016 A JP2005139016 A JP 2005139016A JP 2003375476 A JP2003375476 A JP 2003375476A JP 2003375476 A JP2003375476 A JP 2003375476A JP 2005139016 A JP2005139016 A JP 2005139016A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- joining
- bonded
- bonding
- glass plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000126 substance Substances 0.000 title abstract description 10
- 239000011521 glass Substances 0.000 claims abstract description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000005304 joining Methods 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- -1 silicon alkoxide compound Chemical class 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 9
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract 2
- 230000004927 fusion Effects 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 description 22
- 230000001070 adhesive effect Effects 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 15
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000007507 annealing of glass Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
本発明は、複数の部材を接着により接合した接合部材の製造方法に関し、この方法により得られるマイクロ化学チップに関する。 The present invention relates to a method for manufacturing a bonded member in which a plurality of members are bonded together, and relates to a microchemical chip obtained by this method.
近年、抗体解析や化学反応場の極小化の目的で、微小空間および流路を有する化学反応用チップが盛んに用いられており、そのようなマイクロ化学チップを製造するのにガラス基板同士を貼り合わせる技術が必須となっている。従来より、ガラス基板同士を接合するのに、ガラス基板を徐冷点以上に加熱する融着法や、フッ化水素酸を用いる方法、アルカリ溶液を用いる方法、有機系接着剤を用いる方法などが知られている。 In recent years, for the purpose of antibody analysis and minimization of chemical reaction fields, chemical reaction chips having minute spaces and channels have been actively used, and glass substrates are bonded together to manufacture such microchemical chips. Matching technology is essential. Conventionally, for bonding glass substrates to each other, there are a fusion method in which the glass substrates are heated to an annealing point or higher, a method using hydrofluoric acid, a method using an alkaline solution, a method using an organic adhesive, and the like. Are known.
たとえば、特開2003−215140号公報(特許文献1)および特開2003−175330号公報(特許文献2)には、2枚のガラス板を加熱し接合面のガラスを熱融着することによりマイクロ化学チップを製造する方法が開示されている。また、特開2003−54971号公報(特許文献3)には、石英ガラス部品の研磨された接合面を水で濡らし、接合面同士を圧力を加えた状態で密着させて加熱することにより、光学部品として用いる石英ガラス接合部材の製造方法が開示されている。 For example, in Japanese Patent Application Laid-Open No. 2003-215140 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-175330 (Patent Document 2), two glass plates are heated and the glass on the bonding surface is thermally fused. A method of manufacturing a chemical chip is disclosed. JP 2003-54971 A (Patent Document 3) discloses a method in which a bonded surface of a quartz glass component is wetted with water, and the bonded surfaces are brought into close contact with each other under pressure and heated. A method for manufacturing a quartz glass bonding member used as a component is disclosed.
また、複数のガラスレンズを貼り合わせた密着型色消しレンズで知られる光学レンズ体は、レンズの接着貼り合わせは、特開2003−139913号公報(特許文献4)に記載されているように、レンズとレンズを接合する接着剤として透明性に優れたシリコーン樹脂が用いられる。 Further, in an optical lens body known as a contact-type achromatic lens in which a plurality of glass lenses are bonded together, as described in JP-A-2003-139913 (Patent Document 4), the bonding adhesion of lenses is described as follows. A silicone resin having excellent transparency is used as an adhesive for joining the lenses.
熱融着法によるガラス部材の接合は、ガラス部材をガラス徐冷点以上に加熱することが必須となるため、ガラス部材表面に凹凸が生じてしまい、化学反応の検出のために用いる検出光が表面の凹凸のために散乱してしまうという問題があった。 In the joining of glass members by the heat fusion method, it is essential to heat the glass member to a glass annealing point or higher, so that the surface of the glass member is uneven, and the detection light used for detecting the chemical reaction is There was a problem of scattering due to surface irregularities.
フッ化水素酸を用いてガラス部材を接合する方法は、フッ化水素酸という危険な試薬を用いるため、それ相応の設備が必要であり簡便な方法と言いがたい。また、ガラス部材が多成分系ガラスである場合、フッ化水素酸のガラス成分に対する反応性の違いから表面に凹凸が生じ、その結果ガラスの接合面にヘイズ(目で見て曇り状に見える欠点)が生じて、光熱変換分析などの化学分析などを行うマイクロ化学チップの製造方法としては適したものと言えない。 The method of joining glass members using hydrofluoric acid uses a dangerous reagent called hydrofluoric acid, and therefore requires a corresponding equipment and is not a simple method. In addition, when the glass member is a multi-component glass, irregularities are generated on the surface due to the difference in reactivity of hydrofluoric acid to the glass component, and as a result, the glass has a haze (visible defect that appears cloudy). ) Is not suitable as a method for producing a microchemical chip for performing chemical analysis such as photothermal conversion analysis.
アルカリ溶液を用いてガラス部材を接合する方法は、ガラスが多成分系ガラスである場合、アルカリ薬剤のガラス成分に対する反応性の違いから、接合面に凹凸が生じてしまい、その結果接合面にヘイズが生じやすい。このためアルカリ溶液を用いた接合は、化学反応用のマイクロ化学チップの製造には適さない。 The method of bonding glass members using an alkaline solution is that when the glass is a multi-component glass, unevenness occurs in the bonding surface due to the difference in reactivity of the alkali chemicals to the glass component, resulting in haze on the bonding surface. Is likely to occur. For this reason, joining using an alkaline solution is not suitable for manufacturing a microchemical chip for chemical reaction.
シリコーン樹脂などの有機系接着剤を接合面に塗布して接合する方法は、マイクロ化学チップの流路内に接着剤が侵入するのを防止することが難しく、反応試薬等が導入される流路を清浄にすることが難しい。 The method of applying and bonding an organic adhesive such as silicone resin to the bonding surface is difficult to prevent the adhesive from entering the flow path of the microchemical chip, and the flow path into which the reaction reagent is introduced It is difficult to clean.
本発明は、上記の従来技術が有する技術的課題を解決することを目的としてなされたものであって、本発明の第1の目的は、二酸化珪素を主成分とする部材を低温度で接着接合する方法を提供することであり、第2の目的は、接着剤などの不要な物質が流路に侵入しないマイクロ化学チップを提供することである。 The present invention has been made for the purpose of solving the technical problems of the above-described prior art, and the first object of the present invention is to bond and bond a member mainly composed of silicon dioxide at a low temperature. A second object is to provide a microchemical chip in which unnecessary substances such as adhesives do not enter the flow path.
本発明は、より低温(ガラス徐冷点以下)でかつ化学反応に影響を及ぼさない簡便なガラス基板同士の接合法を研究する過程で得られたものであり、部材の主成分である二酸化珪素と同種の金属成分を含有するシリコンアルコキシド溶液を接合面に介在させることが、接合面の密着強度を改善するのに有用であることを見出したことによりなされたものである。 The present invention was obtained in the course of studying a simple bonding method between glass substrates at a lower temperature (below the glass annealing point) and that does not affect the chemical reaction, and is a main component of silicon dioxide. The present inventors have found that interposing a silicon alkoxide solution containing the same kind of metal component in the joint surface is useful for improving the adhesion strength of the joint surface.
本発明の接合部材の製造方法は、接合面の主成分が二酸化珪素である部材同士が接合された接合部材の製造方法であって、前記接合面の接着にシリコンアルコキシド化合物の溶液を用いることを特徴とする。 The method for manufacturing a bonded member of the present invention is a method for manufacturing a bonded member in which members whose main components are silicon dioxide are bonded to each other, and a solution of a silicon alkoxide compound is used for bonding the bonded surfaces. Features.
主成分が二酸化珪素である部材とは、ガラス、セラミックスが挙げられる。ガラスとしては、ソーダライムシリカガラス、アルミノ珪酸ガラス、アルミノ硼珪酸ガラス、無アルカリガラスなどの二酸化珪素(シリカ成分)を主成分とするガラスが挙げられる。 Examples of the member whose main component is silicon dioxide include glass and ceramics. Examples of the glass include soda lime silica glass, aluminosilicate glass, aluminoborosilicate glass, and glass mainly composed of silicon dioxide (silica component) such as alkali-free glass.
シリコンアルコキシド溶液を接合面に介在させることにより密着強度が向上する詳細なメカニズムは明らかではないが、接合面にシリコンアルコキシド溶液が介在することによって、部材表面の水酸基とシリコンアルコキシド溶液が結合し、部材同士が強固に接着するものと考えられる。 Although the detailed mechanism for improving the adhesion strength by interposing the silicon alkoxide solution on the joint surface is not clear, the silicon alkoxide solution intervenes on the joint surface, so that the hydroxyl group on the member surface and the silicon alkoxide solution are bonded to each other. It is thought that the two adhere firmly.
接合面に介在するシリコンアルコキシド溶液の厚みは特に限定されるものではないが、必要以上に厚いと反応が進みにくくなり、また機械的強度が保たれなくなるので好ましくない。シリコンアルコキシドは加水分解反応により部材の二酸化珪素成分との結合が進むことにより有機成分が減少し、二酸化珪素成分を含有するガラスに近づいていく。このためマイクロ化学チップにおいては、マイクロ化学チップの流路内の化学反応場にたとえ接着剤が接していても、化学反応を阻害する危険性が無い。 The thickness of the silicon alkoxide solution present on the bonding surface is not particularly limited. However, if it is thicker than necessary, the reaction is difficult to proceed and the mechanical strength cannot be maintained. The silicon alkoxide is reduced in the organic component by the bonding with the silicon dioxide component of the member by the hydrolysis reaction, and approaches the glass containing the silicon dioxide component. For this reason, in the microchemical chip, there is no risk of inhibiting the chemical reaction even if the adhesive is in contact with the chemical reaction field in the flow path of the microchemical chip.
本発明の接着剤として用いるシリコンアルコキシド化合物は、一般式Si(OCmH2m+1)4で表され、mの値が1から3のいずれかの整数であることを特徴とする。mが4以上のアルコキシドやアルコキシル基の一部をアルキル基に置換した有機シリコン化合物は、化合物を構成する炭素が接合面に残存し、接着強度の低下ならびに接合面での光透過率の低下を招くことがあるので好ましくない。 The silicon alkoxide compound used as the adhesive of the present invention is represented by the general formula Si (OC m H 2m + 1 ) 4 , and the value of m is any integer from 1 to 3. Organosilicon compounds in which m is 4 or more alkoxides or alkoxyl groups partially substituted with alkyl groups, carbon constituting the compound remains on the bonding surface, resulting in a decrease in adhesive strength and a decrease in light transmittance at the bonding surface. Since it may invite, it is not preferable.
本発明において、部材の接合を加熱して行うのがよい。接合時に部材を加熱することにより、より大きい接着強度を得ることが出来る。接合する部材がガラスである場合、ガラス徐冷点以上に加熱することは、部材表面に凹凸を生じさせてしまうので、それ以下の温度で接合を行う。また、接合時に部材同士を外力を加えて押し付けるようにすることは、接着強度をより大きくする上でよい。 In the present invention, the joining of the members is preferably performed by heating. By heating the members at the time of joining, a larger adhesive strength can be obtained. When the member to be joined is glass, heating to the glass annealing point or higher causes unevenness on the surface of the member, so that the joining is performed at a temperature lower than that. Moreover, it is sufficient to increase the adhesive strength to press the members by applying an external force at the time of joining.
本発明のマイクロ化学チップは、主表面に溝が形成されたガラス板と他方のガラス板とが、該溝と他方のガラス板に囲まれた流路を形成するように接合接着されたマイクロ化学チップであって、接合面がシリコンアルコキシド化合物の加水分解生成物により接着されていることを特徴とする。 The microchemical chip of the present invention is a microchemical chip in which a glass plate having a groove formed on the main surface and the other glass plate are bonded and bonded so as to form a channel surrounded by the groove and the other glass plate. It is a chip | tip, Comprising: The joining surface is adhere | attached with the hydrolysis product of the silicon alkoxide compound, It is characterized by the above-mentioned.
本発明の接合部材の製造方法によれば、部材同士を低温で接合接着ができる。とりわけガラス部材である場合、ガラス転移点以下の低温度で接合接着することができ、これによりガラス部材の表面平坦性を損なうことなく接合できる。またフッ化水素酸のような危険な試薬を用いることなく接合できるので、環境、安全衛生上よい。 According to the method for manufacturing a joining member of the present invention, the members can be joined and bonded at a low temperature. In particular, in the case of a glass member, it can be bonded and bonded at a low temperature below the glass transition point, and thus can be bonded without impairing the surface flatness of the glass member. In addition, since it can be joined without using a dangerous reagent such as hydrofluoric acid, it is good for the environment and safety and health.
本発明のガラス部材を接合して得られる流路付きマイクロ化学チップは、流路への有機接着剤の侵入がないので、化学反応操作に支障をきたさない。また、低温度で接着が可能であるため、ガラス表面や界面での凹凸がなく、これにより光の散乱が発生しないので、正確な化学分析や化学反応操作ができる。 The microchemical chip with a flow path obtained by joining the glass members of the present invention does not impede the chemical reaction operation because the organic adhesive does not enter the flow path. In addition, since bonding is possible at a low temperature, there is no unevenness on the glass surface or interface, and no light scattering occurs, so that accurate chemical analysis and chemical reaction operation can be performed.
以下に本発明を図面と実施例で説明する。図1は、本発明のマイクロ化学チップ1の一実施例を説明するための図で、図1(a)は斜視図、図1(b)は図1(a)のAA断面図である。マイクロ化学チップ1は、一方の主表面に溝5が設けられたガラス板3とガラス板3と同寸法の他方のガラス板2が、溝5(マイクロ化学チップの流路となる)がガラス板2に向かうように配置され接合面6で接着されている。ガラス板2とガラス板3とは、その主表面でシリコンアルコキシドたとえばシリコンアルコキシドのアルコール溶液が滴下により塗布され貼り合わされる。必要によりガラスに変形が生じない温度に加熱して接着をより強固にする。さらに、ガラス板2の上から加重をかけることにより接着をより確実にしてもよい。
The present invention will be described below with reference to the drawings and examples. 1A and 1B are diagrams for explaining one embodiment of a
ガラスの寸法は20mm×40mm程度であり、厚みは0.5〜1mm程度である。溝は、深さ約0.3mm、幅約0.3mmの断面矩形または断面かまぼこ状であり、フォトレジストマスキング材とガラスのエッチング剤であるフッ酸を用いる湿式エッチング法や、微粒砥石を吹き付けるサンドブラスト法などにより形成される。 The dimension of glass is about 20 mm x 40 mm, and the thickness is about 0.5 to 1 mm. The groove has a rectangular or cross-sectional shape with a depth of about 0.3 mm and a width of about 0.3 mm, a wet etching method using a photoresist masking material and a hydrofluoric acid that is an etching agent for glass, and a sandblast for spraying a fine grinding stone. It is formed by the law etc.
溝10はガラス板上面から見ると2本の分岐部と1本の合流部とからなるY字パターンをしている。分岐部のそれぞれに2種の試料溶液がガラス板2に設けられた注入口(図示されない)から注入され、合流部で混合されて化学反応操作が実施される。
When viewed from the upper surface of the glass plate, the groove 10 has a Y-shaped pattern composed of two branch portions and one junction portion. Two kinds of sample solutions are injected into each of the branch portions from an injection port (not shown) provided in the
図2は、本発明のマイクロ化学チップの他の実施態様であり、あらかじめ貫通溝5が設けられたガラス板4が、ガラス板2,3により挟まれて接合接着されている。ガラスの接合面6に塗布されたシリコンアルコキシド化合物は、加水分解縮合過程で、溝5内に流れ込むことがないので、溝5により形成される流路の内壁を汚染することがない。
FIG. 2 shows another embodiment of the microchemical chip of the present invention, in which a glass plate 4 provided with a
実施例1〜実施例10
ガラス板として市販のソーダライムシリカガラス(徐冷点約550℃)のスライドガラスを用い、十分に洗浄した後、接合面にテトラエトキシシランSi(OC2H5)4を滴下して2枚のスライドガラスを重ね合わせた。その後重ね合わせたスライドガラスを水平に置き、放置温度とその上に載せる重りの重さ、および放置時間をそれぞれ表1に示す通りに変化させてマイクロ化学チップのサンプルを得た。
Examples 1 to 10
A commercially available soda lime silica glass (annealing point of about 550 ° C.) slide glass was used as the glass plate, and after thoroughly washed, tetraethoxysilane Si (OC 2 H 5 ) 4 was dropped onto the joint surface to prepare two sheets. The slide glass was overlapped. Thereafter, the superposed slide glass was placed horizontally, and the sample temperature was changed as shown in Table 1 to change the standing temperature, the weight of the weight placed thereon, and the standing time.
貼り合わせたガラス板の接着強度を官能評価で評価したところ表1の結果となり、後述する比較例1と比べて格段に接着強度が向上した。 When the adhesive strength of the bonded glass plate was evaluated by sensory evaluation, the results shown in Table 1 were obtained, and the adhesive strength was significantly improved as compared with Comparative Example 1 described later.
実施例11〜実施例14
接合面に表1に示したシリコンアルコキシドを滴下して塗布した以外は、実施例1と同様の接合処理を行い、サンプルを得た。接着強度を官能評価で評価したところ表1の結果となり、比較例1と比べて格段に接着強度が向上した。実施例13と14では、後で述べる比較例1と比べて接着強度は向上したが、加熱時に生じたと思われる炭素化合物起因と考えられる薄い褐色の着色が接合面に見られた。これは化学反応用チップに用いた場合検出光のロスにつながることが予想された。
Example 11 to Example 14
A sample was obtained by performing the same bonding treatment as in Example 1 except that the silicon alkoxide shown in Table 1 was dropped and applied to the bonding surface. When the adhesive strength was evaluated by sensory evaluation, the results shown in Table 1 were obtained, and the adhesive strength was significantly improved as compared with Comparative Example 1. In Examples 13 and 14, although the adhesive strength was improved as compared with Comparative Example 1 described later, a light brown color attributed to the carbon compound that was considered to have occurred during heating was observed on the joint surface. This was expected to lead to loss of detection light when used for a chemical reaction chip.
実施例15
ガラス板としてホウケイ酸ガラス(ガラス徐冷点560℃)を用いた以外は、実施例1と同様の接合処理を行いサンプルを得た。その結果実施例1と同等の接着強度を得ることが出来た。
Example 15
A sample was obtained by performing the same bonding treatment as in Example 1 except that borosilicate glass (glass annealing point 560 ° C.) was used as the glass plate. As a result, an adhesive strength equivalent to that of Example 1 could be obtained.
比較例1
接合面に純水を滴下した以外は、実施例1と同様の処理を行いサンプルを得た。その後接着強度を評価しようとしたが全く接着していなかった。
Comparative Example 1
A sample was obtained by performing the same treatment as in Example 1 except that pure water was dropped on the joint surface. Thereafter, an attempt was made to evaluate the adhesive strength, but no adhesion was found.
比較例2
接合面には何も滴下せず、接着強度を向上させるために、放置温度を電気炉内で500℃とした以外は、実施例1と同様の処理を行いサンプルを得た。ガラス板は全く接着していなかった。
Comparative Example 2
A sample was obtained by performing the same treatment as in Example 1 except that nothing was dropped on the joint surface and the standing temperature was 500 ° C. in an electric furnace in order to improve the adhesive strength. The glass plate was not bonded at all.
比較例3
接合面には何も滴下せず、接着強度を向上させるために放置温度を600℃とした以外は、実施例1と同様の処理を行いサンプルを得た。接着強度は向上していたが、表面凹凸の発生によるヘイズがガラス面に多数発生しており、化学分析や反応操作を行うマイクロ化学チップとして使えるものではなかった。
Comparative Example 3
A sample was obtained by performing the same treatment as in Example 1 except that nothing was dropped on the joint surface and the standing temperature was 600 ° C. in order to improve the adhesive strength. Although the adhesive strength was improved, a lot of haze was generated on the glass surface due to surface irregularities, and it could not be used as a microchemical chip for chemical analysis and reaction operation.
比較例4
接合面に市販のフッ化水素酸溶液(47%)を滴下した以外は、実施例1と同様の処理を行いサンプルを得た。接着強度は向上していたが、界面での凹凸の発生によるヘイズが発生しており、マイクロ化学チップに使えるものでなかった。
Comparative Example 4
A sample was obtained by performing the same treatment as in Example 1 except that a commercially available hydrofluoric acid solution (47%) was dropped onto the joint surface. Although the adhesive strength was improved, haze was generated due to unevenness at the interface, which was not usable for a microchemical chip.
ガラス板を貼り合わせて微小流路を備えるマイクロ化学チップの製造に用いられる。 It is used for the production of a microchemical chip having a microchannel by bonding glass plates.
1:マイクロ化学チップ
2、3、4:ガラス板
5:溝(流路)
6:接合面
1:
6: Joint surface
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003375476A JP2005139016A (en) | 2003-11-05 | 2003-11-05 | Method for producing joined member, and micro chemical chip obtained by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003375476A JP2005139016A (en) | 2003-11-05 | 2003-11-05 | Method for producing joined member, and micro chemical chip obtained by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005139016A true JP2005139016A (en) | 2005-06-02 |
Family
ID=34686837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003375476A Pending JP2005139016A (en) | 2003-11-05 | 2003-11-05 | Method for producing joined member, and micro chemical chip obtained by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005139016A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118692A1 (en) * | 2010-03-24 | 2011-09-29 | 日本電気硝子株式会社 | Manufacturing method for glass plate laminated body, glass plate bonding method, and glass plate laminated body manufactured using the manufacturing method |
JP2013022534A (en) * | 2011-07-22 | 2013-02-04 | Ulvac Seimaku Kk | Microchannel substrate and method of manufacturing the same |
US8840850B2 (en) | 2009-01-15 | 2014-09-23 | Panasonic Corporation | Flow channel structure and method of manufacturing same |
JP2020158358A (en) * | 2019-03-27 | 2020-10-01 | 株式会社Nsc | Glass structure and production method of the same |
WO2021063897A1 (en) * | 2019-09-30 | 2021-04-08 | Schott Ag | Device and method for producing a device |
-
2003
- 2003-11-05 JP JP2003375476A patent/JP2005139016A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8840850B2 (en) | 2009-01-15 | 2014-09-23 | Panasonic Corporation | Flow channel structure and method of manufacturing same |
WO2011118692A1 (en) * | 2010-03-24 | 2011-09-29 | 日本電気硝子株式会社 | Manufacturing method for glass plate laminated body, glass plate bonding method, and glass plate laminated body manufactured using the manufacturing method |
JP2013022534A (en) * | 2011-07-22 | 2013-02-04 | Ulvac Seimaku Kk | Microchannel substrate and method of manufacturing the same |
JP2020158358A (en) * | 2019-03-27 | 2020-10-01 | 株式会社Nsc | Glass structure and production method of the same |
JP7264449B2 (en) | 2019-03-27 | 2023-04-25 | 株式会社Nsc | Glass structure and manufacturing method thereof |
WO2021063897A1 (en) * | 2019-09-30 | 2021-04-08 | Schott Ag | Device and method for producing a device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210855809U (en) | Glass-based articles and consumer electronics products including the same | |
TWI737690B (en) | Sealed devices comprising transparent laser weld regions | |
JP6487844B2 (en) | Laminated glass article having a ceramic phase and method for producing the article | |
AU2018274837A9 (en) | Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding | |
US8266924B2 (en) | Process of making low loss visible-IR transmitting glass-ceramic spinel composites | |
JP5733600B2 (en) | Device sealing body manufacturing method and element sealing body | |
US10580666B2 (en) | Carrier substrates for semiconductor processing | |
TW201734503A (en) | Sealing element comprising a UV absorbing film | |
JP2005139016A (en) | Method for producing joined member, and micro chemical chip obtained by using the same | |
CN207012988U (en) | A kind of micro-fluidic chip | |
JP6531749B2 (en) | Method of bonding substrates, microchip and method of manufacturing the same | |
WO2017006801A1 (en) | Carrier substrate, laminate, and method for manufacturing electronic device | |
CN106715361A (en) | Wringing together of ceramics | |
JP5505857B2 (en) | Element sealing body manufacturing method, element sealing method, and element sealing body | |
CN105236350B (en) | A kind of wafer level Direct Bonding method of sapphire pressure sensitive chip | |
JP2021533074A (en) | Carrier for manufacturing microelectronic products | |
JP2007041117A (en) | Laminated optical element and manufacturing method thereof | |
JP2010037162A (en) | Method for manufacturing joining member | |
JP2011020905A (en) | Method for manufacturing bonded member | |
JP2005522400A5 (en) | ||
TW202400541A (en) | Glass product manufacturing method, glass product and laminated body | |
TW201901866A (en) | Method for manufacturing hermetic package and hermetic package | |
JP2006225197A (en) | Method of manufacturing micro-chemical chip | |
JP7228131B2 (en) | Diaphragm structure, diaphragm device, method for manufacturing diaphragm structure, and glass structure | |
US20200006068A1 (en) | Glass-based article with engineered stress distribution and method of making same |