[go: up one dir, main page]

JP2005113259A - Cu alloy and method for producing the same - Google Patents

Cu alloy and method for producing the same Download PDF

Info

Publication number
JP2005113259A
JP2005113259A JP2004025066A JP2004025066A JP2005113259A JP 2005113259 A JP2005113259 A JP 2005113259A JP 2004025066 A JP2004025066 A JP 2004025066A JP 2004025066 A JP2004025066 A JP 2004025066A JP 2005113259 A JP2005113259 A JP 2005113259A
Authority
JP
Japan
Prior art keywords
alloy
group
mass
less
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004025066A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maehara
泰裕 前原
Mitsuharu Yonemura
光治 米村
Hisashi Maeda
尚志 前田
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004025066A priority Critical patent/JP2005113259A/en
Priority to PCT/JP2004/001150 priority patent/WO2004070070A1/en
Priority to TW093102536A priority patent/TW200506073A/en
Publication of JP2005113259A publication Critical patent/JP2005113259A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】Be等の環境に有害な元素を含まないCu合金であって、導電率、引張強度および高温強度の各種性能が良好なCu合金の提供。
【解決手段】(1) 質量%で、Cr、TiおよびZrの2種以上を含有し、残部がCuおよび不純物からなり、粒径が10μm以上の析出物および介在物の単位面積当たりの個数が合計で100個/mm以下であるCu合金。Cuの一部に代えて、Ag、P等の1種以上、Mg等を含有してもよい。このCu合金は、溶製、鋳造後、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却することにより得られる。この冷却後、450℃以下の温度域で加工した後、280〜550℃の温度域で10分〜72時間保持する熱処理に供することが望ましく、この加工および熱処理を複数回行うことが更に望ましい。
【選択図】なし

[Problem] To provide a Cu alloy that does not contain elements harmful to the environment such as Be, and has various properties such as conductivity, tensile strength, and high-temperature strength.
[Means for solving] (1) The number per unit area of precipitates and inclusions containing 1% or more of Cr, Ti and Zr by mass%, the balance being Cu and impurities, and the grain size being 10 μm or more. 100 / mm 2 or less is Cu alloy in total. Instead of a part of Cu, one or more of Ag, P and the like, Mg and the like may be contained. This Cu alloy is obtained by melting and casting, and cooling at a cooling rate of 0.5 ° C./s or more at least in the temperature range from the slab temperature immediately after casting to 450 ° C. After this cooling, after processing in a temperature range of 450 ° C. or lower, it is desirable to subject to a heat treatment that is held in a temperature range of 280 to 550 ° C. for 10 minutes to 72 hours, and it is more desirable to perform this processing and heat treatment a plurality of times.
[Selection figure] None

Description

本発明は、Pb、Cd、Be等の環境に悪影響を及ぼす元素を含まないCu合金およびその製造方法に関する。このCu合金の用途としては、電気電子部品、安全工具などが挙げられる。   The present invention relates to a Cu alloy that does not contain elements that adversely affect the environment, such as Pb, Cd, and Be, and a method for producing the same. Applications of this Cu alloy include electrical and electronic parts and safety tools.

電気電子部品としては下記のものが挙げられる。エレクトロニクス分野ではパソコン用コネクタ、半導体ソケット、光ピックアップ、同軸コネクタ、ICチェッカーピンなどが挙げられる。コミュニケーション分野では携帯電話部品(コネクタ、バッテリー端子、アンテナ部品)、海底中継器筐体、交換機用コネクタなどが挙げられる。自動車分野ではリレー、各種スイッチ、マイクロモータ、ダイヤフラム、各種端子類などの種々の電装部品が挙げられる。航空・宇宙分野では航空機用ランディングギアなどが挙げられる。医療・分析機器分野では医療用コネクタ、産業用コネクタなどが挙げられる。家電分野ではエアコン等家電用リレー、ゲーム機用光ピックアップ、カードメディアコネクタなどが挙げられる。   The following are mentioned as an electrical / electronic component. In the electronics field, there are PC connectors, semiconductor sockets, optical pickups, coaxial connectors, IC checker pins, and the like. In the communication field, mobile phone parts (connectors, battery terminals, antenna parts), submarine repeater cases, exchange connectors, and the like can be given. In the automotive field, various electrical components such as relays, various switches, micromotors, diaphragms, various terminals and the like can be mentioned. In the aerospace field, there are aircraft landing gears. In the medical / analytical instrument field, there are medical connectors, industrial connectors, and the like. In the home appliance field, relays for home appliances such as air conditioners, optical pickups for game machines, card media connectors, and the like can be given.

安全工具としては、例えば、弾薬庫や炭坑等、火花から引火して爆発する危険性がある場所で用いられる掘削棒やスパナ、チェーンブロック、ハンマー、ドライバー、ペンチ、ニッパなどの工具がある。   Examples of safety tools include tools such as excavation rods, spanners, chain blocks, hammers, drivers, pliers, and nippers that are used in places where there is a risk of being ignited from sparks and exploding, such as ammunition stores and coal mines.

従来、上記の電気電子部品に用いられるCu合金としては、Beの時効析出による強化を狙ったCu-Be合金が知られている。この合金は、引張強度と導電率の双方が優れるので、ばね用材料などとして広く使用されている。しかしながら、Cu-Be合金の製造工程およびこの合金を各種部品へ加工する工程においてBe酸化物が生成する。   Conventionally, Cu-Be alloys aimed at strengthening by aging precipitation of Be are known as Cu alloys used in the above-mentioned electrical and electronic parts. This alloy is widely used as a spring material and the like because of its excellent tensile strength and electrical conductivity. However, Be oxide is produced in the manufacturing process of Cu-Be alloy and in the process of processing this alloy into various parts.

BeはPb、Cdに次いで環境に有害な物質である。このため、Cu合金の製造、加工においては、Be酸化物の処理工程を設ける必要があり、製造コストが上昇し、電気電子部品のリサイクル過程で問題となる。このように、Cu-Be合金は、環境問題に照らして問題のある材料である。このため、Pb、Cd、Be等の環境に有害な元素を含まず、引張強度と導電率の双方が優れる材料の出現が待望されている。   Be is a substance harmful to the environment next to Pb and Cd. For this reason, in the manufacture and processing of the Cu alloy, it is necessary to provide a treatment process for Be oxide, which increases the manufacturing cost and causes a problem in the recycling process of electric and electronic parts. Thus, Cu-Be alloys are problematic materials in light of environmental issues. For this reason, the appearance of a material that does not contain an element harmful to the environment such as Pb, Cd, and Be and that has both excellent tensile strength and conductivity is expected.

元来、引張強度〔TS(MPa)〕および導電率〔純銅多結晶材の導電率に対する相対値、IACS(%)〕とを同時に高めることは困難である。このため、ユーザーの要求はいずれかの特性を重視するものが多い。このことは、例えば、実際に製造されている伸銅品の各種特性が記載された非特許文献1にも示されるところである。   Originally, it is difficult to simultaneously increase the tensile strength [TS (MPa)] and the conductivity [relative value to the conductivity of pure copper polycrystalline material, IACS (%)]. For this reason, many user requests place importance on one of the characteristics. This is also shown, for example, in Non-Patent Document 1 in which various characteristics of the actually produced copper products are described.

図1は、非特許文献1に記載されたBe等の有害元素を含まないCu合金の引張強度と導電率との関係を整理したものである。図1に示すように、従来のBe等の有害元素を含まないCu合金は、例えば、導電率が60%以上の領域では、その引張強度が250〜650MPa程度と低く、引張強度が700MPa以上の領域では、その導電率が20%未満と低い。このように、従来のCu合金は、引張強度(MPa)および導電率(%)のいずれか一方のみの性能が高いものがほとんどである。しかも、引張強度が1GPa以上という高強度のものは皆無である。   FIG. 1 is a summary of the relationship between the tensile strength and electrical conductivity of Cu alloys described in Non-Patent Document 1 that do not contain harmful elements such as Be. As shown in FIG. 1, a conventional Cu alloy not containing a harmful element such as Be has a tensile strength as low as about 250 to 650 MPa and a tensile strength of 700 MPa or more in a region where the conductivity is 60% or more. In the region, its conductivity is as low as less than 20%. As described above, most conventional Cu alloys have high performance only in one of tensile strength (MPa) and electrical conductivity (%). Moreover, none has a high strength with a tensile strength of 1 GPa or more.

例えば、特許文献1には、コルソン系と呼ばれるNi2Siを析出させたCu合金が提案されている。このコルソン系合金は、その引張強度が750〜820MPaで導電率が40%程度であり、Be等の環境に有害な元素を含まない合金の中では、比較的、引張強度と導電率とのバランスがよいものである。 For example, Patent Document 1 proposes a Cu alloy in which Ni 2 Si, which is called a Corson system, is precipitated. This Corson alloy has a tensile strength of 750 to 820 MPa and an electrical conductivity of about 40%. Among alloys that do not contain elements harmful to the environment such as Be, the balance between tensile strength and electrical conductivity is relatively high. Is good.

しかしながら、この合金は、その高強度化および高導電率化のいずれにも限界があり、以下に示すように製品バリエーションの点で問題が残る。この合金は、Ni2Siの析出による時効硬化性を持つものである。そして、NiおよびSiの含有量を低減して導電率を高めると、引張強度が著しく低下する。一方、Ni2Siの析出量を増すためにNiおよびSiを増量しても、引張強度の上昇に限界があり、しかも導電率が著しく低下する。このため、コルソン系合金は、引張強度が高い領域および導電率が高い領域での引張強度と導電率のバランスが悪くなり、ひいては製品バリエーションが狭くなる。これは、下記の理由による。 However, this alloy has limitations in increasing strength and conductivity, and problems remain in terms of product variations as described below. This alloy has age hardenability due to precipitation of Ni 2 Si. And if Ni and Si content are reduced and electrical conductivity is raised, tensile strength will fall remarkably. On the other hand, even if Ni and Si are increased in order to increase the precipitation amount of Ni 2 Si, there is a limit to the increase in tensile strength, and the conductivity is remarkably decreased. For this reason, the Corson-based alloy has a poor balance between the tensile strength and the electrical conductivity in the region where the tensile strength is high and the region where the electrical conductivity is high, resulting in narrow product variations. This is due to the following reason.

合金の電気抵抗(または、その逆数である導電率)は、電子散乱によって決定されるものであり、合金中に固溶した元素の種類によって大きく変動する。合金中に固溶したNiは、電気抵抗値を著しく上昇させる(導電率を著しく低下させる)ので、上記のコルソン系合金では、Niを増量すると導電率が低下する。一方、Cu合金の引張強度は、時効硬化作用により得られるものである。引張強度は、析出物の量が多いほど、また、析出物が微細に分散するほど、向上する。コルソン系合金の場合、析出粒子はNiSiのみであるため、析出量の面でも、分散状況の面でも、高強度化に限界がある。 The electrical resistance (or the reciprocal conductivity) of the alloy is determined by electron scattering, and varies greatly depending on the type of element dissolved in the alloy. Ni dissolved in the alloy remarkably increases the electrical resistance value (remarkably decreases the electrical conductivity). Therefore, in the above Corson alloy, the electrical conductivity decreases when the Ni content is increased. On the other hand, the tensile strength of Cu alloy is obtained by age hardening. The tensile strength increases as the amount of precipitate increases and as the precipitate is finely dispersed. In the case of a Corson alloy, since the precipitated particles are only Ni 2 Si, there is a limit to increasing the strength in terms of both the amount of precipitation and the state of dispersion.

特許文献2にはCr、Zr等の元素を含み、表面硬さおよび表面粗さを規定したワイヤーボンディング性の良好なCu合金が開示されている。その実施例に記載されるように、このCu合金は、熱間圧延および溶体化処理を前提として製造されるものである。   Patent Document 2 discloses a Cu alloy having a good wire bonding property that includes elements such as Cr and Zr and has specified surface hardness and surface roughness. As described in the examples, this Cu alloy is manufactured on the premise of hot rolling and solution treatment.

しかし、熱間圧延を行うには、熱間割れ防止やスケール除去のために表面手入れの必要があり、歩留が低下する。また、大気中で加熱されることが多いので、Si、Mg、Al等の活性な添加元素が酸化しやすい。このため、生成した粗大な内部酸化物が最終製品の特性劣化を招くなど、問題が多い。さらに、熱間圧延や溶体化処理には、膨大なエネルギーを必要とする。このように、引用文献2に記載のCu合金では、熱間加工および溶体化処理を前提とするので、製造コストの低減および省エネルギー化等の観点からの問題があるとともに、粗大な酸化物の生成等に起因する製品特性(引張強度および導電率のほか、曲げ加工性や疲労特性など)が劣化するという問題を招来する。   However, in order to perform hot rolling, it is necessary to clean the surface for preventing hot cracking and removing scales, and the yield decreases. Moreover, since it is often heated in the atmosphere, active additive elements such as Si, Mg, Al and the like are easily oxidized. For this reason, there are many problems such as the generated coarse internal oxide causes the characteristic deterioration of the final product. Furthermore, enormous energy is required for hot rolling and solution treatment. Thus, since the Cu alloy described in the cited document 2 is premised on hot working and solution treatment, there are problems from the viewpoints of reduction in manufacturing cost and energy saving, and generation of coarse oxides. As a result, product characteristics (such as bending workability and fatigue properties as well as tensile strength and electrical conductivity) deteriorate.

図2、3および4は、それぞれTi-Cr二元系状態図、Cr-Zr二元系状態図およびZr-Ti二元系状態図である。これらの図からも明らかなように、Ti、CrまたはZrを含むCu合金では、凝固後の高温域でTi-Cr、Cr-ZrまたはZr-Ti化合物が生成しやすく、これらの化合物は析出強化に有効なCu4Ti、Cu9 Zr2、ZrCr2、金属Crまたは金属Zrの微細析出を妨げる。換言すれば、熱間圧延等の熱間プロセスを経て製造されたCu合金の場合、析出強化が不十分でかつ、延性や靱性に乏しい材料しか得られない。このことからも、特許文献2に記載されるCu合金には製品特性上の問題を有するのである。 2, 3 and 4 are a Ti—Cr binary phase diagram, a Cr—Zr binary phase diagram and a Zr—Ti binary phase diagram, respectively. As is clear from these figures, in Cu alloys containing Ti, Cr, or Zr, Ti-Cr, Cr-Zr, or Zr-Ti compounds are likely to form at high temperatures after solidification, and these compounds are precipitation strengthened. Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, or metal Zr, which are effective for preventing the fine precipitation of metal. In other words, in the case of a Cu alloy manufactured through a hot process such as hot rolling, only a material having insufficient precipitation strengthening and poor ductility and toughness can be obtained. For this reason as well, the Cu alloy described in Patent Document 2 has a problem in product characteristics.

一方、前記の安全工具用材料としては、工具鋼に匹敵する機械的性質、例えば強度や耐摩耗性が要求されるとともに、爆発の原因となる火花が出ないこと、すなわち耐火花発生性に優れることが要求される。このため、安全工具用材料にも、熱伝導性の高いCu合金、特にBeの時効析出による強化を狙ったCu−Be合金が多用されてきた。前述のように、Cu−Be合金は環境上の問題が多い材料であるが、それにもかかわらず、Cu−Be合金が安全工具用材料として多用されてきたのは次の理由による。   On the other hand, the material for the safety tool is required to have mechanical properties comparable to tool steel, for example, strength and wear resistance, and does not generate a spark that causes an explosion, that is, has excellent spark resistance. Is required. For this reason, Cu alloys having high thermal conductivity, especially Cu-Be alloys aimed at strengthening by aging precipitation of Be, have been frequently used as safety tool materials. As described above, the Cu—Be alloy is a material with many environmental problems, but nevertheless, the Cu—Be alloy has been frequently used as a material for safety tools for the following reason.

図5は、Cu合金の導電率〔IACS(%)〕と熱伝導度〔TC(W/m・K)〕との関係を示す図である。図5に示すように、両者はほぼ1:1の関係にあり、導電率〔IACS(%)〕を高めることは熱伝導度〔TC(W/m・K)〕を高めること、言い換えれば耐火花発生性を高めることに他ならない。工具の使用時に打撃等による急激な力が加わると、火花が発生するのは、衝撃等により発生する熱によって合金中の特定の成分が燃焼するためである。非特許文献2に記載のとおり、鋼は、その熱伝導度がCuのそれの1/5以下と低いため、局所的な温度上昇が発生しやすい。鋼は、Cを含有するので、「C+O→CO」の反応を起こして火花を発生させるのである。事実、Cを含有しない純鉄では火花が発生しないことが知られている。他の金属で火花を発生しやすいのは、TiまたはTi合金である。これは、Tiの熱伝導度がCuのそれの1/20と極めて低く、しかも、「Ti+O→TiO」の反応が起こるためである。なお、図5は、非特許文献1に示されるデータを整理したものである。 FIG. 5 is a diagram showing the relationship between the conductivity [IACS (%)] and the thermal conductivity [TC (W / m · K)] of the Cu alloy. As shown in FIG. 5, both have a 1: 1 relationship, and increasing the conductivity [IACS (%)] increases the thermal conductivity [TC (W / m · K)], in other words, fire resistance. It is none other than enhancing flower development. When a rapid force due to impact or the like is applied during use of the tool, a spark is generated because a specific component in the alloy is burned by heat generated by impact or the like. As described in Non-Patent Document 2, since the thermal conductivity of steel is as low as 1/5 or less of that of Cu, local temperature rise is likely to occur. Since steel contains C, a reaction of “C + O 2 → CO 2 ” is caused to generate a spark. In fact, it is known that pure iron containing no C does not generate sparks. Ti or Ti alloys are more likely to generate sparks with other metals. This is because the thermal conductivity of Ti is extremely low, 1/20 that of Cu, and the reaction of “Ti + O 2 → TiO 2 ” occurs. FIG. 5 is a summary of the data shown in Non-Patent Document 1.

しかし、前述のように導電率〔IACS(%)〕と引張強さ〔TS(MPa)〕とはトレードオフの関係にあり、両者を同時に高めることは極めて困難で、従来にあっては工具鋼並みの高い引張強度を有しながら十分に高い熱伝導度TCを具備するCu合金としては、上記のCu−Be合金以外になかったためである。   However, as described above, electrical conductivity [IACS (%)] and tensile strength [TS (MPa)] are in a trade-off relationship, and it is extremely difficult to increase both at the same time. This is because there was no Cu alloy other than the above-mentioned Cu-Be alloy having a sufficiently high thermal conductivity TC while having a high tensile strength.

特許第2572042号公報Japanese Patent No. 2572042

特許第2714561号公報Japanese Patent No. 2714561 伸銅品データブック、平成9年8月1日、日本伸銅協会発行、328〜355頁Copper Products Data Book, August 1, 1997, published by Japan Copper and Brass Association, pages 328-355 工業加熱、Vol.36、No.3(1999)、(社)日本工業炉協会発行、59頁Industrial Heating, Vol.36, No.3 (1999), published by Japan Industrial Furnace Association, page 59

本発明の第1の目的は、Be等の環境に有害な元素を含まないCu合金であって、製品バリエーションが豊富であり、高温強度および加工性にも優れ、更に、安全工具用材料に要求される性能、即ち、熱伝導度、耐摩耗性および耐火花発生性にも優れるCu合金を提供することにある。本発明の第2の目的は、上記のCu合金の製造方法を提供することである。   The first object of the present invention is a Cu alloy which does not contain elements harmful to the environment such as Be, has a wide variety of products, is excellent in high-temperature strength and workability, and is required for materials for safety tools. The object is to provide a Cu alloy having excellent performance, that is, thermal conductivity, wear resistance, and spark resistance. The second object of the present invention is to provide a method for producing the above Cu alloy.

「製品バリエーションが豊富である」とは、添加量および/または製造条件を微調整することにより、導電率および引張強度のバランスをBe添加Cu合金と同程度またはそれ以上の高いレベルから、従来知られているCu合金と同程度の低いレベルまで調整することができることを意味する。 “Product variation is abundant” means that the balance between conductivity and tensile strength is as high as or higher than that of Be-added Cu alloys by finely adjusting the addition amount and / or manufacturing conditions. This means that it can be adjusted to a level as low as that of Cu alloys.

なお、「導電率および引張強度のバランスがBe添加Cu合金と同程度またはそれ以上の高いレベルである」とは、具体的には下記の(a)式を満足するような状態を意味する。以下、この状態を「引張強度と導電率のバランスが極めて良好な状態」と呼ぶこととする。   “The balance between conductivity and tensile strength is at the same level as or higher than that of the Be-added Cu alloy” specifically means a state satisfying the following expression (a). Hereinafter, this state is referred to as “a state where the balance between tensile strength and electrical conductivity is extremely good”.

TS≧648.06+985.48×exp(−0.0513×IACS) ・・・(a)
但し、(a)式中のTSは引張強度(MPa)を意味し、IACSは導電率(%)を意味する。
TS ≧ 648.06 + 985.48 × exp (−0.0513 × IACS) (a)
However, TS in the formula (a) means tensile strength (MPa), and IACS means conductivity (%).

Cu合金には、上記のような引張強度および導電率の特性のほか、ある程度の高温強度も要求される。これは、例えば、自動車やコンピュータに用いられるコネクタ材料は、200℃以上の環境に曝されることがあるからである。純Cuは、200℃以上に加熱されると室温強度が大幅に低下し、もはや所望のばね特性を維持できないが、上記のCu-Be系合金やコルソン系合金では、400℃まで加熱された後でも室温強度はほとんど低下しない。   In addition to the above-described tensile strength and conductivity characteristics, Cu alloys are also required to have a certain high temperature strength. This is because, for example, connector materials used in automobiles and computers may be exposed to an environment of 200 ° C. or higher. When pure Cu is heated to 200 ° C or higher, the room temperature strength is greatly reduced and the desired spring characteristics can no longer be maintained. However, the above Cu-Be alloys and Corson alloys have been heated to 400 ° C. However, the room temperature strength hardly decreases.

従って、高温強度としては、Cu-Be系合金等と同等のレベルであることを目標とする。具体的には、加熱試験前後での硬度の低下率が50%となる加熱温度を耐熱温度と定義し、耐熱温度が400℃以上であることを高温強度が優れることとする。より好ましい耐熱温度は500℃以上である。   Therefore, the high temperature strength is aimed to be the same level as that of Cu-Be based alloys. Specifically, a heating temperature at which the rate of decrease in hardness before and after the heating test is 50% is defined as a heat resistant temperature, and a heat resistant temperature of 400 ° C. or higher is excellent in high temperature strength. A more preferable heat resistant temperature is 500 ° C. or higher.

曲げ加工性についてもCu-Be系合金等と同等のレベル以上であることを目標とする。具体的には、試験片に様々な曲率半径で90°曲げ試験を実施し、割れが発生しない最小の曲率半径Rを測定し、これと板厚tとの比B(=R/t)により曲げ加工性を評価できる。曲げ加工性の良好な範囲は、引張強度TSが800MPa以下の板材ではB≦2.0を満たすもの、引張強度TSが800MPaを超える板材では下記の(b)式を満たすものとする。   The target for bending workability is to be equal to or higher than that of Cu-Be alloys. Specifically, the test piece is subjected to a 90 ° bending test with various radii of curvature, and the minimum radius of curvature R at which cracking does not occur is measured, and the ratio B (= R / t) of this to the thickness t Bending workability can be evaluated. The range where the bending workability is good is that the plate material having a tensile strength TS of 800 MPa or less satisfies B ≦ 2.0, and the plate material having a tensile strength TS exceeding 800 MPa satisfies the following formula (b).

B≦41.2686−39.4583×exp[−{(TS−615.675)/2358.08}2] ・・・(b) B ≦ 41.2686−39.4583 × exp [− {(TS−615.675) /2358.08} 2 ] (b)

安全工具としてのCu合金には、上記のような引張強度TSおよび導電率IACSの特性のほか、耐摩耗性も要求される。従って、耐摩耗性としても、工具鋼と同等のレベルであることを目標とする。具体的には、室温下における硬さがビッカース硬さで250以上であることを耐摩耗性が優れることとする。   In addition to the properties of tensile strength TS and conductivity IACS as described above, wear resistance is also required for Cu alloys as safety tools. Therefore, it aims at the level equivalent to tool steel also about abrasion resistance. Specifically, the wear resistance is excellent when the hardness at room temperature is 250 or more in terms of Vickers hardness.

本発明は、下記の(1)に示すCu合金および下記の(2)に示すCu合金の製造方法を要旨とする。   The gist of the present invention is a Cu alloy shown in the following (1) and a method for producing a Cu alloy shown in the following (2).

(1)質量%で、Cr:0.1〜4.0%、Ti:0.1〜5.0%およびZr:0.1〜5.0%の中から選ばれた2種以上を含有し、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 (1) By mass%, containing two or more selected from Cr: 0.1-4.0%, Ti: 0.1-5.0% and Zr: 0.1-5.0%, with the balance consisting of Cu and impurities, in the alloy A Cu alloy characterized in that the total number of precipitates and inclusions present in 1 is 100 / mm 2 in total with a particle size of 10 μm or more.

このCu合金は、Cuの一部に代えて、次の(a)、(b)、(c)および(d)の中の少なくとも1つから選んだ1種以上の成分を含むことができる。特に、この合金は結晶粒径が0.01〜35μmであることが望ましい。   This Cu alloy may contain one or more components selected from at least one of the following (a), (b), (c) and (d) instead of a part of Cu. In particular, this alloy desirably has a crystal grain size of 0.01 to 35 μm.

(a)Ag:0.1〜5.0%、
(b)下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下、
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
(c)Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%、
(d)Bi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%。
(a) Ag: 0.1-5.0%
(b) 5.0% or less in total of at least one component selected from at least one of the following groups 1 to 3;
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
(c) 0.001 to 2.0% in total of at least one selected from Mg, Li, Ca and rare earth elements,
(d) One or more selected from Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Hf, Au and Ga in a total amount of 0.001 to 0.3%.

(2)上記の(1)に記載の化学組成を有するCu合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却することを特徴とする、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であるCu合金の製造方法。 (2) The slab obtained by melting and casting the Cu alloy having the chemical composition described in (1) above is at least 0.5 ° C./s in the temperature range from the slab temperature immediately after casting to 450 ° C. A Cu alloy having a total number of particles per unit area of 100 μm / mm 2 or less of precipitates and inclusions present in the alloy having a particle size of 10 μm or more, characterized by cooling at the above cooling rate Manufacturing method.

上記の冷却の後に、450℃以下の温度域での加工、または更に、280〜550℃の温度域で10分〜72時間保持する熱処理を施すことが望ましい。450℃以下の温度域での加工および280〜550℃の温度域で10分〜72時間保持する熱処理は、複数回実施してもよい。また、最後の熱処理の後に、450℃以下の温度域での加工を実施してもよい。   After the above cooling, it is desirable to perform processing in a temperature range of 450 ° C. or lower, or further, heat treatment for holding in a temperature range of 280 to 550 ° C. for 10 minutes to 72 hours. The processing in the temperature range of 450 ° C. or lower and the heat treatment held in the temperature range of 280 to 550 ° C. for 10 minutes to 72 hours may be performed a plurality of times. Further, after the final heat treatment, processing in a temperature range of 450 ° C. or lower may be performed.

本発明において析出物とは、例えばCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zr、金属Ag等であり、介在物とは、例えばCr-Ti化合物、Ti-Zr化合物またはZr-Cr化合物、金属酸化物、金属炭化物、金属窒化物等である。 In the present invention, the precipitate is, for example, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr, metal Ag or the like, and the inclusion is, for example, Cr—Ti compound, Ti—Zr compound or Zr. -Cr compounds, metal oxides, metal carbides, metal nitrides and the like.

以下、本発明の実施の形態について説明する。なお、以下の説明において、各元素の含有量についての「%」は「質量%」を意味する。   Embodiments of the present invention will be described below. In the following description, “%” for the content of each element means “mass%”.

1.本発明のCu合金について
(A) 化学組成について
本発明のCu合金の1つは、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、残部がCuおよび不純物からなる化学組成を有する。
1. About the Cu alloy of the present invention
(A) Chemical composition One of the Cu alloys of the present invention contains two or more selected from Cr: 0.01 to 4.0%, Ti: 0.01 to 5.0% and Zr: 0.01 to 5.0%, and the balance Has a chemical composition consisting of Cu and impurities.

Cr:0.01〜4.0%
Crの含有量が0.01%を下回ると、強度が不十分となるとともに、TiまたはZrを0.01%以上含有させても強度と導電率のバランスがよい合金が得られない。特に、Be添加Cu合金と同程度またはそれ以上の引張強度と導電率のバランスが極めて良好な状態を得るためには、0.1%以上含有させるのが望ましい。一方、Cr含有量が4.0%を超えると、金属Crが粗大に析出して曲げ特性、疲労特性等に悪影響を及ぼす。従って、Cr含有量を0.01〜4.0%と規定した。
Cr: 0.01-4.0%
If the Cr content is less than 0.01%, the strength becomes insufficient, and an alloy having a good balance between strength and electrical conductivity cannot be obtained even if Ti or Zr is contained in an amount of 0.01% or more. In particular, in order to obtain a state in which the balance between tensile strength and electrical conductivity equivalent to or higher than that of the Be-added Cu alloy is extremely good, it is desirable to contain 0.1% or more. On the other hand, if the Cr content exceeds 4.0%, metallic Cr precipitates coarsely and adversely affects bending characteristics, fatigue characteristics, and the like. Therefore, the Cr content is specified as 0.01 to 4.0%.

Ti:0.01〜5.0%
Tiの含有量が0.01%未満の場合、CrまたはZrを0.01%以上含有させても十分な強度が得られない。しかし、その含有量が5.0%を超えると、強度は上昇するものの導電性が劣化する。さらに、鋳造時にTiの偏析を招いて均質な鋳片が得られにくくなって、その後の加工時に割れや欠けが発生しやすくなる。従って、Tiの含有量を0.01〜5.0%とした。なお、Tiは、Crの場合と同様に、引張強度と導電率のバランスが極めて良好な状態を得るためには、0.1%以上含有させるのが望ましい。
Ti: 0.01-5.0%
If the Ti content is less than 0.01%, sufficient strength cannot be obtained even if Cr or Zr is contained in an amount of 0.01% or more. However, if its content exceeds 5.0%, the strength increases but the conductivity deteriorates. Furthermore, Ti segregation is caused during casting, and it becomes difficult to obtain a homogeneous slab, and cracks and chips are likely to occur during subsequent processing. Therefore, the Ti content is set to 0.01 to 5.0%. As in the case of Cr, Ti is desirably contained in an amount of 0.1% or more in order to obtain a state where the balance between tensile strength and electrical conductivity is extremely good.

Zr:0.01〜5.0%
Zrは、0.01%未満ではCrまたはTiを0.01%以上含有させても十分な強度が得られない。しかし、その含有量が5.0%を超えると、強度は上昇するものの導電性が劣化する。しかも、鋳造時にZrの偏析を招いて均質な鋳片が得られにくくなるので、その後の加工時にも割れや欠けが発生しやすくなる。従って、Zrの含有量を0.01〜5.0%とした。なお、Zrは、Crの場合と同様に、引張強度と導電率のバランスが極めて良好な状態を得るためには、0.1%以上含有させるのが望ましい。
Zr: 0.01-5.0%
If Zr is less than 0.01%, sufficient strength cannot be obtained even if Cr or Ti is contained in an amount of 0.01% or more. However, if its content exceeds 5.0%, the strength increases but the conductivity deteriorates. Moreover, since Zr segregation is caused during casting, and it becomes difficult to obtain a homogeneous slab, cracks and chips are likely to occur during subsequent processing. Therefore, the Zr content is set to 0.01 to 5.0%. As in the case of Cr, Zr is preferably contained in an amount of 0.1% or more in order to obtain a state where the balance between tensile strength and electrical conductivity is extremely good.

本発明のCu合金は、上記の化学成分を有し、Cuの一部に代えて、Agを0.1〜5.0%含有するのが望ましい。   The Cu alloy of the present invention preferably has the chemical components described above and contains 0.1 to 5.0% Ag instead of a part of Cu.

AgはCuマトリックスに固溶した状態でも導電性を劣化させにくい元素である。また、金属Agは、微細析出によって強度を上昇させる。Cr、TiおよびZrの中から選ばれた2種以上と同時に添加すると、析出硬化に寄与するCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agといった析出物をより微細に析出させる効果がある。この効果は0.1%以上で顕著となるが、5.0%を超えると飽和して、合金のコスト上昇を招く。従って、Agの含有量は0.1〜5.0%するのが望ましい。更に望ましいのは、2.0%以下である。 Ag is an element that hardly deteriorates conductivity even when dissolved in a Cu matrix. Moreover, metal Ag raises an intensity | strength by fine precipitation. When added simultaneously with two or more selected from Cr, Ti and Zr, finer precipitates such as Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag contribute to precipitation hardening. Has the effect of precipitating. This effect becomes prominent at 0.1% or more, but when it exceeds 5.0%, it becomes saturated and causes an increase in the cost of the alloy. Therefore, the Ag content is desirably 0.1 to 5.0%. More desirable is 2.0% or less.

本発明のCu合金は、耐食性および耐熱性を向上させる目的で、Cuの一部に代えて、下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含有するのが望ましい。   In order to improve corrosion resistance and heat resistance, the Cu alloy of the present invention is replaced with a part of Cu, and one or more components selected from at least one of the following first group to third group It is desirable to contain 5.0% or less in total.

第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively

これらの元素は、いずれも強度と導電率のバランスを維持しつつ、耐食性および耐熱性を向上させる効果を有する元素である。この効果は、それぞれ0.001%以上のPおよびBならびに、それぞれ0.01%以上のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、W、Ge、Zn、Ni、Te、SeおよびSrがそれぞれ含有されているときに発揮される。しかし、これらの含有量が過剰な場合には、導電率が低下する。従って、これらの元素を含有させる場合には、PおよびBは0.001〜0.5%、Sn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGeは 0.01〜5.0%、Zn、Ni、TeおよびSeは0.01〜3.0%とするのが望ましい。特にSnはTi-Snの金属間化合物を微細析出させて高強度化に寄与するので、積極的に利用するのが好ましい。   Any of these elements is an element having an effect of improving corrosion resistance and heat resistance while maintaining a balance between strength and conductivity. This effect is achieved by 0.001% or more of P and B, and 0.01% or more of Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W, Ge, Zn, Ni, Te, Se, respectively. And when Sr is contained. However, when these contents are excessive, the conductivity decreases. Therefore, when these elements are contained, P and B are 0.001 to 0.5%, Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge are 0.01 to 5.0%. Zn, Ni, Te and Se are desirably 0.01 to 3.0%. In particular, since Sn contributes to high strength by finely depositing an intermetallic compound of Ti—Sn, it is preferable to actively use it.

さらに、これらの元素の含有量が上記の範囲内であっても、総量が5.0%を超えると、導電性が劣化する。従って、上記の元素の一種以上を含有させる場合には、その総量を5.0%以下に範囲内に制限する必要がある。望ましい範囲は、0.01〜2.0%である。   Furthermore, even if the content of these elements is within the above range, if the total amount exceeds 5.0%, the conductivity deteriorates. Accordingly, when one or more of the above elements are contained, the total amount must be limited to 5.0% or less. A desirable range is 0.01 to 2.0%.

本発明のCu合金は、高温強度を上げる目的で、Cuの一部に代えて、更にMg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含むのが望ましい。以下、これらを「第4群元素」とも呼ぶ。   The Cu alloy of the present invention contains 0.001 to 2.0% in total of at least one selected from Mg, Li, Ca and rare earth elements instead of a part of Cu for the purpose of increasing the high temperature strength. desirable. Hereinafter, these are also referred to as “fourth group elements”.

Mg、Li、Caおよび希土類元素は、Cuマトリックス中の酸素原子と結びついて微細な酸化物を生成して高温強度を上げる元素である。その効果は、これらの元素の合計含有量が0.001%以上のときに顕著となる。しかし、その含有量が2.0%を超えると、上記の効果が飽和し、しかも導電率を低下させ、曲げ加工性を劣化させる等の問題がある。従って、Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を含有させる場合の合計含有量は0.001〜2.0%が望ましい。なお、希土類元素は、Sc、Yおよびランタノイドを意味し、それぞれの元素の単体を添加してもよく、また、ミッシュメタルを添加してもよい。   Mg, Li, Ca and rare earth elements are elements that combine with oxygen atoms in the Cu matrix to form fine oxides and increase high temperature strength. The effect becomes remarkable when the total content of these elements is 0.001% or more. However, if the content exceeds 2.0%, the above effects are saturated, and there are problems such as a decrease in electrical conductivity and a deterioration in bending workability. Therefore, the total content when one or more selected from Mg, Li, Ca and rare earth elements is contained is preferably 0.001 to 2.0%. In addition, rare earth elements mean Sc, Y, and a lanthanoid, and the simple substance of each element may be added and a misch metal may be added.

本発明のCu合金は、合金の鋳込み時の液相線と固相線の幅(ΔT)を拡げる目的で、Cuの一部に代えて、Bi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含むのが望ましい。以下、これらを「第5群元素」とも呼ぶ。   The Cu alloy of the present invention is replaced with Bi, Tl, Rb, Cs, Sr, Ba, Tc instead of a part of Cu for the purpose of widening the width (ΔT) of the liquidus and solidus at the time of casting of the alloy. It is desirable to contain 0.001 to 0.3% in total of at least one selected from among Re, Os, Rh, In, Pd, Po, Sb, Hf, Au, and Ga. Hereinafter, these are also referred to as “fifth group elements”.

これらの元素は、いずれも固相線を低下させてΔTを拡げる効果がある。この幅ΔTが広がると、鋳込み後から凝固するまでに一定時間を確保できるので、鋳込みが容易になるが、ΔTが広すぎると、低温域での耐力が低下し、凝固末期に割れが生じる、いわゆるハンダ脆性が生じる。このため、ΔTは50〜200℃の範囲とするのが好ましい。   All of these elements have the effect of lowering the solidus and expanding ΔT. If this width ΔT is widened, it is possible to secure a certain time from casting to solidification, so that casting becomes easy, but if ΔT is too wide, the yield strength in the low temperature range is reduced, and cracking occurs at the end of solidification. So-called solder brittleness occurs. For this reason, ΔT is preferably in the range of 50 to 200 ° C.

C、NおよびOは通常不純物として含まれる元素である。これらの元素は合金中の金属元素と炭化物、窒化物および酸化物を形成する。これらの析出物または介在物が微細であれば、後述するCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Ag等の析出物と同様に合金の強化、特に高温強度を上げる作用がある。しかし、これらの元素がそれぞれ1%を超えると粗大析出物または介在物となり、延性を低下させる。よって、それぞれ1%以下に制限することが好ましい。更に好ましいのは、0.1%以下である。 C, N and O are elements usually contained as impurities. These elements form carbides, nitrides and oxides with the metal elements in the alloy. If these precipitates or inclusions are fine, the strengthening of the alloy, particularly the high-temperature strength, as in the case of the precipitates such as Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag described later. There is an action to raise. However, if each of these elements exceeds 1%, coarse precipitates or inclusions are formed, and ductility is reduced. Therefore, it is preferable to limit each to 1% or less. More preferred is 0.1% or less.

(B) 析出物および介在物の合計個数について
本発明のCu合金においては、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることが必要である。
(B) Regarding the total number of precipitates and inclusions In the Cu alloy of the present invention, the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 / It must be 2 mm or less.

本発明のCu合金では、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agを微細に析出させることによって、導電率を低下させることなく強度を向上させることができる。これらは、析出硬化により強度を高める。固溶したCr、TiおよびZrは析出によって減少してCuマトリックスの導電性が純Cuのそれに近づく。 In the Cu alloy of the present invention, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr, or metal Ag can be finely precipitated, whereby the strength can be improved without lowering the conductivity. These increase the strength by precipitation hardening. The dissolved Cr, Ti, and Zr are reduced by precipitation, and the conductivity of the Cu matrix approaches that of pure Cu.

しかし、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zr、金属Ag、Cr-Ti化合物、Ti-Zr化合物またはZr-Cr化合物の粒径が10μm以上と粗大に析出すると、延性が低下して例えばコネクタへの加工時の曲げ加工や打ち抜き時に割れや欠けが発生し易くなる。また、使用時に疲労特性や耐衝撃特性に悪影響を及ぼすことがある。特に、凝固後の冷却時に粗大なTi−Cr化合物が生成すると、その後の加工工程で割れや欠けが生じやすくなる。また、時効処理工程で硬さが増加しすぎるので、Cu4Ti、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agの微細析出を阻害し、Cu合金の高強度化ができなくなる。このような問題は、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/ mm未満の場合に顕著となる。 However, if the grain size of Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr, metal Ag, Cr-Ti compound, Ti-Zr compound or Zr-Cr compound precipitates coarsely as 10μm or more, ductility For example, cracks and chips are likely to occur during bending or punching when processing the connector. In addition, fatigue characteristics and impact resistance characteristics may be adversely affected during use. In particular, when a coarse Ti—Cr compound is produced during cooling after solidification, cracks and chips are likely to occur in subsequent processing steps. In addition, since the hardness increases too much in the aging treatment process, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag is prevented from being finely precipitated, making it impossible to increase the strength of the Cu alloy. . Such a problem becomes prominent when the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is less than 100 / mm 2 .

このため、本発明では、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/ mm以下であることを必須要件として規定した。望ましい個数は、50個/mm以下であり、更に望ましいのは、10個/mm以下である。なお、これらの粒径および個数は、実施例に示す方法により求めることができる。 For this reason, in the present invention, it is stipulated as an essential requirement that the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less in total. The desirable number is 50 pieces / mm 2 or less, and more desirably 10 pieces / mm 2 or less. In addition, these particle sizes and numbers can be obtained by the method shown in the examples.

(C) 結晶粒径について
Cu合金の結晶粒径を細かくすると、高強度化に有利であるとともに、延性も向上して曲げ加工性などが向上する。しかし、結晶粒径が0.01μmを下回ると高温強度が低下しやすくなり、35μmを超えると延性が低下する。従って、結晶粒径は0.01〜35μmであるのが望ましい。
(C) About crystal grain size
If the crystal grain size of the Cu alloy is made fine, it is advantageous for increasing the strength and also improves the ductility and the bending workability. However, when the crystal grain size is less than 0.01 μm, the high-temperature strength tends to decrease, and when it exceeds 35 μm, the ductility decreases. Therefore, the crystal grain size is desirably 0.01 to 35 μm.

2.本発明のCu合金の製造方法について
本発明のCu合金においては、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agの微細析出を妨げるCr-Ti化合物、Ti-Zr化合物、Zr-Cr化合物等の介在物が鋳片の凝固直後の時点で生成しやすい。このような介在物は、仮に、鋳造後に溶体化処理を施し、この溶体化温度を上げても固溶化させるのは困難である。高温での溶体化処理は、介在物の凝集、粗大化を招くのみである。
2. About the manufacturing method of the Cu alloy of the present invention In the Cu alloy of the present invention, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or Cr-Ti compound that prevents fine precipitation of metal Ag, Ti-Zr Inclusions such as compounds and Zr—Cr compounds are likely to form immediately after solidification of the slab. Even if such inclusions are subjected to a solution treatment after casting and raising the solution temperature, it is difficult to make them solid. The solution treatment at a high temperature only causes aggregation and coarsening of inclusions.

そこで、本発明のCu合金の製造方法においては、上記の化学組成を有するCu合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において、0.5℃/s以上の冷却速度で冷却することによって、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/ mm以下であることとした。 Therefore, in the method for producing a Cu alloy of the present invention, a slab obtained by melting and casting a Cu alloy having the above chemical composition is at least in a temperature range from a slab temperature immediately after casting to 450 ° C. By cooling at a cooling rate of 0.5 ° C./s or more, the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less. It was decided.

この冷却後には、450℃以下の温度域で加工、または、この加工の後に280〜550℃の温度域で10分〜72時間保持する熱処理に供することが望ましい。450℃以下の温度域での加工および280〜550℃の温度域で10分〜72時間保持する熱処理を複数回行うことが更に望ましい。最後の熱処理の後に、上記の加工を施してもよい。   After this cooling, it is desirable to process in a temperature range of 450 ° C. or lower, or to be subjected to heat treatment for 10 minutes to 72 hours in the temperature range of 280 to 550 ° C. after this processing. It is further desirable to perform a plurality of times of processing in a temperature range of 450 ° C. or lower and heat treatment holding in a temperature range of 280 to 550 ° C. for 10 minutes to 72 hours. You may perform said process after the last heat processing.

(A) 少なくとも鋳造直後の鋳片温度から450℃までの温度域における冷却速度:0.5℃/s以上
Cr-Ti化合物、Ti-Zr化合物、Zr-Cr化合物等の介在物、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agは280℃以上の温度域で生成する。特に、鋳造直後の鋳片温度から450℃までの温度域における冷却速度が遅いと、Cr-Ti化合物、Ti-Zr化合物、Zr-Cr化合物等の介在物が粗大に生成し、その粒径が10μm以上、更には数百μmに達することがある。また、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agも10μm以上に粗大化する。このような粗大な析出物および介在物が生成した状態では、その後の加工時に割れや折れが発生する恐れがあるだけでなく、時効工程でのCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agの析出硬化作用が損なわれ、合金を高強度化できなくなる。従って、少なくともこの温度域においては、0.5℃/s以上の冷却速度で鋳片を冷却する必要がある。冷却速度は大きい程よく、好ましい冷却速度は、2℃/s以上であり、さらに好ましいのは10℃/s以上である。
(A) Cooling rate at least in the temperature range from slab temperature immediately after casting to 450 ℃: 0.5 ℃ / s or more
Inclusions such as Cr—Ti compound, Ti—Zr compound, Zr—Cr compound, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr, or metal Ag are formed in a temperature range of 280 ° C. or higher. In particular, when the cooling rate in the temperature range from slab temperature immediately after casting to 450 ° C. is slow, inclusions such as Cr—Ti compound, Ti—Zr compound, Zr—Cr compound are generated coarsely, and the particle size is reduced. It may reach 10 μm or more and even several hundred μm. Further, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag is also coarsened to 10 μm or more. In such a state where coarse precipitates and inclusions are generated, there is a possibility that cracks and breaks may occur during subsequent processing, as well as Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal in the aging process The precipitation hardening effect of Cr, metal Zr or metal Ag is impaired, and the strength of the alloy cannot be increased. Therefore, at least in this temperature range, it is necessary to cool the slab at a cooling rate of 0.5 ° C./s or more. The higher the cooling rate, the better. The preferable cooling rate is 2 ° C./s or more, and more preferably 10 ° C./s or more.

(B) 冷却後の加工温度:450℃以下の温度域
本発明のCu合金の製造方法においては、鋳造して得た鋳片は、所定の条件で冷却された後、熱間圧延や溶体化処理等の熱間プロセスを経ることなく、加工と時効熱処理の組み合わせのみによって最終製品に至る。
(B) Processing temperature after cooling: temperature range of 450 ° C. or less In the Cu alloy production method of the present invention, the cast slab is cooled under predetermined conditions and then hot rolled or solutionized. Without passing through a hot process such as processing, the final product is reached only by a combination of processing and aging heat treatment.

圧延、線引き等の加工は、450℃以下であればよい。例えば、連続鋳造を採用する場合には、凝固後の冷却過程でこれらの加工を行ってもよい。450℃を超える温度域で加工を行うと、加工時にCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agが粗大に析出し、最終製品の延性、耐衝撃性、疲労特性を低下させる。また、加工時に上記の析出物が粗大に析出すると、時効処理でCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agを微細に析出させることができなくなり、Cu合金の高強度化が不十分となる。 Processing such as rolling and drawing may be performed at 450 ° C. or lower. For example, when continuous casting is employed, these processes may be performed in the cooling process after solidification. When processing at a temperature exceeding 450 ° C, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag precipitates coarsely during processing, resulting in ductility, impact resistance and fatigue of the final product. Degrading properties. Also, if the above precipitates are coarsely deposited during processing, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag cannot be finely precipitated by aging treatment, and the Cu alloy Strengthening is insufficient.

加工温度は、低いほど加工時の転位密度が上昇するので、引き続いて行う時効処理でCu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Ag等をより微細に析出させることができる。このため、より高い強度をCu合金に与えることができる。従って、好ましい加工温度は、250℃以下であり、より好ましいのは50℃以下である。25℃以下でもよい。 The lower the processing temperature, the higher the dislocation density during processing, so that Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag, etc. can be precipitated more finely in the subsequent aging treatment. Can do. For this reason, higher strength can be imparted to the Cu alloy. Therefore, a preferable processing temperature is 250 ° C. or lower, and more preferably 50 ° C. or lower. It may be 25 ° C or lower.

なお、上記の温度域での加工は、その加工率(断面減少率)を20%以上として行うことが望ましい。より好ましいのは50%以上である。このような加工率での加工を行えば、それによって導入された転位が時効処理時に析出核となるので、析出物の微細化をもたらし、また、析出に要する時間を短縮させ、導電性に有害な固溶元素の低減を早期に実現できる。   Note that the processing in the above temperature range is desirably performed at a processing rate (cross-sectional reduction rate) of 20% or more. More preferred is 50% or more. If processing is performed at such a processing rate, the dislocations introduced thereby become precipitation nuclei during the aging treatment, resulting in finer precipitates and shortening the time required for precipitation, which is harmful to conductivity. Reduction of solid solution elements can be realized at an early stage.

(C) 時効処理条件:280〜550℃の温度域で10分〜72時間保持する
時効処理は、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agを析出させてCu合金を高強度化し、あわせて導電性に害を及ぼす固溶元素(Cr、Ti等)を低減して導電率を向上させるのに有効である。しかし、その処理温度が280℃未満の場合、析出元素の拡散に長時間を要し、生産性を低下させる。一方、処理温度が550℃を超えると、析出物が粗大になりすぎて、析出硬化作用による高強度化ができないばかりか、延性、耐衝撃性および疲労特性が低下する。このため、時効処理を280〜550℃の温度域で行うことが望ましい。望ましい時効処理温度は300〜450℃であり、更に望ましいのは、350〜400℃である。
(C) Aging treatment conditions: Hold for 10 minutes to 72 hours in a temperature range of 280 to 550 ° C. Aging treatment is performed by precipitating Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or metal Ag. It is effective in increasing the strength of Cu alloy and improving the conductivity by reducing solid solution elements (Cr, Ti, etc.) that adversely affect the conductivity. However, when the treatment temperature is lower than 280 ° C., it takes a long time to diffuse the precipitated elements, and the productivity is lowered. On the other hand, when the treatment temperature exceeds 550 ° C., the precipitate becomes too coarse, and not only the strength cannot be increased by the precipitation hardening action, but also the ductility, impact resistance and fatigue characteristics are lowered. For this reason, it is desirable to perform an aging treatment in the temperature range of 280-550 degreeC. A desirable aging treatment temperature is 300 to 450 ° C, and more desirably 350 to 400 ° C.

時効処理時間が10分未満の場合、時効処理温度を高く設定しても所望の析出量を確保できず、72時間を超えると処理費用がかさむ。従って、280〜550℃の温度域で時効処理を10分〜72時間の範囲で行うのが望ましい。典型的な時効処理時間は、1〜5時間である。   If the aging treatment time is less than 10 minutes, a desired precipitation amount cannot be secured even if the aging treatment temperature is set high, and if it exceeds 72 hours, the treatment cost increases. Therefore, it is desirable to perform the aging treatment in the temperature range of 280 to 550 ° C. for 10 minutes to 72 hours. A typical aging time is 1 to 5 hours.

なお、時効処理は、表面の酸化によるスケールの発生を防ぐために、還元性雰囲気中、不活性ガス雰囲気中または20Pa以下の真空中で行うのがよい。このような雰囲気下での処理によって優れたメッキ性も確保される。   The aging treatment is preferably performed in a reducing atmosphere, in an inert gas atmosphere, or in a vacuum of 20 Pa or less in order to prevent generation of scale due to surface oxidation. Excellent plating properties are also ensured by the treatment under such an atmosphere.

上記の加工と時効処理は、必要に応じて、繰り返して行ってもよい。繰り返し行えば、1回の処理(加工および時効処理)で行うよりも、短い時間で所望の析出量を得ることができ、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Agをより微細に析出させることができる。このとき、例えば、処理を2回繰り返して行う場合には、1回目の時効処理温度よりも2回目の時効処理温度を若干低くする(20〜70℃低くする)のがよい。このような熱処理を行うのは、2回目の時効処理温度の方が高い場合、1回目の時効処理の際に生成した析出物が粗大化するからである。3回目以降の時効処理においても、上記と同様に、その前に行った時効処理温度より低くするのが望ましい。 The above processing and aging treatment may be repeated as necessary. If repeated, a desired amount of precipitation can be obtained in a shorter time than in a single treatment (processing and aging treatment), and Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 , metal Cr, metal Zr or Metal Ag can be deposited more finely. At this time, for example, when the treatment is repeated twice, the second aging treatment temperature is preferably slightly lower (20-70 ° C.) than the first aging treatment temperature. The reason why such a heat treatment is performed is that when the temperature of the second aging treatment is higher, the precipitate generated during the first aging treatment becomes coarse. In the third and subsequent aging treatments, it is desirable that the temperature is lower than the aging treatment temperature performed before that, as described above.

(D) その他
本発明のCu合金の製造方法において、上記の製造条件以外の条件、例えば溶解、鋳造等の条件については特に限定はないが、例えば、下記のように行えばよい。
(D) Others In the method for producing a Cu alloy of the present invention, conditions other than the above production conditions, for example, conditions such as melting and casting are not particularly limited, but may be performed as follows, for example.

溶解は、非酸化性または還元性の雰囲気下で行うのがよい。これは、溶銅中の固溶酸素が多くなると後工程で、水蒸気が生成してブリスターが発生する、いわゆる水素病などが起こるからである。また、酸化しやすい固溶元素、例えば、Ti、Cr等の粗大酸化物が生成し、これが最終製品まで残存すると、延性や疲労特性を著しく低下させる。   The dissolution is preferably performed in a non-oxidizing or reducing atmosphere. This is because when the amount of dissolved oxygen in the molten copper increases, so-called hydrogen disease, in which water vapor is generated and blisters are generated in the subsequent process, occurs. In addition, solid oxide elements that easily oxidize, for example, coarse oxides such as Ti and Cr, are generated, and when these remain in the final product, the ductility and fatigue characteristics are significantly reduced.

鋳片を得る方法は、生産性や凝固速度の点で連続鋳造が好ましいが、上述の条件を満たす方法であれば、他の方法、例えばインゴット法でも構わない。また、好ましい鋳込温度は、1250℃以上である。さらに好ましいのは1350℃以上である。この温度であれば、Cr、TiおよびZrを十分溶解させることができ、またCr-Ti化合物、Ti-Zr化合物、Zr-Cr化合物等の介在物、Cu4Ti 、Cu9Zr2、ZrCr2、金属Cr、金属Zrまたは金属Ag 等を生成させないからである。 As a method for obtaining a slab, continuous casting is preferable in terms of productivity and solidification speed, but other methods such as an ingot method may be used as long as the method satisfies the above-described conditions. A preferable casting temperature is 1250 ° C. or higher. More preferred is 1350 ° C. or higher. At this temperature, Cr, Ti and Zr can be sufficiently dissolved, and inclusions such as Cr-Ti compound, Ti-Zr compound, Zr-Cr compound, Cu 4 Ti, Cu 9 Zr 2 , ZrCr 2 This is because metal Cr, metal Zr, metal Ag or the like is not generated.

連続鋳造により鋳片を得る場合には、銅合金で通常行われる黒鉛モールドを用いる方法が潤滑性の観点から推奨される。モールド材質としては主要な合金元素であるTi、CrまたはZrと反応しにくい耐火物、例えばジルコニアを用いてもよい。   When obtaining a slab by continuous casting, a method using a graphite mold usually performed with a copper alloy is recommended from the viewpoint of lubricity. As the mold material, a refractory material that does not easily react with Ti, Cr, or Zr, which are main alloy elements, such as zirconia, may be used.

表1〜4に示す化学組成を有するCu合金を高周波溶解炉にて真空溶製し、ジルコニア製の鋳型に深さ15mmまで鋳込み、鋳片を得た。希土類元素は、各元素の単体またはミッシュメタルを添加した。   Cu alloys having chemical compositions shown in Tables 1 to 4 were vacuum-melted in a high-frequency melting furnace and cast into a zirconia mold to a depth of 15 mm to obtain a cast piece. As the rare earth element, a simple substance of each element or misch metal was added.

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

得られた鋳片を、鋳造直後の温度(鋳型から取り出した直後の温度)である900℃から450℃までの温度域において噴霧冷却により所定の冷却速度で冷却した後、切断と切削により厚さ10mm×幅80mm×長さ150mmの圧延素材を作製した。比較のために一部の圧延素材については、950℃で溶体化熱処理を行った。これらの圧延素材に室温にて圧下率80%の圧延(1回目圧延)を施して厚さ2mmの板材とし、所定の条件で時効処理(1回目時効)を施して供試材を作製した。一部の供試材については、更に、室温にて圧下率95%の圧延(2回目圧延)を行って厚さ0.1mmとし、所定の条件で時効処理(2回目時効)した。これらの製造条件を表5〜9に示す。なお、表5〜9において上記の溶体化処理を行った例は、比較例6、8、10、12、14および16である。   The obtained slab is cooled at a predetermined cooling rate by spray cooling in the temperature range from 900 ° C. to 450 ° C., which is the temperature immediately after casting (the temperature immediately after removal from the mold), and then the thickness is obtained by cutting and cutting. A rolled material of 10 mm × width 80 mm × length 150 mm was produced. For comparison, some of the rolling materials were subjected to solution heat treatment at 950 ° C. These rolled materials were subjected to rolling at a reduction rate of 80% at room temperature (first rolling) to obtain a plate material having a thickness of 2 mm, and subjected to aging treatment (first aging) under predetermined conditions to prepare test materials. Some test materials were further rolled at a reduction rate of 95% at room temperature (second rolling) to a thickness of 0.1 mm, and subjected to aging treatment (second aging) under predetermined conditions. These production conditions are shown in Tables 5-9. In Tables 5 to 9, examples in which the above solution treatment was performed are Comparative Examples 6, 8, 10, 12, 14, and 16.

このように作製した供試材について、下記の手法により、析出物および介在物の粒径および単位面積当たりの合計個数、引張強度、導電率、耐熱温度および曲げ加工性を求めた。これらの結果を表5〜9に併記する。   With respect to the test material thus prepared, the particle size of precipitates and inclusions, the total number per unit area, tensile strength, electrical conductivity, heat resistant temperature and bending workability were determined by the following method. These results are also shown in Tables 5-9.

<析出物および介在物の合計個数>
各供試材の圧延面に垂直で、且つ圧延方向と平行な断面を鏡面研磨し、アンモニアおよび過酸化水素水を体積比9:1で混合した腐食液でエッチングした後、光学顕微鏡により100倍の倍率で1mm×1mmの視野を観察した。その後、析出物および介在物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)を測定して得た値を粒径と定義する。更に、粒径が10μm以上の析出物および介在物のうち、1mm×1mm視野の枠線を交差するものを1/2個、枠線内にあるものを1個として合計個数n1算出し、任意に選んだ10視野における個数N(=n1+n2+・・・+n10)の平均値(N/10)をその試料の析出物および介在物の合計個数と定義する。
<Total number of precipitates and inclusions>
A cross section perpendicular to the rolling surface of each specimen and parallel to the rolling direction is mirror-polished, etched with a corrosive solution in which ammonia and hydrogen peroxide are mixed at a volume ratio of 9: 1, and then 100 times with an optical microscope. A 1 mm × 1 mm field of view was observed at a magnification of. Thereafter, the value obtained by measuring the major axis of the precipitates and inclusions (the length of the straight line that can be drawn the longest in the grain under conditions that do not contact the grain boundary in the middle) is defined as the grain size. Furthermore, among the precipitates and inclusions having a particle size of 10 μm or more, the total number n 1 is calculated by assuming that one half crosses the frame of the 1 mm × 1 mm field and one within the frame, The average value (N / 10) of the number N (= n 1 + n 2 +... + N 10 ) in 10 arbitrarily selected visual fields is defined as the total number of precipitates and inclusions in the sample.

<引張強度>
上記の供試材から引張方向と圧延方向が平行になるようにJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241に規定される方法に従い、室温(25℃)での引張強度〔TS(MPa)〕を求めた。
<Tensile strength>
Take the 13B test piece specified in JIS Z 2201 from the above specimen so that the tensile direction and the rolling direction are parallel, and pull at room temperature (25 ° C) according to the method specified in JIS Z 2241. The strength [TS (MPa)] was determined.

<導電率>
上記の供試材から長手方向と圧延方向が平行になるように幅10mm×長さ60mmの試験片を採取し、試験片の長手方向に電流を流して試験片の両端の電位差を測定し、4端子法により電気抵抗を求めた。続いてマイクロメータで計測した試験片の体積から、単位体積当たりの電気抵抗(抵抗率)を算出し、多結晶純銅を焼鈍した標準試料の抵抗率1.72μΩ・cmとの比から導電率〔IACS(%)〕を求めた。
<Conductivity>
Take a test piece of width 10mm × length 60mm so that the longitudinal direction and the rolling direction are parallel from the above specimen, measure the potential difference between both ends of the test piece by flowing current in the longitudinal direction of the test piece, The electrical resistance was determined by the 4-terminal method. Subsequently, the electrical resistance (resistivity) per unit volume is calculated from the volume of the test piece measured with a micrometer, and the conductivity [IACS is calculated from the ratio of the resistivity of 1.72 μΩ · cm of the standard sample annealed with polycrystalline pure copper. (%)].

<耐熱温度>
上記の供試材から幅10mm×長さ10mmの試験片を採取し、圧延面に垂直で、且つ圧延方向と平行な断面を鏡面研磨し、正四角錐のダイヤモンド圧子を荷重50gで試験片に押し込み、荷重とくぼみの表面積との比から定義されるビッカース硬度を測定した。更に、これを所定の温度で2時間加熱し、室温まで冷却した後に、再びビッカース硬度を測定し、その硬度が加熱前の硬度の50%になる加熱温度を耐熱温度とした。
<Heat-resistant temperature>
Take a test piece of width 10mm x length 10mm from the above test material, mirror-polish the cross section perpendicular to the rolling surface and parallel to the rolling direction, and press the diamond pyramid indenter into the test piece with a load of 50g The Vickers hardness defined by the ratio between the load and the surface area of the indentation was measured. Furthermore, after heating this at a predetermined temperature for 2 hours and cooling to room temperature, the Vickers hardness was measured again, and the heating temperature at which the hardness was 50% of the hardness before heating was defined as the heat resistant temperature.

<曲げ加工性>
上記の供試材から長手方向と圧延方向が平行になるように、幅10mm×長さ60mmの試験片を複数採取し、曲げ部の曲率半径(内径)を変えて、90°曲げ試験を実施した。光学顕微鏡を用いて、試験後の試験片の曲げ部を外径側から観察した。そして、割れが発生しない最小の曲率半径をRとし、試験片の厚さtとの比B(=R/t)を求めた。
<Bending workability>
Samples of width 10mm x length 60mm are sampled from the above specimens so that the longitudinal direction and the rolling direction are parallel, and the bending radius of curvature (inner diameter) is changed and a 90 ° bending test is performed. did. The bending part of the test piece after the test was observed from the outer diameter side using an optical microscope. Then, the minimum curvature radius at which no cracks occur was R, and a ratio B (= R / t) with the thickness t of the test piece was obtained.

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

曲げ加工性の欄の「評価」は、引張強度TSが800MPa以下の板材ではB≦2.0を満たすもの、引張強度TSが800MPaを超える板材では下記の(b)式を満たす場合を「○」とし、これらを満たさない場合を「×」とした。   “Evaluation” in the column of bending workability is “○” when a plate material with a tensile strength TS of 800 MPa or less satisfies B ≦ 2.0, and a plate material with a tensile strength TS of over 800 MPa satisfies the following formula (b): The case where these were not satisfied was designated as “x”.

B≦41.2686−39.4583×exp[−{(TS−615.675)/2358.08}2] ・・・(b) B ≦ 41.2686−39.4583 × exp [− {(TS−615.675) /2358.08} 2 ] (b)

図6は、各実施例の引張強度と導電率との関係を示す図である。なお、図6には、実施例1および2における本発明例の値をプロットしてある。   FIG. 6 is a diagram showing the relationship between the tensile strength and the electrical conductivity of each example. In FIG. 6, the values of the examples of the present invention in Examples 1 and 2 are plotted.

表5〜9および図6に示すように、本発明例1〜141では、化学組成、ならびに析出物および介在物の合計個数が本発明で規定される範囲にあるので、引張強度および導電率が前述の(a)式を満たしていた。従って、これらの合金は、導電率および引張強度のバランスがBe添加Cu合金と同程度またはそれ以上の高いレベルにあるといえる。また、本発明例121〜131は、同一成分系で添加量および/または製造条件を微調整した例である。これらの合金については図6中の「△」で示すような引張強度と導電率との関係を有し、従来来知られているCu合金の特性を持ったCu合金であるといえる。このように、本発明のCu合金は、引張強度および導電率のバリエーションが豊富であることが分かる。また、耐熱温度においても、500℃といずれも高い水準が維持されていた。さらに、曲げ特性も良好であった。   As shown in Tables 5 to 9 and FIG. 6, in Examples 1-141 of the present invention, the chemical composition and the total number of precipitates and inclusions are within the range defined by the present invention. The above equation (a) was satisfied. Therefore, it can be said that these alloys have a balance between electrical conductivity and tensile strength at the same level as or higher than that of the Be-added Cu alloy. Inventive Examples 121-131 are examples in which the addition amount and / or production conditions were finely adjusted in the same component system. These alloys have a relationship between tensile strength and electrical conductivity as indicated by “Δ” in FIG. 6 and can be said to be Cu alloys having conventionally known Cu alloy characteristics. Thus, it can be seen that the Cu alloy of the present invention is rich in variations in tensile strength and electrical conductivity. In addition, even at the heat resistant temperature, a high level of 500 ° C. was maintained. Furthermore, the bending characteristics were also good.

一方、比較例1〜4および17〜23は、Cr、TiおよびZrのいずれかの含有量が本発明で規定される範囲を外れ、曲げ加工性に劣っていた。特に、比較例17〜23は、第1群〜第5群の元素の合計含有量も本発明で規定される範囲を外れるので、導電率が低かった。   On the other hand, Comparative Examples 1 to 4 and 17 to 23 were inferior in bending workability because the content of any one of Cr, Ti and Zr was outside the range defined in the present invention. In particular, Comparative Examples 17 to 23 had low electrical conductivity because the total content of the elements of the first group to the fifth group was also outside the range defined by the present invention.

比較例5〜16はいずれも本発明で規定される化学組成を有する合金の例である。しかし、5、7、9、11、13および15は鋳込み後の冷却速度が遅く、また、比較例6、8、10、12、14および16は溶体化処理を行ったために、いずれも析出物および介在物の合計個数が本発明で規定される範囲を上回り、曲げ加工性に劣っていた。更に、溶体化処理を実施した比較例は、同じ化学組成の本発明の合金(本発明例の5、21、37、39、49および85と比較し、引張強度および導電率に劣る。   Comparative Examples 5 to 16 are all examples of alloys having a chemical composition defined in the present invention. However, 5, 7, 9, 11, 13, and 15 had a slow cooling rate after casting, and Comparative Examples 6, 8, 10, 12, 14, and 16 were subjected to solution treatment, and thus all were precipitates. In addition, the total number of inclusions exceeded the range defined in the present invention, and the bending workability was poor. Further, the comparative example subjected to the solution treatment is inferior in tensile strength and conductivity as compared with the alloys of the present invention having the same chemical composition (inventive examples 5, 21, 37, 39, 49 and 85).

比較例2および23は、2回目圧延で耳割れがひどく試料採取が不可能であったため特性評価に到らなかった。   In Comparative Examples 2 and 23, the ear cracking was severe in the second rolling, and sample collection was impossible.

次に、プロセスの影響を調査するために、表2〜表4に示すNo.67、114および127の化学組成を有するCu合金を高周波溶解炉で溶製し、セラミックス製の鋳型に深さ15mmまで鋳込み、厚み15mm×幅100mm×長さ130mmの鋳片を得た後、鋳造直後の温度である900℃から450℃までの温度域において噴霧冷却により所定の冷却速度で冷却した。この鋳片から表10〜12に示す条件で供試材を作製した。得られた供試材について、上記と同様に、析出物および介在物の合計個数、引張強度、導電率、耐熱温度および曲げ加工性を調査した。これらの結果も表10〜12に併記する。   Next, in order to investigate the influence of the process, Cu alloys having chemical compositions No. 67, 114 and 127 shown in Tables 2 to 4 were melted in a high-frequency melting furnace, and the depth was 15 mm in a ceramic mold. After obtaining a slab of thickness 15 mm × width 100 mm × length 130 mm, it was cooled at a predetermined cooling rate by spray cooling in the temperature range from 900 ° C. to 450 ° C., which is the temperature immediately after casting. Test materials were produced from the slabs under the conditions shown in Tables 10-12. About the obtained specimen, the total number of precipitates and inclusions, tensile strength, electrical conductivity, heat resistant temperature and bending workability were investigated in the same manner as described above. These results are also shown in Tables 10-12.

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

表10〜12ならびに図6に示すように、本発明例142〜209では、冷却条件、圧延条件および時効処理条件のいずれもが本発明で規定される範囲にあるので、析出物および介在物の合計個数が本発明で規定される範囲のCu合金を製造することができた。このため、本発明例ではいずれも、引張強度および導電率が前述の(a)式を満たしていた。また、耐熱温度も高い水準が維持され、曲げ加工性も良好であった。   As shown in Tables 10 to 12 and FIG. 6, in Examples 142 to 209 of the present invention, all of the cooling conditions, rolling conditions and aging treatment conditions are within the range defined by the present invention. A Cu alloy having a total number in the range defined by the present invention could be produced. For this reason, in all examples of the present invention, the tensile strength and the electrical conductivity satisfied the above-described formula (a). Moreover, the heat-resistant temperature was maintained at a high level and the bending workability was good.

一方、比較例24〜38では、冷却速度、圧延温度および熱処理温度が本発明範囲から外れるため、析出物が粗大化し析出物の分布が本願発明範囲から外れ曲げ加工性も低下する。   On the other hand, in Comparative Examples 24-38, the cooling rate, the rolling temperature, and the heat treatment temperature deviate from the scope of the present invention, so the precipitates become coarse and the precipitate distribution deviates from the scope of the present invention, and the bending workability also decreases.

表13に示す化学組成を有する合金を大気中、高周波炉にて溶解し、下記の2種類の方法で連続鋳造した。液相線温度から450℃までの平均冷却速度は、一次冷却と水噴霧を用いた二次冷却によって制御した。なお、それぞれの方法において、溶解中は溶湯上部に木炭の粉末を適量添加して溶湯表面部を還元雰囲気とした。   An alloy having the chemical composition shown in Table 13 was melted in a high-frequency furnace in the atmosphere and continuously cast by the following two methods. The average cooling rate from the liquidus temperature to 450 ° C. was controlled by primary cooling and secondary cooling using water spray. In each method, during melting, an appropriate amount of charcoal powder was added to the upper part of the molten metal to make the molten metal surface part a reducing atmosphere.

<連続鋳造方法>
(1)横引きでは、上継ぎにて保持炉に注湯したが、その後は同様に木炭を添加して酸化を防止し、グラファイトモールドを用いた間欠引き抜きで鋳片を得た。平均引き抜き速度は200mm/minであった。
(2)竪引き法では、タンディッシュに注湯後は同じく木炭で酸化を防止し、タンディッシュから鋳型内へはジルコニア製浸漬ノズルで同じく木炭粉末で覆った層を介して溶湯プール中へ連続注湯した。鋳型は銅合金製水冷鋳型に厚さが4mmのグラファイトを内張したものを用い、平均速度150mmで連続引き抜きした。
<Continuous casting method>
(1) In horizontal drawing, the hot metal was poured into the holding furnace, but thereafter, charcoal was added in the same manner to prevent oxidation, and a slab was obtained by intermittent drawing using a graphite mold. The average drawing speed was 200 mm / min.
(2) In the pulling method, after pouring into the tundish, the charcoal is also prevented from being oxidized, and from the tundish into the mold, continuously into the molten metal pool through a layer covered with charcoal powder by a zirconia immersion nozzle. I poured water. The casting mold was a copper alloy water-cooled casting mold with a 4 mm-thick graphite lined, and was continuously drawn at an average speed of 150 mm.

なお、それぞれの冷却速度は、鋳型を出た後の表面を熱電対で数カ所測り、伝熱計算との併用によって算出した。   Each cooling rate was calculated by measuring the surface after exiting the mold with several thermocouples and using it together with the heat transfer calculation.

得られた鋳片は表面研削した後、表14に示す条件で冷間圧延、熱処理、冷間圧延および熱処理を施し、最終的に厚さ200μmの薄帯を得た。得られた薄帯を用い、上記と同様に、析出物および介在物の合計個数、引張強度、導電率、耐熱温度ならびに曲げ加工性を調査した。これらの結果も表14に併記する。   The obtained slab was subjected to surface grinding, and then subjected to cold rolling, heat treatment, cold rolling and heat treatment under the conditions shown in Table 14, and finally a thin strip having a thickness of 200 μm was obtained. Using the obtained ribbon, the total number of precipitates and inclusions, tensile strength, electrical conductivity, heat resistant temperature and bending workability were investigated in the same manner as described above. These results are also shown in Table 14.

Figure 2005113259
Figure 2005113259

Figure 2005113259
Figure 2005113259

表14に示すように、いずれの鋳造方法においても高い引張強度と導電率の合金が得られ、本発明方法が実際の鋳造機に適用できることが分かった。   As shown in Table 14, an alloy having high tensile strength and conductivity was obtained by any casting method, and it was found that the method of the present invention can be applied to an actual casting machine.

安全工具への適用を評価すべく、以下の方法で試料を作製し、摩耗性(ビッカース硬度)および耐火花性を評価した。   In order to evaluate the application to safety tools, samples were prepared by the following method, and the wear resistance (Vickers hardness) and the spark resistance were evaluated.

表15に示す合金を大気中、高周波炉にて溶解し、ダービル法によって金型鋳造した。即ち、図7(a)に示すような状態で金型を保持し、木炭粉末で還元雰囲気を確保しながら約1300℃の溶湯を金型に注湯した後、これを図7(b)に示す様に傾転して図7(c)の状態で凝固させて鋳片を作製した。金型は厚さが50mmの鋳鉄製としその内部に冷却用穴を開けて空気冷却できるように配管した。鋳片は注湯が容易になるように楔形とし、下断面が30×300、上断面が50×400mm、高さが700mmとした。   The alloys shown in Table 15 were melted in a high-frequency furnace in the atmosphere and die-cast by the Darville method. That is, after holding the mold in the state shown in FIG. 7 (a) and pouring a molten metal at about 1300 ° C. into the mold while ensuring a reducing atmosphere with charcoal powder, this is shown in FIG. 7 (b). As shown, it was tilted and solidified in the state of FIG. The mold was made of cast iron with a thickness of 50 mm, and a cooling hole was drilled in the mold so that air cooling was possible. The slab was wedge-shaped for easy pouring, with a lower cross section of 30 x 300, an upper cross section of 50 x 400 mm, and a height of 700 mm.

得られた鋳片の下端から300mmまでの部分を採取して表面研削後、冷間圧延(30→10mm)→熱処理(375℃×16h)を施し、厚さ10mmの板を得た。これらの板を用い、上記の方法により析出物および介在物の合計個数、引張強度、導電率、耐熱温度および曲げ加工性を調査し、更に、下記の方法により耐摩耗性、熱伝導度および耐火花発生性を調査した。これらの結果を表15に併記する。   A portion from the lower end of the obtained slab to 300 mm was sampled and subjected to surface grinding, followed by cold rolling (30 → 10 mm) → heat treatment (375 ° C. × 16 h) to obtain a 10 mm thick plate. Using these plates, the total number of precipitates and inclusions, tensile strength, electrical conductivity, heat-resistant temperature and bending workability were investigated by the above method, and the wear resistance, thermal conductivity and fire resistance were further investigated by the following methods. The flower development was investigated. These results are also shown in Table 15.

<耐摩耗性>
供試材からそれぞれ幅10mm×長さ10mmの試験片を採取し、圧延面に垂直で、且つ圧延方向と平行な断面を鏡面研磨し、JIS Z 2244に規定される方法により、25℃、荷重9.8Nでのビッカース硬さを測定した。
<Abrasion resistance>
Test specimens each having a width of 10 mm and a length of 10 mm were collected from the test material, and a cross section perpendicular to the rolling surface and parallel to the rolling direction was mirror-polished and subjected to a load of 25 ° C. according to the method specified in JIS Z 2244. Vickers hardness at 9.8 N was measured.

<熱伝導度>
熱伝導度〔TC(W/m・K)〕は、上記の導電率〔IACS(%)〕を、図5中に記載の式「TC=14.804+3.8172×IACS」から求めた。
<Thermal conductivity>
For the thermal conductivity [TC (W / m · K)], the above-mentioned conductivity [IACS (%)] was obtained from the formula “TC = 14.804 + 3.8172 × IACS” described in FIG.

<耐火花発生性>
回転数が12000rpmの卓上グラインダーを使用しJIS G 0566に規定される方法に準じた火花試験を行い、目視により火花発生の有無を確認した。
<Fire resistance>
Using a table grinder with a rotational speed of 12000 rpm, a spark test was conducted in accordance with the method specified in JIS G 0566, and the presence or absence of sparks was confirmed visually.

なお、下断面から100mm位置の鋳型内壁面下5mmの位置に熱電対を挿入して測温し、伝熱計算から得た液相線に基づいて求めた450℃までの平均冷却速度は、10℃/sであった。   The average cooling rate up to 450 ° C. obtained based on the liquidus obtained from the heat transfer calculation was measured by inserting a thermocouple at a position 5 mm below the inner wall of the mold 100 mm from the lower cross section. It was ° C / s.

Figure 2005113259
Figure 2005113259

表15に示すように、本発明例210〜213では、耐摩耗性が良好で、熱伝導度も大きく、火花が観察されることはなかった。一方、比較例39および40は、いずれも本発明で規定される化学組成を満たさないため、熱伝導度が小さく、火花が観察された。   As shown in Table 15, in Invention Examples 210 to 213, the wear resistance was good, the thermal conductivity was large, and no spark was observed. On the other hand, since Comparative Examples 39 and 40 did not satisfy the chemical composition defined in the present invention, the thermal conductivity was small and sparks were observed.

本発明によれば、Be等の環境に有害な元素を含まないCu合金であって、製品バリエーションが豊富であり、更に、高温強度および加工性にも優れ、更に、安全工具用材料に要求される性能、即ち、熱伝導度、耐摩耗性および耐火花発生性にも優れるCu合金、およびその製造方法を提供することができる。   According to the present invention, it is a Cu alloy that does not contain elements harmful to the environment such as Be, has abundant product variations, is excellent in high-temperature strength and workability, and is further required for materials for safety tools. Cu alloy having excellent performance, that is, thermal conductivity, wear resistance and spark resistance, and a method for producing the same can be provided.

非特許文献1に記載されたBe等の有害元素を含まないCu合金の引張強度と導電率との関係を整理したものである。This is a summary of the relationship between the tensile strength and conductivity of Cu alloys described in Non-Patent Document 1 that do not contain harmful elements such as Be. Ti-Cr二元系状態図である。It is a Ti-Cr binary phase diagram. Zr-Cr二元系状態図である。It is a Zr-Cr binary system phase diagram. Ti-Zr二元系状態図である。It is a Ti-Zr binary system phase diagram. 導電率と熱伝導度との関係を示す図である。It is a figure which shows the relationship between electrical conductivity and thermal conductivity. 各実施例の引張強度と導電率との関係を示す図である。It is a figure which shows the relationship between the tensile strength of each Example, and electrical conductivity. ダービル法による鋳造方法を示す模式図である。It is a schematic diagram which shows the casting method by a Darville method.

Claims (22)

質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 Contains 2 or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, with the balance being Cu and impurities, present in the alloy A Cu alloy characterized in that the number of precipitates and inclusions having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less in total. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0%, with the balance being Cu and impurities. Cu alloy characterized in that the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、更に下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
Contains 2 or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, and from the following first group to third group Unit area of one or more components selected from at least one group in a total amount of 5.0% or less, the balance being Cu and impurities, and the precipitates and inclusions present in the alloy having a particle size of 10 μm or more Cu alloy characterized in that the total number of hits is 100 / mm 2 or less.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、更に下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% in mass%, and also the following 1st A total of 5.0% or less of at least one component selected from at least one group from the group to the third group, with the balance consisting of Cu and impurities, and grains of precipitates and inclusions present in the alloy A Cu alloy characterized in that the number per unit area of those having a diameter of 10 μm or more is 100 pieces / mm 2 or less in total.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、更にMg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 Contains 2 or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, and further selected from Mg, Li, Ca and rare earth elements One or more of these are included in a total of 0.001 to 2.0%, the balance is made of Cu and impurities, and the number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 in total. Cu alloy, characterized in that it is 2 pieces / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、更にMg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% by mass%, and further Mg, Li, Units containing at least one element selected from Ca and rare earth elements in a total amount of 0.001 to 2.0%, the balance being Cu and impurities, and the precipitates and inclusions present in the alloy having a particle size of 10 μm or more Cu alloy characterized in that the total number per area is 100 / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、更にMg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, and at least of the following 1st group to 3rd group One or more components selected from one group are included in a total amount of 5.0% or less, and one or more components selected from Mg, Li, Ca and rare earth elements are included in a total amount of 0.001 to 2.0%, with the balance being Cu. And a total number of precipitates / inclusions in the alloy having a particle size of 10 μm or more per unit area of 100 / mm 2 or less.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、更にMg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% by mass%, the following 1st group To at least one of the components selected from at least one of the three groups to 5.0% or less in total, and one or more selected from Mg, Li, Ca and rare earth elements in total 0.001 -2.0% inclusive, the balance consisting of Cu and impurities, the total number of precipitates and inclusions in the alloy with a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less Characteristic Cu alloy.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびに、Bi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含有し、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Bi, Tl, Rb, Cs, Sr, Ba, Tc, Contains at least 0.001 to 0.3% of one or more selected from Re, Os, Rh, In, Pd, Po, Sb, Hf, Au, and Ga, with the balance being Cu and impurities, present in the alloy A Cu alloy characterized in that the number of precipitates and inclusions having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less in total. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0%, and Bi, Tl, One or more selected from Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Hf, Au, and Ga are included in a total amount of 0.001 to 0.3%, and the balance is Cu. And a total number of precipitates / inclusions in the alloy having a particle size of 10 μm or more per unit area of 100 / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、更に下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
Contains 2 or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, and from the following first group to third group One or more components selected from at least one group are included in a total amount of 5.0% or less, and Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, One or more selected from Hf, Au and Ga is contained in a total amount of 0.001 to 0.3%, the balance is made of Cu and impurities, and the precipitates and inclusions present in the alloy have a particle size of 10 μm or more. A Cu alloy characterized in that the total number per unit area is 100 / mm 2 or less.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、更に下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% in mass%, and also the following 1st The total amount of one or more components selected from at least one of the groups to the third group is 5.0% or less, and Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, Including one or more selected from In, Pd, Po, Sb, Hf, Au, and Ga in a total amount of 0.001 to 0.3%, with the balance being Cu and impurities, the precipitates and inclusions present in the alloy Among them, a Cu alloy having a particle size of 10 μm or more per unit area is a total of 100 pieces / mm 2 or less.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 Contains 2 or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, selected from Mg, Li, Ca and rare earth elements In addition, 0.001 to 2.0% in total is included, and Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Hf, Au, and Ga The total amount of one or more selected elements is 0.001 to 0.3%, the balance is Cu and impurities, and the total number of precipitates and inclusions in the alloy with a particle size of 10 μm or more per unit area Cu alloy characterized by being 100 pieces / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。 2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% by mass%, Mg, Li, Ca And a total of 0.001 to 2.0% of one or more selected from rare earth elements, Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, One or more selected from Hf, Au and Ga is contained in a total amount of 0.001 to 0.3%, the balance is made of Cu and impurities, and the precipitates and inclusions present in the alloy have a particle size of 10 μm or more. A Cu alloy characterized in that the total number per unit area is 100 / mm 2 or less. 質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上を含有し、下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0% by mass%, and at least of the following 1st group to 3rd group One or more components selected from one group are included in a total amount of 5.0% or less, and one or more components selected from Mg, Li, Ca and rare earth elements are included in total of 0.001 to 2.0%, and Bi, Tl , Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Hf, Au, and Ga in a total amount of 0.001 to 0.3%, the balance being A Cu alloy comprising Cu and impurities, wherein the total number of precipitates and inclusions present in the alloy having a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less.
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
質量%で、Cr:0.01〜4.0%、Ti:0.01〜5.0%およびZr:0.01〜5.0%の中から選ばれた2種以上、ならびにAg:0.1〜5.0%を含有し、下記の第1群から第3群までのうち少なくとも1つの群から選ばれた1種以上の成分を総量で5.0%以下含み、Mg、Li、Caおよび希土類元素の中から選ばれた1種以上を合計で0.001〜2.0%含み、更にBi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、Hf、AuおよびGaの中から選ばれた1種以上を総量で0.001〜0.3%含み、残部がCuおよび不純物からなり、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であることを特徴とするCu合金。
第1群:質量%で、それぞれ0.001〜0.5%のPおよびB
第2群:質量%で、それぞれ0.01〜5.0%のSn、Mn、Fe、Co、Al、Si、Nb、Ta、Mo、V、WおよびGe
第3群:質量%で、それぞれ0.01〜3.0%のZn、Ni、TeおよびSe
2% or more selected from Cr: 0.01-4.0%, Ti: 0.01-5.0% and Zr: 0.01-5.0%, and Ag: 0.1-5.0% by mass%, the following 1st group To a third group containing at least one component selected from at least one group in a total amount of 5.0% or less, and a total of one or more components selected from Mg, Li, Ca and rare earth elements from 0.001 to In addition, it contains 2.0%, and more than one selected from Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Hf, Au and Ga in total amount 0.001 to 0.3% inclusive, the balance consisting of Cu and impurities, the total number of precipitates and inclusions in the alloy with a particle size of 10 μm or more per unit area is 100 pieces / mm 2 or less Cu alloy characterized by
Group 1: 0.001 to 0.5% P and B by mass%
Second group: 0.01% to 5.0% Sn, Mn, Fe, Co, Al, Si, Nb, Ta, Mo, V, W and Ge, respectively, by mass%
Third group: 0.01% to 3.0% by mass of Zn, Ni, Te and Se, respectively
結晶粒径が0.01〜35μmであることを特徴とする請求項1から16までのいずれかに記載のCu合金。   The Cu alloy according to any one of claims 1 to 16, wherein a crystal grain size is 0.01 to 35 µm. 請求項1から16までのいずれかに記載の化学組成を有するCu合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却することを特徴とする、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であるCu合金の製造方法。 A slab obtained by melting and casting the Cu alloy having the chemical composition according to any one of claims 1 to 16, at least in a temperature range from a slab temperature immediately after casting to 450 ° C, at 0.5 ° C / Cu having a particle size of 10 μm or more among the precipitates and inclusions present in the alloy, the total number of which per unit area is 100 / mm 2 or less, characterized by cooling at a cooling rate of s or more Alloy manufacturing method. 請求項1から16までのいずれかに記載の化学組成を有するCu合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、450℃以下の温度域で加工することを特徴とする、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であるCu合金の製造方法。 A slab obtained by melting and casting the Cu alloy having the chemical composition according to any one of claims 1 to 16, at least in a temperature range from a slab temperature immediately after casting to 450 ° C, at 0.5 ° C / Cooling at a cooling rate of s or more and processing in a temperature range of 450 ° C. or less, the total number of precipitates and inclusions present in the alloy per unit area having a particle size of 10 μm or more The manufacturing method of Cu alloy which is 100 pieces / mm < 2 > or less. 請求項1から16までのいずれかに記載の化学組成を有するCu合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、450℃以下の温度域で加工した後、280〜550℃の温度域で10分〜72時間保持する熱処理に供することを特徴とする、合金中に存在する析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下であるCu合金の製造方法。 A slab obtained by melting and casting the Cu alloy having the chemical composition according to any one of claims 1 to 16, at least in a temperature range from a slab temperature immediately after casting to 450 ° C, at 0.5 ° C / Precipitation existing in the alloy, characterized in that it is cooled at a cooling rate of s or more, processed in a temperature range of 450 ° C. or less, and then subjected to a heat treatment held in a temperature range of 280 to 550 ° C. for 10 minutes to 72 hours. A Cu alloy manufacturing method in which the number per unit area of the inclusions and inclusions having a particle diameter of 10 μm or more is 100 pieces / mm 2 or less in total. 450℃以下の温度域での加工および280〜550℃の温度域で10分〜72時間保持する熱処理を複数回行うことを特徴とする請求項20に記載のCu合金の製造方法。   21. The method for producing a Cu alloy according to claim 20, wherein the processing in a temperature range of 450 [deg.] C. or less and the heat treatment for 10 minutes to 72 hours in the temperature range of 280 to 550 [deg.] C. are performed a plurality of times. 最後の熱処理の後に、450℃以下の温度域での加工を行うことを特徴とする請求項20または21に記載のCu合金の製造方法。
The method for producing a Cu alloy according to claim 20 or 21, wherein processing is performed in a temperature range of 450 ° C or lower after the last heat treatment.
JP2004025066A 2003-02-05 2004-02-02 Cu alloy and method for producing the same Withdrawn JP2005113259A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004025066A JP2005113259A (en) 2003-02-05 2004-02-02 Cu alloy and method for producing the same
PCT/JP2004/001150 WO2004070070A1 (en) 2003-02-05 2004-02-04 Cu ALLOY AND METHOD FOR PRODUCTION THEREOF
TW093102536A TW200506073A (en) 2003-02-05 2004-02-04 Cu alloy and method for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003028828 2003-02-05
JP2003134745 2003-05-13
JP2003328894 2003-09-19
JP2004025066A JP2005113259A (en) 2003-02-05 2004-02-02 Cu alloy and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005113259A true JP2005113259A (en) 2005-04-28

Family

ID=32854416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025066A Withdrawn JP2005113259A (en) 2003-02-05 2004-02-02 Cu alloy and method for producing the same

Country Status (3)

Country Link
JP (1) JP2005113259A (en)
TW (1) TW200506073A (en)
WO (1) WO2004070070A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109801A1 (en) * 2005-04-12 2006-10-19 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
JP2007113093A (en) * 2005-10-24 2007-05-10 Nikko Kinzoku Kk High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn-based copper alloy
JP2008506040A (en) * 2004-07-15 2008-02-28 プランゼー エスエー Materials for conductive wires made from copper alloys
JP2009019239A (en) * 2007-07-12 2009-01-29 Hitachi Cable Ltd Manufacturing method of copper alloy material for electric and electronic parts
JP2011036903A (en) * 2009-08-18 2011-02-24 Materials Solution Inc Method for manufacturing copper alloy
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
CN103890205A (en) * 2011-11-14 2014-06-25 三菱综合材料株式会社 Copper alloy and copper alloy forming material
JP2015091603A (en) * 2014-11-21 2015-05-14 新日鐵住金株式会社 Method for producing copper alloy
KR101615830B1 (en) 2011-11-07 2016-04-26 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP2021127491A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Copper alloy material and producing method thereof
US20220341001A1 (en) * 2020-06-24 2022-10-27 Ningbo Boway Alloy Plate & Strip Co., Ltd. Titanium-copper alloy strip containing nb and al and method for producing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498068B (en) * 2013-10-13 2015-11-18 罗春华 A kind of preparation method of high strength rare earth Yb, Nd copper doped alloy
CN104532042B (en) * 2014-12-23 2017-03-08 吉林大学 A kind of cubic boron nitride particle Reinforced Cu base electrode composite and preparation method thereof
CN105002413A (en) * 2015-08-05 2015-10-28 启东市佳宝金属制品有限公司 Super-heat-resisting alloy
CN105018821A (en) * 2015-08-05 2015-11-04 启东市佳宝金属制品有限公司 High-carbon alloy
CN105936983B (en) * 2016-06-24 2017-11-03 河南江河机械有限责任公司 A kind of copper alloy with high strength and high conductivity material
CN110512115B (en) * 2019-09-29 2021-08-17 宁波金田铜业(集团)股份有限公司 High-strength and high-elasticity conductive copper-titanium alloy rod and preparation method thereof
CN112030032B (en) * 2020-09-09 2022-07-29 中铝洛阳铜加工有限公司 Cu-Cr-Ti-Zr alloy and copper strip preparation method
CN112553499B (en) * 2020-12-04 2021-11-16 天津大学 A kind of CuCrZr/WC composite material, preparation method and application thereof
CN115305383B (en) * 2022-07-30 2023-05-12 江西省科学院应用物理研究所 High-strength and high-conductivity Cu-Co alloy material containing mixed rare earth and preparation method thereof
CN116356177A (en) * 2023-04-03 2023-06-30 郑州大学 High-performance copper-based alloy material for lead frame and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6270540A (en) * 1985-09-20 1987-04-01 Mitsubishi Metal Corp Cu alloy lead material for semiconductor devices
JPH04231447A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd conductive material
JPH10287939A (en) * 1997-04-17 1998-10-27 Furukawa Electric Co Ltd:The Copper alloy for electric and electronic equipment, excellent in punchability
JP3479470B2 (en) * 1999-03-31 2003-12-15 日鉱金属株式会社 Copper alloy foil for hard disk drive suspension and method of manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506040A (en) * 2004-07-15 2008-02-28 プランゼー エスエー Materials for conductive wires made from copper alloys
WO2006109801A1 (en) * 2005-04-12 2006-10-19 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
JP2007113093A (en) * 2005-10-24 2007-05-10 Nikko Kinzoku Kk High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn-based copper alloy
JP2009019239A (en) * 2007-07-12 2009-01-29 Hitachi Cable Ltd Manufacturing method of copper alloy material for electric and electronic parts
JP2011036903A (en) * 2009-08-18 2011-02-24 Materials Solution Inc Method for manufacturing copper alloy
US10056165B2 (en) 2010-05-14 2018-08-21 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
KR101615830B1 (en) 2011-11-07 2016-04-26 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US20140290805A1 (en) * 2011-11-14 2014-10-02 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
CN103890205A (en) * 2011-11-14 2014-06-25 三菱综合材料株式会社 Copper alloy and copper alloy forming material
US10458003B2 (en) * 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JP2015091603A (en) * 2014-11-21 2015-05-14 新日鐵住金株式会社 Method for producing copper alloy
JP2021127491A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Copper alloy material and producing method thereof
JP7527115B2 (en) 2020-02-13 2024-08-02 古河電気工業株式会社 Copper alloy material and its manufacturing method
US20220341001A1 (en) * 2020-06-24 2022-10-27 Ningbo Boway Alloy Plate & Strip Co., Ltd. Titanium-copper alloy strip containing nb and al and method for producing same
US11913102B2 (en) * 2020-06-24 2024-02-27 Ningbo Boway Alloy Plate & Strip Co., Ltd. Titanium-copper alloy strip containing Nb and Al and method for producing same

Also Published As

Publication number Publication date
WO2004070070A1 (en) 2004-08-19
TW200506073A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP3731600B2 (en) Copper alloy and manufacturing method thereof
JP4134279B1 (en) Cu alloy material
JP2005113259A (en) Cu alloy and method for producing the same
WO2006109801A1 (en) Copper alloy and process for producing the same
KR20060120276A (en) Copper alloy and its manufacturing method
WO2006104152A1 (en) Copper alloy and process for producing the same
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
EP2570505B1 (en) Copper alloy and copper alloy rolled material for electronic device and method for producing this alloy
TWI548761B (en) Copper alloy for electronic/electric device, plastically-worked copper alloy material for electronic/electric device, part for electronic/electric device, and terminal
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP5873618B2 (en) Method for producing copper alloy
JP2004307905A (en) Cu alloy and method for producing the same
CN102439182A (en) Machinable copper-based alloy and method for producing the same
JP2005290543A (en) Copper alloy and manufacturing method thereof
CN114277280B (en) Precipitation strengthening type tin brass alloy and preparation method thereof
JP2015091603A (en) Method for producing copper alloy
JP2005281757A (en) Copper alloy combining strength and electrical conductivity and production method therefor
WO2012133651A1 (en) Copper alloy and method for producing copper alloy
JP2017039959A (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP2006233314A (en) High strength copper alloy
JP5607460B2 (en) Copper alloy ingot and copper alloy material excellent in machinability, and copper alloy parts using the same
JP2005307334A (en) Copper alloy and manufacturing method thereof
CN106435250A (en) Machinable copper base alloy and production method thereof
JP4459067B2 (en) High strength and high conductivity copper alloy
JP2004269962A (en) High strength copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060804

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070927