JP2005109242A - 磁気抵抗効果素子及び磁気ヘッド - Google Patents
磁気抵抗効果素子及び磁気ヘッド Download PDFInfo
- Publication number
- JP2005109242A JP2005109242A JP2003342456A JP2003342456A JP2005109242A JP 2005109242 A JP2005109242 A JP 2005109242A JP 2003342456 A JP2003342456 A JP 2003342456A JP 2003342456 A JP2003342456 A JP 2003342456A JP 2005109242 A JP2005109242 A JP 2005109242A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetoresistive effect
- effect element
- ferromagnetic
- domain wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 75
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 63
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 72
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000003302 ferromagnetic material Substances 0.000 claims description 17
- 239000011810 insulating material Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 230000005381 magnetic domain Effects 0.000 abstract description 16
- 230000005415 magnetization Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 238000007740 vapor deposition Methods 0.000 description 9
- 229910003321 CoFe Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000005290 antiferromagnetic effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910019233 CoFeNi Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3912—Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
Abstract
【課題】 BMR効果を用いた磁気ヘッド用の磁気抵抗効果素子において、ナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子、及びそうした磁気抵抗効果素子を用いた磁気ヘッドを提供する。
【解決手段】 強磁性層からなる自由層1及び固定層2と、その自由層1及び固定層2の間に設けられるフェルミ長以下の寸法を持つ1又は2以上のナノ接合部3とを有し、そのナノ接合部3の内部に現れる磁壁を、主として、ブロッホ磁壁、ネール磁壁又はそれらが混在している磁壁とすることにより、上記課題を解決する。本発明は、その磁壁が主としてブロッホ磁壁である場合においては、ナノ接合部3の寸法(厚さh)とナノ接合部3の形成材料の格子定数aとがh<4×aの関係にあり、その磁壁が主としてネール磁壁である場合においては、寸法(厚さh)と形成材料の格子定数aとがh>20×aの関係にある。
【選択図】 図1
【解決手段】 強磁性層からなる自由層1及び固定層2と、その自由層1及び固定層2の間に設けられるフェルミ長以下の寸法を持つ1又は2以上のナノ接合部3とを有し、そのナノ接合部3の内部に現れる磁壁を、主として、ブロッホ磁壁、ネール磁壁又はそれらが混在している磁壁とすることにより、上記課題を解決する。本発明は、その磁壁が主としてブロッホ磁壁である場合においては、ナノ接合部3の寸法(厚さh)とナノ接合部3の形成材料の格子定数aとがh<4×aの関係にあり、その磁壁が主としてネール磁壁である場合においては、寸法(厚さh)と形成材料の格子定数aとがh>20×aの関係にある。
【選択図】 図1
Description
本発明は、磁気抵抗効果素子及び磁気ヘッドに関し、更に詳しくは、BMR(Ballistic Magneto Resistance)効果を有し、磁気的に安定する磁気抵抗効果素子及び磁気ヘッドに関するものである。
巨大磁気抵抗効果(GMRという。Giant Magnetoresistance effect)は、強磁性層/非磁性層/強磁性層からなる積層構造の面内に電流を流した場合に発現する大きな磁気抵抗変化を示す現象である。このGMRを持つ磁気抵抗効果素子については、さらに大きな磁気抵抗変化率の発現を求めて活発に研究がなされてきた。現在まで、強磁性トンネル接合や電流を積層構造に対して垂直方向に流すCPP(Current Perpendicular to Plane)型MR素子が開発され、磁気センサーや磁気記録の再生素子として有望視されている。
磁気記録技術の分野においては、記録密度の向上により必然的に記録ビットの縮小化が進められ、その結果として十分な信号強度を得ることが難しくなりつつある。このため、より感度の高い磁気抵抗効果を示す材料が求められ、大きな磁気抵抗変化率を示す素子の開発が要請されている。
最近、100%以上の磁気抵抗効果を示すものとして、2つの針状のニッケル(Ni)を付き合わせた「磁気微小接点」が報告されている(例えば、非特許文献1を参照)。その磁気微小接点は、針状に加工した2つの強磁性体又は三角形状に加工した2つの強磁性体を角付き合わせて作製されている。さらにごく最近、2本の細いNiワイヤをT字に配置し、電着法を用いて接触部に微小コラムを成長させた磁気微小接点が開示されている(例えば、非特許文献2を参照)。こうした素子が発現する極めて高いMR比は、磁化の向きが反並行である2つの強磁性層間に形成された磁気微小接点に存在する磁区のスピントランスポートに起因するものと考えられている。こうした特性を有する磁気微小接点を利用した磁気抵抗効果素子は、その磁気微小接点で電子が不純物などの散乱を受けずに(ballistic に)通過していると考えられることから、Ballistic Magneto Resistance素子(BMR素子)と呼ばれている。
さらに、最近、こうした磁気微小接点を有する磁気抵抗効果素子についても報告されている。例えば、下記特許文献1には、第1の強磁性層/絶縁層/第2の強磁性層とからなり、絶縁層の所定位置に第1の強磁性層と第2の強磁性層とが接続される最大幅が20nm以下の開口を有する孔が設けられた磁気抵抗効果素子が報告されている。また、下記特許文献2には、狭窄部を介して相互に連結された2つの磁性層を有し、その狭窄部の幅が100nm程度の磁気抵抗効果素子が報告されている。
また、下記非特許文献3、4には、BMR素子を磁気ヘッドに応用する場合に問題となる磁壁の安定性に対する磁気特性の影響についての研究が行われている。
N. Garcia, M. Munoz, and Y. -W. Zhao, Physical Review Letters,vol.82, p2923 (1999) N.Garcia, G.G.Qian, and I.G.Sveliev, Appl.Phys.Lett.,vol.80,p1785(2002) J.M.D.Coey et.al., Phys.Review Letters, vol.83, p.2030(2003) A.A.Zvezdin et.al., JETP Letters, vol.75(10), 517(2002) 特開2003−204095号公報
特表平11−510911号公報
N. Garcia, M. Munoz, and Y. -W. Zhao, Physical Review Letters,vol.82, p2923 (1999) N.Garcia, G.G.Qian, and I.G.Sveliev, Appl.Phys.Lett.,vol.80,p1785(2002) J.M.D.Coey et.al., Phys.Review Letters, vol.83, p.2030(2003) A.A.Zvezdin et.al., JETP Letters, vol.75(10), 517(2002)
しかしながら、BMR素子の磁気ヘッドへの応用を考慮すると、媒体表面から漏洩する磁界に感応するフリー層(以下においては、自由層ともいう。)の寸法は、数十ナノメータ程度に微細化される。例えば、記録密度1Tbits/in2の場合、その寸法は40〜50nmである。極めて高いMR比を実現可能なBMR素子においては、磁気微小接点(以下、ナノ接合部という。)の磁区構造がBMR効果の鍵であり、より微細化が進むと微細な自由層の端面からは強い減磁界が発生して磁気的安定性が得られないと共に、耐熱的安定性も著しく低下するという問題がある。したがって、BMR素子においては、磁区構造制御と磁気的安定性を確保することが実用上は極めて重要な課題となる。
本発明は、上記のような種々の問題及び課題を解決するためになされたものであって、その第1の目的は、BMR効果を用いた磁気ヘッド用の磁気抵抗効果素子において、ナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子を提供することにある。本発明の第2の目的は、そうした磁気抵抗効果素子を有する安定動作を確保できる磁気ヘッドを提供することにある。
上記第1の目的を達成する本発明の磁気抵抗効果素子は、強磁性層からなる自由層及び固定層と、強磁性層からなり、前記自由層及び固定層の間に設けられるフェルミ長以下の寸法を持つ1又は2以上のナノ接合部とを有し、前記ナノ接合部の内部に現れる磁壁が、主として、ブロッホ磁壁、ネール磁壁又はそれらが混在している磁壁であることを特徴とする。
この発明によれば、強磁性層からなりフェルミ長以下の寸法を持つ1又は2以上のナノ接合部が、いずれも強磁性層からなる自由層と固定層との間に設けられているので、得られた磁気抵抗効果素子は、そのナノ接合部に由来するBMR効果により高感度の信号検出を行うことができる。さらに本発明によれば、ナノ接合部の内部に現れる磁壁が、主として、ブロッホ磁壁、ネール磁壁又は双方が混在する磁壁であるので、それぞれ極小の磁壁エネルギー状態となっている。そのため、高い磁気的安定性を確保することができる。
本発明は、前記磁壁が主としてブロッホ磁壁である磁気抵抗効果素子において、当該磁気抵抗効果素子の積層方向における前記ナノ接合部の寸法hとナノ接合部の形成材料の格子定数aとが、h<4×aの関係であることを特徴とする。
また、本発明は、前記磁壁が主としてネール磁壁である磁気抵抗効果素子において、当該磁気抵抗効果素子の積層方向における前記ナノ接合部の寸法hとナノ接合部の形成材料の格子定数aとが、h>20×aの関係であることを特徴とする。
これらの発明によれば、磁壁が主としてブロッホ磁壁である場合又はネール磁壁である場合において、それぞれ上記の関係を満たすことにより、磁壁エネルギー状態が極小となるので、高い磁気的安定性を確保することができる。
本発明の磁気抵抗効果素子において、(i)強磁性層からなる前記自由層及び前記固定層が、分極率0.5以上の強磁性材料で形成されていること、(ii)前記ナノ接合部及び当該ナノ接合部以外の部位である絶縁層と、前記自由層及び固定層の一方又は両方との間に、導電性薄層が設けられていること、が好ましい。さらに、(ii)の場合において、前記導電性薄層の厚さが0.1〜1nmであること、及び前記絶縁層が、酸化物又は窒化物等の絶縁材料で構成されていること、が好ましい。
上記第2の目的を達成する本発明の磁気ヘッドは、上述した本発明の磁気抵抗効果素子を有することに特徴を有する。
この発明によれば、自由層やナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子が用いられるので、磁気ヘッドの安定性が向上する。
本発明の磁気抵抗効果素子によれば、ナノ接合部に由来するBMR効果により高感度の信号検出を行うことができる。さらに本発明によれば、上述した磁壁構造を有するので、高い磁気的安定性を有する磁気抵抗効果素子を提供することができる。
また、本発明の磁気ヘッドによれば、安定性や感度の高い磁気抵抗効果素子が用いられるので、安定性に優れた高性能な磁気ヘッドを提供できる。
以下、本発明の磁気抵抗効果素子及びその磁気抵抗効果素子を備えた磁気ヘッドについて、図面を参照しつつ説明する。なお、以下に説明する実施形態により本発明の範囲は制限されない。
(磁気抵抗効果素子)
図1は、本発明の磁気抵抗効果素子の一例を示す積層方向の断面図である。
図1は、本発明の磁気抵抗効果素子の一例を示す積層方向の断面図である。
本発明の磁気抵抗効果素子10は、図1に示すように、強磁性層からなる自由層1及び固定層2と、強磁性層からなり、その自由層1及び固定層2の間に設けられるフェルミ長以下の寸法を持つ1又は2以上のナノ接合部3とを有するBMR素子である。そして、そのナノ接合部3の内部に現れる磁壁は、主として、ブロッホ磁壁、ネール磁壁又はそれら双方が混在している磁壁となっている。
こうした磁気抵抗効果素子10は、通常、バッファー層が形成された基板上に形成される。このとき、自由層1が基板側に形成されたトップタイプの磁気抵抗効果素子と、固定層2が基板側に形成されたボトムタイプの磁気抵抗効果素子とに大別できる。なお、「トップタイプ」とは、通常、固定層が素子の上部に形成されたものをいい、「ボトムタイプ」とは、通常、固定層が素子の下部に形成されたものをいう。
(ナノ接合部)
本発明の磁気抵抗効果素子10において、ナノ接合部3は、その周囲が絶縁層4で囲まれる態様で絶縁層中に設けられている。言い換えれば、ナノ接合部3は、ナノ接合部以外の部位である絶縁層4と共に強磁性層からなる自由層1及び固定層2の間に設けられている。
本発明の磁気抵抗効果素子10において、ナノ接合部3は、その周囲が絶縁層4で囲まれる態様で絶縁層中に設けられている。言い換えれば、ナノ接合部3は、ナノ接合部以外の部位である絶縁層4と共に強磁性層からなる自由層1及び固定層2の間に設けられている。
このナノ接合部3は、スピン分極率が0.5以上の強磁性材料で形成されている。そうした強磁性材料としては、各種の強磁性材料を用いることが可能であるが、Co(スピン分極率:0.8)、Fe(スピン分極率:0.5)、Ni(スピン分極率:0.8)、CoFe(スピン分極率:0.6〜0.8)、NiFe(スピン分極率:0.6〜0.8)、CoFeNi(スピン分極率:0.6〜0.8)等の強磁性金属群、CrO2(スピン分極率:0.9〜1)等の強磁性半金属群、及びFe3O4(スピン分極率:0.9〜1)等の強磁性酸化物群から選択される材料が好ましく用いられる。なお、特に好ましい強磁性材料としては、CoFe及びNiFeを挙げることができる。
本発明において、ナノ接合部3の寸法は、フェルミ長以下の長さになっている。このナノ接合部3の寸法は、図1に示すように、幅方向の長さ(寸法)d及び積層方向の長さ(寸法)hで表される。従って、ナノ接合部3は、幅方向の長さ(寸法)d及び積層方向の長さ(寸法)hのいずれにおいてもフェルミ長以下の長さになっている。
ナノ接合部3は、図1に示す磁気抵抗効果素子10を平面視した場合に、円形、楕円形、角形(三角形、四角形、等々)又はそれらに近似する形状で形成されている。そのため、ナノ接合部3の幅方向の長さ(寸法)dとは、図1に示す磁気抵抗効果素子10を平面視した場合の幅方向(面内方向のこと。)の最大長さと規定できる。また、図1に示す磁気抵抗効果素子10を正面視した場合における積層方向の長さ(寸法)hは、ナノ接合部3の厚さとして現れる寸法である。
ナノ接合部3の幅方向の長さ(寸法)dであるフェルミ長は、材料固有の値であり、ナノ接合部3を形成する強磁性材料により異なるが、多くの強磁性材料は60nm〜100nm程度であるので、「フェルミ長以下」とは、「100nm以下」、乃至「60nm以下」と規定することができる。フェルミ長の具体例としては、例えばNiは約60nmであり、Coは約100nmである。
ナノ接合部3の幅方向の長さ(寸法)dは、平均自由工程以下であることが更に好ましい。平均自由工程も材料固有の値であり、ナノ接合部3を形成する強磁性材料により異なるが、多くの強磁性材料は5nm〜15nm程度であるので、「平均自由工程以下」とは、「15nm以下」、乃至「5nm以下」と規定することができる。平均自由工程の具体例としては、例えばNiFeは約5nmであり、Coは約12nmである。
一方、ナノ接合部3の積層方向(高さ方向)の長さ(寸法)h(図1を正面視した場合においては上下方向の長さ)も、上記の幅方向の長さdと同様に、フェルミ長以下であることが好ましい。具体的には上記と同様に「100nm以下」、乃至「60nm以下」と規定することが好ましい。また、その長さhが平均自由工程以下であることが更に好ましく、具体的には上記と同様に「15nm以下」、乃至「5nm以下」とすることができる。
ナノ接合部3の幅方向の長さ(寸法)d及び積層方向の長さ(寸法)hがフェルミ長を超えた寸法である場合は、磁化が反並行の場合にナノ接合部3の磁壁は非常に厚くなり、そのナノ接合部3を通過する電子はスピン情報を保つことが難しくなる。その結果として、磁化の方向の変化に起因した磁気抵抗効果が得られ難くなることがある。従って、本発明においては、その寸法がフェルミ長以下、特にスピン情報をよく保つことができる点で効果のある平均自由工程以下であることが望ましい。
すなわち、ナノ接合部3の幅方向の長さ(寸法)d及び積層方向の長さ(寸法)hがフェルミ長以下になると、そのナノ接合部3が極薄磁壁の発生部となり、そのナノ接合部3を挟む態様で設けられている強磁性層からなる自由層1及び固定層2の間の相対的な磁化の配置関係を変化させることができる。これにより、強磁性層からなる自由層1及び固定層2の間の電気抵抗が変化する。本発明の磁気抵抗効果素子の場合、基本的に、磁場印加方向を変えても電気抵抗が磁場により減少する磁場領域が存在することから、ここで発生する磁気抵抗効果は、ナノ接合部3の部分で形成された磁壁により発生する磁気抵抗効果であるといえる。ここで、ナノ接合部3の磁壁は、磁化方向を異にする2つの部分(ナノ接合部3を挟む2つの強磁性層)の遷移領域として作用する。そして、本発明においては、磁化方向及び印加磁場の大きさに応じて50%以上の大きな磁気抵抗効果が発生する。
こうしたナノ接合部3は、ナノリソグラフィマイクロファブリケーション等の微細加工手段により精度よく形成される。このナノ接合部3を備えた本発明の磁気抵抗効果素子は、50%以上の大きな磁気抵抗変化率を示すので、そのナノ接合部において、電子は不純物などの散乱を受けずに(ballistic に)通過していると考えられる。なお、磁気抵抗変化率とは、MR比(△R/R)のことであり、磁界強度が充分強いときの電気抵抗Rと、印加磁場を変化させたときの電気抵抗変化ΔRとの比で定義されている。
ナノ接合部3の周囲、すなわち、強磁性層からなる自由層1及び固定層2の間に設けられたナノ接合部3以外の部位は、絶縁層4で形成されている。その絶縁層4は、例えば酸化アルミニウムや酸化ケイ素などの酸化物や、窒化ケイ素などの窒化物等の絶縁材料で形成される。その絶縁層4の積層方向の長さは、上述したナノ接合部3の積層方向の長さhと同じ長さで形成される。
次に、ナノ接合部3を挟むように配置される自由層1と固定層2の材料について説明する。
1又は2以上のナノ接合部3を挟むように配置される自由層1と固定層2は、いずれも強磁性層である。なお、ナノ接合部3を挟むように配置される強磁性層とは、自由層1を構成する強磁性層が2以上ある場合にはナノ接合部側に配置される強磁性層のことであり、固定層2を構成する強磁性層が2以上ある場合にはナノ接合部側に配置される強磁性層のことである。本発明においては、これらの強磁性層がスピン分極率が0.5以上の強磁性材料で形成されている。そうした強磁性材料としては、各種の強磁性材料を用いることが可能であるが、上記のナノ接合部3と同様の材料が好ましく用いられ、例えば、Co(スピン分極率:0.8)、Fe(スピン分極率:0.5)、Ni(スピン分極率:0.8)、CoFe(スピン分極率:0.6〜0.8)、NiFe(スピン分極率:0.6〜0.8)、CoFeNi(スピン分極率:0.6〜0.8)等の強磁性金属群、CrO2(スピン分極率:0.9〜1)等の強磁性半金属群、及びFe3O4(スピン分極率:0.9〜1)等の強磁性酸化物群から選択される材料が好ましく用いられる。なお、特に好ましい強磁性材料としては、CoFe及びNiFeを挙げることができる。
ナノ接合部3を形成する材料と、そのナノ接合部3に隣接する2つの強磁性層を形成する材料とが同じ場合には、単一材料で成膜とエッチングを行うことや、グラニュラー構造の成膜技術を用いることができるので、作製が比較的容易になる。
本発明においては、こうしたナノ接合部3の内部に主として現れる磁壁が、例えば、図3(a)に示すようなブロッホ磁壁、図3(b)に示すようなネール磁壁、又はそれらが混在する磁壁、のいずれかの磁壁構造となっている。磁壁構造は、高感度のMFM(磁気力顕微鏡)やTEM(透過型電子顕微鏡)により測定され、評価される。
(1)磁気抵抗効果素子の積層方向におけるナノ接合部の長さ(寸法。層の高さともいえる。)hとナノ接合部の形成材料の格子定数aとがh<4×aの関係である場合には、ナノ接合部には主としてブロッホ磁壁が現れる。このとき、h≧4×aのときは、ブロッホ磁壁が顕著に現れず、主としてポルテックス磁壁が現れることがある。
(2)磁気抵抗効果素子の積層方向におけるナノ接合部の長さ(寸法。層の高さともいえる。)hとナノ接合部の形成材料の格子定数aとがh>20×aの関係である場合には、ナノ接合部には主としてネール磁壁が現れる。このとき、h≦20×aのときは、ネール磁壁が顕著に現れず、主としてポルテックス磁壁が現れることがある。
こうした磁壁構造は、ナノ接合部3の寸法を上記の関係にすることにより現れる。ナノ接合部3の磁壁構造を主としてブロッホ磁壁、ネール磁壁、又はそれらが混在する磁壁のいずれかとした場合には、磁壁が極小のエネルギー状態となるので、高い磁気的安定性を確保することができる。
(自由層)
本発明の磁気抵抗効果素子において、自由層(フリー層とも呼ばれる。)1は、固定層を構成する強磁性層と共にナノ接合部3を挟むように形成されている強磁性層である。また、この自由層1は、媒体の磁化転移領域から発生する磁界に感応して磁化が回転又は反転する作用を有する強磁性層であり、その容易軸の方向を媒体と平行に規制しておくことが好ましい。
本発明の磁気抵抗効果素子において、自由層(フリー層とも呼ばれる。)1は、固定層を構成する強磁性層と共にナノ接合部3を挟むように形成されている強磁性層である。また、この自由層1は、媒体の磁化転移領域から発生する磁界に感応して磁化が回転又は反転する作用を有する強磁性層であり、その容易軸の方向を媒体と平行に規制しておくことが好ましい。
自由層1を構成する強磁性層は、上述したようなスピン分極率が0.5以上の各種の強磁性材料を用いることが好ましい。具体的には、CoFe、Co等の材料が特に好ましく、スパッタリングや蒸着等の方法で通常0.5〜5nmの厚さで成膜される。
自由層1は、図1に示すように、1層の強磁性層からなるものであってもよいし、2層の強磁性層(図示しない)で形成されているものであってもよい。
2層の強磁性層で形成される場合には、それらの強磁性層同士を、強磁性結合状態又は反強磁性結合状態で設けることができる。
2つの強磁性層を強磁性結合で設ける場合は、ナノ接合部3から離れた位置に配置される強磁性層は分極率の高い材料で形成され、ナノ接合部3に隣接して設けられ強磁性層は磁歪の小さい軟磁性材料で形成される。こうした組合せで形成することにより、高感度と広い線形動作を確保することができるという効果がある。分極率の高い材料としては、前記したスピン分極率が0.5以上の各種の強磁性材料を用いることが可能であるが、CoFe、Co等の材料が特に好ましく、スパッタリングや蒸着等の方法で、通常0.5〜5nm程度の厚さで形成される。また、磁歪の小さい軟磁性材料としては、Ni,NiFeが特に好ましく、スパッタリングや蒸着等の方法で、通常0.5〜5nm程度の厚さで形成される。
一方、2つの強磁性層を反強磁性結合で設ける場合は、2つの強磁性層の間に非磁性層が設けられる。この場合の非磁性層は、2つの強磁性層の交換結合の度合いを調整する層であり、例えばRu,Rh,Ir,Cu,Ag,Au及びそれらの合金からなる群から選択される材料で形成され、スパッタリングや蒸着等の方法で、通常0.3〜3nmの厚さで成膜される。
反強磁性結合を呈する場合の強磁性層としては、CoFe,NiFe等を挙げることができ、スパッタリングや蒸着等の方法で、通常1〜10nm程度の厚さで形成される。
(固定層)
本発明の磁気抵抗効果素子において、固定層(ピン層ともいう。)2は、自由層1を構成する強磁性層と共にナノ接合部3を挟むように形成されている強磁性層である。
本発明の磁気抵抗効果素子において、固定層(ピン層ともいう。)2は、自由層1を構成する強磁性層と共にナノ接合部3を挟むように形成されている強磁性層である。
固定層2を構成する強磁性層は、前記したスピン分極率が0.5以上の各種の強磁性材料を用いることが可能であるが、CoFe、Co等の材料が特に好ましく、スパッタリングや蒸着等の方法で、通常1〜10nmの厚さで成膜される。
固定層2は、図1に示すように、1層の強磁性層からなるものであってもよいし、2層の強磁性層(図示しない)で形成されているものであってもよい。
固定層を2層の強磁性層で形成する場合には、その2つの強磁性層の間に非磁性層を設けることが好ましい。2つの強磁性層の間に非磁性層を形成する場合には、Ru,Rh,Ir,Cu,Ag,Au及びそれらの合金からなる群から選択される材料で形成され、スパッタリングや蒸着等の方法で、通常1〜10nmの厚さで成膜される。
なお、2つの強磁性層を同一の材料で形成しても、異なる材料で形成してもよい。また、その厚さも、同じであっても異なっていてもよい。
2つの強磁性層を非磁性層で仕切ることにより、両者の強磁性層の磁化の容易軸が反並行に結合する。こうした非磁性層の作用により、2つの強磁性層の磁化が安定する。その結果、層の側端面から磁界が漏洩しないので、素子全体の安定性を向上させることができる。なお、これらの強磁性層や非磁性層も、上記同様、スパッタリングや蒸着等の方法で成膜される。
(導電性薄層)
図2は、本発明の磁気抵抗効果素子の他の一例を示す積層方向の断面図である。
図2は、本発明の磁気抵抗効果素子の他の一例を示す積層方向の断面図である。
本発明の磁気抵抗効果素子20は、ナノ接合部3を有する絶縁層4と、自由層1及び固定層2の一方又は両方との間に、導電性薄層5を設けることが好ましい。導電性薄層5をそうした位置に設けることにより、双極子相互作用が最適化されると共に、スピンの集束を高め、抵抗変化率を高めると共に、磁気的な安定性をも高めることができる。
導電性薄層を形成するための材料としては、Cu,Au,Cr及びAgから選ばれる元素を有する材料で形成されることが好ましく、特に好ましくは、Cu、Au等である。こうした導電性薄層5は、スパッタリングや蒸着等の方法で、通常0.1〜1nmの厚さで成膜されることが好ましい。
以上説明した本発明の磁気抵抗効果素子は、通常、バッファー層が形成された基板上に設けられる。基板としては、Si基板、Si酸化物基板、AlTiC基板等が用いられる。バッファー層としては、その上に形成される自由層1や固定層2の結晶性を高めるために設けられるものであり、例えば、Ta層、NiCr層、Cu層等が挙げられ、真空蒸着やスパッタリング等の成膜手段により、通常2〜100nmの厚さで成膜される。
また、本発明の磁気抵抗効果素子においては、必要に応じて、磁気安定制御層を設けることもできる。磁気安定制御層は、自由層の磁化方向を安定化させるように作用する層であり、自由層1上にナノ接合部3から遠ざかる方向に向かって非磁性層、強磁性層及び反強磁性層の順で形成することができる。
以上説明した、本発明の磁気抵抗効果素子において、ナノ接合部3を挟んだ2つの強磁性層は、磁区制御が容易なように層状の平面を有するので、磁化分布状態を揃えることができ、従って、微小なナノ接合部において接続されている相対する強磁性層との間の磁壁幅を急峻に保つことが可能となり、大きな磁気抵抗変化率が得られる。ただし、2つの強磁性層は、必ずしも厳密に平坦な層である必要はなく、多少の凹凸面又は湾曲面を有していてもよい。またさらに、本発明においては、1又は2以上のナノ接合部3、すなわち単一の又は複数のナノ接合部3が形成されているような態様としてもよい。2以上のナノ接合部3を自由層及び固定層の間(すなわち、2つの強磁性層の間)に設けた場合には、MR値が若干減少するという難点があるものの、単一のナノ接合部3を有する場合と比較して素子ごとのMR値のバラツキを低減でき、安定したMR特性を再現することが容易となる。
(磁気ヘッド)
本発明の磁気ヘッドは、上述した磁気抵抗効果素子を用いることで50%以上の磁気抵抗変化率を発生することができるため、大きな再生感度をもっている。
本発明の磁気ヘッドは、上述した磁気抵抗効果素子を用いることで50%以上の磁気抵抗変化率を発生することができるため、大きな再生感度をもっている。
図4は、本発明の磁気抵抗効果素子を磁気再生素子として用いる磁気ヘッドの一例を示す模式図である。図4に示す磁気ヘッド50は、磁気抵抗効果素子10の膜面を記録媒体56に対して垂直に配置している。ここで、ナノ接合部3は、磁気抵抗効果素子10の中心から記録媒体56に近づく方向に配置されている。記録媒体56からの信号磁界は、記録媒体56からの距離が短くなるほど大きくなるため、そうした位置にナノ接合部3を配置するように構成された磁気ヘッド50は、磁化を感受する自由層7の磁界検出効率が大きくなるという効果がある。
図4に示す磁気抵抗効果素子10は、図1に示す磁気抵抗効果素子を構成する代表的な層を示しており、符号53のシールド部材側から、符号54のシールド部材側に向かって、電極51、固定層2、ナノ接合部3、自由層1、電極52の順で設けられた磁気抵抗効果素子10である。なお、符号55はセンス電流を表している。また、図4においては、記録媒体として水平磁化膜を例示したが、垂直磁化膜であってもよい。
この図4に示す磁気抵抗効果素子10において、その幅は、20〜100nmの範囲であり、各層の膜厚は、使用する記録密度や要求感度に応じて、0.5〜20nmの範囲で最適化され、又、個数が1又は2以上のナノ接合部3は、2〜20nmの寸法で形成される。
こうした構成からなる磁気抵抗効果素子10は、50%以上の磁気抵抗効果を示し、センス電流55を感度よく検出することができるので、感度のロスが少ないと共に、安定性に優れた磁気ヘッドとすることができる。
以上のように、磁気ヘッドに装着された本発明の磁気抵抗効果素子は、例えば水平磁化膜からなる記録媒体に対しては、その記録媒体に対向配置された自由層の容易軸の方向がその記録媒体の磁化方向と平行となり、その容易軸の磁化は記録媒体の磁化転移領域から発生する磁界に敏感に感応して回転する。その結果、ナノ接合部を流れるセンス電流が変化し、記録媒体の漏れ磁場を極めて感度よく読みとることができる。本発明の磁気抵抗効果素子は、50%以上の磁気抵抗効果を示し、センス電流を感度よく検出することができるので、感度のロスが少ないと共に、安定性に優れた磁気ヘッドとすることができる。
1 自由層
2 固定層
3 ナノ接合部
4 絶縁層
5 導電性薄層
10、20 磁気抵抗効果素子
50 磁気ヘッド
51,52 電極
53,54 シールド部材
55 センス電流
56 記録媒体
2 固定層
3 ナノ接合部
4 絶縁層
5 導電性薄層
10、20 磁気抵抗効果素子
50 磁気ヘッド
51,52 電極
53,54 シールド部材
55 センス電流
56 記録媒体
Claims (9)
- 強磁性層からなる自由層及び固定層と、強磁性層からなり、前記自由層及び固定層の間に設けられるフェルミ長以下の寸法を持つ1又は2以上のナノ接合部とを有し、前記ナノ接合部の内部に現れる磁壁が、主として、ブロッホ磁壁、ネール磁壁又はそれらが混在している磁壁であることを特徴とする磁気抵抗効果素子。
- 前記磁壁が主としてブロッホ磁壁である請求項1に記載の磁気抵抗効果素子において、当該磁気抵抗効果素子の積層方向における前記ナノ接合部の寸法hとナノ接合部の形成材料の格子定数aとが、h<4×aの関係であることを特徴とする磁気抵抗効果素子。
- 前記磁壁が主としてネール磁壁である請求項1に記載の磁気抵抗効果素子において、当該磁気抵抗効果素子の積層方向における前記ナノ接合部の寸法hとナノ接合部の形成材料の格子定数aとが、h>20×aの関係であることを特徴とする磁気抵抗効果素子。
- 強磁性層からなる前記自由層及び前記固定層が、分極率0.5以上の強磁性材料で形成されていることを特徴とする請求項1〜3のいずれか1項に記載の磁気抵抗効果素子。
- 前記ナノ接合部及び当該ナノ接合部以外の部位である絶縁層と、前記自由層及び固定層の一方又は両方との間に、導電性薄層が設けられていることを特徴とする請求項1〜4のいずれか1項に記載の磁気抵抗効果素子。
- 前記導電性薄層の厚さが0.1〜1nmであることを特徴とする請求項5に記載の磁気抵抗効果素子。
- 前記絶縁層が、酸化物又は窒化物等の絶縁材料で構成されていることを特徴とする請求項5に記載の磁気抵抗効果素子。
- 信号を検出するためのセンス電流が、ナノ接合部を介して、前記自由層と固定層との間を流れることを特徴とする請求項1〜7のいずれか1項に記載の磁気抵抗効果素子。
- 請求項1〜8のいずれか1項に記載の磁気抵抗効果素子を有することを特徴とする磁気ヘッド。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342456A JP2005109242A (ja) | 2003-09-30 | 2003-09-30 | 磁気抵抗効果素子及び磁気ヘッド |
US10/882,322 US7184247B2 (en) | 2003-09-30 | 2004-07-02 | Magnetoresistance effect element comprising nano-contact portion not more than a fermi length, method of manufacturing same and magnetic head utilizing same |
US11/679,814 US7733611B2 (en) | 2003-09-30 | 2007-02-27 | Magnetoresistance effect element comprising nano-contact portion not more than a mean free path and magnetic head utilizing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342456A JP2005109242A (ja) | 2003-09-30 | 2003-09-30 | 磁気抵抗効果素子及び磁気ヘッド |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005109242A true JP2005109242A (ja) | 2005-04-21 |
JP2005109242A5 JP2005109242A5 (ja) | 2006-11-16 |
Family
ID=34373500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003342456A Pending JP2005109242A (ja) | 2003-09-30 | 2003-09-30 | 磁気抵抗効果素子及び磁気ヘッド |
Country Status (2)
Country | Link |
---|---|
US (2) | US7184247B2 (ja) |
JP (1) | JP2005109242A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011013249A1 (ja) * | 2009-07-31 | 2011-02-03 | 株式会社 東芝 | 磁気抵抗効果素子 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109243A (ja) * | 2003-09-30 | 2005-04-21 | Tdk Corp | 磁気抵抗効果素子及び磁気ヘッド |
CA2571423C (en) * | 2004-06-21 | 2014-08-05 | Nokia Corporation | Recovery method for lost signaling connection with high speed downlink packet access/fractional dedicated physical channel |
US7356909B1 (en) * | 2004-09-29 | 2008-04-15 | Headway Technologies, Inc. | Method of forming a CPP magnetic recording head with a self-stabilizing vortex configuration |
US7583482B2 (en) * | 2004-11-30 | 2009-09-01 | Tdk Corporation | Magnetoresistive element and magnetoresistive device having a free layer stabilized by an in-stack bias |
JP2007220850A (ja) * | 2006-02-16 | 2007-08-30 | Fujitsu Ltd | 積層磁性膜および磁気ヘッド |
JP2013033881A (ja) * | 2011-08-03 | 2013-02-14 | Sony Corp | 記憶素子及び記憶装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100225179B1 (ko) * | 1992-11-30 | 1999-10-15 | 니시무로 타이죠 | 박막 자기 헤드 및 자기 저항 효과형 헤드 |
JP3293437B2 (ja) * | 1995-12-19 | 2002-06-17 | 松下電器産業株式会社 | 磁気抵抗効果素子、磁気抵抗効果型ヘッド及びメモリー素子 |
US6590750B2 (en) * | 1996-03-18 | 2003-07-08 | International Business Machines Corporation | Limiting magnetoresistive electrical interaction to a preferred portion of a magnetic region in magnetic devices |
DE69726244T2 (de) * | 1996-05-28 | 2004-08-26 | Shimadzu Corp. | Magnetowiderstandseffekt-element, magnetowiderstandseffekt-magnetkopf, speicherelement und herstellungsverfahren |
EP0843827A2 (en) | 1996-06-12 | 1998-05-27 | Koninklijke Philips Electronics N.V. | A magneto-resistive magnetic field sensor |
SG75829A1 (en) * | 1997-03-14 | 2000-10-24 | Toshiba Kk | Magneto-resistance effect element and magnetic head |
US6579635B2 (en) * | 2000-10-12 | 2003-06-17 | International Business Machines Corporation | Smoothing and stabilization of domain walls in perpendicularly polarized magnetic films |
US6937446B2 (en) * | 2000-10-20 | 2005-08-30 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system |
JP2002314168A (ja) * | 2001-04-18 | 2002-10-25 | Fujitsu Ltd | Cpp構造電磁変換素子およびその製造方法 |
JP3967237B2 (ja) | 2001-09-19 | 2007-08-29 | 株式会社東芝 | 磁気抵抗効果素子及びその製造方法、磁気再生素子並びに磁気メモリ |
US6937447B2 (en) * | 2001-09-19 | 2005-08-30 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory |
US7035062B1 (en) * | 2001-11-29 | 2006-04-25 | Seagate Technology Llc | Structure to achieve sensitivity and linear density in tunneling GMR heads using orthogonal magnetic alignments |
JP2003218425A (ja) * | 2002-01-18 | 2003-07-31 | Hitachi Ltd | 有限電圧下で高磁気抵抗率を示す強磁性トンネル接合素子、および、それを用いた強磁気抵抗効果型ヘッド、磁気ヘッドスライダ、ならびに磁気ディスク装置 |
US6724652B2 (en) * | 2002-05-02 | 2004-04-20 | Micron Technology, Inc. | Low remanence flux concentrator for MRAM devices |
JP4487472B2 (ja) * | 2002-07-05 | 2010-06-23 | 株式会社日立製作所 | 磁気抵抗効果素子、及びこれを備える磁気ヘッド、磁気記録装置、磁気メモリ |
US7218484B2 (en) * | 2002-09-11 | 2007-05-15 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, magnetic head, and magnetic reproducing apparatus |
JP2005109240A (ja) * | 2003-09-30 | 2005-04-21 | Tdk Corp | 磁気抵抗効果素子及び磁気ヘッド |
US20050136600A1 (en) * | 2003-12-22 | 2005-06-23 | Yiming Huai | Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements |
JP2005191101A (ja) * | 2003-12-24 | 2005-07-14 | Tdk Corp | 磁気抵抗効果素子及び磁気ヘッド |
ES2249974B1 (es) * | 2004-03-01 | 2007-06-01 | Consejo Sup. Investig. Cientificas | Dispositivo spintronico magnetoresistivo, su procedimiento de fabricacion y sus aplicaciones. |
-
2003
- 2003-09-30 JP JP2003342456A patent/JP2005109242A/ja active Pending
-
2004
- 2004-07-02 US US10/882,322 patent/US7184247B2/en not_active Expired - Fee Related
-
2007
- 2007-02-27 US US11/679,814 patent/US7733611B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011013249A1 (ja) * | 2009-07-31 | 2011-02-03 | 株式会社 東芝 | 磁気抵抗効果素子 |
US8363362B2 (en) | 2009-07-31 | 2013-01-29 | Kabushiki Kaisha Toshiba | Magnetoresistive element |
Also Published As
Publication number | Publication date |
---|---|
US20050068689A1 (en) | 2005-03-31 |
US20080247097A1 (en) | 2008-10-09 |
US7733611B2 (en) | 2010-06-08 |
US7184247B2 (en) | 2007-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7054120B2 (en) | Magnetic apparatus with perpendicular recording medium and head having multilayered reproducing element using tunneling effect | |
US6064552A (en) | Magnetoresistive head having magnetic yoke and giant magnetoresistive element such that a first electrode is formed on the giant magnetoresistive element which in turn is formed on the magnetic yoke which acts as a second electrode | |
US8077435B1 (en) | Current perpendicular-to-plane read sensor with back shield | |
US7280323B2 (en) | Magnetoresistance effect element and magnetic head | |
JP2007531180A (ja) | 低磁歪を有する磁気抵抗ヘッドを安定化させる積層フリー層 | |
JP2002359412A (ja) | 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、および磁気メモリ | |
US20070188943A1 (en) | Magnetoresistance Effect Element, Method of Manufacturing Same and Magnetic Head Utilizing Same | |
US20090097166A1 (en) | Magnetoresistive element, magnetic head and magnetic recording/reproducing apparatus | |
JP2007531182A (ja) | 膜面垂直通電モード磁気抵抗ヘッド用安定化器とその製造方法 | |
JP2005109241A (ja) | 磁気抵抗効果素子及びその製造方法並びに磁気ヘッド | |
JP2007531178A (ja) | 磁気抵抗ヘッド用安定化器及び製造方法 | |
JP2004289100A (ja) | Cpp型巨大磁気抵抗素子及びそれを用いた磁気部品並びに磁気装置 | |
US7733611B2 (en) | Magnetoresistance effect element comprising nano-contact portion not more than a mean free path and magnetic head utilizing same | |
JP2005191101A (ja) | 磁気抵抗効果素子及び磁気ヘッド | |
JP2005109240A (ja) | 磁気抵抗効果素子及び磁気ヘッド | |
US6765767B2 (en) | Magnetoresistive head on a side wall for increased recording densities | |
US9070389B2 (en) | Magnetic recording and reproducing apparatus | |
JP2006157026A (ja) | 狭窄電流路を有する交換バイアス磁気ヘッド | |
JP3673250B2 (ja) | 磁気抵抗効果素子および再生ヘッド | |
JP3561026B2 (ja) | 磁気抵抗効果ヘッド | |
JP2004128026A (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記録装置 | |
JPH10320721A (ja) | 磁気抵抗効果ヘッド | |
Grochowski et al. | Giant Magnetoresistance Heads: Nanofilms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060927 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090512 |