[go: up one dir, main page]

JP2005114473A - 光検出方法及び生体光計測装置 - Google Patents

光検出方法及び生体光計測装置 Download PDF

Info

Publication number
JP2005114473A
JP2005114473A JP2003347102A JP2003347102A JP2005114473A JP 2005114473 A JP2005114473 A JP 2005114473A JP 2003347102 A JP2003347102 A JP 2003347102A JP 2003347102 A JP2003347102 A JP 2003347102A JP 2005114473 A JP2005114473 A JP 2005114473A
Authority
JP
Japan
Prior art keywords
light
signal
measurement
photons
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347102A
Other languages
English (en)
Inventor
Fumio Kawaguchi
文男 川口
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003347102A priority Critical patent/JP2005114473A/ja
Publication of JP2005114473A publication Critical patent/JP2005114473A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】微弱な光信号を高精度で検出する方法を実現する。
【解決手段】本発明は、微弱な光信号の領域における光波は、光波の粒子性のために光子としての振る舞いが支配的になることに着目し、ヘテロダイン方式の高い波面選択性と、光子レベルで光を計測する光子計測法とを融合させたことを特徴とし、信号光と参照光とを干渉させたヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し(1、3)、その計測値に基づいて信号光の強度を演算して求める(4)ことにより、光検出器のショットキーノイズに制限されることなく、かつ計測系の時間応答を低下させずに、微弱光の時間変化を十分な精度で計測する。
【選択図】 図1

Description

本発明は、光検出方法及びその方法を用いた生体光計測装置に係り、特に、被検体に光を照射しその透過光又は散乱光を検出用いて生体の光学特性を計測して画像化する生体光計測装置に関する。
人体などの被検体の内部を非破壊で観察できる画像診断装置として、X線CT、MRI、超音波診断など、主として生体組織の形態情報を画像化する種々の方式のものが実用化されている。また、生体の機能情報を計測して画像化することも種々提案されており、例えば、可視から近赤外の光によって生体代謝物質や血流などの機能情報を計測し、脳活動や各種疾患を簡便に計測する光イメージング装置が提案されている(特許文献1、2)。しかし、特許文献1、2に記載された装置は、空間的に広がる散乱光を利用しているため空間分解能が低く、組織の詳細や細胞内の構造を画像化することは困難である。
そこで、被検体の透過光のうちの非散乱光を選択的に検出して画像化する光干渉トモグラフィ(OCT:Optical Coherence Tomography)装置の開発が進められている。例えば、生体にコヒーレントな光を照射し、被検体の透過光のうちの直進光のみを光ヘテロダイン法で検出して画像化するOCT装置が提案されている(特許文献3)。また、生体内からの反射光を光ヘテロダイン法で検出し、特定の深さの信号のみを選択して画像化するOCT装置が提案されている(特許文献4)。
しかし、計測可能な非散乱光の比率は非常に小さく、さらに安全上の観点から入射光強度が制限されるため、非散乱光で生じるヘテロダイン信号の強度は非常に小さい。このためこれら特許文献3、4に記載されたOCT装置は、高感度の光電子増倍管やアバランシェフオトダイオードが光検出に用いられる。また、光ヘテロダイン法は、照射光の一部を分岐して参照光とし、その参照光と被検体を透過又は反射した信号光との干渉現象を利用して信号光の強度を計測する。一般に、信号光と波長シフト(周波数変調)した参照光を検出器上で重ね合わせ、両者の干渉で生ずるビート信号を計測する。このビート信号強度は、信号光と参照光の強度の積となるため、参照光強度を高くすることによりビート信号を増幅してSNを改善するようにしている。
特開昭57−115232号 特開昭63−275323号 特開平2−110345号 特開平8−86745号
しかしながら、OCT装置により被検体の透過光を計測する場合、被検体の厚みが増すと検出信号の強度が急激に減少する。例えば、約15cm程度の成人頭部を被検体とし、800nm付近の波長の近赤外光を用いて計測する場合、被検体を透過して対向面へ到達する透過光の割合は、検出器面積が1cmの場合、10−15程度に減衰する。つまり、入射光強度が1mWの場合、検出される光の強度は10−18Wになる。これを、光子数に換算すると約60カウント/秒となり、光子の粒子性が支配的になり、計測信号ノイズは統計ゆらぎ優位になる。この場合、まず検出器のショットノイズの影響を抑えるため、参照光レベルを上げる必要があるが、参照光レベルを上げてヘテロダインビート信号の増大を図っても、信号光の統計ゆらぎの影響でSN比は一定以上改善されない。特に、診断に有効な画像を得るためには一定以上のSNが必要であるから、被検体への照射光強度を増すか、又は時間帯域幅を狭くしてゆらぎを小さくする必要がある。
一方、医療応用では照射光強度は安全のために一定レベル以下に制限されているから、検出光量を増すことは困難である。したがって、従来のヘテロダイン方式では時間応答を遅くして信号帯域幅を狭くする必要がある。例えば、参照周波数変調50Hzで光検出に光電子増倍管(像倍率10)を用いた場合、入射光子数が50カウント/秒の光子領域では定常的な電流は80pAで電気的には計測可能である。しかし、50Hzのビート信号を得るためには、回路の時定数を10ms程度以下にする必要がある。この場合、入力光子計数率が回路の応答時間と同程度になり、入射光子の時間ゆらぎのためにビート信号の精度が得られなくなる。そのため、このような低信号領域では、ヘテロダインの変調周波数を入射光子数がその周期内に十分入る程度に低くする必要があるが、変調周波数を低くすると計測応答時間がそれに応じて遅くなるから、臨床応用では生体の時間変化に十分追随できなくなるという問題がある。
このように、従来のヘテロダイン方式では被検体サイズが大きいと、十分な光量の信号光を得ることができないから、有効な診断画像が得られないという問題がある。また、有効な診断画像を得ようとすると、被検体の大きさに応じて変調周波数及び回路時定数を適宜変更する必要があり、装置の構成が複雑で操作が煩雑になるという問題がある。
また、参照光の変調周波数がある程度以上低くなると、光学的、電気的などの外乱ノイズの除去が困難になり精度の確保が難しくなる。また、反射方式のOCT装置の場合、計測深度を深く設定すると反射光の減衰が大きくなるため、光検出器への入射量が著しく減少し、透過方式と同様に信号精度が十分得られなくなるという問題点がある。
本発明は、微弱な光信号を高精度で検出する方法を実現すること、及びその検出方法を用いて計測深度を増大させた生体光計測装置を提供することを課題とする。
上記の課題を解決する本発明の光検出方法の原理は、微弱な光信号の領域における光波は、光波の粒子性のために光子としての振る舞いが支配的になることに着目し、ヘテロダイン方式の高い波面選択性と、光子レベルで光を計測する光子計測法とを融合させたことを特徴とする。つまり、信号光と参照光のヘテロダインビート信号の振幅を光子計測法を用いて計測することにより、微弱ないし極微弱な光信号を高感度で計測することにより、微弱な光信号を高精度で検出可能にした。
具体的には、信号光と参照光とを干渉させたヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、その計測値に基づいて信号光の強度を演算して求めることを特徴とする。これにより、光検出器のショットキーノイズに制限されることなく、かつ計測系の時間応答を低下させずに、微弱光の時間変化を十分な精度で計測することが可能となる。
また、計測対象に照射した照射光の透過光又は反射光を信号光とし、該信号光と前記照射光の周波数を変調した参照光とのヘテロダインビート信号を形成し、該ヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、その計測値に基づいて信号光の強度を演算により求めるようにすることもできる。
これらの場合において、光子数を連続して計数してもよいが、連続して計数しても必ずしも計測精度が向上するものではない。そこで、時間軸方向に離散的に設定された一定時間幅の複数の計測ゲートごとに行うことが好ましい。この計測ゲートは、ヘテロダインビート信号の信号周期を複数を区間に分け、その区間ごとに一定時間のサンプリング時間を設定すればよい。例えば、計測ゲートは、ヘテロダインビート信号の信号周期の3以上の整数分の1とすることができる。
上記の光検出法を用いた本発明の生体光計測装置は、計測対象に照射する光を発生する光源と、該光源の出射光を分岐して周波数変調した参照光を生成する変調手段と、前記計測対象の透過光又は反射光の信号光と前記参照光とを干渉させてなるヘテロダインビート信号を形成する光学手段と、前記ヘテロダインビート信号を入射して光子を電気パルスに変換する光電変換手段と、該光電変換手段で変換された電気パルスを設定時間幅ごとに計数する計数手段と、該計数手段により計数された電気パルス数に基づいて前記信号光の強度を求める演算手段と、該演算手段により求めた前記信号光の強度に基づいて画像を生成する画像生成手段を有して構成することができる。
これによれば、計測対象の厚みのある被検体を透過した微弱な光、あるいは微弱な散乱光ないし非散乱光を高精度で計測することができるから、分解能を向上させた光計測画像を生成することができ、診断に寄与することができる。
この場合において、光電変換手段から出力される電気パルスを検出時刻とともに記憶する記憶手段を備えることにより、事前に計測ゲートを設定することなく、計算機処理のみでビート信号強度を抽出することができる。
なお、本発明の光検出方法を、従来レベルの光信号が得られるOCT装置に適用すれば、信号光の光子の直進成分の選択によりノイズを低減できるから、感度を著しく向上させて、空間分解能を一層向上させることができる。また、十分な強度の光信号を得られる場合は従来の光検出方式を適用し、微弱な光信号を計測する場合に本発明の光検出方法を切り替えて適用することにより、計測対象に応じた適切な分解能の診断画像を得ることができる。
本発明によれば、微弱な光信号を高精度で検出する方法を実現できる。また、本発明の光検出方法を用いることにより、計測深度を増大させた生体光計測装置を実現できる。
以下、本発明を実施の形態に基づいて詳細に説明する。
実施の形態1
図1に、本発明の光検出方法を適用してなる光子計数検出装置の一実施形態のブロック構成図を示す。図示のように、光子計数検出装置は光検出器1を備え、この光検出器1には、計測対象の信号光と参照光とを干渉させたヘテロダインビート信号が入射される。この光検出器1は、入射されるヘテロダインビート信号の光子を検出して電気パルス(以下、単にパルスという。)に変換する光電変換手段であり、例えば高増倍率で高速応答の光電子増倍管を適用する。光検出器1から出力されるパルス列は、光検出器1に入射される光子数又は光子数に相関する物理量である。そのパルス列は波高弁別器2に入力されてショットキーノイズなどの非光子信号が除去される。これにより、波高弁別器2からは、各光子の入力時刻を示す定型のパルス列が出力される。この定型パルス列は、光検出器1に入射する光の強度に比例した時間密度を有するパルス列である。波高弁別器2から出力される定型パルス列は計数器3に入力され、ここにおいて設定された一定時間幅のサンプリングゲートごとにパルス数が計数され、設定時間幅ごとのヒストグラムに変換される。計数器3から出力されるパルス数のヒストグラムはコンピュータにより構成される演算処理装置4に入力される。演算処理装置は、パーソナルコンピュータ等のコンピュータを用いて構成され、演算結果を画像表示する表示モニタを備えている。演算処理装置4は、パルス数のヒストグラムに基づいてヘテロダインビート信号の強度を計算し、これに基づいて信号光の強度を求め、結果を表示モニタに出力表示する。
すなわち、図1の光子計数検出装置は、微弱な光信号の光波は光子としての振る舞いが支配的になることに着目し、ヘテロダイン方式の高い波面選択性と、光子レベルで光を計測する光子計測法とを融合させたことを特徴とする。つまり、信号光を周波数変調した参照光と信号光とを干渉させたヘテロダインビート信号の光子数の時間分布を計測して、ヘテロダインビート信号の振幅を計測することにより、微弱ないし極微弱な光信号を高感度で計測するようにしたのである。
以上は、光検出器1に入射されるヘテロダインビート信号に基づいて、リアルタイムで信号光の強度を検出する場合について説明したが、オフラインで信号光の強度を検出することもできる。この場合は、図1に示すように、光検出器1から出力されるパルス列を、時間判別器5に入力してパルス列の検出時刻を判別し、検出時刻とともにパルス列をメモリ6に記憶するようにする。これによれば、演算処理手段は、メモリ6からパルス列を読み出し、任意に定めた設定時間幅ごとのヒストグラムを求めてテロダインビート信号の強度を抽出することができる。
以上説明したように、図1の実施の形態によれば、光検出器1のショットキーノイズに制限されることなく、かつ計測系の時間応答を低下させずに、微弱光ないし極微弱光の時間変化を十分な精度で計測できる。
実施の形態2
図2に、図1の光子計数検出装置を適用した生体光計測装置の一実施の形態の概念構成図を示す。光源7から射出される周波数foの照射光は、ビームスプリッター8に入射され、設定された割合で分割されて被検体9に照射されるようになっている。この分岐の比率は、例えば被検体9を通過することによる減衰を考慮し、被検体9である生体への許容照射量を超えない光量に設定すれば良好なSNが得られる。そして、被検体9を透過した信号光はハーフミラー10を透過して光子計数検出装置11の光検出器1に入射されるようになっている。一方、ビームスプリッター8により分岐された参照光は光変調器12に入射されて、変調周波数fsによる変調(エネルギーシフト)を受ける。これにより、照射光と参照光は同一光源から出力されながら、fsの周波数差をもつことになる。この周波数シフト、例えば超音波を利用したAOM素子を用いることで実現できる。周波数変調された参照光は、可動ミラー13を介してミラー14に導かれ、さらにミラー15を介してハーフミラー10に導かれ、信号光と重ね合わされて光検出器1に入射されるようになっている。このとき,信号光と参照光との間で干渉が生ずるように、可動ミラー13、ミラー14,15及びハーフミラー10の位置が調整される。
光源7は、可視から赤外の波長領域中の光(例えば、830nm付近)を放射する半導体レーザで構成することができる。なお、照射光の波長は計測物質の光学特性に適した光波長を選択する。例えば、血流計測を目的とした血中ヘモグロビンによる吸収変化の大きい波長として830nmを選択できるが、これに限定されるものではなく、さらには2以上の波長を選択してもよい。
このように構成される本実施の形態の動作を次に説明する。被検体9を通過した信号光の強度をIs(t)、参照光の強度をIr(t)とすると、両者は次式の数1、2により表せる。ここで、Is、Irは波高値、δは両者の位相差である。
(数1)
Is(t)=Is・cos{2πfo・t+δ}
(数2)
Ir(t)=Ir・cos{2π(fo+fs)t}
光検出器1に入射されるヘテロダインビート信号の光強度Ihb(t)は、次式の数3になり、図3(a)に示す波形となる。
(数3)
Ihb(t)=Ir+Is+2√(Ir・Is)・cos2π(fs・t+δ)
ここで、光検出器1の検出効率をαとすると、光検出器1により検出される光子のパルス数Nhb(t)は、次式の数4で表せ、図3(b)に示すパルス列となる。
(数4)
Nhb(t)=α(Ir+Is)+2α√(Ir・Is)・cos2π(fs・t+δ)
このように計測されるパルス列に基づいて、ヘテロダインビート信号の時間変化を検出すれば、簡便に信号光の強度を計測できる。そこで、図3(c)に示すように、変調周波数fsの位相に同期させて時間軸方向に離散させて複数の計測ゲートτi(i=0,1,2)を設定し、その各計測ゲートにおけるパルス数を計数器3で計数する。この計測ゲートτiは、時間幅は同一で、変調周波数fsの位相を基準として、例えば3個の時間幅τ0、τ1、τ2を変調波の周期を元に図3(c)のように設定する。図示のように、各計測ゲートの位相遅れφi(i=0,1,2)の間隔は、2π/3・fsであり、それぞれφ1=0、φ2=2π/3・fs、φ3=4π/3・fsである。位相遅れφiを時間軸tiで表すと、ti=φi/2πfsとなり、t1=0、t2=1/3fs、t3=2/3fsとなる。
このように設定された計測ゲートτiに合わせて計数器3によりパルス列のパルス数を計数することにより、パルス数の時間密度の変化を表すヒストグラムが得られる。各計測ゲートτiにおける計数値Si(i=0,1,2)は、次式の数5になる。
(数5)
Figure 2005114473
この計数値Siに基づいてヘテロダインビートの各周期におけるビート振幅を、ビート各周期でのビート振幅を容易に求めることができる。そして、求めたビート強度に基づいて、次式の数6により信号光の強度Isを求める。
(数6)
Figure 2005114473
演算処理装置4は、計数器3から出力される計数値Siに基づいてオンライン処理により信号光の強度Isを求めてもよいが、演算処理装置4内のメモリにパルス数のヒストグラムを格納しておき、オフラインで信号光の強度Isを求めてもよい。特に、オンライン処理する場合は、専用のソフトを組み込んだDSP(ディジタル・シグナル・プロセッサ)を用いることで、高速処理を並行して行えることから、安価なPC(パーソナル・コンピュータ)を用いて小型安価な装置を構成することができる。
このようにして被検体9を通過する信号光強度の2次元分布を求めて画像化し、あるいは信号光強度の3次元分布を求めて画像化し、その画像を表示モニタに表示する。これにより、被検体9内の例えば特定物質の濃度を計測して、濃度分布の画像を得ることができる。
なお、パルス数の計測は、変調周波数fsの全てのサイクルで行う必要はなく、必要な応答時間に合わせて例えばN周期(N=2,3、・・・)ごとに行ってもよい。また、各周期内の計測ゲートτiの設定数iは、図3(c)の3個より大きく設定することもできる。各周期内の計測ゲートの設定数を多くすれば、ビート振幅計測の精度を向上することができる。ただし、計測ゲートの設定数が多ければ多いほど精度が向上するものではなく、計測信号の光子計測数の時間密度との関係から、最適数を勘案することによって効率のよい計測を実現できる。
また、本実施の形態では、パルス計数を実時間(リアルタイム)で実施しているが、必ずしも実時間でおこなう必要はなく、十分高速な時間計測回路を用いれば各光子パルスごとの入力時刻を計測して計数値を記憶したリストを作成しておくことによって、オフラインで任意の計測ゲートを設定して計測を実行することができる。これにより、入力光子の時間密度に応じた最適な計測ゲート幅や位相を任意に設定できる。また、リスト方式で得たデータを用いれば計測ゲートごとの計数値ヒストグラムを用いることなく、適当なビート波形のモデル関数との最適フィッティングからビート信号の振幅を求めることが可能になる。
ここで、光検出器1に入射される光子の時間密度が高くなると、例えば光電子増倍管のアノード出力において電気パルスが重なり、計数器3においていわゆる数え落としが生ずるおそれがある。また、一般に、計測信号の強度が大きくなるにつれて計数効率αが小さくなる傾向がある。この点、本実施の形態のように、ほぼ一様の時間密度で光子が入力する場合、光子の入力時間間隔は統計的な分布となり、パルス波形から数えおとしを推定できる。そこで、パルスの計測密度に応じて計数率を補正する計算処理を加えることにより、広い計数範囲で精度のよい計測を可能にできる。
また、さらに光量が増加し計数効率が低下した場合は、光源7の強度を低下するか、あるいは光検出器1の入力部に適当な減衰率を有する光学フィルタを挿入することで対処できる。また、装置構成が大型になるが、高い光量時は従来方式のアナログヘテロダイン方式を用いて計測し、光子計測に適した微弱光になった場合に本実施の形態の光子計数検出装置に切える構成にしてもよい。これにより、ダイナミックレンジの大きなヘテロダイン式光計測装置が実現できるため、以下で示す断層画像装置(OCT装置)に適用することが容易になる。
実施の形態3
図4に、本発明の光子計数検出装置と従来のナログヘテロダイン方式の光検出装置を適用した生体光計測装置の実施の形態を示す。本実施の形態は、散乱体中の任意断層における光学特性分布を計測し、これに基づいて3次元画像を得るOCT装置であり、例えば皮膚や眼の網膜の断層画像化に適用できる。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。
光源7は、コヒーレント時間が非常に短くかつ波面の揃ったSLD(Super Luminescence Diode)が用いられている。光源7から射出される照射光は光ファイバ21を介してマイケルソン型の光干渉器(OC:Optical Coupler)22に導かれる。この光干渉器22において光源1からの照射光は被検体9への照射光と参照光に分岐される。被検体9への照射光は光ファイバ23を介してコリメータ24に導かれ、レンズ25を介して被検体9に照射されるようになっている。被検体9に照射された光は、被検体9の深度位置に応じて一部がコヒーレントな反射を受け、その反射光がファイバ23を介して光干渉器22に再度入射する。
一方、光干渉器22で分岐された参照光は、光ファイバ26を介して光変調器12に導かれて周波数変調を受けた後、レンズ27を介して可動ミラー28に照射されるようになっている。可動ミラー28は、参照光に適当な時間遅れを持たせて光干渉器22に戻すためのもので、レンズ27との間隔を調整することができるようになっている。可動ミラー28により反射された参照光は、レンズ27、光変調器12及び光ファイバ26を通って光干渉器22に再度入射する。
ここで、被検体9の計測位置の深さをdとし、被検体中の光速をcとすると、被検体9への照射光に対して2dcの時間遅れを持った信号光が光干渉器22に戻る。この信号光と参照光が光干渉器22で重ね合わされ、光ファイバ29を介して光検出器1に入射する。このとき、光源7のコヒーレント時間が非常に短いため、信号光と参照光の位相が一致する範囲で干渉が起こり、参照光の変調周波数fsでビートが生ずる。また、可動ミラー28の位置を走査することにより、ミラー位置に対応した深さの異なる層からの後方散乱光が干渉しビート信号を発生させる。
光検出器1から出力されるビート信号は、信号線30を介してスイッチ31に導かれる。光スイッチ31は、光検出器1の出力を信号線32を介して波高弁別器2に導くか、信号線33を介して復調器34に導くかを、切り替えるようになっている。波高弁別器2から出力されるビート信号は、計数器3に入力されてパルス数が計数され、その計数値はスイッチ35を介して演算処理装置4に入力される。一方、復調器34に入力されたビート信号は、従来のアナログヘテロダイン方式のとおり、復調器34と低域通過フィルタ(LPF)36により選択されビート信号がロックイン方式でアナログディジタル(A/D)変換器37に出力され、ディジタル信号に変換されたビート信号がスイッチ35を介して演算処理装置4に入力される。
また、光変調器12には、発信器38から変調周波数fsが可変入力されている。また、変調周波数fsは、計数器3及び復調器34に入力され、それぞれパルス数の計測ゲートのタイミング信号又は復調器34の同期信号として用いられる。
このように、本実施の形態は、本発明に係る光子計数検出装置と、従来のアナログヘテロダイン方式の光検出装置の2つの系統を組み合わせてなり、信号光強度に応じて計測モードを切り替える構成となっている。つまり、光検出器1に入射される信号光の光量が十分多い場合は、スイッチ31,35を従来型の復調器34、LPF36、A/D変換器37の系統を介して演算処理装置4に入力される。一方、信号光の強度が所定のレベル以下の場合はスイッチ31,35を波高弁別器2、計数器3の系統を介して演算処理装置4に入力される。演算処理装置4では、それぞれの系統から入力されるビート信号の強度に基づいて信号光の強度を求め、図2の実施の形態と同様に、被検体9の計測対象部位における機能情報を画像化する。
また、本実施の形態によれば、被検体9に照射する照射光を2次元走査し、かつ可動ミラー28を移動して計測深度を走査することにより、被検体9内部の3次元画像を構成できる。
上述した本実施の形態によれば、断層面から表面に到達する可干渉な光の量は深さの増大につれて大きく減少するため、SLDを用いたとしても従来型のアナログヘテロダイン方式の光検出装置では、光検出器のショットキーノイズにより十分なSN比が得られないため、100μm程度の深さしか計測できない。これに対して本実施の形態によれば、本発明に係る光子計数検出装置を組み合わせて設けたことから、微弱な光の計測が可能となるため計測可能な深度を大きくして、OCTの臨床適用範囲を広げることができる。
実施の形態4
図5に、本発明の光子計数検出装置を適用したOCT装置の他の実施の形態の構成図を示す。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。図示のように、光源7から放射された照射光はレンズ41によって平行光に拡大され、ハーフミラー42を介して被検体9に照射されるようになっている。被検体9から反射された信号光はハーフミラー42で反射されて光検出器43に入射されている。一方、ハーフミラー42によって反射されて分岐された参照光は可動ミラーによって入射方向に反射され、ハーフミラー42を透過して、信号光に重ね合わされて光検出器43に入射されるようになっている。可動ミラー44は、常に−定速度Vで参照光の光軸方向に移動走査されており、これによって参照光が一定周波数の周波数変調を受けるようになっている。
ここで、本実施の形態の光検出器43は、信号光を2次元で同時に計測の可能な2次元のイメージインテンシファイアが適用されている。このイメージインテンシファイアは、2次元の光入力を検出する2次元機能を有するフォトダイオードアレイやリニアイメージセンサ等のCCDカメラ等の2次元イメージセンサであり(特許文献4の段落番号0012参照)、2次元の光入力を検出して増倍することができるものである。
光検出器43において、前述した実施の形態と同様、参照光と信号光のうち位相差の等しい光が干渉を起こす。ここで、可動ミラー44は常に一定速度で走査されているため、走査速度に相当する周波数のビートが生じている。そして、可動ミラー44の走査位置が、被検体9の計測深度を決定する。光検出器43から出力される2次元のヘテロダインビート信号光は、レンズ45を介してCCDカメラ46に投影されるようになっている。CCDカメラ46はゲート制御部47によって信号光の撮影が制御される。このゲート制御部47は、図3(c)で説明したとおり、変調周波数の周期の1/M(M=2,3、・・・)ごとに、計測ゲートτiの時間幅に入力される信号光の光子分布を計数する。この計測ゲートτiの時間幅は、CCDカメラ46の各画素への入力光子数が1を超えない程度に設定される。つまり、tw=1/(M・fs)とし、CCDカメラ46の1画素あたりの単位時間当たりの光子入力数をNpとすると、tw×Np≒1に設定する。この結果、各画像フレームでは各画素には1光子以上の入力は無いと仮定できるので、所定の闇値を用いて画像への光子入力数をカウントできる。なお、闇値を複数設けて2個以上の光子入力を識別することにより、さらに高速な計測に対応することも可能である。ここで、変調周波数の周期fsのサイクル内で十分なフレーム数を設定できれば、これを基に、ビート信号強度の2次元画像を計測できる。
本実施の形態によれば、上述した実施の形態の効果に加えて、2次元計測を同時に行えることから、光トポグラフィを高速で行うことができる。また、本実施の形態においても、図4の実施の形態と同様に、信号光の光量に応じて従来型のアナログヘテロダイン方式の光検出装置を併用して、切り替えて計測することができる。
実施の形態5
図6に、本発明の光子計数検出装置を適用したOCT装置の他の実施の形態の構成図を示す。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。図示のように、光源7から出射された照射光(例えば、波長800nmの近赤外レーザ)は光変調器12に入射され、変調周波数fsにより変調を受ける。光変調器12の出力光はレンズ48で並行光になり、2つの近接した光ビームとして変調光と非変調光が発生する。この光ビームを被検体9に照射し、その透過光をコリメータ49,50で絞り込んで光検出器1に入力する。ここで、各コリメータ49、50の径dl、d2は、非散乱光を選択的に透過させる条件としてピンホール間隔R、計測波長λに対して、 R>dl・d2/λの条件を満たすように設定する。これにより、光検出器1上に直進性のよい光のみが到達する。その結果、被検体9の特定線上の光学吸収が計測できる。そのため、これに多方向からの投影象を得るためのt方向及びθ方向の走査を加えれば、X線CT等に用いられている逆投影法により断層画像を構成できる。
光検出器1により検出されたビート信号のパルスは、図1又は図2実施の形態と同様に、波高弁別器2、計数器3及び演算処理装置4の処理により画像化される。
本実施の形態によれば、近接して入射した周波数fsの周波数差を持つ光のビートを高精度で計測できる。また、画像化のための走査法として、本実施の形態のように、被検体9を走査するほか、光学系が被検体9の周囲に移動回転する構成にすることも可能である。さらに、画像化法としてはX線CTに広く用いられているファンビーム方式を用いれば高速な計測が可能になる。 また、本実施の形態では、周波数差のある2本の光ビームをほぼ同軸で近接させてビートを検出しているため、図2,3,4に示した実施の形態のように、強い参照光による信号増倍が利用できないから、本発明の光検出方法の効果が大きい。また、本実施の形態においても、図4の実施の形態と同様に、信号光の光量に応じて従来型のアナログヘテロダイン方式の光検出装置を併用して、切り替えて計測することができる。
本発明の光検出法を適用した一実施の形態の光子計数検出装置の構成図である。 図1の光子計数検出装置を適用した生体光計測装置の一実施の形態の概念構成図である。 図2の実施の形態の動作を説明する各部の波形図である。 本発明の光子計数検出装置を適用した生体光計測装置の他の実施の形態の概念構成図である。 本発明の光子計数検出装置を適用した2次元型の生体光計測装置の実施の形態の概念構成図である。 本発明の光子計数検出装置を適用した生体光計測装置の他の実施の形態の概念構成図である。
符号の説明
1 光検出器
2 波高弁別器
3 計数器
4 演算処理装置
5 時間判別器
6 メモリ
7 光源
8 ビームスプリッター
9 被検体
10 ハーフミラー
11 光子計数検出装置
12 光変調器
13、14、15 ミラー

Claims (5)

  1. 信号光と参照光とを干渉させたヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、該計測値に基づいて信号光の強度を演算して求める光検出方法。
  2. 計測対象に照射した照射光の透過光又は反射光を信号光とし、該信号光と前記照射光の周波数を変調した参照光とを干渉させてヘテロダインビート信号を形成し、該ヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、該計測値に基づいて信号光の強度を演算して求める光検出方法。
  3. 前記光子数又は光子数に相関する物理量の計測は、時間軸方向に離散的に設定された一定時間幅の複数の計測ゲートごとに行うことを特徴とする請求項1又は2に記載の光検出方法。
  4. 計測対象に照射する光を発生する光源と、該光源の出射光を分岐して周波数変調した参照光を生成する変調手段と、前記計測対象の透過光又は反射光の信号光と前記参照光とを干渉させてヘテロダインビート信号を形成する光学手段と、前記ヘテロダインビート信号を入射して光子を電気パルスに変換する光電変換手段と、該光電変換手段で変換された電気パルスを設定時間幅ごとに計数する計数手段と、該計数手段により計数された電気パルス数に基づいて前記信号光の強度を求める演算手段と、該演算手段により求めた前記信号光の強度に基づいて画像を生成する画像生成手段を有してなる生体光計測装置。
  5. 前記光電変換手段から出力される前記電気パルスを検出時刻とともに記憶する記憶手段を有することを特徴とする請求項4に記載の生体光計測装置。
JP2003347102A 2003-10-06 2003-10-06 光検出方法及び生体光計測装置 Pending JP2005114473A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347102A JP2005114473A (ja) 2003-10-06 2003-10-06 光検出方法及び生体光計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347102A JP2005114473A (ja) 2003-10-06 2003-10-06 光検出方法及び生体光計測装置

Publications (1)

Publication Number Publication Date
JP2005114473A true JP2005114473A (ja) 2005-04-28

Family

ID=34539805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347102A Pending JP2005114473A (ja) 2003-10-06 2003-10-06 光検出方法及び生体光計測装置

Country Status (1)

Country Link
JP (1) JP2005114473A (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183106A (ja) * 2006-01-04 2007-07-19 Univ Of Tsukuba ヘテロダインビートプローブ走査プローブ顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
JP2009250983A (ja) * 2008-04-02 2009-10-29 Polytec Gmbh 振動計および、物体の光学的測定方法
JP2010151839A (ja) * 2010-03-23 2010-07-08 Univ Of Tsukuba ヘテロダインビートプローブ走査プローブトンネル顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
JP2012528342A (ja) * 2009-05-28 2012-11-12 アビンガー・インコーポレイテッド バイオイメージングのための光コヒーレンストモグラフィ
JP2014008237A (ja) * 2012-06-29 2014-01-20 Fujifilm Corp 光学シミュレーション装置および方法並びにプログラム
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
WO2019017392A1 (ja) * 2017-07-19 2019-01-24 宏 小川 断層画像撮影装置
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
CN110887793A (zh) * 2018-09-10 2020-03-17 中国石油化工股份有限公司 调制波驱动型精密光电检测器
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US12167867B2 (en) 2018-04-19 2024-12-17 Avinger, Inc. Occlusion-crossing devices

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183106A (ja) * 2006-01-04 2007-07-19 Univ Of Tsukuba ヘテロダインビートプローブ走査プローブ顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
JP2009250983A (ja) * 2008-04-02 2009-10-29 Polytec Gmbh 振動計および、物体の光学的測定方法
US10869685B2 (en) 2008-04-23 2020-12-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US11998311B2 (en) 2009-04-28 2024-06-04 Avinger, Inc. Guidewire positioning catheter
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US12178613B2 (en) 2009-05-28 2024-12-31 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
JP2012528342A (ja) * 2009-05-28 2012-11-12 アビンガー・インコーポレイテッド バイオイメージングのための光コヒーレンストモグラフィ
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US12053260B2 (en) 2009-07-01 2024-08-06 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US12089868B2 (en) 2009-07-01 2024-09-17 Avinger, Inc. Methods of using atherectomy catheter with deflectable distal tip
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
JP2010151839A (ja) * 2010-03-23 2010-07-08 Univ Of Tsukuba ヘテロダインビートプローブ走査プローブトンネル顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US12137931B2 (en) 2011-03-28 2024-11-12 Avinger, Inc. Occlusion-crossing devices
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US12257029B2 (en) 2011-03-28 2025-03-25 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US12257003B2 (en) 2011-11-11 2025-03-25 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US12171407B2 (en) 2012-05-14 2024-12-24 Avinger, Inc. Atherectomy catheter drive assemblies
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
JP2014008237A (ja) * 2012-06-29 2014-01-20 Fujifilm Corp 光学シミュレーション装置および方法並びにプログラム
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11980386B2 (en) 2013-03-15 2024-05-14 Avinger, Inc. Tissue collection device for catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US12279789B2 (en) 2016-06-03 2025-04-22 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US12161360B2 (en) 2016-06-30 2024-12-10 Avinger, Inc. Atherectomy catheter with shaped distal tip
JPWO2019017392A1 (ja) * 2017-07-19 2020-05-28 宏 小川 断層画像撮影装置
WO2019017392A1 (ja) * 2017-07-19 2019-01-24 宏 小川 断層画像撮影装置
US12167867B2 (en) 2018-04-19 2024-12-17 Avinger, Inc. Occlusion-crossing devices
CN110887793A (zh) * 2018-09-10 2020-03-17 中国石油化工股份有限公司 调制波驱动型精密光电检测器
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Similar Documents

Publication Publication Date Title
JP2005114473A (ja) 光検出方法及び生体光計測装置
US7245383B2 (en) Optical image measuring apparatus for obtaining a signal intensity and spatial phase distribution of interference light
US6263227B1 (en) Apparatus for imaging microvascular blood flow
US7548320B2 (en) Optical image measuring apparatus
JP4409332B2 (ja) 光画像計測装置
US8289502B2 (en) Measurement apparatus and measurement method
US6738653B1 (en) Metabolism monitoring of body organs
US8280494B2 (en) Apparatus and method to measure a spectroscopic characteristic in an object
US10194803B2 (en) Control apparatus, measurement apparatus, control method, and storage medium
US20130296715A1 (en) Instrument and method for high-speed perfusion imaging
JP2005515818A (ja) 複数のビームを用いるレーザドップラー灌流イメージング
US20050206906A1 (en) Optical image measuring apparatus
JPWO2007066465A1 (ja) 光画像計測装置
JP2016209201A (ja) 画像生成装置、画像生成方法およびプログラム
KR20130088777A (ko) 피검체 정보취득장치
JP2009293998A (ja) 干渉断層撮影装置
US11543232B2 (en) 3D intraoral camera using frequency modulation
EP2732756B1 (en) Object information acquisition apparatus
JP7327620B2 (ja) 光干渉断層撮像装置、撮像方法、及び、撮像プログラム
WO2021192117A1 (ja) 光干渉断層撮像装置
JPH10246697A (ja) 光学的検査方法及び光学的検査装置
JP2013244343A (ja) 生体情報提示装置および生体情報提示方法
RU91517U1 (ru) Устройство диффузионной оптической томографии
KR101917479B1 (ko) 수술 현미경과 혼합 빔 스캐닝을 이용하여 oct 이미징을 수행하는 방법 및 이를 수행하기 위한 장치들
JP3594878B2 (ja) 測定試料の断面画像測定方法及びそのための装置