JP2005127614A - Adsorption type refrigerating machine and its operating method - Google Patents
Adsorption type refrigerating machine and its operating method Download PDFInfo
- Publication number
- JP2005127614A JP2005127614A JP2003363618A JP2003363618A JP2005127614A JP 2005127614 A JP2005127614 A JP 2005127614A JP 2003363618 A JP2003363618 A JP 2003363618A JP 2003363618 A JP2003363618 A JP 2003363618A JP 2005127614 A JP2005127614 A JP 2005127614A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- adsorbent
- adsorber
- refrigerant
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 158
- 238000011017 operating method Methods 0.000 title 1
- 239000003463 adsorbent Substances 0.000 claims abstract description 112
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000001816 cooling Methods 0.000 claims abstract description 26
- 239000003507 refrigerant Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000001704 evaporation Methods 0.000 claims abstract description 4
- 238000005057 refrigeration Methods 0.000 claims description 19
- 238000003795 desorption Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000000498 cooling water Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 8
- 230000008929 regeneration Effects 0.000 abstract description 11
- 238000011069 regeneration method Methods 0.000 abstract description 11
- 238000009833 condensation Methods 0.000 abstract description 5
- 230000005494 condensation Effects 0.000 abstract description 5
- 230000001172 regenerating effect Effects 0.000 abstract description 2
- 238000007710 freezing Methods 0.000 abstract 1
- 230000008014 freezing Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000000741 silica gel Substances 0.000 description 22
- 229910002027 silica gel Inorganic materials 0.000 description 22
- 238000004378 air conditioning Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
この発明は、圧力スイング法により冷凍能力を高めた吸着式冷凍機とその運転方法、およびこの吸着式冷凍機に使用する吸着材に関する。 The present invention relates to an adsorption refrigeration machine having an increased refrigeration capacity by a pressure swing method, an operation method thereof, and an adsorbent used for the adsorption refrigeration machine.
吸着式ヒートポンプは、シリカゲルや活性炭などの固体吸着材への、水やアルコールなどの作動媒体(冷媒)の吸着および脱着現象に付随して起こる相変化を利用して、熱の汲み上げを行なう装置である。図1は、この吸着式ヒートポンプを吸着式冷凍機として使用する例を示したもので、冷媒を蒸発させる蒸発器1と、シリカゲルなどの固体の吸着材を充填した2つの吸着器、即ち吸着塔2、3と、凝縮器4とを備え、これらの装置系内は減圧密閉され、前記吸着塔2、3は、冷媒蒸気、即ち、水を冷媒に用いた場合の水蒸気を吸着する吸着塔と、吸着した水分(水蒸気)を脱着する再生器、即ち再生塔とに一定運転時間毎に交互に切り替えて使用される。いま、図1に示したように、吸着塔2が吸着器として使用され、吸着塔3が再生器として使用されている場合、即ち、バルブV1、V4、V5、V6、V11、V12が開状態で、塗りつぶしたバルブV2、V3、V7、V8、V9、V10が閉状態の場合、再生器側の吸着塔3の熱交換器5内を流れる、例えば、55〜75℃程度の温水がシリカゲルなどの固体の吸着材を加熱して前に吸着されていた水分を脱着する。この脱着水蒸気がバルブV4を介して、冷却塔6によって例えば、30〜37℃程度に冷却された冷却水が通過する熱交換用パイプを備えた凝縮器4に移動する。そして、凝縮器4内の前記熱交換用パイプにより冷却されて凝縮し、凝縮水は冷却塔6で冷却され、図示を省略した凝縮水配管を介して蒸発器1に移動する。この蒸発器の水は、蒸発器1中の冷水が通過する熱交換用パイプに降りかかると、沸騰蒸発し、このときの気化熱で前記熱交換用パイプ内の冷水は抜熱されて急速に温度が低下する。一方、蒸発器1で気化した水蒸気は、バルブV1を介して吸着塔2内に流入し、冷却塔6からバルブV3を介して冷却水が供給される吸着塔2側の熱交換器5aで、吸着熱が除去されながら吸着材に吸着される。塗りつぶしたバルブV2、V3、V7、V8、V9、V10が開状態、バルブV1、V4、V5、V6、V11、V12が閉状態となるようにバルブを切り替えると、吸着塔2が再生器として使用され、吸着塔3が吸着器として使用される。以下、このサイクルが基本となって繰り返される。吸着開始時または再生開始時において吸着器、再生器内の水蒸気圧を吸着または再生しやすいように冷却・予熱工程を考慮したサイクルも行われる。このようにして、蒸発器1内を通過する熱交換用パイプから、その内部で急速に温度降下した冷水を外部へ供給することができる。なお、前記熱交換器5、5aは、例えば、冷却水または温水流路と吸着材充填層が交互に積層されたフィンタイプのものが組み込まれ、吸着材はフィン空間に所要量充填される。 An adsorption heat pump is a device that pumps heat by using the phase change that accompanies the adsorption and desorption phenomenon of working medium (refrigerant) such as water or alcohol to a solid adsorbent such as silica gel or activated carbon. is there. FIG. 1 shows an example in which this adsorption heat pump is used as an adsorption refrigerator, and an evaporator 1 for evaporating refrigerant and two adsorbers filled with a solid adsorbent such as silica gel, that is, an adsorption tower. 2 and 3, and a condenser 4, the inside of these apparatus systems is sealed under reduced pressure, and the adsorption towers 2 and 3 are adsorption towers that adsorb refrigerant vapor, that is, water vapor when water is used as a refrigerant. The regenerator for desorbing the adsorbed moisture (water vapor), that is, the regenerator is used by alternately switching the regenerator every predetermined operation time. As shown in FIG. 1, when the adsorption tower 2 is used as an adsorber and the adsorption tower 3 is used as a regenerator, that is, the valves V1, V4, V5, V6, V11, and V12 are open. When the filled valves V2, V3, V7, V8, V9, and V10 are closed, hot water of about 55 to 75 ° C. flows through the heat exchanger 5 of the adsorption tower 3 on the regenerator side. The solid adsorbent is heated to desorb moisture previously adsorbed. This desorbed water vapor moves through the valve V4 to the condenser 4 provided with a heat exchange pipe through which the cooling water cooled to, for example, about 30 to 37 ° C. by the cooling tower 6 passes. And it cools and condenses by the said heat exchange pipe in the condenser 4, Condensed water is cooled by the cooling tower 6, and moves to the evaporator 1 via the condensed water piping which abbreviate | omitted illustration. When the water in the evaporator falls on the heat exchange pipe through which the cold water in the evaporator 1 passes, the water in the evaporator boiles and evaporates, and the cold water in the heat exchange pipe is rapidly removed by the heat of vaporization at this time. Decreases. On the other hand, the water vapor evaporated in the evaporator 1 flows into the adsorption tower 2 through the valve V1, and is supplied to the cooling tower 6 from the cooling tower 6 through the valve V3. While the heat of adsorption is removed, it is adsorbed on the adsorbent. If the valves are switched so that the filled valves V2, V3, V7, V8, V9, V10 are open and the valves V1, V4, V5, V6, V11, V12 are closed, the adsorption tower 2 is used as a regenerator. The adsorption tower 3 is used as an adsorber. Thereafter, this cycle is basically repeated. A cycle considering the cooling / preheating process is also performed so that the water vapor pressure in the adsorber and the regenerator can be easily adsorbed or regenerated at the start of adsorption or regeneration. In this way, cold water whose temperature has dropped rapidly can be supplied to the outside from the heat exchange pipe passing through the evaporator 1. The heat exchangers 5 and 5a include, for example, a fin type in which cooling water or hot water flow paths and adsorbent packed layers are alternately stacked, and the adsorbent is filled into the fin space in a required amount.
前記吸着式冷凍機では、従来の圧縮式ヒートポンプのようにコンプレッサーの大型化、高圧縮比化などの設備上のデメリット伴わずに、冷媒として環境負荷を伴わない水を用いることができる。一般に、吸着および脱着現象に付随した相変化を利用した吸着式の冷凍機等では、吸着材の吸着特性は作動媒体、即ち冷媒との組み合わせで決まり、冷媒に水を用いた場合には、吸着材としては通常、シリカゲルが適合する。このシリカゲル−水系の吸着式冷凍機では、100℃以下の排熱などの温熱源のみでの駆動が可能であるが、吸着量差を大きくとれず、このため、冷熱出力が限られる。また、100℃以下の温熱源の場合でも、排熱の温度が高くなると、この温熱源で再生した吸着器での吸着工程では、低い相対圧(P/P0)(P:吸着器内の水蒸気分圧、P0:7℃における飽和水蒸気圧)の状態で吸着が行なわれるため、吸着材のシリカゲルに吸着質、即ち冷媒の水が直接細孔内表面に吸着される状態に近く、その結合エネルギーは毛管凝縮により吸着される場合に比べて大きくなる。このため、脱着に要する加熱量および吸着時の吸着熱量が大きくなり、吸着器内の熱交換器の伝熱面積もそれにあわせて大きくする必要があり、設備の大型化およびエネルギー効率の低下を招く。 In the adsorption refrigeration machine, water having no environmental load can be used as a refrigerant without the disadvantages of facilities such as an increase in the size of a compressor and an increase in compression ratio as in a conventional compression heat pump. In general, in adsorption refrigerators that use phase changes associated with adsorption and desorption phenomena, the adsorption characteristics of the adsorbent are determined by the combination with the working medium, i.e., the refrigerant. As a material, silica gel is usually suitable. This silica gel-water type adsorption refrigerator can be driven only by a heat source such as exhaust heat of 100 ° C. or less, but the adsorption amount difference cannot be made large, and thus the cold output is limited. Even in the case of a heat source of 100 ° C. or lower, if the temperature of exhaust heat increases, in the adsorption process using an adsorber regenerated with this heat source, a low relative pressure (P / P 0 ) (P: Adsorption is performed in the state of water vapor partial pressure, P 0 : saturated water vapor pressure at 7 ° C.), so that the adsorbate, that is, the water of the refrigerant is adsorbed directly on the inner surface of the pores. The binding energy is greater than when adsorbed by capillary condensation. For this reason, the amount of heat required for desorption and the amount of heat of adsorption at the time of adsorption are increased, and the heat transfer area of the heat exchanger in the adsorber must be increased accordingly, leading to an increase in equipment size and a decrease in energy efficiency. .
一方、少ない再生熱量で十分な冷凍能力を得て、エネルギー効率(成績係数)を向上させた吸着式冷凍機として、直列に配置された2台の吸着器と1台の熱交換器からなる空調ラインを、連続的な冷房が可能となるように2系列設けた吸着式冷凍機が開示されている(例えば、特許文献1参照)。この吸着式冷凍機では、一方の空調ラインの前記2台の吸着器で除湿加熱された空調用空気が、前記熱交換器で湿度一定の状態で冷却された後、脱着工程にある他方の空調ラインの1台の吸着器で加湿冷却されて空調空間に送り出される。この加湿冷却により、前記1台の吸着器では外部から熱エネルギーを供給せずに脱着が可能となり、得られる冷凍能力に対して、必要再生熱量を少なくできる利点がある。 On the other hand, as an adsorption refrigeration machine with sufficient refrigerating capacity with a small amount of regenerative heat and improved energy efficiency (coefficient of performance), air conditioning consisting of two adsorbers arranged in series and one heat exchanger An adsorption refrigeration machine is disclosed in which two lines are provided so that continuous cooling is possible (see, for example, Patent Document 1). In this adsorption type refrigerator, the air conditioning air dehumidified and heated by the two adsorbers of one air conditioning line is cooled in a constant humidity by the heat exchanger, and then the other air conditioning in the desorption process It is humidified and cooled by one adsorber on the line and sent to the air-conditioned space. By this humidification cooling, the one adsorber can be desorbed without supplying heat energy from the outside, and there is an advantage that the amount of heat required for regeneration can be reduced with respect to the obtained refrigeration capacity.
しかし、シリカゲル−水系の吸着式冷凍機では、前述のような問題点があり、また、特許文献1に開示された、必要再生エネルギーを少なくできる吸着式冷凍機では、十分な冷凍能力を得るために、一つの空調ライン、即ち吸着工程に複数の吸着器を配置する必要があり、設備が大型化するなどの問題を伴う。 However, the silica gel-water type adsorption refrigerator has the above-mentioned problems, and the adsorption refrigerator disclosed in Patent Document 1 capable of reducing the necessary regeneration energy has sufficient refrigeration capacity. In addition, it is necessary to arrange a plurality of adsorbers in one air conditioning line, that is, the adsorption process, which causes problems such as an increase in the size of equipment.
そこで、この発明の課題は、設備の大型化を伴わずに、再生エネルギーを低減し、かつ、冷凍能力を増加させ、エネルギー効率を向上させた吸着式冷凍機およびそれに用いる吸着材を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an adsorption refrigeration machine and an adsorbent used therefor that reduce regeneration energy, increase refrigeration capacity, and improve energy efficiency without increasing the size of equipment. It is.
前記の課題を解決するために、この発明では以下の構成を採用したのである。 In order to solve the above problems, the present invention employs the following configuration.
即ち、冷媒を蒸発させる蒸発器と、吸着材を充填し、吸着材の加熱手段と冷却手段とをそれぞれ備えた吸着器と、この吸着器から脱着した冷媒を凝縮する凝縮器とからなり、一方の吸着器が前記冷却手段により冷却されて蒸発器からの冷媒の蒸気を吸着し、他方の吸着器が前記加熱手段により加熱されて吸着材が再生され、前記吸着器が交互に吸着器および再生器として用いられる吸着式冷凍機において、前記冷媒が水であり、相対圧(P/P0)が0.14〜0.20の間で吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材を充填したのである。ここで、相対圧(P/P0)は、吸着器に充填された吸着材表面温度における飽和水蒸気圧P0に対する、蒸発器内の雰囲気温度での飽和水蒸気圧Pの比率であり、ここでは、蒸発器内の雰囲気温度を7℃と想定している。 That is, it comprises an evaporator for evaporating the refrigerant, an adsorber filled with an adsorbent and provided with an adsorbent heating means and a cooling means, respectively, and a condenser for condensing the refrigerant desorbed from the adsorber. The adsorber is cooled by the cooling means to adsorb the refrigerant vapor from the evaporator, the other adsorber is heated by the heating means to regenerate the adsorbent, and the adsorber is alternately adsorbed and regenerated. In an adsorption refrigeration machine used as a storage device, an adsorbent in which the refrigerant is water and the relative swing (P / P 0 ) is between 0.14 and 0.20 and the amount of adsorption swing changes by 0.05 kg / adsorbent (1 kg) or more. It was filled. Here, the relative pressure (P / P 0 ) is the ratio of the saturated water vapor pressure P at the atmospheric temperature in the evaporator to the saturated water vapor pressure P 0 at the surface temperature of the adsorbent filled in the adsorber. The atmospheric temperature in the evaporator is assumed to be 7 ° C.
上記の狭い相対圧(P/P0)が0.14〜0.20の間で吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材、即ち理想吸着材を充填すれば、この低く、狭い相対圧間で圧力スイングさせて吸着操作を行なうことにより、発生する吸着熱を抑制することができるため、吸着時の吸着器、即ち吸着材充填層の冷却水流量を低減でき、また、比較的低温の排熱などを用いた温熱源により吸着した水分の脱着を容易に行なうことができる。 If the above-mentioned narrow relative pressure (P / P 0 ) is 0.14 to 0.20 and the adsorption swing amount changes by 0.05 kg / adsorbent (1 kg) or more, that is, an ideal adsorbent is filled, this low and narrow relative By performing the adsorption operation with a pressure swing between the pressures, the generated heat of adsorption can be suppressed, so the flow rate of the cooling water in the adsorber, that is, the adsorbent packed bed during adsorption can be reduced, and the temperature is relatively low. It is possible to easily desorb the moisture adsorbed by the heat source using the exhaust heat.
ここで相対圧(P/P0)を0.14〜0.20の範囲に、また吸着スイング量を0.05kg/吸着材(1kg)以上にそれぞれ限定した理由について説明すると次のようになる。前記吸着式冷凍機において7〜12℃の冷熱を得るためには、吸着時の吸着材温度が吸着器の冷却水温度である30〜35℃に依存し、吸着時の相対圧(P/P0)は0.2が最大となる。一方、吸着スイング量を向上させるために相対圧(P/P0)を0.14より小さくすると、再生時の吸着材をより高い温度にする必要があり、装置内の顕熱損失が増加すること、および吸着材の乾燥度が高くなったことによる吸着時の結合エネルギーが大きくなる。このため、脱着に要する加熱量および吸着時の吸着熱量が大きくなり、吸着器内の熱交換器の伝熱面積もより大きくする必要が生じる。また、前記吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材を充填すれば、通常のシリカゲルを吸着材として用いる場合に比べて、冷凍能力を著しく向上させることができるが、吸着スイング量が0.05kg/吸着材(1kg)よりも小さくなると、冷凍能力の向上効果が減少する。 The reason why the relative pressure (P / P 0 ) is limited to the range of 0.14 to 0.20 and the adsorption swing amount is limited to 0.05 kg / adsorbent (1 kg) or more will be described below. In order to obtain a cooling temperature of 7 to 12 ° C. in the adsorption refrigerator, the adsorbent temperature at the time of adsorption depends on the cooling water temperature of the adsorber 30 to 35 ° C., and the relative pressure at the time of adsorption (P / P 0 ) has a maximum of 0.2. On the other hand, if the relative pressure (P / P 0 ) is made smaller than 0.14 in order to improve the amount of adsorption swing, it is necessary to make the adsorbent at a higher temperature during regeneration, increasing the sensible heat loss in the device, In addition, the binding energy at the time of adsorption increases due to the high degree of drying of the adsorbent. For this reason, the amount of heat required for desorption and the amount of heat of adsorption during adsorption increase, and the heat transfer area of the heat exchanger in the adsorber needs to be increased. In addition, if the adsorption swing amount is changed to 0.05 kg / adsorbent (1 kg) or more, the refrigerating capacity can be remarkably improved as compared with the case where ordinary silica gel is used as the adsorbent. When the swing amount is smaller than 0.05 kg / adsorbent (1 kg), the effect of improving the refrigerating capacity is reduced.
このように吸着操作に圧力スイング法を用い、上記の低い相対圧間で、開始吸着量が0.04kg/吸着材(1kg)、吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材を充填すれば、発生する吸着熱が抑制され、脱着に要するエネルギーも少なくて済み、通常のシリカゲルを吸着材として用いる場合に比べて、冷凍能力およびエネルギー効率を著しく向上させることができる。 Thus, using the pressure swing method for the adsorption operation, the adsorbent whose starting adsorption amount changes by 0.04 kg / adsorbent (1 kg) and the adsorption swing amount by 0.05 kg / adsorbent (1 kg) or more between the above low relative pressures. Is reduced, the heat of adsorption generated is suppressed, and less energy is required for desorption, and the refrigerating capacity and energy efficiency can be remarkably improved as compared with the case of using ordinary silica gel as the adsorbent.
図2は、吸着式冷凍機に上述の理想吸着材Af、および通常のシリカゲルAsを充填したときに、それぞれの吸着等温線に対して、吸着スイング操作を行なう相対圧(P/P0)の範囲における吸着スイング量Δqを比較して示したものである。この吸着式冷凍機の運転条件を表1に示す。なお、理想吸着材Afの吸着等温線は理論計算に基づくものであり、その細孔構造は均一、即ち高規則性であるものが望ましい。また、シリカゲルAsの吸着器温線は25℃における実測値に基づくものである。 2, when filled ideal adsorbent A f described above and the conventional silica gel A s the adsorption type refrigerator, for each of the adsorption isotherm, a relative pressure performing adsorption swing operation (P / P 0 ) In comparison with the adsorption swing amount Δq. Table 1 shows the operating conditions of this adsorption refrigerator. The adsorption isotherm of the ideal adsorbent Af is based on theoretical calculation, and the pore structure is preferably uniform, that is, highly regular. Moreover, the adsorber temperature line on silica gel A s is based on the measured value at 25 ° C..
図2から、相対圧(P/P0)が0.14から0.20の範囲に収まる理想のスイング位置で吸着操作を行なうことによって、理想吸着材Afを充填した場合は、吸着量が0.095〜0.180kg/吸着材(kg)の高吸着量域での吸着スイング量が実現し、0.085kg/吸着材(1kg)の高い吸着量が得られる。これに対し、シリカゲルAsを充填した場合には、吸着スイング域が0.075〜0.080kg/吸着材(1kg)での0.005kg/吸着材(1kg)の低い吸着量しか得られない。 From FIG. 2, the adsorption amount is 0.095 to 0.180 kg when the ideal adsorbent Af is filled by performing the adsorption operation at the ideal swing position where the relative pressure (P / P 0 ) falls within the range of 0.14 to 0.20. / Adsorption swing amount in the high adsorption amount region of the adsorbent (kg) is realized, and a high adsorption amount of 0.085 kg / adsorbent (1 kg) is obtained. In contrast, when filled with silica gel A s is the adsorption swing range is 0.075~0.080Kg / obtained only low adsorption amount of the adsorbent 0.005 kg / adsorbent in (1kg) (1kg).
表2は、理想吸着材Afを充填した吸着式冷凍機の冷凍能力を、従来のシリカゲルAsを充填した場合と比較して示したものである。吸着材の充填量が同程度の場合には理想吸着材Afを充填することにより、冷凍能力を9倍程度高めることが可能であることがわかる。 Table 2 is the cooling capacity of the adsorption refrigerator filled with ideal adsorbent A f, shown in comparison with a case filled with conventional silica gel A s. It can be seen that the refrigerating capacity can be increased by about 9 times by filling the ideal adsorbent Af when the adsorbent filling amount is similar.
前記加熱手段が50〜200℃の温度域にある排熱を温熱源として用い、前記冷却手段が冷却塔によって得られる30〜40℃の温度域にある冷却水を冷熱源として用いることが望ましい。 Desirably, the heating means uses exhaust heat in a temperature range of 50 to 200 ° C. as a heat source, and the cooling means uses cooling water in a temperature range of 30 to 40 ° C. obtained by a cooling tower as a cooling heat source.
前記相対圧(P/P0)が0.14〜0.20の間で吸着スイング量が0.05kg/吸着材(1kg)以上変化する性能を有する吸着材は、上記温度範囲の、工場からの排蒸気や排温水を温熱源として脱着が可能であり、また、吸着工程での吸着熱が抑制されるため、冷却塔によって通常得られる上記温度域の冷却水で吸着熱を除去し、吸着器内を所要の温度以下に保つことができる。 An adsorbent having the performance of changing the adsorption swing amount by 0.05 kg / adsorbent (1 kg) or more when the relative pressure (P / P 0 ) is between 0.14 and 0.20 is used for exhaust steam and exhaust from the factory in the above temperature range. Desorption using hot water as a heat source is possible, and because the heat of adsorption in the adsorption process is suppressed, the heat of adsorption is removed with cooling water in the above temperature range normally obtained by a cooling tower, and the inside of the adsorber is required. Can be kept below temperature.
上述の吸着式冷凍機の運転方法であって、吸着器に充填された吸着材の吸着量が0.04kg/吸着材(1kg)以上の領域で吸着スイング操作および脱着操作を行なうことが望ましい。 In the above operation method of the adsorption refrigeration machine, it is desirable to perform the adsorption swing operation and the desorption operation in the region where the adsorption amount of the adsorbent filled in the adsorber is 0.04 kg / adsorbent (1 kg) or more.
このように、吸着材の細孔構造が高規則性を有するものであって、吸着量が0.04kg/吸着材(1kg)となる領域では、吸着材の細孔内表面の大半が吸着質、即ち冷媒の水で覆われる状態にある。この状態から吸着スイング操作を行なえば、毛管凝縮の領域で吸着および脱着が行なわれることになり、吸着時および脱着時に、冷却および加熱に必要な熱量がより少なくて済み、より低エネルギーで吸着冷凍機を運転することができ、エネルギー効率が向上する。なお、ここで、吸着量の下限を0.04kg/吸着材(1kg)としたのは、前記の低相対圧(P/P0) 0.14〜0.20間で前記吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材では、0.04kg/吸着材(1kg)以上の吸着量領域で吸着スイング操作を開始する方がより吸着量を多くとることができて冷凍能力が向上し、また、0.04kg/吸着材(1kg)以上の吸着領域で吸着スイング操作を行なうことにより、前述の温熱源の温度範囲(50〜200℃)では、その温度にかかわらず所要の脱着が行なえて、冷凍能力が低下しないためである。 Thus, in the region where the pore structure of the adsorbent has high regularity and the adsorption amount is 0.04 kg / adsorbent (1 kg), most of the inner surface of the pore of the adsorbent is adsorbate, That is, it is in a state covered with the coolant water. If the adsorption swing operation is performed from this state, adsorption and desorption are performed in the region of capillary condensation, and at the time of adsorption and desorption, less heat is required for cooling and heating, and adsorption refrigeration with lower energy is required. The machine can be operated and energy efficiency is improved. Here, the lower limit of the adsorption amount is 0.04 kg / adsorbent (1 kg) because the adsorption swing amount is 0.05 kg / adsorbent (P / P 0 ) between 0.14 and 0.20. For adsorbents that change by 1 kg) or more, starting the adsorption swing operation in an adsorption amount range of 0.04 kg / adsorbent (1 kg) or more can increase the amount of adsorption, improving the refrigeration capacity. By performing an adsorption swing operation in an adsorption area of kg / adsorbent (1 kg) or more, the required desorption can be performed regardless of the temperature in the temperature range of the above-mentioned heat source (50 to 200 ° C.), and the refrigerating capacity can be improved. This is because it does not decrease.
なお、前記吸着スイング操作の開始および終了のタイミングは、予め測定した吸着材の吸着等温線、吸着器内に充填された吸着材APの温度および蒸発器内の雰囲気温度の測定値に基づいて制御することができる。 The start and end timing of the suction swing operation, based premeasured adsorption isotherm of the adsorbent, the measured value of the ambient temperature of the temperature and the evaporator of the adsorptive material A P filled in the adsorber Can be controlled.
冷媒として水を用いる吸着式冷凍機用の吸着材であって、前記吸着材の細孔内構造が高規則性のものであり、少なくとも3×105m2/吸着材(1kg)以上の比表面積を有し、相対圧(P/P0)0.14〜0.20の範囲で吸着量スイング量が0.05kg/吸着材(1kg)以上の性能を有することが望ましい。 An adsorbent for an adsorption refrigerator using water as a refrigerant, wherein the adsorbent has a highly regular pore structure and a ratio of at least 3 × 10 5 m 2 / adsorbent (1 kg) or more. It is desirable to have a surface area and a performance of an adsorption amount swing amount of 0.05 kg / adsorbent (1 kg) or more in a relative pressure (P / P 0 ) range of 0.14 to 0.20.
前記吸着材の比表面積が3×105m2/吸着材(1kg)よりも小さいと、0.05g/吸着材(1g)以上の吸着スイング量が得られなくなる。また、この比表面積の上限はおよそ15×105m2/吸着材(1kg)程度とすることが望ましい。比表面積が大きくなりすぎると、操作相対圧において吸着材の細孔表面が冷媒の水で覆われない部分が生じ、この状態から吸着スイング操作を開始すると、吸着材に冷媒の水が直接吸着される状態となり、その結合エネルギーは毛管凝縮により吸着される場合に比べて大きくなるため、吸着時の吸着熱量および脱着に要する加熱量が大きくなり、エネルギー効率が低下する。なお、前述のように、相対圧(P/P0) 0.14〜0.20の範囲で吸着開始時の吸着量が0.04kg/吸着材(1kg)以上の性能を有すれば、発生する吸着熱が抑制され、脱着に要するエネルギーも少なくて済み、通常のシリカゲルを用いる場合に比べて、冷凍能力およびエネルギー効率を著しく向上させることができる。 If the specific surface area of the adsorbent is smaller than 3 × 10 5 m 2 / adsorbent (1 kg), an adsorption swing amount of 0.05 g / adsorbent (1 g) or more cannot be obtained. The upper limit of the specific surface area is preferably about 15 × 10 5 m 2 / adsorbent (1 kg). If the specific surface area becomes too large, there will be a portion where the pore surface of the adsorbent is not covered with refrigerant water at the operating relative pressure, and when the adsorption swing operation is started from this state, the refrigerant water is directly adsorbed on the adsorbent. In this state, the binding energy is larger than that in the case of being adsorbed by capillary condensation, so that the heat of adsorption at the time of adsorption and the heating amount required for desorption are increased, and the energy efficiency is lowered. As mentioned above, if the adsorption amount at the start of adsorption is 0.04kg / adsorbent (1kg) or more in the relative pressure (P / P 0 ) range of 0.14 to 0.20, the generated adsorption heat is suppressed. In addition, less energy is required for desorption, and the refrigerating capacity and energy efficiency can be remarkably improved as compared with the case of using ordinary silica gel.
前記構造および吸着特性を有する理想吸着材Afを実現する材料としては、製造工程で細孔構造を細孔径2nm以下に調整した高規則性シリカやゼオライトなどを挙げることができる。 Examples of the material for realizing the ideal adsorbent Af having the structure and the adsorption characteristics include highly ordered silica and zeolite whose pore structure is adjusted to 2 nm or less in the production process.
この発明では、低い相対圧(P/P0)0.14〜0.20の範囲で吸着量スイング量が0.05g/吸着材(1g)以上変化する性能を有する吸着材を吸着式冷凍機に充填するようにしたので、発生する吸着熱が抑制され、脱着に要するエネルギーも少なくて済み、冷凍能力およびエネルギー効率を著しく向上させることができる。 In the present invention, an adsorption type refrigerator is filled with an adsorbent having a performance in which the amount of adsorption swing varies by 0.05 g / adsorbent (1 g) or more in the range of low relative pressure (P / P 0 ) 0.14 to 0.20. Therefore, the generated heat of adsorption is suppressed, less energy is required for desorption, and the refrigerating capacity and energy efficiency can be remarkably improved.
また、前記吸着冷凍機を、吸着量が0.04kg/吸着材(1kg)以上となる領域において吸着スイング操作を開始するように運転することにより、毛管凝縮領域の多くを利用して吸着および脱着操作が行なわれるため、吸着時および脱着時に、冷却および加熱に必要な熱量がより少なくて済み、冷凍能力およびエネルギー効率向上に寄与する。そして、脱着時の加熱に必要な熱量がより少なくて済むため、冷凍能力が温熱源の温度の影響を受けずに済む。 In addition, by operating the adsorption refrigerator so as to start the adsorption swing operation in the region where the adsorption amount is 0.04 kg / adsorbent (1 kg) or more, the adsorption and desorption operations are performed using most of the capillary condensation region. Therefore, less heat is required for cooling and heating during adsorption and desorption, which contributes to improvement in refrigeration capacity and energy efficiency. And since the amount of heat required for heating at the time of desorption is smaller, the refrigerating capacity is not affected by the temperature of the heat source.
さらに、前記吸着式冷凍機は、工場からの通常の排蒸気や排温水を温熱源として脱着を行なうことができ、また、通常の冷却塔で得られる温度域の冷却水を吸着熱の除去に用いることができるため、特別の設置環境を要せず、簡便に運転することができる。 Furthermore, the adsorption refrigerator can be desorbed by using normal exhaust steam or exhaust hot water from a factory as a heat source, and cooling water in a temperature range obtained by a normal cooling tower can be used to remove adsorption heat. Since it can be used, it does not require a special installation environment and can be operated easily.
以下に、この発明の実施形態を実施例に示した図3から図7に基づいて説明する。なお、実施形態の吸着式冷凍機の装置構成は、吸着塔2、3(図1参照)に充填される実施形態の新規吸着材AP以外は、図1に示した吸着式冷凍機と同様である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. Note that the device configuration of the adsorption refrigerator embodiments, except novel adsorbent A P embodiments filled in the adsorption tower 2 (see FIG. 1), similarly to the adsorption refrigerating machine shown in FIG. 1 It is.
図3は、25℃で実測した、実施形態の新規吸着材Apの吸着等温線を示したもので、この新規吸着材Apは、テンプレートとしてdouble-chain タイプの2種類の界面活性剤を用い、水熱合成法により作製したメソポーラスシリカである。再生終了時から吸着終了時までの吸着式冷凍機の操作相対圧(P/P0)0.14〜0.20の運転範囲において、吸着量が0.04kg/吸着材(1kg)以上となる領域で、0.05kg/吸着材(1kg)の吸着スイング量Δqが実現されていることがわかる。 Figure 3 were measured at 25 ° C., shows the adsorption isotherms of the novel adsorbent A p embodiments, the novel adsorbent A p is the two surfactants double-chain type as the template Used mesoporous silica produced by a hydrothermal synthesis method. In the range of operation relative pressure (P / P 0 ) 0.14 to 0.20 of the adsorption refrigerator from the end of regeneration to the end of adsorption, 0.05 kg in the region where the adsorption amount is 0.04 kg / adsorbent (1 kg) or more / It can be seen that the adsorption swing amount Δq of the adsorbent (1 kg) is realized.
図4は、前記新規吸着材Apと通常の吸着材As(シリカゲル)をそれぞれ充填した吸着式冷凍機を、相対圧(P/P0)0.14〜0.20の範囲で圧力スイング法を用いて運転、即ち吸着操作したときの、吸着時間に対する吸着量Δqを比較したもので、吸着時間が経過するにつれて、新規吸着材Apの吸着能力の方が、シリカゲルよりも優れることがわかる。 FIG. 4 shows an adsorption-type refrigerator filled with the above-mentioned new adsorbent A p and normal adsorbent A s (silica gel) using a pressure swing method in a relative pressure (P / P 0 ) range of 0.14 to 0.20. operation, i.e., when the adsorption operation, a comparison of the adsorbed amount Δq for adsorption time, as the adsorption time, it can be seen that towards the adsorption capacity of the novel adsorbent a p is superior to silica gel.
図5は、新規吸着材Apと通常の吸着材As(シリカゲル)をそれぞれ充填した相対圧(P/P0)0.14〜0.20の範囲での吸着式冷凍機の運転時に、日中の冷熱出力の変化により、蒸発器1(図1参照)からの冷水の供給温度が7〜14℃の範囲で変動した場合の、吸着時間に対する吸着量Δqを比較したもので、吸着量、即ち吸着能力は、新規吸着材Apの方がシリカゲルよりも8〜21%程度優れていることがわかる。 FIG. 5 shows the daytime cold energy during operation of the adsorption refrigerator in the range of 0.14 to 0.20 relative pressure (P / P 0 ) filled with a new adsorbent A p and a normal adsorbent A s (silica gel). This is a comparison of the adsorption amount Δq with respect to the adsorption time when the supply temperature of the cold water from the evaporator 1 (see FIG. 1) fluctuates in the range of 7 to 14 ° C. due to the change in output. it is seen that the newer adsorbent a p is superior about 8-21% than silica gel.
図6は、新規吸着材Apと通常の吸着材As(シリカゲル)をそれぞれ充填した相対圧(P/P0)0.14〜0.20の範囲での吸着式冷凍機の運転時に、温熱源の温度変動により再生温度が変化した場合の、新規吸着材Apと通常の吸着材As(シリカゲル)の再生温度に対する吸着量Δqを比較した一例を示したもので、新規吸着材Apの方がシリカゲルよりも平均で15%程度吸着量、即ち吸着能力が優れていることがわかる。 FIG. 6 shows the temperature of the heat source during operation of the adsorption refrigerator in the range of 0.14 to 0.20 relative pressure (P / P 0 ) filled with a new adsorbent A p and a normal adsorbent A s (silica gel). when regeneration temperature is changed by variation shows an example of comparison of the adsorbed amount Δq for the regeneration temperature of the novel adsorbent a p and the normal of the adsorbent a s (silica gel), the newer adsorbent a p It can be seen that the average adsorption amount, that is, the adsorption capacity, is superior to that of silica gel.
図7は、同様に、新規吸着材Apと通常の吸着材As(シリカゲル)をそれぞれ充填した相対圧(P/P0)0.14〜0.20の範囲での吸着式冷凍機の運転時に、吸着時間の変化に対する冷熱出力を比較したものである。新規吸着材Apの方がシリカゲルに比べて冷熱出力が高く、ピークの冷熱出力が14%程度優れている。 7, similarly, during the operation of the new adsorbents A p and the normal of the adsorbent A s adsorption chillers in the range of relative pressure (P / P 0) 0.14 to 0.20 of the (silica gel) packed respectively, adsorption This is a comparison of the cooling output with time. High cold output newer adsorbent A p is compared to the silica gel, cold output of the peak is better about 14%.
このように、吸着式冷凍機に前記低相対圧間で吸着スイング量が0.05kg/吸着材(1kg)以上変化する吸着材を充填し、圧力スイング法を用いて吸着操作を行なうことにより、シリカゲルなどの従来の吸着材を充填する場合に比べて、吸着量が増加して冷凍能力を著しく向上させ、かつ、再生に必要な加熱量を少なくすることができ、冷凍機のエネルギー効率が向上する。 As described above, the adsorption refrigerator is filled with an adsorbent whose adsorption swing amount changes by 0.05 kg / adsorbent (1 kg) or more between the low relative pressures, and the adsorption operation is performed using the pressure swing method. Compared to conventional adsorbents such as packing, the amount of adsorption increases, refrigerating capacity is remarkably improved, and the amount of heating required for regeneration can be reduced, improving the energy efficiency of the refrigerator. .
この発明の吸着式冷凍機は、所要の吸着材を充填すれば、圧力スイング法を用いた吸着操作によって冷凍能力およびエネルギー効率を向上させることができ、産業分野のプロセス冷却工程への安定した、低コストの冷水供給源などとして利用することができる。 The adsorption refrigeration machine of the present invention can improve the refrigeration capacity and energy efficiency by the adsorption operation using the pressure swing method if it is filled with the required adsorbent, and is stable to the process cooling process in the industrial field. It can be used as a low-cost cold water supply source.
1:蒸発器 2、3:吸着塔 4:凝縮器
5、5a:熱交換器 6:冷却塔
1: Evaporator 2, 3: Adsorption tower 4: Condenser 5, 5a: Heat exchanger 6: Cooling tower
Claims (4)
An adsorbent for an adsorption-type refrigerator using water as a refrigerant, wherein the adsorbent has a highly regular pore structure and a ratio of at least 3 × 10 5 m 2 / adsorbent (1 kg) or more. An adsorbent for an adsorption refrigeration machine having a surface area and having an adsorption amount swing amount of 0.05 kg / adsorbent (1 kg) or more in a relative pressure range of 0.14 to 0.20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003363618A JP2005127614A (en) | 2003-10-23 | 2003-10-23 | Adsorption type refrigerating machine and its operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003363618A JP2005127614A (en) | 2003-10-23 | 2003-10-23 | Adsorption type refrigerating machine and its operating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005127614A true JP2005127614A (en) | 2005-05-19 |
Family
ID=34642877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003363618A Pending JP2005127614A (en) | 2003-10-23 | 2003-10-23 | Adsorption type refrigerating machine and its operating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005127614A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012506987A (en) * | 2008-10-24 | 2012-03-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Systems that use unused heat for cooling and / or power generation |
KR101642490B1 (en) * | 2015-03-03 | 2016-07-25 | 한국에너지기술연구원 | All-in-one tri-generation system for power, heating and cooling |
JP2017161200A (en) * | 2016-03-11 | 2017-09-14 | 三浦工業株式会社 | Cold water manufacturing system |
-
2003
- 2003-10-23 JP JP2003363618A patent/JP2005127614A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012506987A (en) * | 2008-10-24 | 2012-03-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Systems that use unused heat for cooling and / or power generation |
US9097445B2 (en) | 2008-10-24 | 2015-08-04 | Exxonmobil Research And Engineering Company | System using unutilized heat for cooling and/or power generation |
KR101642490B1 (en) * | 2015-03-03 | 2016-07-25 | 한국에너지기술연구원 | All-in-one tri-generation system for power, heating and cooling |
JP2017161200A (en) * | 2016-03-11 | 2017-09-14 | 三浦工業株式会社 | Cold water manufacturing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021203862B2 (en) | Split type sorption air conditioning unit | |
Saha et al. | Solar/waste heat driven two-stage adsorption chiller: the prototype | |
US8701425B2 (en) | Refrigeration air conditioning system | |
JP6004381B2 (en) | Adsorption refrigerator | |
Chan et al. | Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence | |
WO2009145278A1 (en) | Hybrid refrigeration system | |
JP5187827B2 (en) | Adsorption heat pump system using low-temperature waste heat | |
US20100300124A1 (en) | Refrigerating machine comprising different sorption materials | |
JP5974541B2 (en) | Air conditioning system | |
JP2005127614A (en) | Adsorption type refrigerating machine and its operating method | |
JP4066485B2 (en) | Refrigeration equipment | |
JP2002250573A (en) | Air conditioner | |
JP2002162130A (en) | Air conditioner | |
JPH07301469A (en) | Adsorption type refrigerator | |
JP2006046776A (en) | Air conditioner | |
JP2011191032A (en) | Compression refrigerating cycle | |
JP2000329422A (en) | Adsorption refrigeration equipment | |
JPH11281190A (en) | Double adsorption refrigerator | |
JP2001215068A (en) | Adsorption type refrigerator | |
JP4404295B2 (en) | Reheat adsorption refrigerator | |
JP2005172380A (en) | Adsorption-type heat pump | |
JP4151095B2 (en) | Refrigeration equipment | |
JP2024033247A (en) | Adsorption refrigerator | |
JP2003294336A (en) | Heat pump system using zeolite adsorbent | |
JPH11223416A (en) | Refrigerating device |