[go: up one dir, main page]

JP2005097010A - Carbon material, production method therefor and its application - Google Patents

Carbon material, production method therefor and its application Download PDF

Info

Publication number
JP2005097010A
JP2005097010A JP2003329764A JP2003329764A JP2005097010A JP 2005097010 A JP2005097010 A JP 2005097010A JP 2003329764 A JP2003329764 A JP 2003329764A JP 2003329764 A JP2003329764 A JP 2003329764A JP 2005097010 A JP2005097010 A JP 2005097010A
Authority
JP
Japan
Prior art keywords
carbon material
resin
material according
acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329764A
Other languages
Japanese (ja)
Inventor
Akitaka Sudo
彰孝 須藤
Masataka Takeuchi
正隆 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003329764A priority Critical patent/JP2005097010A/en
Publication of JP2005097010A publication Critical patent/JP2005097010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery excellent in properties such as discharge capacity and Coulomb efficiency, to provide a negative electrode material for the secondary battery, and to provide a carbon material suitable for the negative electrode material. <P>SOLUTION: The subject method for producing a carbon material for a battery electrode comprises: a stage where natural graphite grains in which the average grain size is controlled to 0.1 to 100 μm is subjected to immersing treatment with a hydrogen fluoride-containing solution; and a stage where heat treatment is performed at 2,400 to 3,300°C, and in which the total content of elements other than carbon is controlled to ≤800 ppm. Thus, the negative electrode material large in discharge capacity and excellent in Coulomb efficiency, and a secondary battery using the negative electrode material can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、充放電容量が大きく、充放電サイクル特性、大電流負荷特性に優れた非水電解質二次電池用の電極材料、それを用いた電極及び非水電解質二次電池に関し、特にリチウム二次電池の負極材、それを用いた負極及びリチウム二次電池に関する。   The present invention relates to an electrode material for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity, excellent charge / discharge cycle characteristics and large current load characteristics, an electrode using the same, and a non-aqueous electrolyte secondary battery, in particular, lithium secondary battery. The present invention relates to a negative electrode material for a secondary battery, a negative electrode using the negative electrode material, and a lithium secondary battery.

携帯機器の小型軽量化及び高性能化に伴い、高いエネルギー密度を有するリチウムイオン二次電池、すなわちリチウムイオン二次電池の高容量化が益々求められている。リチウムイオン二次電池に使用する負極材料としては、主にリチウムイオンを層間に挿入可能な材料である黒鉛微粉が用いられている。黒鉛は結晶性が発達しているものほど高い放電容量を示すため、天然黒鉛を頂点とする結晶性の高い材料をリチウムイオン二次電池の負極材に使用する検討がなされている。黒鉛材料を使用したときの放電容量の理論容量は372mAh/gであるが、近年では実用領域での放電容量が350〜360mAh/gという理論容量に近い材料も開発されている。人造黒鉛は理論容量を出すことは結晶性の問題から困難であり、また実現してもコストが高くなってしまう。これに比べて天然黒鉛は安価であり、容易に理論容量に近い放電容量を得ることができる。   As portable devices become smaller and lighter and have higher performance, there is an increasing demand for higher capacity lithium ion secondary batteries having high energy density, that is, lithium ion secondary batteries. As a negative electrode material used for a lithium ion secondary battery, graphite fine powder which is a material capable of inserting lithium ions between layers is mainly used. Since graphite having higher crystallinity exhibits a higher discharge capacity, studies have been made on the use of a material with high crystallinity centered on natural graphite for the negative electrode material of a lithium ion secondary battery. The theoretical capacity of the discharge capacity when using a graphite material is 372 mAh / g, but in recent years, a material close to the theoretical capacity of 350 to 360 mAh / g in the practical range has been developed. It is difficult to produce a theoretical capacity for artificial graphite because of crystallinity, and even if it is realized, the cost becomes high. Compared with this, natural graphite is cheaper, and a discharge capacity close to the theoretical capacity can be easily obtained.

しかし、一般に天然黒鉛はその生因に起因する不純物の含有量が多く、これが製品の諸症状の劣化の要因となっていた。特に、シリカ、アルミナ、酸化鉄などを主成分とする粘土鉱物は天然黒鉛中の含有量も多く、ごく微量の不純物の存在でも性能低下を引き起こすLi二次電池の要求特性を満足する程度まで完全に除去することは難しい。特に近年のリチウムイオン二次電池は高容量に加え非常に高い初回充放電効率が要求されており、これを満足することは容易なことではない。   However, in general, natural graphite has a large content of impurities due to its origin, which has been a cause of deterioration of various symptoms of the product. In particular, clay minerals mainly composed of silica, alumina, iron oxide, etc. have a high content in natural graphite, and are completely satisfied to the extent that they satisfy the required characteristics of Li secondary batteries that cause performance degradation even in the presence of very small amounts of impurities. It is difficult to remove. In particular, lithium ion secondary batteries in recent years are required to have very high initial charge / discharge efficiency in addition to high capacity, and it is not easy to satisfy them.

このような問題を解決する方法として、特許第3188032号明細書(特許文献1)には、2400℃以上の温度で熱処理する方法が開示されている。しかしながら、この方法では、シリカ、アルミナなどが十分に除去できず、初回充放電効率を満足することは困難である。   As a method for solving such a problem, Japanese Patent No. 3188032 (Patent Document 1) discloses a method of performing a heat treatment at a temperature of 2400 ° C. or higher. However, this method cannot sufficiently remove silica, alumina, etc., and it is difficult to satisfy the initial charge / discharge efficiency.

特開平10−284080号公報(特許文献2)や特開2000−306582号公報(特許文献3)には、黒鉛を酸やアルカリで表面処理することで種々の電池特性が向上したとあるが、表面処理のレベルであり、十分に不純物を除去できていない。特に特許文献2では2000℃以下の熱処理を実施しているが、熱処理の後に酸性溶液等で処理を実施しており、これでは黒鉛内部に入り込んだ水分を十分除去することが困難である。しかも、熱処理の温度も低く良好な不純物除去は望めず、現在の要求に見合った初期効率を得ることは難しい。   In JP-A-10-284080 (Patent Document 2) and JP-A 2000-306582 (Patent Document 3), it is said that various battery characteristics are improved by surface-treating graphite with acid or alkali. This is the level of surface treatment, and impurities cannot be removed sufficiently. In particular, in Patent Document 2, heat treatment at 2000 ° C. or lower is performed, but the heat treatment is performed with an acidic solution or the like, and this makes it difficult to sufficiently remove moisture that has entered the graphite. In addition, the temperature of the heat treatment is low and good impurity removal cannot be expected, and it is difficult to obtain an initial efficiency that meets the current requirements.

特開平11−199322号公報(特許文献4)や特開2000−100431号公報(特許文献5)には、黒鉛を硫酸または硫酸と硝酸の混合物により処理した後加熱することにより表面官能基を生成させ、粒子内部に微小な空隙を生成させることでバインダーとの結合性と急速充放電特性を向上させることが記載されているが、酸処理として硫酸や硝酸を用いる方法では、天然黒鉛中に含まれるシリカやアルミナなどの不純物を十分に除去することは難しい。   Japanese Patent Application Laid-Open No. 11-199322 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2000-1000043 (Patent Document 5) generate surface functional groups by treating graphite with sulfuric acid or a mixture of sulfuric acid and nitric acid and then heating. It is described that the bonding property with the binder and the rapid charge / discharge characteristics are improved by generating minute voids inside the particles. However, in the method using sulfuric acid or nitric acid as the acid treatment, it is contained in natural graphite. It is difficult to sufficiently remove impurities such as silica and alumina.

特開平5−299074号公報(特許文献6)には、炭素材料をアルカリ処理した後加熱する方法が開示されているが、表面処理を目的としており、酸とアルカリを任意に組み合わせただけでは、結果として天然黒鉛の十分な不純物除去を行うことは難しい。また、この方法では、酸、アルカリ処理面が表面に出ており、加熱処理後にもそれらが残ってしまう。これらは電池化した際にガス発生や初回充電時に副反応を引き起こす原因となる場合もあり好ましくない。   JP-A-5-299074 (Patent Document 6) discloses a method of heating a carbon material after alkali treatment, but for the purpose of surface treatment, only combining an acid and an alkali, As a result, it is difficult to sufficiently remove impurities from natural graphite. Further, in this method, the acid and alkali treated surfaces are exposed on the surface, and they remain after the heat treatment. These are not preferable because they may cause side reactions at the time of gas generation or initial charge when they are made into batteries.

さらに、炭素材料を加熱しつつフロンガス等を流して精製する方法もあるが(特開平11−236205号公報(特許文献7))、環境問題、コストの問題などの面から実際に行うことは現実的ではない。   Further, there is a method of purifying the carbon material by flowing a fluorocarbon gas or the like while heating it (Japanese Patent Laid-Open No. 11-236205 (Patent Document 7)), but it is actually carried out from the viewpoint of environmental problems and cost problems. Not right.

特許第3188032号明細書Japanese Patent No. 3188032 特開平10−284080号公報JP-A-10-284080 特開2000−306582号公報JP 2000-306582 A 特開平11−199322号公報Japanese Patent Application Laid-Open No. 11-199322 特開2000−100431号公報Japanese Patent Application Laid-Open No. 2000-1000043 特開平5−299074号公報JP-A-5-299074 特開平11−236205号公報JP-A-11-236205

本発明は、比較的簡単な方法で天然黒鉛中の不純物を十分に除去することにより、放電容量が大きく、クーロン効率、サイクル特性に優れ、不可逆容量の小さいリチウムイオン二次電池用負極材料を得ることを目的とする。   The present invention provides a negative electrode material for a lithium ion secondary battery having a large discharge capacity, excellent coulomb efficiency and cycle characteristics, and a small irreversible capacity by sufficiently removing impurities in natural graphite by a relatively simple method. For the purpose.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、天然黒鉛を適宜粉砕した後、フッ酸を中心とした酸で処理し、2400〜3300℃で熱処理するという従来法とは異なる方法を用いることにより、好ましくはフッ酸を中心とした酸で処理する前にアルカリで処理することにより、さらに好ましくは熱処理前に粒子を樹脂で処理することにより、意外にも非常に高い初回充放電効率、大きい放電容量、優れたサイクル特性を有するリチウムイオン二次電池用負極材料が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the inventors of the present invention, after appropriately pulverizing natural graphite, treating with an acid centered on hydrofluoric acid, and heat-treating at 2400-3300 ° C. By using different methods, preferably by treating with alkali before treatment with acid centered on hydrofluoric acid, more preferably by treating the particles with resin before heat treatment, which is surprisingly very high The inventors have found that a negative electrode material for a lithium ion secondary battery having initial charge / discharge efficiency, a large discharge capacity, and excellent cycle characteristics can be obtained, thereby completing the present invention.

すなわち本発明は、以下の電池電極用炭素材料、その製造方法及びその炭素材料を用いた電極、電池を提供するものである。
[1]平均粒径が0.1〜100μmの天然黒鉛粒子を、フッ化水素含有溶液で浸漬処理する工程及び前記浸漬処理した天然黒鉛粒子を2400℃以上3300℃未満の温度で熱処理する工程を含み、炭素以外の元素含有率の合計を800ppm以下とすることを特徴とする炭素材料の製造方法。
[2]フッ化水素含有溶液で浸漬処理する工程の前に、アルカリ水溶液で浸漬処理する工程を設ける前記1に記載の炭素材料の製造方法。
[3]熱処理工程の前に、フッ化水素含有溶液で浸漬処理した天然黒鉛粒子をバインダーによる結着力および/またはせん断による粒子界面同士のファンデルワールス力により造粒する工程を設ける前記1または2に記載の炭素材料の製造方法。
[4]造粒工程が、フッ化水素含有溶液で浸漬処理した0.1〜50μmの平均粒径を有する天然黒鉛粒子を平均円形度0.85〜0.99、平均粒径0.5〜200μmとなるように造粒を行う工程である前記3に記載の炭素材料の製造方法。
[5]熱処理工程の前に、粒子表面の少なくとも一部を樹脂で被覆する工程を設ける前記1乃至4のいずれかに記載の炭素材料の製造方法。
[6]フッ化水素含有溶液のフッ化水素濃度(HF濃度)が10〜80%である前記1に記載の炭素材料の製造方法。
[7]フッ化水素含有溶液が、硝酸、硫酸、塩酸、臭素酸、ヨウ素酸、トリクロロ酢酸、トリフルオロ酢酸及び蓚酸から選ばれる少なくとも1種が混合された水溶液である前記6に記載の炭素材料の製造方法。
[8]粒子表面の少なくとも一部を被覆する樹脂が、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種を含む重合体である前記5に記載の炭素材料の製造方法。
[9]粒子表面の少なくとも一部を被覆する樹脂が、フェノール樹脂である前記5に記載の炭素材料の製造方法。
[10]粒子表面の少なくとも一部を被覆する樹脂の量が、粒子質量の2〜80質量%である前記8に記載の炭素材料の製造方法。
[11]フェノール樹脂が、フェノール類とホルムアルデヒド類の反応時に乾性油またはその脂肪酸を添加して調製されたものである前記9に記載の炭素材料の製造方法。
[12]フェノール類とホルムアルデヒド類の反応時に気相法炭素繊維を存在させ、生成したフェノール樹脂により粒子表面に気相法炭素繊維を付着させる前記9に記載の炭素材料の製造方法。
[13]粒子に付着した気相法炭素繊維の量が、粒子質量の0.01〜20質量%である前記12に記載の炭素材料の製造方法。
[14]炭素以外の元素含有率の合計が800ppm以下の天然黒鉛粒子からなることを特徴とする炭素材料。
[15]粒子表面の少なくとも一部が樹脂を炭化・焼成してなる炭素質材料で被覆されている前記14に記載の炭素材料。
[16]樹脂がフェノール樹脂である前記15に記載の炭素材料。
[17]少なくとも一部の粒子の表面に炭素質材料を介して、内部に中空構造を有し外径2〜1000nm、アスペクト比10〜15000の気相法炭素繊維が付着している前記15に記載の炭素材料。
[18]気相法炭素繊維が、X線回折法による(002)面の平均面間隔(d002)0.344nm以下の炭素からなる前記17に記載の炭素材料。
[19]ホウ素を1〜800ppm含有する前記14に記載の炭素材料。
[20]以下の(1)〜(3)の要件を満足する前記14乃至19のいずれかに記載の炭素材料:
(1)平均円形度が0.85〜0.99、
(2)比表面積が0.2〜5m2/g、
(3)平均粒子径が10〜40μm。
[21]前記1乃至13のいずれかに記載の製造方法によって得られた炭素材料。
[22]前記14乃至21のいずれかに記載の炭素材料とバインダーを含む電極ペースト。
[23]前記22に記載の電極ペーストの成形体からなる電極。
[24]前記23に記載の電極を構成要素として含む二次電池。
[25]非水電解液及び電解質を用い、前記非水電解液がエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、γ−ブチロラクトン及びプロピレンカーボネートからなる群から選ばれる少なくとも1種である前記24に記載の二次電池。
That is, the present invention provides the following carbon material for a battery electrode, a method for producing the same, an electrode using the carbon material, and a battery.
[1] A step of immersing natural graphite particles having an average particle size of 0.1 to 100 μm with a hydrogen fluoride-containing solution and a step of heat-treating the immersed natural graphite particles at a temperature of 2400 ° C. or higher and lower than 3300 ° C. A method for producing a carbon material, characterized in that the total content of elements other than carbon is 800 ppm or less.
[2] The method for producing a carbon material as described in 1 above, wherein a step of immersing with an alkaline aqueous solution is provided before the step of immersing with the hydrogen fluoride-containing solution.
[3] The above 1 or 2 wherein a step of granulating natural graphite particles immersed in a hydrogen fluoride-containing solution by a binder force and / or a van der Waals force between particle interfaces due to shear is provided before the heat treatment step. The manufacturing method of the carbon material as described in 2.
[4] In the granulation step, natural graphite particles having an average particle diameter of 0.1 to 50 μm which have been dipped in a hydrogen fluoride-containing solution have an average circularity of 0.85 to 0.99 and an average particle diameter of 0.5. 4. The method for producing a carbon material as described in 3 above, which is a step of granulating to 200 μm.
[5] The method for producing a carbon material according to any one of 1 to 4, wherein a step of coating at least part of the particle surface with a resin is provided before the heat treatment step.
[6] The method for producing a carbon material as described in 1 above, wherein the hydrogen fluoride-containing solution has a hydrogen fluoride concentration (HF concentration) of 10 to 80%.
[7] The carbon material as described in 6 above, wherein the hydrogen fluoride-containing solution is an aqueous solution in which at least one selected from nitric acid, sulfuric acid, hydrochloric acid, bromic acid, iodic acid, trichloroacetic acid, trifluoroacetic acid and oxalic acid is mixed. Manufacturing method.
[8] A polymer in which the resin covering at least a part of the particle surface includes at least one selected from the group consisting of a phenol resin, a polyvinyl alcohol resin, a furan resin, a cellulose resin, a polystyrene resin, a polyimide resin, and an epoxy resin. 6. The method for producing a carbon material as described in 5 above.
[9] The method for producing a carbon material as described in 5 above, wherein the resin covering at least a part of the particle surface is a phenol resin.
[10] The method for producing a carbon material as described in 8 above, wherein the amount of the resin covering at least a part of the particle surface is 2 to 80% by mass of the particle mass.
[11] The method for producing a carbon material as described in 9 above, wherein the phenol resin is prepared by adding a drying oil or a fatty acid thereof during the reaction of phenols and formaldehyde.
[12] The method for producing a carbon material as described in 9 above, wherein vapor-grown carbon fiber is present during the reaction of phenols and formaldehyde, and vapor-grown carbon fiber is adhered to the particle surface by the generated phenol resin.
[13] The method for producing a carbon material as described in 12 above, wherein the amount of vapor grown carbon fiber adhered to the particles is 0.01 to 20% by mass of the mass of the particles.
[14] A carbon material comprising natural graphite particles having a total content of elements other than carbon of 800 ppm or less.
[15] The carbon material as described in 14 above, wherein at least a part of the particle surface is coated with a carbonaceous material obtained by carbonizing and firing a resin.
[16] The carbon material as described in 15 above, wherein the resin is a phenol resin.
[17] The above-mentioned 15, wherein a vapor-grown carbon fiber having a hollow structure inside and having an outer diameter of 2 to 1000 nm and an aspect ratio of 10 to 15000 is attached to the surface of at least some of the particles via a carbonaceous material The carbon material described.
[18] The carbon material as described in 17 above, wherein the vapor grown carbon fiber comprises carbon having an average interplanar spacing (d 002 ) of 0.344 nm or less (d 002 ) by X-ray diffraction.
[19] The carbon material as described in 14 above, containing 1 to 800 ppm of boron.
[20] The carbon material as described in any one of 14 to 19, which satisfies the following requirements (1) to (3):
(1) An average circularity of 0.85 to 0.99,
(2) a specific surface area of 0.2 to 5 m 2 / g,
(3) The average particle size is 10 to 40 μm.
[21] A carbon material obtained by the production method according to any one of 1 to 13 above.
[22] An electrode paste comprising the carbon material according to any one of 14 to 21 and a binder.
[23] An electrode comprising a molded body of the electrode paste as described in 22 above.
[24] A secondary battery including the electrode according to 23 as a constituent element.
[25] A non-aqueous electrolyte and an electrolyte, wherein the non-aqueous electrolyte is at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, vinylene carbonate, γ-butyrolactone, and propylene carbonate. 25. The secondary battery as described in 24 above.

[天然黒鉛]
本発明で使用できる天然黒鉛に特に制限はないが、(002)面における平均面間隔(d002)が0.340nm以下のものが好ましく、さらに好ましくは0.337nm以下のものである。
天然黒鉛は、各種の処理をする前に、必要に応じて所定の粒径に調整される。粒径の調整は、通常、粉砕及び分級により行なう。粒径調整(粉砕)後の粒子形状には限定はなく、例えば塊状、鱗片状、球状、繊維状等のいずれの形状を有するものでもよいが、電池電極用炭素材料としての好適形状である球状が好ましい。特にフロー式粒子像解析装置によって測定される平均円形度(算出方法は後述の実施例の項参照)が0.85〜0.99であることが好ましい。平均円形度が0.85より小さいと電極成形時の充填密度が上がらないため体積当たりの放電容量が低下する。平均円形度が0.99より大きい場合は、微粉部分は円形度が低いため微粉部分がほとんど含まれないことになり、電極成形時の放電容量が上がらない。また前記円形度の値は、0.90未満の粒子の含有率が2〜20個数%の範囲に制御されていることが好ましい。粉体の平均円形度は、例えば、メカノフュージョン(表面融合)処理のような粒子形状制御装置を使用して調整することができる。
[Natural graphite]
There is no particular limitation on natural graphite can be used in the present invention is an average spacing (d 002) thereof is preferably less 0.340 nm, more preferably below 0.337nm in (002) plane.
Natural graphite is adjusted to a predetermined particle size as necessary before various treatments. Adjustment of the particle size is usually performed by pulverization and classification. There is no limitation on the particle shape after the particle size adjustment (pulverization), and for example, it may have any shape such as a lump shape, a scale shape, a spherical shape, and a fibrous shape, but a spherical shape that is a suitable shape as a carbon material for battery electrodes. Is preferred. In particular, it is preferable that the average circularity measured by a flow type particle image analyzer (refer to the section of Examples described later for the calculation method) is 0.85 to 0.99. When the average circularity is less than 0.85, the packing density at the time of forming the electrode does not increase, so that the discharge capacity per volume decreases. When the average circularity is larger than 0.99, the fine powder portion has a low circularity, and therefore the fine powder portion is hardly included, and the discharge capacity at the time of forming the electrode does not increase. The circularity value is preferably controlled so that the content of particles having a particle size of less than 0.90 is in the range of 2 to 20% by number. The average circularity of the powder can be adjusted using, for example, a particle shape control device such as a mechanofusion (surface fusion) process.

天然黒鉛粒子は、レーザー回折法による平均粒子径が0.1〜100μmの範囲となるように調整する。好ましくは1〜80μmであり、より好ましくは5〜40μmであり、さらに好ましくは10〜30μmである。また、1μm以下及び/または80μm以上の粒子を実質的に含まない粒度分布がよい。これは粒度が大きいと充放電反応によって微粒子化が生じ、サイクル特性が低下するからである。また、粒度が小さいとリチウムイオンと電気化学的な反応に効率よく関与できない粒子となり、容量、サイクル特性が低下する。   The natural graphite particles are adjusted so that the average particle diameter by laser diffraction method is in the range of 0.1 to 100 μm. Preferably it is 1-80 micrometers, More preferably, it is 5-40 micrometers, More preferably, it is 10-30 micrometers. Moreover, the particle size distribution which does not substantially contain particles of 1 μm or less and / or 80 μm or more is good. This is because, when the particle size is large, fine particles are generated by the charge / discharge reaction, and the cycle characteristics deteriorate. On the other hand, when the particle size is small, the particles cannot efficiently participate in the electrochemical reaction with lithium ions, and the capacity and cycle characteristics are lowered.

粒度分布を調整するためには公知の粉砕方法、分級方法を利用することができる。粉砕装置としては、具体的にはハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法としては、気流分級、篩による分級が可能である。気流分級装置としては例えばターボクラシファイヤー、ターボプレックス等が挙げられる。   In order to adjust the particle size distribution, known pulverization methods and classification methods can be used. Specific examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. As a classification method, airflow classification or classification using a sieve is possible. Examples of the air classifier include a turbo classifier and a turboplex.

[酸処理]
粒度を調節した天然黒鉛粒子をフッ化水素含有溶液に浸漬する。この浸漬処理により、シリカ、ケイ酸塩、アルミナ、酸化鉄などの不純物を黒鉛粒子内から溶解除去される。
本発明で用いるフッ化水素含有溶液は、80%HF濃度のもの、46%HF濃度のもの、水との共沸混合物である濃度35.37%の水溶液、他の酸との混合水溶液のいずれもが使用できる。フッ化水素酸の濃度も上記共沸混合物の濃度に限らず、それ以下の濃度、例えば10〜35%の範囲のものも利用できる。混合使用する他の酸としては、硝酸、硫酸、塩酸、臭素酸、ヨウ素酸等の無機酸、トリクロロ酢酸、トリフルオロ酢酸及び蓚酸等の有機酸が挙げられる。処理時間や処理温度を種々設定すれば、フッ化水素酸の濃度や他の酸の濃度およびフッ化水素酸と他の酸の混合比などは広範囲に設定可能であり、処理条件は特に限定されることはないが、例えばHF濃度として18〜23%、硫酸、硝酸等の無機酸の濃度として20〜40%の混合水溶液が好ましい。このような水溶液を用いることによりフッ化水素酸(単独)と同様、あるいはそれ以上の有用性が認められる。これにより、フッ化水素酸の濃度を低く抑える効果がある。
処理時間は、天然黒鉛の粉砕の程度、処理液濃度と処理液の量的関係、温度などの各種処理条件によって変化するため一義的に定めることは難しいが、不純物の溶出は意外に早く、数分から数時間で十分な場合が多い。
[Acid treatment]
The natural graphite particles having a controlled particle size are immersed in a hydrogen fluoride-containing solution. By this immersion treatment, impurities such as silica, silicate, alumina and iron oxide are dissolved and removed from the graphite particles.
The hydrogen fluoride-containing solution used in the present invention may be any of 80% HF concentration, 46% HF concentration, 35.37% aqueous solution which is an azeotrope with water, and mixed aqueous solution with other acids. Can also be used. The concentration of hydrofluoric acid is not limited to the concentration of the azeotrope, and a concentration lower than that, for example, in the range of 10 to 35% can be used. Examples of other acids used for mixing include inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, bromic acid and iodic acid, and organic acids such as trichloroacetic acid, trifluoroacetic acid and succinic acid. If treatment time and treatment temperature are variously set, the concentration of hydrofluoric acid, the concentration of other acids, and the mixing ratio of hydrofluoric acid and other acids can be set over a wide range, and the treatment conditions are particularly limited. However, for example, a mixed aqueous solution having an HF concentration of 18 to 23% and an inorganic acid concentration such as sulfuric acid and nitric acid of 20 to 40% is preferable. By using such an aqueous solution, usefulness similar to or higher than that of hydrofluoric acid (alone) is recognized. Thereby, there exists an effect which suppresses the density | concentration of hydrofluoric acid low.
The processing time varies depending on various processing conditions such as the degree of pulverization of natural graphite, the concentration of the processing solution and the amount of the processing solution, and temperature, but it is difficult to define it uniquely. Minutes to hours are often sufficient.

[アルカリ処理]
本発明においては、上記酸処理に先立って天然黒鉛粒子をアルカリ水溶液で浸漬処理することが好ましい。アルカリ水溶液により浸漬処理することにより、黒鉛粒子内に存在し、酸に溶けにくいケイ酸をアルカリで先に溶出させた後、残存するケイ酸塩をフッ化水素含有水溶液による浸漬処理により溶出除去させることが可能となる。
アルカリ水溶液は公知のものが利用でき、特に制限はなく、濃度も特に制限は無いが、水酸化ナトリウム、水酸化カリウムなどケイ酸を良く溶かすものが好ましい。
処理時間は、上記酸処理と同様に、天然黒鉛の粉砕の程度、処理液濃度と処理液の量的関係、温度などの各種処理条件によって変化するため一義的に定めることは難しいが、通常は数分から数時間程度である。
[Alkali treatment]
In the present invention, it is preferable to immerse the natural graphite particles in an alkaline aqueous solution prior to the acid treatment. By immersing with an aqueous alkali solution, silicic acid that is present in the graphite particles and hardly soluble in acid is first eluted with alkali, and then the remaining silicate is removed by immersing with an aqueous solution containing hydrogen fluoride. It becomes possible.
Known alkaline aqueous solutions can be used, and there is no particular limitation, and the concentration is not particularly limited, but those which dissolve silicic acid well such as sodium hydroxide and potassium hydroxide are preferable.
As with the acid treatment described above, the treatment time varies depending on various treatment conditions such as the degree of pulverization of natural graphite, the concentration of the treatment liquid and the quantity of the treatment liquid, and the temperature. It takes several minutes to several hours.

[造粒]
フッ化水素含有溶液に浸漬処理した天然黒鉛粒子を必要に応じて造粒する。フッ化水素含有溶液やアルカリ水溶液の浸漬による天然黒鉛の不純物除去処理は、処理すべき天然黒鉛粒子が大きければ、処理液が粒子内部に浸透する時間が長くなり不純物溶出・除去に必要な時間も長くなる。したがって、小さな天然黒鉛粒子に対して浸漬処理をした後、電池電極用炭素材料としての所望の粒径となるように造粒することが、不純物の除去効率の点等から好ましい。
[Granulation]
Natural graphite particles immersed in a hydrogen fluoride-containing solution are granulated as necessary. Natural graphite impurities removal treatment by immersion in hydrogen fluoride-containing solution or aqueous alkali solution will increase the time required for the treatment liquid to penetrate into the particles if the natural graphite particles to be treated are large. become longer. Therefore, it is preferable from the viewpoint of the removal efficiency of impurities, etc., that after immersing the small natural graphite particles, it is granulated to have a desired particle size as the carbon material for battery electrodes.

具体的には、浸漬処理用に天然黒鉛粒子をレーザー回折法による平均粒径が0.1〜50μm、好ましくは0.1〜20μm、より好ましくは0.5〜10μm、さらに好ましくは1〜8μmとなるように調整し、浸漬処理後に、平均粒径が0.5〜200μm、好ましくは0.5〜100μm、より好ましくは1〜80μm、さらに好ましくは5〜40μm、特に好ましくは10〜30μmとなるように造粒する。   Specifically, natural graphite particles for immersion treatment have an average particle size of 0.1 to 50 μm, preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and even more preferably 1 to 8 μm by laser diffraction. After the immersion treatment, the average particle size is 0.5 to 200 μm, preferably 0.5 to 100 μm, more preferably 1 to 80 μm, still more preferably 5 to 40 μm, and particularly preferably 10 to 30 μm. Granulate so that

造粒後の粒子形状はそれが電池電極用炭素材料の形状になり得るので、フロー式粒子像解析装置によって測定される平均円形度を前記と同様に0.85〜0.99に調整することが好ましく、円形度0.90未満の粒子の含有率が2〜20個数%の範囲に制御されていることが好ましい。浸漬処理前の粒子形状は特に制限はなく、塊状、鱗片状、球状、繊維状等のいずれの形状を有するものでもよいが、球状や塊状が上記の平均円形度を有する粒子に造粒しやすい点で好ましい。   Since the particle shape after granulation can be the shape of the carbon material for battery electrodes, the average circularity measured by the flow type particle image analyzer is adjusted to 0.85 to 0.99 as described above. It is preferable that the content of particles having a circularity of less than 0.90 is controlled to be in the range of 2 to 20% by number. The particle shape before the immersion treatment is not particularly limited, and may have any shape such as a lump shape, a scale shape, a spherical shape, and a fibrous shape, but the spherical shape or the lump shape is easily granulated into particles having the above average circularity. This is preferable.

造粒は、バインダーによる結着力および/またはせん断による粒子界面同士のファンデルワールス力での結着により行われる。具体的にはレディゲミキサー、スパルタンリューザーなどを用いて、バインダーとしてフェノール樹脂を加えて造粒する方法や、メカノフュージョン、ハイブリタイザーなどを用いて結着させて造粒する方法などがある。   Granulation is performed by binding with a binder force and / or van der Waals force between particle interfaces due to shearing. Specifically, there are a method of granulating by adding a phenol resin as a binder using a Redige mixer, a Spartan Luzer, or a method of granulating by binding using a mechanofusion, a hybridizer or the like.

[表面処理]
本発明においては、熱処理前の粒子、すなわちフッ化水素含有溶液に浸漬処理した天然黒鉛粒子またはその粒子を造粒してなる粒子を、必要に応じて樹脂により処理する。ここで、樹脂による処理とは、粒子表面に樹脂を付着させる処理及び/または粒子内部に樹脂を浸透させる処理をいう。
黒鉛粒子を樹脂処理し、後の熱処理によりこの樹脂を炭化・焼成すれば、二次電池用電極として使用した場合、電解液の分解によると思われるクーロン効率(「1回目の放電容量/充電容量」)の低下、不可逆容量の増加、サイクル特性の低下が抑制することが可能となる。
[surface treatment]
In the present invention, particles before heat treatment, that is, natural graphite particles immersed in a hydrogen fluoride-containing solution or particles obtained by granulating the particles are treated with a resin as necessary. Here, the treatment with a resin refers to a treatment for adhering a resin to the particle surface and / or a treatment for infiltrating the resin into the inside of the particle.
If the graphite particles are treated with resin, and the resin is carbonized and fired by a subsequent heat treatment, when used as an electrode for a secondary battery, the Coulomb efficiency ("Discharge capacity / Charge capacity for the first time") )), An increase in irreversible capacity, and a decrease in cycle characteristics can be suppressed.

用いる樹脂としては、炭化・焼成処理により緻密な炭素層とし得るものが好ましく、また黒鉛粒子及び/または後述する気相法炭素繊維に接着性を有するものが好ましい。接着性を有する樹脂とは、黒鉛粒子及び気相法炭素繊維を離れないように接触させた状態とするためにその両物体の間に介在することで共有結合、ファンデルワールス力、水素結合等の化学接着、アンカー効果などの物理的吸着を含めて両物体を一体化した状態にするものである。混合、撹拌、溶媒除去、熱処理等の処理において、実質的に剥離が起きない程度に圧縮、曲げ、剥離、衝撃、引っ張り、引き裂き等の力に対して抵抗力を示すものであれば使用できる。   As the resin to be used, those capable of forming a dense carbon layer by carbonization / firing treatment are preferable, and those having adhesion to graphite particles and / or vapor grown carbon fibers described later are preferable. Adhesive resin refers to a covalent bond, van der Waals force, hydrogen bond, etc. by interposing between both objects in order to keep graphite particles and vapor grown carbon fiber in contact with each other so as not to leave Both objects are integrated, including physical adhesion such as chemical bonding and anchor effect. In the processing such as mixing, stirring, solvent removal, and heat treatment, any material can be used as long as it exhibits resistance to forces such as compression, bending, peeling, impact, pulling, and tearing to such an extent that peeling does not occur.

このような樹脂としては、具体的には、例えばフェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種が挙げられ、好ましくは、フェノール樹脂、ポリビニルアルコール樹脂であり、特に好ましいのはフェノール樹脂である。   Specific examples of such a resin include at least one selected from the group consisting of phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin, preferably Phenol resin and polyvinyl alcohol resin, and phenol resin is particularly preferable.

フェノール樹脂は、フェノール類とアルデヒド類との反応により製造されるものであり、ノボラック型、レゾール型等の未変性フェノール樹脂や一部変性されたフェノール樹脂が使用できる。また、必要に応じてニトリルゴム等のゴムをフェノール樹脂に混合して使用できる。原料フェノール類としては、フェノール、クレゾール、キシレノール、C20以下のアルキル基を有するアルキルフェノール等が挙げられる。   The phenol resin is produced by a reaction between phenols and aldehydes, and unmodified phenol resins such as novolac type and resol type and partially modified phenol resins can be used. Moreover, rubbers, such as a nitrile rubber, can be mixed and used for a phenol resin as needed. Examples of the raw material phenols include phenol, cresol, xylenol, and alkylphenol having a C20 or lower alkyl group.

フェノール樹脂の中でも、乾性油またはその脂肪酸を混合したいわゆる変性フェノール樹脂が好ましい。乾性油またはその脂肪酸を混合することにより、熱処理後により緻密な炭素質が形成される。これは、フェノール樹脂と乾性油中の不飽和脂結合の部分が化学反応を起こして、いわゆる乾性油変性フェノール樹脂となり、これが熱処理(または焼成)過程において分解を和らげ、発泡を防ぎことによるものと推測される。また、乾性油は単に二重結合があると言うだけではなく、かなり長いアルキル基とエステル結合を有しており、これらも焼成過程におけるガスの抜け易さ等の面で関与していることが考えられる。   Among the phenol resins, a so-called modified phenol resin in which a drying oil or a fatty acid thereof is mixed is preferable. By mixing the drying oil or its fatty acid, a denser carbonaceous material is formed after the heat treatment. This is because the portion of the unsaturated fat bond in the phenolic resin and the drying oil causes a chemical reaction to become a so-called drying oil-modified phenolic resin, which eases decomposition in the heat treatment (or baking) process and prevents foaming. Guessed. In addition, drying oil does not just have double bonds, but has rather long alkyl groups and ester bonds, which are also involved in terms of ease of gas release during the firing process. Conceivable.

乾性油またはその脂肪酸を混合したフェノール樹脂としては、先にフェノール類と乾性油とを強酸触媒存在下に付加反応させ、その後に塩基性触媒を加えて系を塩基性とし、ホルマリンを付加反応させたもの、またはフェノール類とホルマリンを反応させ、その後に乾性油またはその脂肪酸を加えたものでよい。   As a phenol resin mixed with drying oil or its fatty acid, phenol and drying oil are first added in the presence of a strong acid catalyst, then a basic catalyst is added to make the system basic, and formalin is added. Or a product obtained by reacting phenols with formalin and then adding a drying oil or a fatty acid thereof.

乾性油は薄膜にして空気中に放置すると比較的短時間に固化乾燥する性質を有する植物油であり、通常知られている桐油、アマニ油、脱水ヒマシ油、大豆油、カシューナッツ油等であり、これらはその脂肪酸でもよい。   Dry oil is a vegetable oil that has the property of solidifying and drying in a relatively short time when left in the air as a thin film, such as commonly known tung oil, linseed oil, dehydrated castor oil, soybean oil, cashew nut oil, etc. May be its fatty acid.

フェノール樹脂に対する乾性油またはその脂肪酸の割合は、例えば、フェノールとホルマリンのと縮合物100質量部に対し、乾性油またはその脂肪酸5〜50質量部が適する。50質量部より多くなると、核となる黒鉛粒子及び気相法炭素繊維に対する接着性が下がる。   The ratio of the drying oil or its fatty acid to the phenol resin is suitably 5 to 50 parts by mass of the drying oil or its fatty acid with respect to 100 parts by mass of the phenol and formalin condensate, for example. When the amount is more than 50 parts by mass, the adhesion to graphite particles and vapor grown carbon fibers as nuclei decreases.

粒子表面の少なくとも一部を樹脂で被覆する方法としては、例えば、樹脂を黒鉛粒子に付着及び/または浸透させる方法があり、樹脂自体を溶解した溶液に黒鉛粒子を混合する方法や、樹脂原料としてのモノマー成分、触媒、添加剤等を溶解した溶液に黒鉛粒子を混合した後、重合させる方法等を挙げることができる。   As a method of coating at least a part of the particle surface with a resin, for example, there is a method of adhering and / or penetrating a resin to graphite particles, a method of mixing graphite particles in a solution in which the resin itself is dissolved, or a resin raw material And a method in which graphite particles are mixed in a solution in which the monomer component, catalyst, additive and the like are dissolved, and then polymerized.

樹脂自体を溶解した溶液に黒鉛粒子を混合する方法においては、樹脂の溶液として、樹脂を水、アセトン、エタノール、トルエン等で希釈して粘度を調整したものを用い、その溶液と黒鉛粒子を混合撹拌する。混合する際の雰囲気としては、大気圧下、加圧下、減圧下のいずれであっても良いが、黒鉛粒子と樹脂溶液の親和性が向上することから減圧下が好ましい。   In the method of mixing graphite particles into a solution in which the resin itself is dissolved, the resin solution is prepared by diluting the resin with water, acetone, ethanol, toluene, etc. to adjust the viscosity, and mixing the solution with the graphite particles. Stir. The atmosphere at the time of mixing may be any of atmospheric pressure, pressurization, and reduced pressure, but is preferably under reduced pressure because the affinity between the graphite particles and the resin solution is improved.

樹脂原料としてのモノマー成分、触媒、添加剤等を溶解した溶液に黒鉛粒子を混合した後、重合させる方法において用いる溶媒としては、重合体原料が溶解及び/または分散する溶媒であれば特に限定されないが、水、アセトン、エタノール、アセトニトリル、酢酸エチル等が挙げられる。   The solvent used in the polymerization method after mixing graphite particles in a solution in which the monomer component, catalyst, additive, etc. as the resin raw material are dissolved is not particularly limited as long as the polymer raw material is dissolved and / or dispersed. Are water, acetone, ethanol, acetonitrile, ethyl acetate and the like.

撹拌後は、ろ過、洗浄し、溶剤を熱風乾燥、真空乾燥等公知の方法により乾燥除去する。乾燥温度は使用した溶媒の沸点、蒸気圧等によるが、具体的には50℃以上、好ましくは100℃以上1000℃以下、さらに好ましくは150℃以上500℃以下である。   After stirring, it is filtered and washed, and the solvent is removed by drying by a known method such as hot air drying or vacuum drying. The drying temperature depends on the boiling point, vapor pressure and the like of the solvent used, but is specifically 50 ° C. or higher, preferably 100 ° C. or higher and 1000 ° C. or lower, more preferably 150 ° C. or higher and 500 ° C. or lower.

黒鉛粒子の内部の空隙部分に樹脂原料またはその溶液を十分に浸透させるために、撹拌前や撹拌中に1回から十数回の真空引きを行うことが好ましい。真空引きをすることにより、黒鉛粒子の微細空隙に留まっている空気を抜くことができる。ただし、真空引きにより樹脂原料が揮発することがあるので、黒鉛粒子と溶媒を混合してから真空引きを行い、常圧に戻した後、樹脂原料を加えて混合することもできる。真空の程度は低いほど良いが、約13kPa〜0.13kPa(約100torr〜1torr)が好ましい。
付着及び/または浸透時の雰囲気としては、大気圧下、加圧下、減圧下のいずれであっても良いが、黒鉛粒子と樹脂原料の親和性が向上することから減圧下で付着させる方法が好ましい。
In order to sufficiently infiltrate the resin raw material or the solution thereof into the voids inside the graphite particles, it is preferable to perform evacuation once to dozens of times before or during stirring. By evacuating, the air remaining in the fine voids of the graphite particles can be extracted. However, since the resin raw material may be volatilized by evacuation, after mixing the graphite particles and the solvent, evacuation is performed and the pressure is returned to normal pressure, and then the resin raw material can be added and mixed. The lower the degree of vacuum, the better, but about 13 kPa to 0.13 kPa (about 100 torr to 1 torr) is preferable.
The atmosphere at the time of adhesion and / or infiltration may be any of atmospheric pressure, pressure and reduced pressure, but the method of adhering under reduced pressure is preferred because the affinity between the graphite particles and the resin raw material is improved. .

モノマー成分の使用量は、黒鉛粒子100質量部に対して4〜500質量部が好ましく、さらに好ましくは100〜500質量部である。使用量が少なすぎると十分な性能が得られず、多すぎると粒子同士が凝集してしまい好ましくない。   As for the usage-amount of a monomer component, 4-500 mass parts is preferable with respect to 100 mass parts of graphite particles, More preferably, it is 100-500 mass parts. If the amount used is too small, sufficient performance cannot be obtained, and if it is too large, the particles aggregate, which is not preferable.

上記処理後の重合の条件は、重合反応が進行するものであれば特に限定されないが、通常、加熱により行う。加熱温度は用いる重合体原料によって異なり、一概に規定できないが、例えば100〜500℃の範囲で行うことができる。   The conditions for the polymerization after the above treatment are not particularly limited as long as the polymerization reaction proceeds, but it is usually performed by heating. The heating temperature varies depending on the polymer raw material to be used, and cannot be defined unconditionally. For example, the heating temperature can be in the range of 100 to 500 ° C.

次に、フェノール樹脂原料を用いて、黒鉛粒子に付着及び/または浸透させる方法について具体的に説明する。
まず、反応容器にフェノール類、ホルムアルデヒド類及び反応触媒と黒鉛粒子を加えて撹拌する。このとき、溶媒として少なくとも撹拌可能な量の水を存在させることが好ましい。フェノール類とホルムアルデヒド類の配合比率はモル比でフェノール類1に対してホルムアルデヒド類1〜3.5の範囲内に設定することが好ましい。さらに黒鉛粒子はフェノール類100質量部に対して5〜3000質量部の範囲内に設定することが好ましい。
撹拌前及び/または撹拌中に、前述したように1回から十数回の真空引きを行うことができる。ただし、真空にするとフェノール類、ホルムアルデヒド類が多く揮発するので、炭素質粒子を水と混合してから真空引きを行い、常圧に戻した後フェノール類とホルムアルデヒド類を加えて混合することもできる。
Next, a method for attaching and / or penetrating graphite particles using a phenol resin raw material will be specifically described.
First, phenols, formaldehydes, a reaction catalyst and graphite particles are added to a reaction vessel and stirred. At this time, it is preferable that at least a stirrable amount of water is present as a solvent. The mixing ratio of phenols and formaldehydes is preferably set within a range of formaldehydes 1 to 3.5 with respect to phenols 1 in terms of molar ratio. Further, the graphite particles are preferably set within a range of 5 to 3000 parts by mass with respect to 100 parts by mass of phenols.
Prior to and / or during agitation, evacuation can be performed from one to a dozen times as described above. However, since many phenols and formaldehyde are volatilized when evacuated, the carbonaceous particles can be mixed with water before evacuation, and after returning to normal pressure, phenols and formaldehyde can be added and mixed. .

上記撹拌処理により、樹脂原料を黒鉛粒子に十分付着、浸透させた後、重合させる。重合は、一般的なフェノール樹脂の生成条件と同等の条件、例えば100〜500℃に加熱処理することにより行うことができる。
フェノール類、ホルムアルデヒド類、触媒類、黒鉛粒子、水の混合を実施すると、反応系は反応当初マヨネーズ程度の粘度を有しているが、次第に黒鉛粒子を含んだフェノール類とホルムアルデヒド類との縮合反応物が反応系中の水と分離し始める。所望するまで反応が進んだ後、撹拌を停止させ、冷却すると黒色粒子が沈殿物として生成する。これを洗浄、ろ過し、溶剤を熱風乾燥、真空乾燥等公知の方法により十分に乾燥した後、使用することができる。
By the above stirring treatment, the resin raw material is sufficiently adhered and permeated into the graphite particles, and then polymerized. Polymerization can be carried out by heat treatment under conditions equivalent to general phenol resin production conditions, for example, 100 to 500 ° C.
When mixing phenols, formaldehydes, catalysts, graphite particles and water, the reaction system has a viscosity of about mayonnaise at the beginning of the reaction, but gradually the condensation reaction between phenols containing graphite particles and formaldehydes Things begin to separate from the water in the reaction system. After the reaction has progressed to the desired level, stirring is stopped and cooling produces black particles as a precipitate. This is washed and filtered, and the solvent can be used after sufficiently drying by a known method such as hot air drying or vacuum drying.

樹脂類の析出量は、反応系のフェノール類、ホルムアルデヒド類の濃度を高めることで多くすることができ、低めることで少なくすることができる。従って、その制御は水の量を加減すること、またフェノール類、ホルムアルデヒド類を加減することにより行うことができる。これらは反応前に調整しておくこともできるし、反応中に系内に滴下することにより調整することもできる。   The amount of the deposited resin can be increased by increasing the concentration of phenols and formaldehydes in the reaction system, and can be decreased by decreasing the concentration. Therefore, the control can be performed by adjusting the amount of water and by adjusting phenols and formaldehydes. These can be adjusted before the reaction, or can be adjusted by dropping into the system during the reaction.

[気相法炭素繊維]
本発明において黒鉛粒子に付着させて使用する気相法炭素繊維は導電性に優れている必要があるので、結晶化度の高いものが望ましい。また、炭素材料を電極化し、リチウムイオン二次電池に組み込んだ場合、負極全体に素早く電流を流すことが必要であるので、気相法炭素繊維繊維の結晶成長方向は繊維軸に平行であり、繊維が枝分かれ(分岐状)をしていることが好ましい。また、分岐状繊維であれば炭素粒子間が繊維によって電気的に接合し易くなり、導電性が向上する。
[Vapor grown carbon fiber]
In the present invention, the vapor grown carbon fiber used by adhering to the graphite particles needs to be excellent in electrical conductivity, so that a high crystallinity is desirable. Also, when the carbon material is made into an electrode and incorporated in a lithium ion secondary battery, it is necessary to quickly pass a current through the entire negative electrode, so the crystal growth direction of vapor grown carbon fiber fibers is parallel to the fiber axis, It is preferable that the fiber is branched (branched). Moreover, if it is a branched fiber, it will become easy to electrically join between carbon particles with a fiber, and electroconductivity will improve.

気相法炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる。
気相法炭素繊維は、製造した状態のままのもの、例えば800〜1500℃で熱処理したもの、例えば2000〜3000℃で黒鉛化処理したもののいずれも使用可能であるが、1500℃程度で熱処理されたものがより好適である。
The vapor grown carbon fiber can be produced, for example, by blowing an organic compound gasified with iron serving as a catalyst in a high temperature atmosphere.
Vapor grown carbon fiber can be used as it is, for example, heat treated at 800-1500 ° C., eg, graphitized at 2000-3000 ° C., but heat treated at about 1500 ° C. Is more preferred.

また、気相法炭素繊維の好ましい形態として、分岐状繊維があるが、分岐部分はその部分を含めて繊維全体が互いに連通した中空構造を有している箇所があってもよい。そのため繊維の円筒部分を構成している炭素層が連続している。中空構造とは炭素層が円筒状に巻いている構造であって、完全な円筒でないもの、部分的な切断箇所を有するもの、積層した2層の炭素層が1層に結合したものなどを含む。また、円筒の断面は完全な円に限らず楕円や多角化のものを含む。なお、炭素層の結晶性について炭素層の面間隔d002は限定されない。因みに、好ましいものはX線回折法による平均面間隔d002が0.344nm以下、好ましくは、0.339nm以下、より好ましくは0.338nm以下であって、結晶のC軸方向の厚さLcが40nm以下のものである。 Further, as a preferred form of vapor grown carbon fiber, there is a branched fiber, but the branched portion may have a hollow structure where the entire fiber including that portion is in communication with each other. Therefore, the carbon layer which comprises the cylindrical part of a fiber is continuing. A hollow structure is a structure in which a carbon layer is wound in a cylindrical shape, and includes a structure that is not a complete cylinder, a structure that has a partial cut portion, and a structure in which two stacked carbon layers are bonded to one layer. . Further, the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon. Note that the interplanar spacing d 002 of the carbon layer is not limited for the crystallinity of the carbon layer. Incidentally, it is preferable that the average interplanar distance d 002 by the X-ray diffraction method is 0.344 nm or less, preferably 0.339 nm or less, more preferably 0.338 nm or less, and the thickness Lc in the C-axis direction of the crystal is 40 nm or less.

気相成長炭素繊維は、繊維外径2〜1000nm、アスペクト比10〜15000の炭素繊維であって、好ましくは繊維外径10〜500nm、繊維長1〜100μm(アスペクト比2〜2000)、あるいは繊維外径2〜50nmであって繊維長0.5〜50μm(アスペクト比10〜25000)のものである。   The vapor grown carbon fiber is a carbon fiber having a fiber outer diameter of 2 to 1000 nm and an aspect ratio of 10 to 15000, preferably a fiber outer diameter of 10 to 500 nm, a fiber length of 1 to 100 μm (aspect ratio of 2 to 2000), or a fiber. The outer diameter is 2 to 50 nm and the fiber length is 0.5 to 50 μm (aspect ratio 10 to 25000).

気相法炭素繊維は、その製造後、2000℃以上の熱処理を行うことでさらに結晶化度を上げ、導電性を増すことができる。また、この場合においても、黒鉛化度を促進させる働きのあるホウ素などを熱処理前に添加しておくことが有効である。   The vapor grown carbon fiber can be further heat-treated at 2000 ° C. or higher after its production to further increase the crystallinity and increase the conductivity. Also in this case, it is effective to add boron or the like having a function of promoting the degree of graphitization before the heat treatment.

気相法炭素繊維の含有量は、電極用炭素材料の0.01〜20質量%の範囲がよく、好ましくは0.1〜15質量%、より好ましくは0.5〜10質量%である。含有量が20質量%を超えると電気容量が小さくなり、0.01質量%未満では低温(例えば、−35℃)における内部抵抗の値が大きくなってしまう。   The content of the vapor grown carbon fiber is preferably in the range of 0.01 to 20% by mass of the carbon material for electrodes, preferably 0.1 to 15% by mass, and more preferably 0.5 to 10% by mass. When the content exceeds 20% by mass, the electric capacity decreases, and when the content is less than 0.01% by mass, the value of internal resistance at a low temperature (for example, −35 ° C.) increases.

気相法炭素繊維は、繊維表面の凹凸、乱れがあるものが多いが、核となる炭素質粒子との密着性が向上し、充放電を繰り返しても負極活物質と導電性補助剤としての役割も兼ねている気相法炭素繊維が解離せず密着している状態を保つことができ、電子伝導性が保持できサイクル特性が向上する。   Vapor-grown carbon fibers often have irregularities and disturbances on the fiber surface, but their adhesion to the carbonaceous particles that form the core improves, and as a negative electrode active material and a conductive auxiliary agent even after repeated charge and discharge The vapor grown carbon fiber which also serves as a role can be kept in a close contact state without dissociating, the electron conductivity can be maintained, and the cycle characteristics can be improved.

また、気相法炭素繊維が分岐状繊維を多く含む場合は、効率よくネットワークを形成することができ、高い電子伝導性や熱伝導性を得やすい。また、活物質を包むように分散することができ、負極の強度を高め、粒子間の接触も良好に保てる。
また、粒子間に気相法炭素繊維が入ることで、電解液の保液性が大きくなり、低温環境時でもスムーズにリチウムイオンのドープ・脱ドープが行われる。
In addition, when the vapor grown carbon fiber contains a lot of branched fibers, a network can be formed efficiently, and high electronic conductivity and thermal conductivity are easily obtained. Further, the active material can be dispersed so as to be wrapped, the strength of the negative electrode is increased, and the contact between the particles can be maintained well.
In addition, since the vapor grown carbon fiber enters between the particles, the liquid retaining property of the electrolytic solution is increased, and lithium ions are smoothly doped and undoped even in a low temperature environment.

気相法炭素繊維の黒鉛粒子への付着は、黒鉛粒子に付着・浸透させる樹脂を介して行なうことができる。
具体的には、樹脂自体を溶解した溶液に気相法炭素繊維と黒鉛粒子を混合・撹拌する方法や、樹脂原料としてのモノマー成分、触媒、添加剤等を溶解した溶液に気相法炭素繊維と黒鉛粒子を混合・撹拌した後、重合させる方法等により行なうことができる。
The vapor-grown carbon fiber can be attached to the graphite particles via a resin that adheres and permeates the graphite particles.
Specifically, the vapor grown carbon fiber and graphite particles are mixed and stirred in a solution in which the resin itself is dissolved, or the vapor grown carbon fiber is dissolved in a solution in which monomer components, catalysts, additives, and the like as resin raw materials are dissolved. And graphite particles can be mixed and stirred and then polymerized.

使用する溶媒としては、樹脂及び気相法炭素繊維、あるいは樹脂原料及び気相法炭素繊維との親和性が良好なものであれば使用でき、例えば水、アルコール類、ケトン類、芳香族炭化水素、エステル類等が挙げられる。好ましくは水、メタノール、エタノール、ブタノール、アセトン、メチルエチルケトン、トルエン、酢酸エチル、酢酸ブチル等がよい。   As the solvent to be used, any resin and gas phase grown carbon fiber or those having good affinity with the resin raw material and gas phase grown carbon fiber can be used, for example, water, alcohols, ketones, aromatic hydrocarbons. And esters. Preferably, water, methanol, ethanol, butanol, acetone, methyl ethyl ketone, toluene, ethyl acetate, butyl acetate and the like are preferable.

撹拌方法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。
その他、気相法炭素繊維を使用すること以外は、前記した樹脂の付着・浸透処理と同様に行なうことができる。
Although the stirring method is not particularly limited, for example, apparatuses such as a ribbon mixer, a screw type kneader, a spartan luzer, a redige mixer, a planetary mixer, and a universal mixer can be used.
In addition, it can carry out similarly to the above-mentioned resin adhesion / penetration treatment except using vapor grown carbon fiber.

[熱処理]
本発明では、上記酸処理した黒鉛粒子、それを造粒した粒子、またはそれらの粒子を樹脂で処理し必要に応じて気相法炭素繊維を表面に付着させた粒子を2400〜3300℃の熱処理に付す。熱処理することにより表面に存在する樹脂等が黒鉛化され、全体として放電容量が増えるとともに、活性点の減少による初期効率の向上が期待できる。また、黒鉛粒子を樹脂で処理した場合には、粒子に付着等した樹脂はこの熱処理により炭化・焼成された炭素質材料となる。
[Heat treatment]
In the present invention, the acid-treated graphite particles, particles obtained by granulating the particles, or particles obtained by treating the particles with a resin and attaching vapor grown carbon fibers to the surface as necessary are heat-treated at 2400 to 3300 ° C. It is attached to. By performing the heat treatment, the resin or the like present on the surface is graphitized, and the discharge capacity is increased as a whole, and an improvement in initial efficiency due to a decrease in active sites can be expected. When the graphite particles are treated with a resin, the resin adhered to the particles becomes a carbonaceous material that is carbonized and fired by this heat treatment.

不純物を除去し、かつ炭素の結晶性を向上させるには、熱処理温度は2500℃以上が好ましく、さらに好ましくは2700℃以上である。   In order to remove impurities and improve the crystallinity of carbon, the heat treatment temperature is preferably 2500 ° C. or higher, more preferably 2700 ° C. or higher.

熱処理前にホウ素またはホウ素化合物を添加することもできる。ホウ素またはホウ素化合物を添加することにより、熱処理による結晶化を促進させることが可能である。ホウ素化合物としては、例えば、炭化ホウ素(B4C)、酸化ホウ素(B23)、元素状ホウ素、ホウ酸(H3BO3)、ホウ酸塩等が挙げられる。ホウ素は、炭素材料に対して例えば、50〜2000ppmの範囲で添加させ、粒子に1〜800ppm、好ましくは1〜600ppm含有させることがよい。 Boron or a boron compound can be added before the heat treatment. By adding boron or a boron compound, crystallization by heat treatment can be promoted. Examples of the boron compound include boron carbide (B 4 C), boron oxide (B 2 O 3 ), elemental boron, boric acid (H 3 BO 3 ), borate, and the like. Boron is added, for example, in the range of 50 to 2000 ppm with respect to the carbon material, and the particles may be contained in an amount of 1 to 800 ppm, preferably 1 to 600 ppm.

熱処理のための昇温速度については、公知の装置における最速昇温速度及び最低昇温速度の範囲内では特に性能に大きく影響しない。しかし、粉体であるため、成形材等のようにひび割れの問題などが殆どないので、コスト的な観点からも昇温速度は早いほうがよい。常温から最高到達温度までの到達時間は、好ましくは12時間以下、さらに好ましくは6時間以下、特に好ましくは2時間以下である。   The temperature increase rate for the heat treatment does not particularly affect the performance within the range of the maximum temperature increase rate and the minimum temperature increase rate in a known apparatus. However, since it is a powder, there is almost no problem of cracking as in the case of a molded material or the like, so that the heating rate should be fast from the viewpoint of cost. The arrival time from room temperature to the maximum temperature is preferably 12 hours or less, more preferably 6 hours or less, and particularly preferably 2 hours or less.

熱処理装置は、アチソン炉、直接通電加熱炉など公知の装置が利用できる。また、これらの装置はコスト的にも有利である。しかし、窒素ガスの存在が粉体の抵抗を低下させたり、酸素による酸化によって炭素質材料の強度が低下することがあるため、好ましくは炉内雰囲気をアルゴン、ヘリウムなどの不活性ガスに保持できるような構造の、例えば容器自体を真空引き後ガス置換可能なバッチ炉や、管状炉で炉内雰囲気をコントロール可能なバッチ炉あるいは連続炉などが好ましい。   As the heat treatment apparatus, a known apparatus such as an Atchison furnace or a direct current heating furnace can be used. These devices are also advantageous in terms of cost. However, since the presence of nitrogen gas may decrease the resistance of the powder or the strength of the carbonaceous material may decrease due to oxidation by oxygen, the furnace atmosphere can be preferably maintained in an inert gas such as argon or helium. A batch furnace having such a structure, for example, a batch furnace capable of gas replacement after evacuating the container itself, a batch furnace or a continuous furnace in which the atmosphere in the furnace can be controlled with a tubular furnace is preferable.

[電池電極用炭素材料]
以上の方法により製造される本発明の電池電極用炭素材料は、炭素以外の元素含有率の合計が800ppm以下にまで低減された、不純物の少ない炭素材料である。製造条件を調整することにより、炭素以外の元素含有率の合計を700ppm以下、さらには350ppm以下とすることもできる。
本発明の電池電極用炭素材料を構成する粒子は、フロー式粒子像解析装置によって測定される平均円形度が0.85〜0.99であることが好ましい。平均円形度が0.85より小さいと電極成形時の充填密度が上がらないため体積当たりの放電容量が低下する。また、平均円形度が0.99より大きい場合は、微粉部分は円形度が低いため微粉部分がほとんど含まれないことになり、電極成形時の放電容量が上がらない。更に該円形度の値が0.90未満の粒子の含有率が2〜20個数%の範囲に制御されていることが好ましい。
[Carbon material for battery electrode]
The battery electrode carbon material of the present invention produced by the above method is a carbon material with few impurities, in which the total content of elements other than carbon is reduced to 800 ppm or less. By adjusting the production conditions, the total content of elements other than carbon can be 700 ppm or less, and further 350 ppm or less.
The particles constituting the carbon material for battery electrodes of the present invention preferably have an average circularity of 0.85 to 0.99 as measured by a flow particle image analyzer. When the average circularity is less than 0.85, the packing density at the time of forming the electrode does not increase, so that the discharge capacity per volume decreases. On the other hand, when the average circularity is larger than 0.99, the fine powder portion has a low circularity, so that the fine powder portion is hardly included, and the discharge capacity at the time of forming the electrode does not increase. Furthermore, it is preferable that the content rate of particles having a circularity value of less than 0.90 is controlled in the range of 2 to 20% by number.

本発明の電池電極用炭素材料を構成する粒子の粒度は、レーザー回折法による平均粒子径が1〜80μm程度であることが好ましい。より好ましくは10〜40μmであり、さらに好ましくは10〜30μmである。
平均粒径が1μmより小さいとアスペクト比が大きくなりやすく、比表面積が大きくなりやすい。また、例えば、電池の電極を作製する場合、一般に負極材料をバインダーによりペーストとし、それを塗布する方法が採られている。負極材料の平均粒径が1μm未満の場合だと、1μmより小さい微粉がかなり含まれていることになり、ペーストの粘度が上がり塗布性も悪くなる。
さらに、平均粒径80μm以上のような大きな粒子が混入していると電極表面に凹凸が多くなり、電池に使用されるセパレータを傷つける原因ともなる。例えば、1μm以下の粒子及び80μm以上の粒子を実質的に含まないものが好適に使用できる。
As for the particle size of the particles constituting the carbon material for battery electrodes of the present invention, the average particle size by laser diffraction method is preferably about 1 to 80 μm. More preferably, it is 10-40 micrometers, More preferably, it is 10-30 micrometers.
When the average particle size is smaller than 1 μm, the aspect ratio tends to increase and the specific surface area tends to increase. Further, for example, when producing an electrode of a battery, a method is generally employed in which a negative electrode material is made into a paste with a binder and applied. When the average particle diameter of the negative electrode material is less than 1 μm, fine powder smaller than 1 μm is contained considerably, and the viscosity of the paste increases and the applicability also deteriorates.
Further, when large particles having an average particle size of 80 μm or more are mixed, irregularities are increased on the electrode surface, which may cause damage to the separator used in the battery. For example, those substantially free of particles of 1 μm or less and particles of 80 μm or more can be suitably used.

本発明の電池電極用炭素材料を構成する粒子の比表面積は、小さい方がよく、BET比表面積で0.2〜5m2/gが好ましい。さらに好ましくは0.2〜3m2/gである。この値を超えると粒子の表面活性が高くなり、電解液の分解等によって、クーロン効率が低下する。 The specific surface area of the particles constituting the carbon material for battery electrodes of the present invention is preferably as small as possible, and the BET specific surface area is preferably 0.2 to 5 m 2 / g. More preferably, it is 0.2-3 m < 2 > / g. If this value is exceeded, the surface activity of the particles increases, and the Coulomb efficiency decreases due to decomposition of the electrolyte and the like.

[二次電池の作製]
本発明の電池電極用炭素材料は、例えば、リチウムイオン二次電池の負極材として好適に使用できる。本発明の電池電極用炭素材料を用いたリチウムイオン二次電池は、公知の方法により製造することができる。
[Production of secondary battery]
The carbon material for battery electrodes of the present invention can be suitably used, for example, as a negative electrode material for lithium ion secondary batteries. The lithium ion secondary battery using the carbon material for battery electrodes of the present invention can be produced by a known method.

電極は、通常のように結合材(バインダー)を溶媒で希釈して負極材料と混練し、集電体(基材)に塗布することで作製できる。
バインダーについては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、SBR(スチレンブタジエンラバー)等のゴム系等公知のものが使用できる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーの場合はトルエン、N−メチルピロリドン等、SBRの場合は水等、公知のものが使用できる。
The electrode can be produced by diluting a binder (binder) with a solvent and kneading it with a negative electrode material as usual and applying it to a current collector (base material).
As the binder, known polymers such as a fluorine-based polymer such as polyvinylidene fluoride and polytetrafluoroethylene, and a rubber-based material such as SBR (styrene butadiene rubber) can be used. As the solvent, a known solvent suitable for each binder, for example, toluene, N-methylpyrrolidone or the like in the case of a fluorine-based polymer, and water or the like in the case of SBR can be used.

バインダーの使用量は、負極材料を100質量部とした場合、1〜30質量部が適当であるが、特に3〜20質量部程度が好ましい。
負極材料とバインダーとの混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等公知の装置が使用できる。
When the negative electrode material is 100 parts by mass, the amount of the binder used is suitably 1 to 30 parts by mass, and particularly preferably about 3 to 20 parts by mass.
For kneading the negative electrode material and the binder, a known apparatus such as a ribbon mixer, a screw type kneader, a Spartan rewinder, a Redige mixer, a planetary mixer, a universal mixer can be used.

混錬後の集電体への塗布は、公知の方法により実施できるが、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
集電体としては、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金など公知の材料が使用できる。
セパレーターは公知のものが使用できるが、特にポリエチレンやポリプロピレン性の不織布が好ましい。
Application to the current collector after kneading can be carried out by a known method. For example, a method of forming by a roll press or the like after applying with a doctor blade or a bar coater can be mentioned.
As the current collector, known materials such as copper, aluminum, stainless steel, nickel, and alloys thereof can be used.
Although a well-known thing can be used for a separator, especially polyethylene and a polypropylene nonwoven fabric are preferable.

本発明におけるリチウム二次電池における電解液及び電解質は公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液が好ましい。   As the electrolyte and electrolyte in the lithium secondary battery of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used. Preferably, an organic electrolyte is preferable from the viewpoint of electrical conductivity.

有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。   Examples of organic electrolytes include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, and ethylene glycol phenyl ether. Ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethyl Acetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide Amides such as dimethyl sulfoxide, sulfolane, etc .; dialkyl ketones such as methyl ethyl ketone, methyl isobutyl ketone; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc. Cyclic ethers; carbonates such as ethylene carbonate and propylene carbonate; γ-butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred. Furthermore, preferably ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, esters such as γ-butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc. Particularly preferred are carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.

これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。 Lithium salts are used as solutes (electrolytes) for these solvents. Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.

高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。   Examples of the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.

本発明における負極材料を使用したリチウム二次電池において、用いられる正極材料はリチウム含有遷移金属酸化物である。好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお、主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0〜1.2。)、またはLiy24(Nは少なくともMnを含む。y=0〜2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 In the lithium secondary battery using the negative electrode material in the present invention, the positive electrode material used is a lithium-containing transition metal oxide. Preferably, an oxide mainly containing at least one transition metal element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W and lithium, wherein the molar ratio of lithium to the transition metal Is a compound of 0.3 to 2.2. More preferably, the oxide mainly contains at least one transition metal element selected from V, Cr, Mn, Fe, Co, and Ni and lithium, and the molar ratio of lithium to the transition metal is 0.3 to 0.3. The compound of 2.2. In addition, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained in a range of less than 30 mole percent with respect to the transition metal present mainly. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe and Mn, x = 0 to 1.2), or Li y N 2 O 4 (N is It is preferable to use at least one material having a spinel structure represented by at least Mn and y = 0-2.

さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0〜1.2、a=0.5〜1。)を含む材料、またはLiz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1〜0.2、z=0〜2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。 Further, the positive electrode active material Li y M a D 1-a O 2 (M is Co, Ni, Fe, at least one of Mn, D is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag , W, Ga, In, Sn, Pb, Sb, Sr, B, P, at least one type other than M, y = 0 to 1.2, a = 0.5 to 1.), or li z (N b E 1- b) 2 O 4 (N is Mn, E is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, in, Sn, Pb, Sb, It is particularly preferable to use at least one material having a spinel structure represented by at least one of Sr, B, and P, b = 1 to 0.2, and z = 0 to 2.

具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3。)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3。)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。 Specifically, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co a Ni 1-a O 2, Li x Co b V 1-b O z, Li x Co b Fe 1-b O 2, Li x Mn 2 O 4, Li x Mn c Co 2-c O 4, Li x Mn c Ni 2-c O 4, Li x Mn c V 2-c O 4, Li x Mn c Fe 2- c O 4 (where x = 0.02 to 1.2, a = 0.1 to 0.9, b = 0.8 to 0.98, c = 1.6 to 1.96, z = 2. 01-2.3.). The most preferred lithium-containing transition metal oxides, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co a Ni 1-a O 2, Li x Mn 2 O 4, Li x Co b V 1 -b O z (x = 0.02-1.2, a = 0.1-0.9, b = 0.9-0.98, z = 2.01-2.3). In addition, the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.

正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積は特に限定されないが、BET法で0.01〜50m2/gが好ましく、特に0.2m2/g〜1m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。 The average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 to 50 μm. It is preferable that the volume of particles of 0.5 to 30 μm is 95% or more. More preferably, the volume occupied by a particle group having a particle size of 3 μm or less is 18% or less of the total volume, and the volume occupied by a particle group of 15 μm or more and 25 μm or less is 18% or less of the total volume. Although the specific surface area is not particularly limited, but is preferably 0.01 to 50 m 2 / g by the BET method, particularly preferably 0.2m 2 / g~1m 2 / g. The pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.

上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。   There are no restrictions on the selection of members necessary for battery configuration other than those described above.

本発明の電池電極用炭素材料は、天然黒鉛中の不純物を十分に除去してなり、リチウムイオン二次電池用負極材料として放電容量が大きく、クーロン効率に優れたものとなる。また、本発明の炭素材料の製造方法は、入手性に優れた廉価な天然黒鉛を原材料として使用し、操作も比較的簡便であり、経済性、量産性に優れた方法といえる。   The carbon material for battery electrodes of the present invention sufficiently removes impurities in natural graphite, has a large discharge capacity as a negative electrode material for lithium ion secondary batteries, and has excellent coulomb efficiency. In addition, the carbon material production method of the present invention uses inexpensive natural graphite having excellent availability as a raw material, is relatively easy to operate, and can be said to be excellent in economy and mass productivity.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
下記例で用いた物性等は以下の方法により測定した。
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
The physical properties used in the following examples were measured by the following methods.

平均円形度:
炭素材料の平均円形度は、フロー式粒子像分析装置FPIA−2100(シスメックス社製)を用いて以下のように測定した。
測定用試料は106μmのフィルターを通して微細なゴミを取り除いて精製した。その試料0.1gを20mlのイオン交換水中に添加し、陰・非イオン界面活性剤0.1〜0.5質量%加えることによって均一に分散させ、測定用試料分散液を調製した。分散は、超音波洗浄機UT−105S(シャープマニファクチャリングシステム社製)を用い、5分間処理することにより行った。
測定原理等の概略は、「粉体と工業」,VOL.32,No.2,2000、特開平8−136439号公報などに記載されているが、具体的には以下の通りである。
測定試料の分散液がフラットで透明なフローセル(厚み約200μm)の流路を通過したときにストロボ光が1/30秒間隔で照射され、CCDカメラで撮像される。その静止画像を一定枚数撮像し画像解析し、下記式によって算出した。
円形度=(円相当径から求めた円の周囲長)/(粒子投影像の周囲長)
円相当径とは実際に撮像された粒子の周囲長さと同じ投影面積を持つ真円の直径であり、この円相当径から求めた円の周囲長を実際に撮像された粒子の周囲長で割った値である。例えば真円で1、形状が複雑になるほど小さい値となる。平均円形度は、測定された粒子個々に円形度の平均値である。
Average circularity:
The average circularity of the carbon material was measured as follows using a flow particle image analyzer FPIA-2100 (manufactured by Sysmex Corporation).
The sample for measurement was purified by removing fine dust through a 106 μm filter. A sample dispersion for measurement was prepared by adding 0.1 g of the sample into 20 ml of ion-exchanged water and uniformly dispersing 0.1 to 0.5% by mass of an anionic / nonionic surfactant. Dispersion was performed by treating for 5 minutes using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System).
The outline of the measurement principle and the like is described in “Powder and Industry”, VOL. 32, No. 2, 2000, Japanese Patent Laid-Open No. 8-136439, and the like.
When the dispersion liquid of the measurement sample passes through the flow path of a flat and transparent flow cell (thickness: about 200 μm), strobe light is irradiated at 1/30 second intervals and imaged with a CCD camera. A certain number of the still images were taken and analyzed, and calculated according to the following formula.
Circularity = (circle circumference obtained from equivalent circle diameter) / (perimeter of particle projection image)
The equivalent circle diameter is the diameter of a true circle having the same projected area as the circumference of the actually imaged particle, and the circumference of the circle obtained from this equivalent circle diameter is divided by the circumference of the actually imaged particle. Value. For example, the value is 1 for a perfect circle, and the value becomes smaller as the shape becomes more complicated. The average circularity is an average value of circularity of each measured particle.

平均粒子径:
レーザー回析散乱式粒度分布測定装置マイクロトラックHRA(日機装(株)製)を用いて測定した。
Average particle size:
It measured using the laser diffraction scattering type particle size distribution measuring apparatus Microtrac HRA (made by Nikkiso Co., Ltd.).

比表面積:
比表面積測定装置NOVA−1200(ユアサアイオニクス(株)製)を用いて、一般的な比表面積の測定方法であるBET法により測定した。
0:X線回折法によって求めた。
不純物量:蛍光X線分析法によって測定した。
Specific surface area:
Using a specific surface area measuring device NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), the measurement was performed by the BET method, which is a general method for measuring the specific surface area.
C 0 : Determined by X-ray diffraction method.
Impurity amount: Measured by fluorescent X-ray analysis.

電池評価方法:
(1)ペースト作成
負極材料1質量部に呉羽化学製KFポリマーL1320(ポリビニリデンフルオライド(PVDF)を12質量%含有したN−メチルピロリドン(NMP)溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し主剤原液とした。
Battery evaluation method:
(1) Preparation of paste 0.1 mass part of KF polymer L1320 (N-methylpyrrolidone (NMP) solution product containing 12 mass% of polyvinylidene fluoride (PVDF)) made by Kureha Chemical Co., Ltd. was added to 1 mass part of the negative electrode material. The mixture was kneaded with a Lee mixer to obtain a main agent stock solution.

(2)電極作製
主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布した。これを120℃、1時間真空乾燥し、18mmφに打ち抜いた。さらに、打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102〜3×102N/mm2(1×103〜3×103kg/cm2)となるようにプレスした。その後、真空乾燥器で120℃、12時間乾燥後し、評価用電極とした。
(2) Electrode preparation After adding NMP to the main agent stock solution and adjusting the viscosity, it was applied on a high-purity copper foil to a thickness of 250 μm using a doctor blade. This was vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mmφ. Further, the punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 × 10 2 to 3 × 10 2 N / mm 2 (1 × 10 3 to 3 × 10 3 kg / cm 2 ) with respect to the electrode. It pressed so that it might become. Then, it dried at 120 degreeC and 12 hours with the vacuum dryer, and was set as the electrode for evaluation.

(3)電池作成
下記のようにして三極セルを作製した。なお以下の操作は露点−80℃以下の乾燥アルゴン雰囲気下で実施した。
ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製した銅箔付き炭素電極(正極)と金属リチウム箔(負極)をセパレーター(ポリプロピレン製マイクロポ−ラスフィルム(セルガ−ド2400))で挟み込んで積層した。さらにリファレンス用の金属リチウムを同様に積層した。これに電解液を加えて試験用セルとした。
(3) Battery preparation A triode cell was prepared as follows. The following operation was carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
In a cell (with an inner diameter of about 18 mm) with a screw-in type lid made of polypropylene, the carbon electrode with copper foil (positive electrode) and metal lithium foil (negative electrode) produced in (2) above were separated by a separator (polypropylene microporous film (Selga -2400)). Further, metallic lithium for reference was laminated in the same manner. An electrolytic solution was added thereto to obtain a test cell.

(4)電解液
(i)EC系:EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合品で、電解質としてLiPF6を1モル/リットル溶解した。
(4) Electrolyte (i) EC system: A mixture of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate), and 1 mol / liter of LiPF 6 was dissolved as an electrolyte.

(5)充放電サイクル試験
電流密度0.2mA/cm2(0.1C相当)で定電流低電圧充放電試験を行った。
充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。
放電(炭素からの放出)は0.2mA/cm2(0.1C相当)でCC放電を行い、電圧1.5Vでカットオフした。
(5) Charging / discharging cycle test A constant current low voltage charging / discharging test was conducted at a current density of 0.2 mA / cm 2 (equivalent to 0.1 C).
Charging (insertion of lithium into carbon) was performed by CC (constant current: constant current) at 0.2 mA / cm 2 from the rest potential to 0.002V. Next, it switched to CV (constant volt: constant voltage) charging at 0.002 V, and stopped when the current value decreased to 25.4 μA.
The discharge (release from carbon) was CC discharge at 0.2 mA / cm 2 (equivalent to 0.1 C), and cut off at a voltage of 1.5 V.

実施例1:酸処理
中国製天然黒鉛(灰分量16.5質量%,成分詳細は表1参照)をハンマーミル(ホソカワミクロン製バンタムミル)で粉砕し、気流分級機(日清エンジニアリング製ターボクラシファイアー)にて平均粒径5μmに調整し、天然黒鉛微粉を製造した。
46%フッ化水素酸50質量部と蒸留水50質量部を混合した酸性水溶液(酸A)と、試薬1級97%硫酸50質量部と蒸留水50質量部を混合した酸性水溶液(酸B)を調製し、さらに、酸Aの50質量部と酸Bの50質量部を混合した酸性水溶液(酸C)を調製した。
天然黒鉛微粉100質量部に酸C300質量部を加え、25℃で6時間撹拌混合した。その後、ろ過して水洗し、120℃で5時間乾燥した。
これを、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした後、黒鉛るつぼに詰め、アルゴン雰囲気中で2800℃まで加熱し、得られた微粉を負極材料とした。
Example 1: Acid treatment Natural graphite made in China (ash content 16.5% by mass, see Table 1 for details of ingredients) was pulverized with a hammer mill (Hosokawa Micron Bantam Mill), and airflow classifier (Nisshin Engineering Turbo Classifier) To adjust the average particle size to 5 μm to produce natural graphite fine powder.
An acidic aqueous solution (acid A) in which 50 parts by mass of 46% hydrofluoric acid and 50 parts by mass of distilled water are mixed, and an acidic aqueous solution (acid B) in which 50 parts by mass of reagent grade 97% sulfuric acid and 50 parts by mass of distilled water are mixed. Further, an acidic aqueous solution (acid C) in which 50 parts by mass of acid A and 50 parts by mass of acid B were mixed was prepared.
300 parts by weight of acid C was added to 100 parts by weight of natural graphite fine powder, and the mixture was stirred and mixed at 25 ° C. for 6 hours. Then, it filtered, washed with water, and dried at 120 degreeC for 5 hours.
This was subjected to spheronization treatment with Hosokawa Micron Mechano-Fusion to obtain an average particle size of 20 μm, then packed in a graphite crucible and heated to 2800 ° C. in an argon atmosphere, and the resulting fine powder was used as a negative electrode material.

Figure 2005097010
Figure 2005097010

実施例2:アルカリ処理+酸処理
実施例1で調製した天然黒鉛微粉100質量部に1モル/リットルの濃度の水酸化ナトリウム水溶液300質量部を加え25℃で6時間撹拌混合した。これをろ過、水洗し、その全量に酸C300質量部を加え25℃で6時間撹拌混合した。その後、ろ過して水洗し、120℃で5時間乾燥した。
これを、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした後、黒鉛るつぼに詰め、アルゴン雰囲気中で2800℃まで加熱し、得られた微粉を負極材料とした。
Example 2: Alkali treatment + acid treatment To 100 parts by mass of natural graphite fine powder prepared in Example 1, 300 parts by mass of a 1 mol / liter sodium hydroxide aqueous solution was added and stirred and mixed at 25 ° C. for 6 hours. This was filtered and washed with water, and 300 parts by mass of acid C was added to the total amount, followed by stirring and mixing at 25 ° C. for 6 hours. Then, it filtered, washed with water, and dried at 120 degreeC for 5 hours.
This was subjected to spheronization treatment with Hosokawa Micron Mechano-Fusion to obtain an average particle size of 20 μm, then packed in a graphite crucible and heated to 2800 ° C. in an argon atmosphere, and the resulting fine powder was used as a negative electrode material.

実施例3:アルカリ処理+酸処理+樹脂処理
実施例1で調製した天然黒鉛微粉100質量部と1モル/リットルの濃度の水酸化ナトリウム水溶液300質量部を加え25℃で6時間撹拌混合した。これをろ過、水洗し、その全量に酸C300質量部を加え25℃で6時間撹拌混合した。その後、ろ過して水洗し、120℃で5時間乾燥した。
これを、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした。この粉体を500質量部、フェノールを398質量部、37%ホルマリンを466質量部、反応触媒としてヘキサメチレンテトラミンを38質量部、さらに水を385質量部それぞれ投入した。これを60rpmで20分撹拌した。次に撹拌しつつ容器を0.4kPa(3Torr)まで真空引きして5分間保持し、大気圧まで戻す操作を3回繰り返し、造粒物内部まで液を含浸させた。さらに撹拌を続けつつ150℃に加熱して保持した。内容物は最初マヨネーズ状の流動性を有していたが、次第に、黒鉛を含むフェノールとホルムアルデヒドとの反応物と水を主体とする層が分離しはじめ、約15分後に黒鉛とフェノール樹脂とからなる黒色の粒状物が反応容器内に分散した状態となった。この後、さらに60分間150℃で撹拌した後反応容器の内容物を30℃まで冷却し、撹拌を停止した。容器の内容物を濾過して得た黒色粒状物を水洗後、更にろ過して流動層式の乾燥機を用いて、熱風温度55℃で5時間乾燥することで、黒鉛・フェノール樹脂粒状物を得た。
次にこの黒鉛フェノール樹脂粒状物を、ヘンシェルミキサーにて1800rpmで5分間解砕した。これを加熱炉に入れ、炉内部を真空置換してアルゴン雰囲気下とした後、アルゴンガスを流しつつ昇温した。2800℃で10分間保持してその後冷却した。室温まで冷却後、得られた熱処理品を目開き63μmの篩により篩分けし、篩下の微粉を負極材料とした。
Example 3 Alkali Treatment + Acid Treatment + Resin Treatment 100 parts by weight of natural graphite fine powder prepared in Example 1 and 300 parts by weight of a sodium hydroxide aqueous solution having a concentration of 1 mol / liter were added and mixed with stirring at 25 ° C. for 6 hours. This was filtered and washed with water, and 300 parts by mass of acid C was added to the total amount, followed by stirring and mixing at 25 ° C. for 6 hours. Then, it filtered, washed with water, and dried at 120 degreeC for 5 hours.
This was spheroidized with Mechanofusion manufactured by Hosokawa Micron to obtain an average particle size of 20 μm. 500 parts by mass of this powder, 398 parts by mass of phenol, 466 parts by mass of 37% formalin, 38 parts by mass of hexamethylenetetramine as a reaction catalyst, and 385 parts by mass of water were added. This was stirred at 60 rpm for 20 minutes. Next, while stirring, the container was evacuated to 0.4 kPa (3 Torr) and held for 5 minutes, and the operation of returning to atmospheric pressure was repeated three times to impregnate the liquid into the granulated product. Further, the mixture was heated and maintained at 150 ° C. while stirring was continued. The contents initially had a mayonnaise-like fluidity, but gradually, a reaction product of phenol and formaldehyde containing graphite and a water-based layer began to separate, and after about 15 minutes from graphite and phenolic resin. As a result, the black granular material was dispersed in the reaction vessel. After that, after further stirring for 60 minutes at 150 ° C., the contents of the reaction vessel were cooled to 30 ° C. and stirring was stopped. The black granular material obtained by filtering the contents of the container is washed with water, further filtered, and dried using a fluidized bed dryer at a hot air temperature of 55 ° C. for 5 hours, whereby graphite / phenolic resin granular material is obtained. Obtained.
Next, this graphite phenol resin granular material was pulverized with a Henschel mixer at 1800 rpm for 5 minutes. This was put into a heating furnace, the inside of the furnace was replaced with a vacuum to make it under an argon atmosphere, and then the temperature was raised while flowing argon gas. It was kept at 2800 ° C. for 10 minutes and then cooled. After cooling to room temperature, the obtained heat-treated product was sieved with a sieve having an aperture of 63 μm, and the fine powder under the sieve was used as a negative electrode material.

比較例1:硫酸処理
実施例1で調製した天然黒鉛微粉100質量部と酸B300質量部を25℃で6時間撹拌混合した。その後ろ過して水洗し、120℃で5時間乾燥した。
これを、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした後、黒鉛るつぼに詰め、アルゴン雰囲気中で2800℃まで加熱し、得られた微粉を負極材料とした。
Comparative Example 1: Sulfuric Acid Treatment 100 parts by mass of natural graphite fine powder prepared in Example 1 and 300 parts by mass of acid B were stirred and mixed at 25 ° C. for 6 hours. Thereafter, it was filtered, washed with water, and dried at 120 ° C. for 5 hours.
This was subjected to spheronization treatment with Hosokawa Micron Mechano-Fusion to obtain an average particle size of 20 μm, then packed in a graphite crucible and heated to 2800 ° C. in an argon atmosphere, and the resulting fine powder was used as a negative electrode material.

比較例2:硫酸処理+樹脂処理
実施例1で調製した天然黒鉛微粉100質量部と酸B300質量部を25℃で6時間撹拌混合した。その後ろ過して水洗し、120℃で5時間乾燥した。
これを、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした後、実施例3と同様のコート処理を行った。これを黒鉛るつぼに詰め、アルゴン雰囲気中で2800℃まで加熱し、得られた微粉を負極材料とした。
Comparative Example 2: Sulfuric acid treatment + resin treatment 100 parts by mass of natural graphite fine powder prepared in Example 1 and 300 parts by mass of acid B were stirred and mixed at 25 ° C for 6 hours. Thereafter, it was filtered, washed with water, and dried at 120 ° C. for 5 hours.
This was spheroidized with Mechanofusion manufactured by Hosokawa Micron to obtain an average particle size of 20 μm, and then the same coating treatment as in Example 3 was performed. This was packed in a graphite crucible and heated to 2800 ° C. in an argon atmosphere, and the resulting fine powder was used as a negative electrode material.

比較例3:硫酸処理+樹脂処理(熱処理温度1000℃)
比較例2において2800℃で加熱する代わりに1000℃で加熱し、それ以外は比較例2と同様に操作し微粉を得、負極材料とした。
Comparative Example 3: Sulfuric acid treatment + resin treatment (heat treatment temperature 1000 ° C.)
In Comparative Example 2, instead of heating at 2800 ° C., heating was performed at 1000 ° C., and other operations were performed in the same manner as in Comparative Example 2 to obtain a fine powder, which was used as a negative electrode material.

比較例4:樹脂処理(酸処理なし)
実施例1で調製した天然黒鉛微粉を、ホソカワミクロン製メカノフュージョンにて球状化処理を実施し、平均粒径20μmとした後、黒鉛るつぼに詰め、アルゴン雰囲気中で2800℃まで加熱し、得られた微粉を負極材料とした。
Comparative Example 4: Resin treatment (no acid treatment)
The natural graphite fine powder prepared in Example 1 was subjected to spheronization treatment with Meso-Fuso made by Hosokawa Micron to obtain an average particle size of 20 μm, then packed in a graphite crucible and heated to 2800 ° C. in an argon atmosphere. Fine powder was used as the negative electrode material.

実施例1〜3及び比較例1〜4で製造した負極材料(微粉)について、充放電サイクル試験1サイクル目の容量・クーロン効率、50サイクル目の容量を調べた。結果を表2に示す。   About the negative electrode material (fine powder) manufactured by Examples 1-3 and Comparative Examples 1-4, the capacity | capacitance efficiency of the 1st charge / discharge cycle test and the capacity | capacitance of 50th cycle were investigated. The results are shown in Table 2.

Figure 2005097010
Figure 2005097010

Claims (25)

平均粒径が0.1〜100μmの天然黒鉛粒子を、フッ化水素含有溶液で浸漬処理する工程及び前記浸漬処理した天然黒鉛粒子を2400℃以上3300℃未満の温度で熱処理する工程を含み、炭素以外の元素含有率の合計を800ppm以下とすることを特徴とする炭素材料の製造方法。   Including a step of immersing natural graphite particles having an average particle size of 0.1 to 100 μm with a hydrogen fluoride-containing solution and a step of heat-treating the immersed natural graphite particles at a temperature of 2400 ° C. or higher and lower than 3300 ° C., A method for producing a carbon material, wherein the total content of elements other than the above is 800 ppm or less. フッ化水素含有溶液で浸漬処理する工程の前に、アルカリ水溶液で浸漬処理する工程を設ける請求項1に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 1, wherein a step of immersing with an alkaline aqueous solution is provided before the step of immersing with the hydrogen fluoride-containing solution. 熱処理工程の前に、フッ化水素含有溶液で浸漬処理した天然黒鉛粒子をバインダーによる結着力および/またはせん断による粒子界面同士のファンデルワールス力により造粒する工程を設ける請求項1または2に記載の炭素材料の製造方法。   The natural graphite particles immersed in the hydrogen fluoride-containing solution are granulated by a binder force and / or a van der Waals force between particle interfaces due to shear before the heat treatment step. Carbon material manufacturing method. 造粒工程が、フッ化水素含有溶液で浸漬処理した0.1〜50μmの平均粒径を有する天然黒鉛粒子を平均円形度0.85〜0.99、平均粒径0.5〜200μmとなるように造粒を行う工程である請求項3に記載の炭素材料の製造方法。   In the granulation step, natural graphite particles having an average particle diameter of 0.1 to 50 μm that have been immersed in a hydrogen fluoride-containing solution have an average circularity of 0.85 to 0.99 and an average particle diameter of 0.5 to 200 μm. The method for producing a carbon material according to claim 3, which is a step of performing granulation as described above. 熱処理工程の前に、粒子表面の少なくとも一部を樹脂で被覆する工程を設ける請求項1乃至4のいずれかに記載の炭素材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 4, wherein a step of coating at least a part of the particle surface with a resin is provided before the heat treatment step. フッ化水素含有溶液のフッ化水素濃度(HF濃度)が10〜80%である請求項1に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 1, wherein the hydrogen fluoride concentration (HF concentration) of the hydrogen fluoride-containing solution is 10 to 80%. フッ化水素含有溶液が、硝酸、硫酸、塩酸、臭素酸、ヨウ素酸、トリクロロ酢酸、トリフルオロ酢酸及び蓚酸から選ばれる少なくとも1種が混合された水溶液である請求項6に記載の炭素材料の製造方法。   The carbon material production according to claim 6, wherein the hydrogen fluoride-containing solution is an aqueous solution in which at least one selected from nitric acid, sulfuric acid, hydrochloric acid, bromic acid, iodic acid, trichloroacetic acid, trifluoroacetic acid and oxalic acid is mixed. Method. 粒子表面の少なくとも一部を被覆する樹脂が、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種を含む重合体である請求項5に記載の炭素材料の製造方法。   The resin covering at least a part of the particle surface is a polymer containing at least one selected from the group consisting of phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin. Item 6. A method for producing a carbon material according to Item 5. 粒子表面の少なくとも一部を被覆する樹脂が、フェノール樹脂である請求項5に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 5, wherein the resin covering at least a part of the particle surface is a phenol resin. 粒子表面の少なくとも一部を被覆する樹脂の量が、粒子質量の2〜80質量%である請求項8に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 8, wherein the amount of the resin covering at least a part of the particle surface is 2 to 80% by mass of the particle mass. フェノール樹脂が、フェノール類とホルムアルデヒド類の反応時に乾性油またはその脂肪酸を添加して調製されたものである請求項9に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 9, wherein the phenol resin is prepared by adding a drying oil or a fatty acid thereof during the reaction of phenols and formaldehydes. フェノール類とホルムアルデヒド類の反応時に気相法炭素繊維を存在させ、生成したフェノール樹脂により粒子表面に気相法炭素繊維を付着させる請求項9に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 9, wherein vapor-grown carbon fibers are present during the reaction of phenols and formaldehyde, and vapor-grown carbon fibers are adhered to the particle surfaces by the generated phenol resin. 粒子に付着した気相法炭素繊維の量が、粒子質量の0.01〜20質量%である請求項12に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 12, wherein the amount of vapor grown carbon fiber attached to the particles is 0.01 to 20% by mass of the particle mass. 炭素以外の元素含有率の合計が800ppm以下の天然黒鉛粒子からなることを特徴とする炭素材料。   A carbon material comprising natural graphite particles having a total content of elements other than carbon of 800 ppm or less. 粒子表面の少なくとも一部が樹脂を炭化・焼成してなる炭素質材料で被覆されている請求項14に記載の炭素材料。   The carbon material according to claim 14, wherein at least a part of the particle surface is coated with a carbonaceous material obtained by carbonizing and firing a resin. 樹脂がフェノール樹脂である請求項15に記載の炭素材料。   The carbon material according to claim 15, wherein the resin is a phenol resin. 少なくとも一部の粒子の表面に炭素質材料を介して、内部に中空構造を有し外径2〜1000nm、アスペクト比10〜15000の気相法炭素繊維が付着している請求項15に記載の炭素材料。   The vapor grown carbon fiber having a hollow structure inside and having an outer diameter of 2 to 1000 nm and an aspect ratio of 10 to 15000 is attached to the surface of at least some of the particles via a carbonaceous material. Carbon material. 気相法炭素繊維が、X線回折法による(002)面の平均面間隔(d002)0.344nm以下の炭素からなる請求項17に記載の炭素材料。 The carbon material according to claim 17, wherein the vapor grown carbon fiber is made of carbon having an average interplanar spacing (d 002 ) of 0.344 nm or less (d 002 ) by X-ray diffraction. ホウ素を1〜800ppm含有する請求項14に記載の炭素材料。   The carbon material according to claim 14 containing 1 to 800 ppm of boron. 以下の(1)〜(3)の要件を満足する請求項14乃至19のいずれかに記載の炭素材料:
(1)平均円形度が0.85〜0.99、
(2)比表面積が0.2〜5m2/g、
(3)平均粒子径が10〜40μm。
The carbon material according to any one of claims 14 to 19, which satisfies the following requirements (1) to (3):
(1) An average circularity of 0.85 to 0.99,
(2) a specific surface area of 0.2 to 5 m 2 / g,
(3) The average particle size is 10 to 40 μm.
請求項1乃至13のいずれかに記載の製造方法によって得られた炭素材料。   A carbon material obtained by the production method according to claim 1. 請求項14乃至21のいずれかに記載の炭素材料とバインダーを含む電極ペースト。   An electrode paste comprising the carbon material according to any one of claims 14 to 21 and a binder. 請求項22に記載の電極ペーストの成形体からなる電極。   An electrode comprising a molded body of the electrode paste according to claim 22. 請求項23に記載の電極を構成要素として含む二次電池。   A secondary battery comprising the electrode according to claim 23 as a constituent element. 非水電解液及び電解質を用い、前記非水電解液がエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、γ−ブチロラクトン及びプロピレンカーボネートからなる群から選ばれる少なくとも1種である請求項24に記載の二次電池。   A non-aqueous electrolyte and an electrolyte are used, and the non-aqueous electrolyte is at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, vinylene carbonate, γ-butyrolactone and propylene carbonate. 24. The secondary battery according to 24.
JP2003329764A 2003-09-22 2003-09-22 Carbon material, production method therefor and its application Pending JP2005097010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329764A JP2005097010A (en) 2003-09-22 2003-09-22 Carbon material, production method therefor and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329764A JP2005097010A (en) 2003-09-22 2003-09-22 Carbon material, production method therefor and its application

Publications (1)

Publication Number Publication Date
JP2005097010A true JP2005097010A (en) 2005-04-14

Family

ID=34458925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329764A Pending JP2005097010A (en) 2003-09-22 2003-09-22 Carbon material, production method therefor and its application

Country Status (1)

Country Link
JP (1) JP2005097010A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158718A (en) * 2003-10-31 2005-06-16 Showa Denko Kk Carbon material for battery electrode, and manufacturing method and use thereof
JP2006310100A (en) * 2005-04-28 2006-11-09 Showa Denko Kk Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2007053022A (en) * 2005-08-18 2007-03-01 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2010262925A (en) * 2009-04-30 2010-11-18 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP2011079681A (en) * 2009-10-02 2011-04-21 Japan Siper Quarts Corp Quartz glass crucible, manufacturing apparatus and manufacturing method thereof
JP2012049151A (en) * 2011-12-08 2012-03-08 Mitsubishi Chemicals Corp Lithium secondary battery
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP5225690B2 (en) * 2005-12-21 2013-07-03 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2015095455A (en) * 2013-11-08 2015-05-18 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof
CN106898762A (en) * 2017-05-05 2017-06-27 天津师范大学 A kind of preparation method of lithium ion battery high-capacity cathode material
JP2018125307A (en) * 2018-05-11 2018-08-09 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery
KR20210062694A (en) * 2018-12-29 2021-05-31 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power car
JP2022136533A (en) * 2021-03-08 2022-09-21 株式会社レイホー製作所 Method of producing graphite material
CN115403399A (en) * 2022-06-23 2022-11-29 单建 Graphite fiber heat-insulation composite material for high-purity semiconductor and preparation method thereof
US11866338B2 (en) 2019-01-17 2024-01-09 Lg Energy Solution, Ltd. Anode active material for secondary battery, anode comprising same, and method for manufacturing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158718A (en) * 2003-10-31 2005-06-16 Showa Denko Kk Carbon material for battery electrode, and manufacturing method and use thereof
JP2012164681A (en) * 2003-10-31 2012-08-30 Showa Denko Kk Evaluation method of carbon material for battery electrodes
JP2006310100A (en) * 2005-04-28 2006-11-09 Showa Denko Kk Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2007053022A (en) * 2005-08-18 2007-03-01 Mitsubishi Chemicals Corp Lithium secondary battery
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP5225690B2 (en) * 2005-12-21 2013-07-03 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
US8999580B2 (en) 2005-12-21 2015-04-07 Show A Denko K.K. Composite graphite particles and lithium rechargeable battery using the same
JP2010262925A (en) * 2009-04-30 2010-11-18 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP2011079681A (en) * 2009-10-02 2011-04-21 Japan Siper Quarts Corp Quartz glass crucible, manufacturing apparatus and manufacturing method thereof
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2012049151A (en) * 2011-12-08 2012-03-08 Mitsubishi Chemicals Corp Lithium secondary battery
JP2015095455A (en) * 2013-11-08 2015-05-18 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof
CN106898762A (en) * 2017-05-05 2017-06-27 天津师范大学 A kind of preparation method of lithium ion battery high-capacity cathode material
CN106898762B (en) * 2017-05-05 2019-03-26 天津师范大学 A kind of preparation method of lithium ion battery high-capacity cathode material
JP2018125307A (en) * 2018-05-11 2018-08-09 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery
KR20210062694A (en) * 2018-12-29 2021-05-31 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power car
KR102620786B1 (en) 2018-12-29 2024-01-04 후난 진예 하이-테크 컴퍼니 리미티드 Lithium-ion battery cathode material, lithium-ion battery cathode, lithium-ion battery, battery pack and battery power vehicle
US11866338B2 (en) 2019-01-17 2024-01-09 Lg Energy Solution, Ltd. Anode active material for secondary battery, anode comprising same, and method for manufacturing same
JP2022136533A (en) * 2021-03-08 2022-09-21 株式会社レイホー製作所 Method of producing graphite material
CN115403399A (en) * 2022-06-23 2022-11-29 单建 Graphite fiber heat-insulation composite material for high-purity semiconductor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5153055B2 (en) Carbon material for lithium secondary battery electrode, manufacturing method thereof, electrode paste, electrode for lithium secondary battery, and lithium secondary battery
JP4896381B2 (en) Carbon material for battery electrode, production method and use thereof
KR100751772B1 (en) Carbon material for battery electrode and production method and use thereof
JP4385589B2 (en) Negative electrode material and secondary battery using the same
EP1442490B1 (en) Carbon material, production method and use thereof
JP5346962B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4298988B2 (en) Carbon material manufacturing method
JP2005097010A (en) Carbon material, production method therefor and its application
JP4781659B2 (en) Graphite particles for negative electrode material, method for producing the same, and battery using the same
JP2004253379A (en) Anode material for lithium ion secondary battery, anode and lithium ion secondary battery
JP5078047B2 (en) Carbon material, production method thereof and use thereof
JP2021116198A (en) Spherical carbon particles containing nitrogen element, their manufacturing method, electrodes and batteries
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP5311592B2 (en) Lithium secondary battery
JP2015219989A (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP4416070B2 (en) Negative electrode material, production method and use thereof
JP4286491B2 (en) Carbon material, method for producing the same, and use thereof
JP2018055999A (en) Low crystalline carbon material for negative electrode active material of lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US20040124402A1 (en) Negative electrode material, and production method and use thereof
JP5079219B2 (en) Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2016181406A (en) Composite easily graphitizable carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609