[go: up one dir, main page]

JP2005095814A - Apparatus and method for dehydrating highly hydrated earth and sand - Google Patents

Apparatus and method for dehydrating highly hydrated earth and sand Download PDF

Info

Publication number
JP2005095814A
JP2005095814A JP2003334789A JP2003334789A JP2005095814A JP 2005095814 A JP2005095814 A JP 2005095814A JP 2003334789 A JP2003334789 A JP 2003334789A JP 2003334789 A JP2003334789 A JP 2003334789A JP 2005095814 A JP2005095814 A JP 2005095814A
Authority
JP
Japan
Prior art keywords
water
cathode
electrode
switch
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003334789A
Other languages
Japanese (ja)
Inventor
Yutaka Kashima
豊 加島
Hideyuki Takeuchi
秀行 武内
Takaharu Kobayashi
隆治 小林
Tamotsu Takuma
保 宅間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiho Construction Co Ltd
Original Assignee
Daiho Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiho Construction Co Ltd filed Critical Daiho Construction Co Ltd
Priority to JP2003334789A priority Critical patent/JP2005095814A/en
Publication of JP2005095814A publication Critical patent/JP2005095814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for dehydrating highly hydrated earth and sand which efficiently dehydrate the highly hydrated earth and sand responding to changing geological materials without reducing an electroosmotic effect. <P>SOLUTION: The apparatus for dehydrating the highly hydrated earth and sand is provided with a soil tank 1 for storing the highly hydrated earth and sand, a water-permeable cathode 3 installed along the inner surface of the soil tank, anodes 6 consisting of a plurality of electrode groups arranged at equal intervals along the soil tank, and to the inner surfaces of the cathode and/or an electrode group 20 of water-permeable bipolar electrodes, a direct current power source 10 applying direct current between the electrodes by connecting the cathode with the anode electrode groups, and a water discharging device 15 collecting, and discharging to the outside of the soil tank, water permeated into the cathode from the highly hydrated earth and sand through the electroosmosis by applying voltage by connecting to the water permeable cathode 3 and/or the inside of the electrode group 20. By using this apparatus, the method is such a one that at least successively lowering voltage is successively applied between the electrodes from the electrode group arranged at the center within the anode electrode groups 6 and the electrode group 20, through a pair of electrode groups adjacent to both sides of them/it to the outermost electrode group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は建設工事や掘削工事に伴って排出される高含水率土砂等の脱水装置とその脱水方法、特にシルトや含水量が多い粘性土などによる不透水性土質の汚泥と言われ手いる高含水土砂から効率よく脱水する装置と方法に関する。   The present invention is a dewatering device and method for dewatering high water content sediments and the like discharged in connection with construction work and excavation work, particularly high impregnated soil sludge due to silt and viscous soil with high water content. The present invention relates to an apparatus and a method for efficiently dewatering hydrous sand.

従来、高含水率の建設汚泥の含水率を下げて再処理を容易とする改質を行うには、主としてセメントや生石灰などの固化剤の混入による固化処理法や、掘削汚泥の貯留沈殿槽ないし濾過槽により土砂と水を分離する脱水処理法がある。また近年には、脱水処理法の一環として地盤や排出汚泥の中に対向配置した陰極と陽極に直流電流を通電し、電気浸透作用で陰極に集まる水を回収し分離する電気浸透法が提案されている。   Conventionally, in order to reduce the water content of construction sludge with a high water content and to make it easier to reprocess, solidification methods mainly involving the mixing of solidifying agents such as cement and quicklime, There is a dehydration method that separates sediment and water by a filtration tank. In recent years, as part of the dehydration method, an electroosmosis method has been proposed in which a direct current is applied to the cathode and anode placed opposite to each other in the ground or discharged sludge, and the water collected at the cathode is collected and separated by electroosmosis. ing.

固化処理法による場合、含水率が高くなったり工事の規模が大型化したりすれば必要な固化剤も大量となり、固化された大量の土砂の搬送や処理が困難となって、工事の経済性や作業性の面で問題も大きくなる。   In the case of the solidification method, if the moisture content becomes high or the scale of construction increases, the amount of solidifying agent required also becomes large, making it difficult to transport and treat a large amount of solidified earth and sand. Problems also increase in terms of workability.

脱水処理法は近年多用される市街地等における地下トンネル掘削のための、特に水圧式シールド工法に適用されるが、工事規模の大型化と共に沈殿槽や濾過槽の寸法とその数も大型化せざるを得ず、これらをトンネル外の地表面に設置する場合市街地では大きな問題となる。また、地下の地盤は掘削の進行と共に地質と含水量が常に変化するから、切羽の安定のために必要な水圧やベントナイト或いは高分子吸水剤の混入量の管理を継続的に、充分に行う必要があり、シールド工法全体の構成が複雑化し、大型化する一方、地質の変化と共に土砂、砂礫、粘土質等に応じて高含水土砂の脱水効果が変化し、関連工程の運行に影響が生じる。   The dehydration method is applied to underground shield excavation in urban areas that are frequently used in recent years, especially the hydraulic shield method, but the size and number of sedimentation tanks and filtration tanks must be increased as the construction scale increases. If these are installed on the ground surface outside the tunnel, it becomes a big problem in urban areas. In addition, since the geology and moisture content of the underground ground constantly change with the progress of excavation, it is necessary to continuously and sufficiently manage the water pressure necessary to stabilize the face and the amount of bentonite or polymer water-absorbing agent mixed in. However, while the overall construction of the shield construction method becomes complicated and large, the dehydration effect of highly hydrous sand changes according to the earth, sand, gravel, clay, etc. as the geology changes, affecting the operation of related processes.

電気浸透法には脱水処理対象を地盤とする場合と、掘削排出された高含水土砂とする場合があり、前者では電極を直接地盤内に埋設して通電するに対して、後者では内部に対向電極を設けた貯留土槽内に排出高含水土砂を満たして通電する。地盤に直接通電する場合には電極埋設用のボーリング作業を要するのみならず、電極周辺の脱水を行っても更にその周囲の自由水や地下水が脱水部分に浸入するため脱水作業は際限ない続行を要することとなり、また降雨時や多雨期には円滑な作業が困難となる。また、貯留土槽内での高含水土砂の通電脱水では脱水の進行に伴って土中に乾燥収縮が局部的に発生し、亀裂や空隙が発生し易く、空隙量が増大すると電気抵抗が増大し、電気浸透効果が減少する。
特開平9−287127号 特願2002−349801
In the electro-osmosis method, there are cases where the object of dehydration is the ground and high water-containing earth and sand that has been excavated and discharged. In the former, the electrode is directly buried in the ground and energized, while in the latter, the inside is opposed. The storage soil tank provided with the electrodes is filled with discharged highly hydrous soil and energized. When the ground is directly energized, not only does the electrode need to be drilled, but even if the electrode is dewatered, the surrounding free water and groundwater will enter the dewatered part, so the dewatering work will continue indefinitely. In addition, it is difficult to perform smooth work during rainfall or during heavy rain. Also, in the dewatering of highly hydrous soil in the storage soil tank, drying shrinkage occurs locally in the soil as the dewatering progresses, and cracks and voids are likely to occur, and the electrical resistance increases as the void volume increases. And the electroosmotic effect is reduced.
JP-A-9-287127 Japanese Patent Application No. 2002-349801

上記した水圧式シールド工法によるトンネル掘削工事は大量の高含水土砂を排出するから、その脱水処理には電極を設けた貯留土槽を用いた電気浸透法の適用が有利であるが、
工事進行と共に変化する地質材料とその寸法に対応し得るためには、陽極と陰極の離間距離を大きく保つ必要がある。一方、単に電極間距離を大きくすれば電気浸透効果が減少して脱水量が減少する。これを防止するには、電気浸透の理論式(Q=Ke×ie×A)、ここに
Q:水量
Ke:電気浸透透水係数5×10
ie:電位勾配Volt/cm
A:陽極と陰極間の浸透面積
により、理論的には電位勾配を高めるべく印加電圧を上げれば良いが、実際には陽極周囲の土砂の急激な脱水固化を招き、上記した様に空隙の発生により電気浸透効果が減少してしまう。本発明はこれらの点に鑑みて提案されたもので、その目的とするところは電気浸透効果を減少することなく、変化する地質材料に応じて効率よく高含水土砂の脱水処理を行い得る高含水土砂脱水装置と高含水土砂脱水方法を提供するにある。
The tunnel excavation work by the hydraulic shield method described above discharges a large amount of highly hydrous soil, so it is advantageous to apply the electroosmosis method using a storage tank equipped with electrodes for its dehydration treatment,
In order to be able to cope with the geological material and its dimensions that change with the progress of construction, it is necessary to keep the distance between the anode and the cathode large. On the other hand, simply increasing the distance between the electrodes reduces the electroosmotic effect and reduces the amount of dehydration. To prevent this, the theoretical formula of electroosmosis (Q = Ke × ie × A), where Q: amount of water Ke: electroosmotic permeability coefficient 5 × 10
ie: Potential gradient Volt / cm
A: Depending on the permeation area between the anode and the cathode, the applied voltage may theoretically be increased in order to increase the potential gradient. However, in reality, the soil around the anode is rapidly dehydrated and solidified, and as described above, voids are generated. This reduces the electroosmotic effect. The present invention has been proposed in view of these points, and the object of the present invention is to have a high water content capable of efficiently dewatering a highly water-containing earth and sand according to the changing geological material without reducing the electroosmotic effect. It is in providing a sediment dewatering device and a highly water-containing sediment dewatering method.

前記課題を解決するため、請求項1の発明に係る高含水土砂脱水装置は、上部を開口し、地下、半地下または地上に設置されて高含水土砂Gを貯留する土槽1と,土槽1の内面を覆う側面部3W,3W’,3B,3B’と床面部3dからなる透水性の陰極3と、陰極3と離隔してその内方に設置され、それぞれほぼ等距離に配列した複数の陽極群6a,6b,6c,6n,6b’,6c’,6n’および、または複数の透水性陽陰両極化電極群20a,20b,20c,20b’,20c’と、陰極3と複数の陽極群6および、または複数の透水性陽陰両極化電極群20に接続して直流電圧を両極間に印加する直流電源装置10と、電圧印加による電気浸透で高含水土砂Gから透水性の陰極3および、または透水性陽陰両極化電極群20a,20b,20c,20b’,20c’内に浸透した水を集水して土槽外に排水する排水装置15とを備えることを特徴とする。陽極6は中央の電極群6a;20aとその両側に順次配設した複数対の電極群6b,6b’;6c,6c’;6n,6n’:20b,20b’;20c,20c’でなるが,それぞれの電極群は複数の電極素体で構成するか、板状の電極を組合せた格子状のものとすることが可能である。排水装置はまた、透水性陰極の規模、寸法が大きくなれば透水性陰極内部に設置した水中ポンプとする或いはこれを含むものとすることが可能である。   In order to solve the above-mentioned problem, a highly water-containing earth and sand dewatering device according to the invention of claim 1 includes an earth tank 1 that is open at the top and is installed underground, semi-underground or above ground to store the highly water-containing earth and sand G, and the earth tank A water-permeable cathode 3 composed of side surface portions 3W, 3W ′, 3B, 3B ′ and a floor surface portion 3d that covers the inner surface of 1, and a plurality of cathodes 3 that are spaced apart from the cathode 3 and arranged approximately equidistantly. Anode groups 6a, 6b, 6c, 6n, 6b ', 6c', 6n 'and / or a plurality of permeable positive / negative bipolar electrode groups 20a, 20b, 20c, 20b', 20c ', a cathode 3 and a plurality of A DC power supply device 10 that is connected to the anode group 6 and / or a plurality of permeable positive / negative bipolar electrode groups 20 and applies a DC voltage between the two electrodes, and a permeable cathode from the highly hydrous soil G by electroosmosis by voltage application 3 and / or the permeable positive / negative bipolar electrode group 20a, 0b, 20c, 20b ', 20c' and collecting the permeated water in, characterized in that it comprises a drainage device 15 for draining out soil bin. The anode 6 includes a central electrode group 6a; 20a and a plurality of pairs of electrode groups 6b, 6b ′; 6c, 6c ′; 6n, 6n ′: 20b, 20b ′; , Each electrode group can be composed of a plurality of electrode bodies or a lattice-like combination of plate-like electrodes. The drainage device can also be or include a submersible pump installed inside the permeable cathode if the scale and size of the permeable cathode increase.

請求項2に記載の高含水土砂脱水装置は、土槽1の上部開口を塞ぐと共に複数の陽極群6a,6b,6c,6n,6b’,6c’,6n’を所定位置に保持する絶縁板6−1を備え、絶縁板6−1は土槽内の高含水土砂に接する側に透水性のストレーナ層6−3を有し、陰極3の各面部3W,3W’,3B,3B’,3dの内部に延長する集水管4および絶縁板6−1のストレーナ層6−3の内部に通ずる集水管7と、排水用真空ポンプ装置15とにより陰極内部に浸透した水と共に土槽内の高含水土砂の上層に分離した水をも集水し得ることを特徴とする。   The highly water-containing earth and sand dewatering device according to claim 2 closes the upper opening of the earth tub 1 and holds a plurality of anode groups 6a, 6b, 6c, 6n, 6b ', 6c', 6n 'in a predetermined position. 6-1, and the insulating plate 6-1 has a water-permeable strainer layer 6-3 on the side in contact with the highly hydrous sand in the earth tub, and each surface portion 3W, 3W ′, 3B, 3B ′, The water collecting pipe 4 extending inside 3d, the water collecting pipe 7 communicating with the inside of the strainer layer 6-3 of the insulating plate 6-1, and the water infiltrated into the cathode by the vacuum pump device 15 for drainage, together with the water in the soil tank Water separated into the upper layer of hydrous sand can also be collected.

請求項3の高含水土砂脱水装置は、複数の透水性陽陰両極化電極群20a,20b,20c,20b’,20c’がそれぞれ表面に集水孔23を有するストレーナ層24と、ストレーナ層24内に浸透した水を集水して真空ポンプ装置15に送る集水管25とでなり、直流電源装置10はそれぞれ直流電源の正極側10−1に接続したa端子と負極側10−2に接続したb端子と電極群20a,20b,20c,20b’,20c’の各々に接続したc端子とを有するスイッチ21a,21b,21c,21b’,21c’および直流電源の負極側10−2と陰極3の間を接続するスイッチ12を含み、両極化電極群20a,20b,20c,20b’,20c’にそれらの配列順に交互に正電圧と負電圧を印加し得るようにしたことを特徴とする。   In the highly water-containing earth and sand dewatering device according to claim 3, the plurality of permeable positive / negative bipolar electrode groups 20a, 20b, 20c, 20b ′, 20c ′ each have a strainer layer 24 having a water collecting hole 23 on the surface, and a strainer layer 24. The DC power supply 10 is connected to the a terminal connected to the positive electrode side 10-1 and the negative electrode side 10-2 of the DC power supply, respectively. Switches 21a, 21b, 21c, 21b ', 21c' having a b terminal and a c terminal connected to each of the electrode groups 20a, 20b, 20c, 20b ', 20c', and the negative side 10-2 of the DC power source and the cathode And a switch 12 for connecting the three electrodes, and a positive voltage and a negative voltage can be alternately applied to the bipolar electrode groups 20a, 20b, 20c, 20b ′, and 20c ′ in the order of arrangement. That.

請求項4の高含水土砂脱水装置は、複数の電極群6a,6b,6c,6n,6b’,6c’,6n’および、または複数の透水性陽陰両極化電極群20a,20b,20c,20b’,20c’でなる陽極6、および側面部3W,3W’,3B,3B’と床面部3dでなる陰極3は電極ブロック31として形成され、この電極ブロック31をユニットとして複数の電極ブロックを収容し得る寸法に土槽1が形成され、電極ブロック31は土槽に対し出し入れ自在であることを特徴とする。   The highly water-containing earth and sand dewatering device according to claim 4 includes a plurality of electrode groups 6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′ and / or a plurality of permeable positive / negative bipolar electrode groups 20a, 20b, 20c, The anode 6 composed of 20b ′, 20c ′ and the cathode 3 composed of the side surface portions 3W, 3W ′, 3B, 3B ′ and the floor surface portion 3d are formed as an electrode block 31, and a plurality of electrode blocks are formed using this electrode block 31 as a unit. The earth tub 1 is formed in a size that can be accommodated, and the electrode block 31 can be inserted into and removed from the earth tub.

また、前記課題を解決するため、請求項5に係る高含水土砂脱水方法は、上部を開口して高含水土砂Gを貯留する土槽1を地下、半地下または地上に設置し、土槽1の内面を覆う側面部3W,3W’,3B,3B’と床面部3dからなる透水性の陰極3を設け、それぞれほぼ等距離に配列した複数の陽極群6a,6b,6c,6n,6b’,6c’,6n’および、または複数の透水性陽陰両極化電極群20a,20b,20c,20b’,20c’を陰極3の内方に隔離して配列し、直流電源装置10を陰極3と複数の陽極群6および、または複数の透水性両極化電極群20に接続して直流電圧を両極間に印加し、排水装置15を透水性陰極3および、または透水性両極化電極群20に接続して電圧印加による電気浸透で高含水土砂Gから透水性陰極3および、または透水性両極化電極群20内に浸透した水を集水し土槽外に排水することを特徴とする。   Moreover, in order to solve the said subject, the high water content earth-and-sand dehydration method which concerns on Claim 5 installs the earth tank 1 which opens upper part and stores the high water content earth-and-sand G in the basement, a semi-underground, or the ground. A plurality of anode groups 6a, 6b, 6c, 6n, 6b 'are provided, each having a water permeable cathode 3 composed of side surface portions 3W, 3W', 3B, 3B 'and a floor surface portion 3d. , 6c ′, 6n ′ and / or a plurality of permeable positive / negative bipolar electrode groups 20a, 20b, 20c, 20b ′, 20c ′ are arranged inwardly of the cathode 3 and the DC power supply device 10 is arranged in the cathode 3 And a plurality of anode groups 6 and / or a plurality of permeable bipolar electrode groups 20 and a DC voltage is applied between the two electrodes, and the drainage device 15 is connected to the permeable cathode 3 and / or the permeable bipolar electrode group 20. From high water content sand G by electroosmosis by connecting and applying voltage Aqueous cathode 3 and, or, characterized in that the water penetrated into water-permeable bipolarization electrode group 20 is drained out of the water collecting and Doso.

請求項6による高含水土砂脱水方法は更に、直流電源装置10をその正電圧側において陽極6の電極群6a,6b,6c,6n,6b’,6c’,6n’と開閉スイッチ8a,8b,8c,8n,8b’,8c’,8n’のそれぞれを介して接続し、直流電圧印加はスイッチ12を閉じて陰極3を直流電源装置10の負電圧側に接続する間に、
(a)先ず中央に配置した電極6aに接続したスイッチ8aを閉じ、次いで外側に隣接する対の電極群6b,6b’に接続したスイッチ8b,8b’を閉じ、更に外側に隣接する対の電極群6c,6c’に接続したスイッチ8c,8c’から最外側の対の電極群6n,6n’に接続したスイッチ8n,8n’まで順次閉じることによって中央の電極からその両側に最外側の電極群までの全部に対して行う、
(b)先ず中央の電極6aのスイッチ8aから順次両側に隣接する対の電極群6b,6b‘のスイッチ8b,8b’を経て最外側の対の電極群6n,6n’のスイッチ8n,8n’まで順次閉じた後開くことにより行う、または
(c)全ての電極群6a,6b,6c,6n,6b’,6c’,6n’の全てのスイッチ8a,8b,8c,8n,8b’,8c’,8n’を同時に閉じることにより行う、
のいずれかを脱水状況に応じて選択して行うことを特徴とする。
The high water-containing earth and sand dewatering method according to claim 6 further includes the DC power supply 10 on the positive voltage side with the electrode groups 6a, 6b, 6c, 6n, 6b ', 6c', 6n 'and the open / close switches 8a, 8b, 8c, 8n, 8b ', 8c', and 8n 'are connected to each other, and DC voltage application is performed while the switch 12 is closed and the cathode 3 is connected to the negative voltage side of the DC power supply device 10.
(A) First, the switch 8a connected to the electrode 6a disposed at the center is closed, then the switches 8b and 8b ′ connected to the pair of electrode groups 6b and 6b ′ adjacent to the outside are closed, and the pair of electrodes adjacent to the outside are further closed. By sequentially closing the switches 8c and 8c ′ connected to the groups 6c and 6c ′ to the switches 8n and 8n ′ connected to the outermost pair of electrode groups 6n and 6n ′, the outermost electrode groups on both sides from the central electrode. Up to everything,
(B) First, the switches 8a and 8n ′ of the outermost pair of electrode groups 6n and 6n ′ are passed through the switches 8b and 8b ′ of the pair of electrode groups 6b and 6b ′ adjacent to both sides sequentially from the switch 8a of the center electrode 6a. (C) All switches 8a, 8b, 8c, 8n, 8b ', 8c of all electrode groups 6a, 6b, 6c, 6n, 6b', 6c ', 6n' By closing ', 8n' at the same time,
One of the above is selected according to the dehydration situation.

請求項7による高含水土砂脱水方法はまた、陽極6の電極群20a,20b,20c,20b’,20c’としてそれぞれ表面に集水孔23を有するストレーナ層24と、ストレーナ層24内に浸透した水を集水して真空ポンプ装置15に送る集水管25とでなるものを配列し、スイッチ21としてそれぞれ直流電源装置10の正極側10−1に接続したa端子と負極側10−2に接続したb端子と電極群20a,20b,20c,20b’,20c’の各々に接続したc端子とを有するスイッチ21a,21b,21c,21b’,21c’および直流電源装置10の負極側10−2と陰極3の間を接続するスイッチ12を配設し、直流電圧印加はスイッチ12を閉じて陰極3を直流電源装置10の負極側に接続する間に、
(a)先ず中央に配置した陽極電極20aに接続したスイッチ21aのc端子をa端子側に接続し、他の両側のそれぞれ対の電極群20b,20b’,20c,20c’のc端子はa,b両端子の中間にセットし、以後外側の対の電極群20b,20b’のスイッチ21b,21b’から最外側の対の電極群20c,20c’のスイッチ21c,21c’間でのc端子を順次a端子に接続することによって行う、
(b)中央の電極棒20aのスイッチ21aのc端子をa端子に接続し、その外側の対の電極群20b,20b’のスイッチ21b,21b’のc端子をb端子に接続し、最外側の対の電極群20c,20c’のスイッチ21c,21c’のc端子をa端子に接続して行う、または
(c)土砂の脱水状況により、陽極の各電極群のスイッチのc端子をa端子とb端子に切換えて、(b)の状態から電極群20aのスイッチ21aのc端子をb端子に接続し、他のスイッチ21b、21b’のc端子をa端子に接続する、
のいずれかを脱水状況に応じて選択して行うことを特徴とする。
The highly water-containing earth and sand dewatering method according to claim 7 has also penetrated into the strainer layer 24 and the strainer layer 24 having the water collecting holes 23 on the surface as the electrode groups 20a, 20b, 20c, 20b ′, 20c ′ of the anode 6, respectively. A water collecting pipe 25 that collects water and sends it to the vacuum pump device 15 is arranged and connected as a switch 21 to the a terminal connected to the positive electrode side 10-1 of the DC power supply device 10 and to the negative electrode side 10-2, respectively. Switches 21a, 21b, 21c, 21b ', 21c' having a b terminal and a c terminal connected to each of the electrode groups 20a, 20b, 20c, 20b ', 20c' and the negative electrode side 10-2 of the DC power supply device 10 The switch 12 is connected between the cathode 3 and the DC voltage is applied while the switch 12 is closed and the cathode 3 is connected to the negative electrode side of the DC power supply 10.
(A) First, the c terminal of the switch 21a connected to the anode electrode 20a disposed at the center is connected to the a terminal side, and the c terminals of the paired electrode groups 20b, 20b ′, 20c, and 20c ′ are a , B are set in the middle of both terminals, and thereafter the c terminal between the switches 21b, 21b ′ of the outer pair of electrode groups 20b, 20b ′ and the switches 21c, 21c ′ of the outermost pair of electrodes 20c, 20c ′. Are sequentially connected to the a terminal,
(B) The c terminal of the switch 21a of the central electrode rod 20a is connected to the a terminal, the c terminals of the switches 21b and 21b ′ of the outer electrode groups 20b and 20b ′ are connected to the b terminal, and the outermost The c terminals of the switches 21c and 21c ′ of the pair of electrode groups 20c and 20c ′ are connected to the a terminal, or (c) the c terminals of the switches of each electrode group of the anode are a terminals depending on the state of dehydration of the earth and sand Switch to the b terminal, and from the state of (b), connect the c terminal of the switch 21a of the electrode group 20a to the b terminal, and connect the c terminals of the other switches 21b, 21b ′ to the a terminal.
One of the above is selected according to the dehydration situation.

請求項8による高含水土砂脱水方法は、中央の陽極電極群6a;20aから順次隣接外側の対の電極群6b,6b’;20b,20b’までのそれぞれと陰極3との間に印加する電圧を順次低くして直流電圧印加を行うと共に、脱水状況により最外側の電極群に直流電圧を印加後、中央電極群まで順次電圧を高くして直流電圧印加を行うことを特徴とする。   The high water-containing earth and sand dewatering method according to claim 8 is the voltage applied between each of the central anode electrode group 6a; 20a to the adjacent outer electrode group 6b, 6b ′; 20b, 20b ′ and the cathode 3 in order. The DC voltage is applied by lowering the voltage sequentially, and after the DC voltage is applied to the outermost electrode group depending on the dehydration state, the DC voltage is applied by sequentially increasing the voltage to the central electrode group.

請求項9による高含水土砂脱水方法は、両極間電圧印加による電気浸透での高含水土砂の脱水を、高含水土砂に電解質を添加することにより行うことを特徴とする。   The method of dehydrating a highly hydrous soil according to claim 9 is characterized in that the dehydration of the highly hydrous soil by electroosmosis by applying a voltage between both electrodes is performed by adding an electrolyte to the highly hydrous soil.

この発明によれば、電気浸透法による脱水のための陰極を高含水土砂貯留土槽の少なくとも内周側面と内床面を覆う面状にかつ透水性を持たせて設けると共に、陽極を互いにかつ陰極からほぼ等距離に配列した電極群で形成したので、水の電気浸透に有効な面積が顕著に増加し、浸透集水効果と脱水量が大幅に向上する。   According to the present invention, the cathode for dehydration by the electroosmosis method is provided in a surface shape that covers at least the inner peripheral side surface and the inner floor surface of the highly water-containing earth and sand storage soil tank and has water permeability, and the anodes are connected to each other. Since it is formed of an electrode group arranged at approximately the same distance from the cathode, the effective area for water electroosmosis is remarkably increased, and the permeate water collection effect and the amount of dewatering are greatly improved.

また、陽極を互いにかつ陰極からほぼ等距離とした複数の電極群で形成したから、同極性の電極棒間の絶縁構成が簡易化され、簡易化された絶縁構成を利用して土槽上部に分離する貯留高含水土砂の水を集水する装置を付加でき、脱水量が更に向上する。   In addition, since the anode is formed of a plurality of electrode groups that are substantially equidistant from each other and from the cathode, the insulation configuration between the electrode rods of the same polarity is simplified, and the simplified insulation configuration is used for the upper part of the soil tank. A device can be added to collect water from the stored highly hydrous soil to separate, and the amount of dewatering is further improved.

陰極と陽極を土槽に対して出し入れ自在なブロック構成とし、この電極ブロックをユニットとして複数のユニットを収容し得る寸法に形成したので、発生高含水土砂量の増減に対応して高含水土砂脱水装置の寸法を増減でき、装置の大規模化に対応できる。   The cathode and anode have a block structure that can be inserted into and removed from the soil tank, and this electrode block is formed to a size that can accommodate multiple units. The size of the device can be increased or decreased, and the device can be scaled up.

両極間電圧印加による電気浸透脱水を、高含水土砂に電解質を添加して行うので脱水効率が向上する。   Electroosmosis dehydration by applying voltage between both electrodes is performed by adding an electrolyte to highly hydrous soil, thus improving dewatering efficiency.

以下にこの発明のいくつかの実施例を添付図面に基づいて説明する。   Several embodiments of the present invention will be described below with reference to the accompanying drawings.

図1はこの発明に係る、電気浸透法による高含水土砂脱水装置の一実施例構成の略図的断面図である。   FIG. 1 is a schematic cross-sectional view of an embodiment of a high water content earth and sand dewatering device according to the present invention by an electroosmosis method.

図1において、高含水土砂Gを貯留する土槽1は側壁と床壁を備え、上方を開口としたほぼ長方形の箱状に形成する。材質としては金属、コンクリート、樹脂等のいずれでも良いが、外壁においてアース2を設けることが望ましい。   In FIG. 1, a soil tank 1 for storing highly hydrous sand G is provided with a side wall and a floor wall, and is formed in a substantially rectangular box shape having an upper portion as an opening. The material may be any of metal, concrete, resin, etc., but it is desirable to provide ground 2 on the outer wall.

土槽1の上方開口以外の壁面の内周側面を覆う側面部3W,3W’,3B,3B’と内床面を覆う床面部3dとでなるほぼ長方形箱状の陰極3を土槽1内に設置する。陰極3は内周面を透水性の有孔板3−1で、外周面を不透水性の裏板3−2で構成し、有孔板3−1と裏板3−2の間にストレーナ層3−3を設け、ストレーナ層3−3内には有孔板3−1を通して入る水を集水可能な集水孔を有する複数の集水管4が陰極床面部3dのほぼ中央から側面部3W,3W’,3B,3B’を通って(図では便宜上側面部3W,3W’内のもののみ示す)土槽1の上方外部に延長する。望ましくは、陰極のストレーナ層3−3内には更に、土槽1上方から陰極の少なくとも側面部3W,3W’を通って床面部3dのほぼ中央までエアーを供給する吸気管5が設けられる。陰極3の側面部の上端縁は仕切板3−4で閉じられる。   A substantially rectangular box-shaped cathode 3 composed of side surface parts 3W, 3W ′, 3B, 3B ′ covering the inner peripheral side surface of the wall surface other than the upper opening of the earth tank 1 and a floor surface part 3d covering the inner floor surface is provided in the earth tank 1. Install in. The cathode 3 has an inner peripheral surface made of a water-permeable perforated plate 3-1, and an outer peripheral surface made of a water-impermeable back plate 3-2. A strainer is provided between the perforated plate 3-1 and the back plate 3-2. A layer 3-3 is provided, and a plurality of water collecting pipes 4 having water collecting holes capable of collecting water entering through the perforated plate 3-1 are provided in the strainer layer 3-3 from substantially the center of the cathode floor surface portion 3d to the side surface portion. It extends through 3W, 3W ′, 3B, 3B ′ (for the sake of convenience, only those in the side surface portions 3W, 3W ′ are shown) to the upper outside of the soil tank 1. Desirably, an intake pipe 5 is further provided in the cathode strainer layer 3-3 for supplying air from above the soil tank 1 to at least the center of the floor surface portion 3d through at least the side surface portions 3W and 3W 'of the cathode. The upper edge of the side part of the cathode 3 is closed with a partition plate 3-4.

陰極3は直流電源装置10の負極側にスイッチ12と電流計13を介して接続されるが、図では陰極3を便宜上側面部3W−3B’と床面部3dとを別個に作成したので、2本の電線のそれぞれで側面部3Wと床面部3dおよび装置10の負極側の間を、それぞれ電流計13とスイッチ12−1または12−2を介して接続してある。陰極と直流電源の間は所望により更に多数の電線とスイッチを介して接続しても良い。   The cathode 3 is connected to the negative electrode side of the DC power supply device 10 via a switch 12 and an ammeter 13. However, in the drawing, the cathode 3 is made separately from the side surface portion 3W-3B ′ and the floor surface portion 3d for convenience. In each of the electric wires, the side surface portion 3W, the floor surface portion 3d, and the negative electrode side of the device 10 are connected via an ammeter 13 and a switch 12-1 or 12-2, respectively. If desired, the cathode and the DC power source may be connected via a number of electric wires and switches.

陽極6は複数の電極群、ここではほぼ長方形箱状の土槽1ないし陰極3の長手方向のほぼ中央に位置する電極群6aと、長手方向において両側で中央の電極6aに隣接する対の電極群6b,6b’と、更にその両側で順次隣接して配列した各対の電極群6c,6c’,6n,6n’とでなり、これら電極群は箱状の陰極3の上部開口を塞ぐ電気的に絶縁性の絶縁板6−1により互いにほぼ等間隔でかつ陰極の側面部3W,3W’,3B,3B’と床面部3dともほぼ等距離となるよう、開口部から床面部3dに向けて延長するように保持される。   The anode 6 is composed of a plurality of electrode groups, here, an electrode group 6a located in the approximate center of the longitudinal direction of the rectangular tank 1 or cathode 3, and a pair of electrodes adjacent to the center electrode 6a on both sides in the longitudinal direction. The groups 6b and 6b 'and each pair of electrode groups 6c, 6c', 6n, and 6n 'arranged adjacent to each other on both sides of the groups 6b and 6b', are electrically connected to the upper opening of the box-shaped cathode 3. From the opening to the floor surface portion 3d so that the insulating insulating plates 6-1 are substantially equidistant from each other and the cathode side surface portions 3W, 3W ′, 3B, 3B ′ and the floor surface portion 3d are approximately equidistant from each other. To be extended.

絶縁板6−1はまた、土槽1内の高含水土砂Gに面する側に透水性の有孔板6−2を備えると共に絶縁板6−1と有孔板6−2との間にストレーナ層6−3を挟持し、更に土槽上方から絶縁板6−1を貫通してストレーナ層6−3内に開口または集水孔を有する複数の集水管7を立設し、外部の真空ポンプ装置15に接続する。これにより、主として土槽内に貯留した高含水土砂Gの上部に分離した水がストレーナ層6−3内に入り、集水管7で集水され得る。   The insulating plate 6-1 also includes a water-permeable perforated plate 6-2 on the side facing the highly hydrous soil G in the earth tub 1 and between the insulating plate 6-1 and the perforated plate 6-2. A plurality of water collecting pipes 7 having an opening or a water collecting hole are erected in the strainer layer 6-3 through the insulating plate 6-1 from above the soil tank and sandwiching the strainer layer 6-3. Connect to pump device 15. Thereby, the water separated mainly in the upper part of the highly hydrous sand G stored in the earth tank enters the strainer layer 6-3 and can be collected by the water collecting pipe 7.

陽極の各電極群6a−6n’はそれぞれ電線11により、電流計13、開閉スイッチ8a,8b,8c,8b’,8c’,8n’および電圧計14を介して直流電源装置10の正極側に接続される。   Each electrode group 6a-6n ′ of the anode is connected to the positive electrode side of the DC power supply device 10 by the electric wire 11 via the ammeter 13, the open / close switches 8a, 8b, 8c, 8b ′, 8c ′, 8n ′ and the voltmeter 14. Connected.

電極群6a−6n’は導電性材料により円筒形、角柱形、格子板形状等のいずれかに形成され、内方先端を円錐形等にして高含水土砂を構成する土砂等への挿入を容易とし、また高含水土砂の脱水後に土砂等が付着し難い構成または表面とする。   The electrode group 6a-6n 'is formed of a conductive material in any of a cylindrical shape, a prismatic shape, a lattice plate shape, etc., and its inner tip is conical or the like, so that it can be easily inserted into the earth and sand that constitutes a highly water-containing earth and sand. In addition, the structure or surface is such that earth and sand do not easily adhere after dehydration of the highly water-containing earth and sand.

陰極3内の集水管4と、陽極を保持する絶縁板6−1の集水管7はいずれも排水装置としての真空ポンプ装置15に接続され、その間に排水量を計測し得る流量計17を設ける。真空ポンプ装置15には排水管16が接続される。   Both the water collection pipe 4 in the cathode 3 and the water collection pipe 7 of the insulating plate 6-1 holding the anode are connected to a vacuum pump device 15 as a drainage device, and a flow meter 17 capable of measuring the amount of drainage is provided therebetween. A drain pipe 16 is connected to the vacuum pump device 15.

陽極6の複数の電極群6a−6n’の相互間の間隔x1,x2,...xn,x1’,x2’,...xn’はいずれもほぼ同じとし、また各電極群6a−6n’と陰極3の各側面部3W,3W’,3B,3B’ならびに床面部3dとの間の離間距離xHのいずれも相互にかつ電極群間隔ともほぼ同じとすることが望ましい。   Intervals x1, x2,... Between the plurality of electrode groups 6a-6n 'of the anode 6. . . xn, x1 ', x2',. . . xn ′ is substantially the same, and the distance xH between each electrode group 6a-6n ′ and each side surface portion 3W, 3W ′, 3B, 3B ′ of the cathode 3 and the floor surface portion 3d is mutually and It is desirable that the distance between the electrode groups is substantially the same.

この実施例では陽極6を構成する複数の電極群を奇数として記載したが、これは偶数でもよい。また、陰極3と陽極6には鉄、銅、アルミニユーム、白金等の導電性で機械的強度も高い材料を使用する。   In this embodiment, the plurality of electrode groups constituting the anode 6 are described as odd numbers, but this may be an even number. The cathode 3 and the anode 6 are made of an electrically conductive and high mechanical strength material such as iron, copper, aluminum and platinum.

絶縁板6−1には、天然ゴム混合物、ビニール混合物、エポキシ樹脂、架橋ポリエチレン混合物等の電気絶縁性で、機械的強度と耐久性の高い材料を用いる。   The insulating plate 6-1 is made of an electrically insulating material having high mechanical strength and durability, such as a natural rubber mixture, a vinyl mixture, an epoxy resin, and a crosslinked polyethylene mixture.

上記の構成の電気浸透法による高含水土砂脱水装置の動作について述べれば、土槽1内に設置した陰極3の上方開口からシールド工法や浚渫工事等で排出される高含水土砂Gを投入する。   The operation of the high water content earth and sand dewatering device by the electroosmosis method having the above configuration will be described. The high water content earth and sand G discharged from the upper opening of the cathode 3 installed in the earth tank 1 by the shield method, dredging work or the like is introduced.

陰極3内に充填した高含水土砂Gに対して複数の陽極電極群6a−6n’を上記した配列と間隔で圧入する。望ましくは、上記配列と間隔で電極群6a−6n’を保持する絶縁板6−1を箱状陰極3の上方開口部に填め込み、絶縁板の有孔板6−2を高含水土砂Gの上面に当接させる。ここで高含水土砂Gは箱状の陰極3および複数の電極群6a−6n’でなる陽極6に対しこれまでよりはるかに広い面を持って電気的に接触することとなる。   A plurality of anode electrode groups 6a-6n 'are press-fitted into the highly hydrous soil G filled in the cathode 3 at the above-described arrangement and intervals. Desirably, the insulating plate 6-1 holding the electrode groups 6a-6n ′ at the above-described arrangement and interval is fitted into the upper opening of the box-like cathode 3, and the perforated plate 6-2 of the insulating plate is made of the highly hydrous soil G. Contact the top surface. Here, the highly hydrous soil G is in electrical contact with the box-like cathode 3 and the anode 6 composed of a plurality of electrode groups 6a-6n 'with a much wider surface than before.

先ず、複数の陽極電極群のうち中央に位置する電極群6aを直流電源装置10の正極側に接続するスイッチ8aと、陰極3の側面部3W,3W’,3B,3B’および床面部3dを直流電源装置10の負極側にそれぞれ接続するスイッチ12−1,12−2とを閉じて両電極間に直流電圧を印加する。この電圧印加により高含水土砂中に生じる電気浸透の結果として、高含水土砂中の水Wが中央電極群6aから陰極の各側面部3W−3B’と床面部3dに向けて側方向Ww,Ww’と下方向Wdに移動する。このとき、後述するように上部の絶縁板6−1の有孔板6−2に向かう上方向Wuにも移動が生じる。   First, the switch 8a for connecting the electrode group 6a located at the center among the plurality of anode electrode groups to the positive electrode side of the DC power supply device 10, the side surface portions 3W, 3W ′, 3B, 3B ′ and the floor surface portion 3d of the cathode 3 are provided. The switches 12-1 and 12-2 respectively connected to the negative electrode side of the DC power supply device 10 are closed, and a DC voltage is applied between both electrodes. As a result of the electroosmosis that occurs in the highly hydrous sand due to this voltage application, the water W in the highly hydrous earth and sand is laterally directed from the central electrode group 6a toward the side surfaces 3W-3B ′ and the floor 3d of the cathode. 'And move downward Wd. At this time, movement also occurs in the upward direction Wu toward the perforated plate 6-2 of the upper insulating plate 6-1, as will be described later.

陰極各側面部3W−3B’と床面部3dに到達した水Wは各部の有孔板3−1を通ってストレーナ層3−3内に浸透し、蓄積される。蓄積された浸透水は、真空ポンプ装置15を稼動させることによって集水管4に集水され、排水管16を介して排水される。   The water W that has reached the cathode side surfaces 3W-3B 'and the floor surface portion 3d permeates into the strainer layer 3-3 through the perforated plates 3-1 and accumulates. The accumulated permeated water is collected in the water collecting pipe 4 by operating the vacuum pump device 15 and drained through the drain pipe 16.

仕切り板3−4で上部開口を閉鎖されている陰極のストレーナ層3−3内にはエアー供給用の給気管5を設けてあるので、集水と同時に給気を行えばストレーナ内が減圧されることはなく、浸透水は真空ポンプ装置15により排水される。   Since the air supply pipe 5 for supplying air is provided in the cathode strainer layer 3-3 whose upper opening is closed by the partition plate 3-4, if the air is supplied simultaneously with the water collection, the inside of the strainer is decompressed. The permeated water is drained by the vacuum pump device 15.

高含水土砂Gを構成する土質が例えば砂礫や礫等であれば、水Wは真空ポンプ作動により有孔板3−1を通して容易に分離され、ストレーナ層3−3内に吸引されるから、この場合は給気を行わずに吸引排水を行い、ストレーナ層内を減圧することが有効である。   If the soil that constitutes the highly hydrous sand G is, for example, gravel or gravel, the water W is easily separated through the perforated plate 3-1 by the vacuum pump operation and is sucked into the strainer layer 3-3. In such a case, it is effective to perform suction drainage without supplying air and depressurize the inside of the strainer layer.

ここでは陰極用のスイッチ12−1,12−2と共にスイッチ8aのみを閉じて陰極3と中央の陽極電極群6aのみに直流電圧を印加しており、他の電極群6b,6c...6n,6b’,6c’...6n‘には印加していないが、箱状の陰極3の全面と中央の陽極電極群6aとの間に対する電圧印加により土槽1内の汚泥Gの全般はほぼ同電位とされる。このため中央の電極6aの全面は+に、両側の他の電極群6b−6n’の中央電極群6aに向く側の面は−にかつ陰極3に向く側の面は+に、それぞれ帯電する。   Here, only the switch 8a is closed together with the cathode switches 12-1 and 12-2, and the DC voltage is applied only to the cathode 3 and the central anode electrode group 6a, and the other electrode groups 6b, 6c. . . 6n, 6b ', 6c'. . . Although not applied to 6n ', the sludge G in the earth tub 1 is generally at substantially the same potential by voltage application between the entire surface of the box-like cathode 3 and the central anode electrode group 6a. Therefore, the entire surface of the central electrode 6a is charged to +, the surface of the other electrode group 6b-6n 'on the side facing the center electrode group 6a is charged to-, and the surface facing the cathode 3 is charged to +. .

このように両側の陽極電極群6b−6n’の−に帯電した部分が見掛け上の陰極となり、中央電極6a付近にある水Wは両側の各電極群の−帯電部と+帯電部とを介して次々に外側の電極群に移動し、最外側の電極群6n,6n’の+帯電部から、箱状陰極3の長手方向の側面部3W,3W’への方向Ww,Ww’に移動する。同様に中央電極群と両側電極群の+帯電部から箱状陰極3の短手方向の側面部3B,3B’への方向ならびに床面部3dへの方向Wdにも水Wは移動する。陰極3各部に達してその内部に浸透した水は上記したように吸引集水され、排水される。   Thus, the negatively charged portions of the anode electrode groups 6b-6n ′ on both sides become an apparent cathode, and the water W near the central electrode 6a passes through the −charged portion and the + charged portion of each electrode group on both sides. Then move to the outer electrode group one after another, and move in the direction Ww, Ww ′ from the positive charging portion of the outermost electrode group 6n, 6n ′ to the side surface portions 3W, 3W ′ in the longitudinal direction of the box-like cathode 3. . Similarly, the water W also moves in the direction from the positively charged portion of the central electrode group and both electrode groups to the side portions 3B and 3B 'in the short direction of the box-like cathode 3 and in the direction Wd toward the floor portion 3d. The water that reaches each part of the cathode 3 and permeates the inside thereof is sucked and collected as described above.

+帯電の中央電極群から両側電極群の+帯電部に移動した水Wの一部は上部への方向Wuに移動し、上方移動水は絶縁板6の有孔板6−2を通ってストレーナ6−3内に浸透し、集水管7を介して吸引され、排水される。   A part of the water W moved from the positively charged central electrode group to the positively charged portion of both side electrode groups moves in the upward direction Wu, and the upward moving water passes through the perforated plate 6-2 of the insulating plate 6 and the strainer. 6-3 penetrates and is sucked through the water collecting pipe 7 and drained.

電流計13、電圧計14および流量計17により高含水土砂Gの脱水状況を把握しつつ脱水の進行を確認して、適時に、閉状態のスイッチ8aと12−1,12−2に加えてスイッチ8b,8b’を閉じ、陽極の中央電極群6aとその両側に隣接する対の電極群6b,6b’および陰極3の各部3W−3dに直流電圧を印加する。この第2次の印加電圧は最初の印加電圧、つまり陽極を中央電極群6aのみとした第1次の電圧印加時の電圧より低くすることが望ましい。   The ammeter 13, voltmeter 14 and flow meter 17 confirm the dehydration status of the highly hydrous soil G and confirm the progress of dehydration. In addition to the switches 8a, 12-1 and 12-2 in the closed state at appropriate times The switches 8b and 8b ′ are closed, and a DC voltage is applied to the central electrode group 6a of the anode, the pair of electrode groups 6b and 6b ′ adjacent to both sides thereof, and the respective parts 3W-3d of the cathode 3. This secondary applied voltage is desirably lower than the initial applied voltage, that is, the voltage at the time of applying the primary voltage with only the central electrode group 6a as the anode.

次いで、脱水の進行確認後、第3次の電圧印加として上記に加え更にスイッチ8c,8c’を閉じ、更に外側に隣接する対の電極群6c,6c’を加えた陽極電極群6a,6b,6b’,6c,6c’および陰極各部3W−3dに、望ましくは第2次の印加電圧より低い電圧を印加する。   Next, after confirming the progress of dehydration, as a third voltage application, in addition to the above, the switches 8c and 8c ′ are further closed, and anode electrode groups 6a, 6b and 6a, 6c ′, which are adjacent to the outside, are added. A voltage lower than the secondary applied voltage is preferably applied to 6b ', 6c, 6c' and each cathode part 3W-3d.

このようにして脱水の進行に応じ、順次隣接する対の陽極電極群を外側に増やし、順次電圧を下げて直流電圧を印加して行き、最外側の対の陽極電極群6n,6n’まで含めた全電極群6a−6n’を陽極としかつ最も低い電圧による最終次の電圧印加まで継続して行って、高含水土砂の脱水を完了する。また最外側の電極群に直流電圧を印加後、脱水状況により電圧を順次高くして直流電圧を印加する。脱水が完了すれば、図示しない排土装置により土槽1内の土砂を排出する。   In this manner, as the dehydration progresses, the adjacent pairs of anode electrodes are sequentially increased to the outside, and the voltage is sequentially decreased to apply the DC voltage, and the outermost pairs of anode electrodes 6n and 6n ′ are included. Then, all the electrode groups 6a-6n ′ are used as anodes, and the process is continued until the final next voltage application with the lowest voltage to complete the dehydration of the highly hydrous soil. Further, after applying a DC voltage to the outermost electrode group, the DC voltage is applied by sequentially increasing the voltage depending on the dehydration condition. When the dehydration is completed, the earth and sand in the soil tank 1 is discharged by a soil removal device (not shown).

直流電圧印加の方法としては、上記以外にも、脱水状況によって下記のいずれかを採用し得る。
(1)先ず土槽1の中央に配置した陽極電極群と陰極全部とに接続されたスイッチを閉じて直流電圧印加を行い、次にこの中央の陽極電極へのスイッチは開いて中央電極群の両外側の対の陽極電極群へのスイッチを閉じてこれら陽極電極群と陰極との間に電圧印加を行い、以下、電圧を印加する陽極電極群を順次外側の対の陽極電極群に切り替え、最外側の対の電極群に至るまで順次直流電圧印加を行う。
(2)全てのスイッチを閉じたまま全ての陽極電極群と陰極とに継続して直流電圧印加を行う。
As a method for applying the DC voltage, in addition to the above, any of the following can be adopted depending on the dehydration situation.
(1) First, the anode electrode group disposed in the center of the earth tub 1 and the switch connected to all the cathodes are closed to apply a DC voltage, and then the switch to the center anode electrode is opened to open the center electrode group. Close the switch to the anode electrode group of both outer pairs and apply a voltage between these anode electrode group and the cathode, and then switch the anode electrode group to which the voltage is applied sequentially to the outer electrode group of the outer pair, A DC voltage is applied sequentially until the outermost pair of electrodes is reached.
(2) A DC voltage is continuously applied to all anode electrode groups and cathodes with all switches closed.

図2は、基本的に図1に示す実施例1と同じ構成において陽極を構成する複数の電極群とこれらを直流電源装置に接続するスイッチの構成を変更した実施例2を示し、実施例1と同じ構成要件については同一番号で表す。   FIG. 2 shows a second embodiment in which a configuration of a plurality of electrode groups constituting the anode and a switch for connecting these to a DC power supply device is basically changed in the same configuration as that of the first embodiment shown in FIG. The same constituent elements are denoted by the same numbers.

図2において陰極3と直流電源装置10の負極側10−2との間を接続する電線11に挿入したスイッチ12は、実施例1のものと同じである。   In FIG. 2, the switch 12 inserted into the electric wire 11 connecting the cathode 3 and the negative electrode side 10-2 of the DC power supply device 10 is the same as that of the first embodiment.

実施例2において陽極6を構成する電極群も複数(ここでは5本)20a,20b,20c,20b’,20c’でなり、それぞれ実施例1と同じ相互間隔と陰極との距離とを持って配置されるように、絶縁性の絶縁板6−1により固定支持されるが、電極群はそれぞれ実質的に陰極3と同じく透水構成に形成される。   The electrode group constituting the anode 6 in Example 2 is also composed of a plurality (here, 5) 20a, 20b, 20c, 20b ′, and 20c ′, each having the same mutual spacing and cathode distance as in Example 1. The electrodes are fixedly supported by an insulating insulating plate 6-1 so as to be disposed, but each of the electrode groups is formed in a water-permeable configuration substantially like the cathode 3.

電極群20a−20c’はそれぞれ集水孔23を周面に有するストレーナ層24と、そのほぼ中心に延長する集水管25とで構成され、全体として導電性を有すると共に、集水管25は陰極3からの集水管4と土槽1外で接続され、真空ポンプ装置15の作動によって各電極群からも電気浸透による集水を可能とする。   Each of the electrode groups 20a-20c ′ is composed of a strainer layer 24 having a water collecting hole 23 on the peripheral surface and a water collecting tube 25 extending almost to the center thereof. The electrode group 20a-20c ′ has conductivity as a whole, and the water collecting tube 25 is composed of the cathode 3 The water collecting pipe 4 is connected to the outside of the earth tub 1, and the operation of the vacuum pump device 15 enables water collection by electroosmosis from each electrode group.

電極群20a−20c’のそれぞれを直流電源装置10に接続する複数のスイッチ21a,21b,21c,21b’,21c’は各々直流電源装置10の正極側10−1に接続したa端子と、装置10の負極側10−2に接続したb端子と、電極群20a−21c’の各々に接続したc端子とを備える。   A plurality of switches 21 a, 21 b, 21 c, 21 b ′, 21 c ′ for connecting each of the electrode groups 20 a-20 c ′ to the DC power supply device 10 include an a terminal connected to the positive electrode side 10-1 of the DC power supply device 10, and the device B terminal connected to 10 negative electrode side 10-2, and c terminal connected to each of electrode group 20a-21c '.

高含水土砂Gを脱水処理する直流電圧印加は実質的に実施例1の場合と同様に行う。即ち、先ず陰極3へのスイッチ12を閉じ、スイッチ21aのc端子をa端子に接続して、陽極電極群の配列方向の中央に位置する電極群20aと陰極3に直流電圧を印加する。この時他のスイッチ21b,21c,21b’,21c’は中間点にセットし、中央電極群の両側の電極群20b,20b’,20c,20c’には電圧を印加しない。従って、実施例1の動作について述べたように、これら両側の電極群の表面が部分的に−に帯電し、高含水土砂内の水が中央の電極群20aから両側の電極群の−帯電部を経て陰極3まで順次移動し、その間に水は面状に配した陰極3の浸透集水のみならず、各陽極電極群の集水孔23、ストレーナ層24と集水管25による浸透集水構成と真空ポンプ装置15による吸引作用とによって効果的に脱水される。   The DC voltage application for dehydrating the highly hydrous soil G is performed in substantially the same manner as in the first embodiment. That is, first, the switch 12 to the cathode 3 is closed, the c terminal of the switch 21a is connected to the a terminal, and a DC voltage is applied to the electrode group 20a and the cathode 3 located in the center in the arrangement direction of the anode electrode group. At this time, the other switches 21b, 21c, 21b ', and 21c' are set at intermediate points, and no voltage is applied to the electrode groups 20b, 20b ', 20c, and 20c' on both sides of the central electrode group. Therefore, as described in the operation of the first embodiment, the surfaces of the electrode groups on both sides are partially charged negatively, and the water in the highly hydrous soil is charged from the central electrode group 20a to the -charged portions of the electrode groups on both sides. The water sequentially moves to the cathode 3 through the water, and the water is not only permeated and collected by the cathode 3 arranged in a plane, but also the permeated water collecting structure by the water collecting hole 23, the strainer layer 24 and the water collecting tube 25 of each anode electrode group. And is effectively dehydrated by the suction action of the vacuum pump device 15.

以後実施例1と同様の順序で陽極電極群へのスイッチの切り替えと印加電圧の制御を行い、中央の電極群から最外側の電極群までの順次電圧印加を行って脱水処理を遂行する。   Thereafter, switching to the anode electrode group and control of the applied voltage are performed in the same order as in the first embodiment, and the dehydration process is performed by sequentially applying the voltage from the central electrode group to the outermost electrode group.

脱水状況に応じて以下に述べるスイッチ操作を行っても良い。即ち:
先ず、陰極3へのスイッチ12を閉じる間に、スイッチ21aのc端子をa端子に接続して中央の陽極電極群20aに正電圧を印加する一方、スイッチ21b,21b’のc端子をb端子に接続して両外側の対の電極群20b,20b’には負電圧を印加すると共に、スイッチ21c,21c’のc端子はa端子に接続して最外側の対の電極群20c,20c’には正電圧を印加することにより、上述した一連の陽極電極群の集水構成による脱水効果をより積極的に促進しうる。従ってこの場合、複数の電極群20a,20b,20c,20b’,20c’は陽陰両極化される電極群として機能する。
The switch operation described below may be performed according to the dehydration situation. That is:
First, while closing the switch 12 to the cathode 3, the c terminal of the switch 21a is connected to the a terminal and a positive voltage is applied to the central anode electrode group 20a, while the c terminals of the switches 21b and 21b ′ are connected to the b terminal. And a negative voltage is applied to the outer electrode pairs 20b and 20b ′, and the terminals c of the switches 21c and 21c ′ are connected to the terminal a to connect the outermost electrode groups 20c and 20c ′. In this case, by applying a positive voltage, the dehydration effect by the water collection configuration of the series of anode electrodes described above can be more actively promoted. Therefore, in this case, the plurality of electrode groups 20a, 20b, 20c, 20b ′, and 20c ′ function as an electrode group that is bipolarized.

特に土槽1が大型で、陽極電極群の数を多くすることを要する場合には、前述したスイッチ21a−21c’のa端子、b端子および中間点を用いたスイッチ切り替えによる直流電圧印加が集水効果上有効である。また、複数の陽極群については、実施例1の陽極群6a,6b−6n,6b’−6n’を本実施例の透水性で陽陰に両極化する電極群20a,20b,20c,20b’,20c’と併置しておけば、上述した各種の脱水状況に応じた各種の電圧印加方法による幅広い応用において確実な脱水効果を達成することができる。   In particular, when the earth tub 1 is large and it is necessary to increase the number of anode electrodes, DC voltage application by switching the switches using the a terminals, b terminals, and intermediate points of the switches 21a-21c 'described above is concentrated. Effective for water effect. Further, for the plurality of anode groups, the electrode groups 20a, 20b, 20c, 20b ′ for positively and negatively forming the positive electrode groups 6a, 6b-6n, 6b′-6n ′ of Example 1 with the water permeability of this example. , 20c ′, a reliable dehydration effect can be achieved in a wide range of applications using various voltage application methods according to the various dehydration conditions described above.

図3は実施例1または実施例2の箱状陰極と複数の陽極電極群とによる構成をブロック化した実施例3を示す。   FIG. 3 shows a third embodiment in which the configuration of the box-like cathode of the first embodiment or the second embodiment and a plurality of anode electrode groups are blocked.

図3において、箱状陰極3、集水管4、複数の電極群でなる陽極6および両極を直流電源装置10に接続する電線11を含む実施例1または実施例2の電極構成をブロック31として作成する。土槽32はこの電極ブロック31をユニットとして複数のブロック(ここでは3ブロックを示す)を収容し得る寸法に形成する。電極への直流電圧印加のためのスイッチないし直流電源装置10と、電極内に浸透した水を吸引集水ないし排水する真空ポンプ装置15とは、前述の実施例1または実施例2と同様にブロック31毎に配置するか、全ブロック31に対して統一的に配置し、ブロック毎に前述の動作を行わせる。この実施例3によれば、土槽を含む脱水装置を大型化して脱水処理容量を大幅に増大することが可能となる。   In FIG. 3, the electrode configuration of Example 1 or Example 2 including a box-shaped cathode 3, a water collecting tube 4, an anode 6 composed of a plurality of electrode groups, and an electric wire 11 connecting both electrodes to a DC power supply device 10 is created as a block 31. To do. The earth basin 32 is formed in a size that can accommodate a plurality of blocks (here, 3 blocks are shown) with the electrode block 31 as a unit. A switch or DC power supply device 10 for applying a DC voltage to the electrode and a vacuum pump device 15 for sucking or collecting water permeating into the electrode are blocked in the same manner as in the first or second embodiment. It arrange | positions for every 31 or arrange | positions uniformly with respect to all the blocks 31, and performs the above-mentioned operation | movement for every block. According to the third embodiment, the dewatering apparatus including the earth tub can be enlarged to greatly increase the dewatering capacity.

本実施例では直流電源装置10を1台としたが、ブロック31毎に直流電源装置10を設け、ブロック31毎に印加電圧と印加時間を設定することにより、土質の異なる土砂の脱水や、処理土量を自由に設定することが可能となり、脱水効率が向上する。この場合、各ブロック31間には図示しない電気絶縁物を設け、各ブロック31間を電気的に絶縁することが望ましい。   In this embodiment, one DC power supply device 10 is provided. However, by providing a DC power supply device 10 for each block 31 and setting an application voltage and an application time for each block 31, dehydration and treatment of soil having different soil properties. The amount of soil can be set freely and the dewatering efficiency is improved. In this case, it is desirable to provide an electrical insulator (not shown) between the blocks 31 to electrically insulate the blocks 31 from each other.

実施例1から実施例3までの脱水装置を用いた本発明の汚泥脱水処理は、透水性の陰極を箱状として拡大された陰極面をもって複数の陽極電極群ないしは複数の透水性両極化電極群に対峙させることにより電気浸透を発生させる点を特徴とする方法をなし、更に複数の陽極電極群と陰極への直流電圧印加の手順においても特徴の在る方法をなすが、ここではこの高含水土砂脱水方法の効果を更に向上する例を実施例4として説明する。   The sludge dewatering treatment of the present invention using the dewatering apparatus of Example 1 to Example 3 has a plurality of anode electrode groups or a plurality of water permeable bipolar electrode groups having a cathode surface that is enlarged in the form of a water permeable cathode as a box shape. The method is characterized in that electroosmosis is generated by confronting the electrodes, and further, there is a characteristic method in the procedure of applying a DC voltage to a plurality of anode electrodes and cathodes. An example of further improving the effect of the earth and sand dewatering method will be described as Example 4.

ここではトンネル掘削のシールド工法や浚渫工事等で発生する高含水土砂中に先ず、(1)塩化カリューム、(2)硫酸バンド等の電解質と(3)炭素を添加し、以後は実施例1または実施例2について記載した直流電圧印加による電気浸透を生じさせ、高含水土砂の脱水処理を行う。   Here, first, (1) calorium chloride, (2) an electrolyte such as a sulfuric acid band, and (3) carbon are added to the highly hydrous sand generated by the shield method or dredging work for tunnel excavation, and thereafter, Example 1 or Electroosmosis by applying a DC voltage as described in Example 2 is caused to dehydrate the highly hydrous soil.

図4は上記3種の電解質(1)−(3)を比較して、それぞれ高含水土砂に添加して脱水した場合の電解質の添加量と脱水効率との関係を示し、電解質を添加しない場合の脱水効率(縦軸)を100とする。添加量は汚泥の土質や含水量などに応じて事前の実験で決定されるが、例えば、下部有楽町層の汚泥に、最も効率の良い塩化カリュームを添加する場合900g/m程度とすることが望ましい。ここで、電解質の中でもイオン化傾向の強い順に脱水効果があり、その順序はK,Ca,Na,Mg,Alとなっているが、環境面で有害とならない化合物を採用することが望ましい。 FIG. 4 compares the above three types of electrolytes (1) to (3) and shows the relationship between the amount of electrolyte added and the efficiency of dehydration when added to a highly hydrous soil and dehydrated, with no electrolyte added. The dehydration efficiency (vertical axis) of 100 is taken as 100. The amount to be added is determined by prior experiments according to the soil quality and water content of the sludge. For example, when adding the most efficient caloric chloride to the sludge of the lower Yurakucho layer, it should be about 900 g / m 3. desirable. Here, there is a dehydration effect in the order of strong ionization tendency among electrolytes, and the order is K, Ca, Na, Mg, Al, but it is desirable to employ a compound that is not harmful in terms of environment.

塩化カリュームは脱水効率が170−200%と3種の中で最も良い効率を示すばかりでなく、食品添加物や試薬等として広く使われているように安全性も高いので環境面から見ても最適な電解質と考えられる。炭素は脱水効率が120−150%だが、脱水処理後の土は改良土として植栽や木造建築物の基礎用として埋め戻し等に用いるに適する。   Calium chloride has a dehydration efficiency of 170-200%, which is not only the best among the three types, but also has a high level of safety as it is widely used as a food additive, reagent, etc. It is considered an optimal electrolyte. Carbon has a dehydration efficiency of 120-150%, but the soil after dehydration is suitable for use as a soil for planting and backfilling as a foundation for wooden buildings.

尚、上記の実施例1から3までのいずれにおいても陰極3は土槽1の内周面と内床面の双方を覆って設けるものとして記載したが、本発明はこれに限定されるものではなく、内周面のみ、または内床面のみを覆うように設けたものでも良い。いずれの場合も陰極は面状に広がって陽極群に対峙し、高効率の電気浸透をもって透水性の陰極内に水を浸透させうるが、その意味では実施例のように土槽の全内面に沿って陰極を設ける構成が有利である。   In any of the first to third embodiments described above, the cathode 3 is described as covering both the inner peripheral surface and the inner floor surface of the soil tank 1, but the present invention is not limited to this. Alternatively, it may be provided so as to cover only the inner peripheral surface or only the inner floor surface. In either case, the cathode spreads in a plane and faces the anode group, and water can permeate into the permeable cathode with high efficiency electroosmosis. A configuration in which the cathode is provided along is advantageous.

このように、この発明に係る高含水土砂脱水装置は、請求項1に記載のとおり、上部を開口した地下、半地下又は地上に設置されて高含水土砂Gを貯留する土槽1と、土槽1の内面を覆う側面部と床面ぶからなる透水性の陰極3と、陰極3と隔離してその内方に設置され、ほぼ等距離に配列した複数の陽極群6および、または複数の透水性陽陰両極化電極群20と、陰極3と複数の陽極群6および、または複数の透水性陽陰両極化電極群20に接続して直流電圧を両極間に印加する直流電源装置10と、電圧印加による電気浸透で高含水土砂Gから透水性陰極3および、または透水性両極化電極群20内に浸透した水を集水して土槽外に排水する排水装置15とを備えるので、電気浸透の際の浸透面積が増大し、脱水効率が大幅に向上する。   Thus, the highly water-containing earth and sand dewatering device according to the present invention, as described in claim 1, is installed in the underground, semi-underground or above ground with the upper part opened, and the soil tank 1 for storing the highly water-containing earth and sand G, A water-permeable cathode 3 composed of a side surface covering the inner surface of the tank 1 and a floor, and a plurality of anode groups 6 and / or a plurality of anode groups 6 which are installed inwardly and separated from the cathode 3, and / or a plurality of anode groups A permeable positive / negative bipolar electrode group 20, a cathode 3 and a plurality of anode groups 6 and / or a direct current power supply device 10 connected to a plurality of permeable positive / negative bipolar electrode groups 20 to apply a DC voltage between the two electrodes; Since the water permeable cathode 3 and / or the water permeable bipolar electrode group 20 from the highly water-containing earth and sand G by electroosmosis by applying voltage is collected and drainage device 15 for draining outside the soil tank, The permeation area during electroosmosis increases, and the dehydration efficiency is greatly improved.

また、この発明に係る高含水土砂脱水方法は、請求項5に記載のとおり、上部を開口して高含水土砂を貯留する土槽1を地下、半地下または地上に設置し、土槽1の内面を覆う側面部と床面部からなる透水性の陰極3を設け、それぞれほぼ等距離に配列した複数の陽極群6および、または複数の透水性陽陰両極化電極群20を陰極3の内方に離隔して配列し、直流電源装置10を陰極3と複数の陽極群6および、または複数の両極化電極群に接続して直流電圧を両極間に印加し、排水装置15を透水性陰極3および、または透水性両極化電極群20に接続して電圧印加による電気浸透で高含水土砂Gから透水性陰極3および、または透水性両極化電極群20内に浸透した水を集水し土槽外に排水するので、陰陽両電極間の電気浸透面積が増大し、脱水効率が大幅に向上する。   Moreover, the high water content earth and sand dewatering method which concerns on this invention installs the earth tub 1 which opens an upper part and stores high water content earth and sand underground, a semi-underground, or the ground as described in Claim 5, A water-permeable cathode 3 composed of a side surface portion and a floor surface portion that covers the inner surface is provided, and a plurality of anode groups 6 and / or a plurality of water-permeable positive / negative bipolar electrode groups 20 that are arranged at approximately equal distances are provided inside the cathode 3. The DC power supply device 10 is connected to the cathode 3 and the plurality of anode groups 6 and / or the bipolar electrode groups and a DC voltage is applied between the two electrodes, and the drainage device 15 is connected to the permeable cathode 3. And / or the water permeable bipolar electrode group 20 to collect water permeated into the permeable cathode 3 and / or the permeable bipolar electrode group 20 from the highly hydrous soil G by electroosmosis by applying voltage. Since the water is drained outside, the electroosmotic area between the Yin and Yang electrodes increases. , Dewatering efficiency is greatly improved.

更に、この発明に係る高含水土砂脱水方法は、請求項6−9に記載のとおり、複数の電極群の中央のものから両側の最外側のものまでに対する各スイッチを順次開閉したり、少なくとも順次印加電圧を低くして電圧印加を行うので、両電極間の電気浸透面積が更に増加され、また、高含水土砂中に電解質を添加して電気浸透を行うので、脱水効率が更に向上する。   Further, the high water-containing earth and sand dewatering method according to the present invention, as described in claim 6-9, sequentially opens and closes each switch from the center of the plurality of electrode groups to the outermost one of both sides, or at least sequentially. Since voltage application is performed by lowering the applied voltage, the electroosmosis area between the electrodes is further increased, and the electroosmosis is performed by adding an electrolyte to the highly hydrous soil, so that the dehydration efficiency is further improved.

この発明に係る高含水土砂脱水装置の第一実施例の構成を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the structure of the 1st Example of the high water content earth and sand dehydration apparatus which concerns on this invention. この発明に係る高含水土砂脱水装置の第2実施例の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of 2nd Example of the high water content earth-and-sand dehydration apparatus which concerns on this invention. この発明に係る高含水土砂脱水装置の第3実施例の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of 3rd Example of the high water content earth-and-sand dehydration apparatus which concerns on this invention. この発明に係る高含水土砂脱水方法の一実施例における電解質添加量と脱水効率の関係図。The relationship figure of the electrolyte addition amount and the dewatering efficiency in one Example of the highly water-containing earth and sand dewatering method concerning this invention.

符号の説明Explanation of symbols

1 土槽
3 陰極
3W,3W’,3B,3B’ 側面部
3d 床面部
3−1 有孔板
3−2 裏板
3−3 ストレーナ層
4 集水管
5 給気管
6 陽極
6a,6b,6c,6n,6b’,6c’,6n’ 陽極群
6−1 絶縁板
6−2 有孔板
6−3 ストレーナ層
7 集水管
8a,8b,8c,8n,8b’,8c’,8n’ スイッチ
10 直流電源装置
11 電線
12 スイッチ
15 真空ポンプ装置
20a,20b,20c,20b’,20c’ 透水性陽陰両極化電極群
21a,21b,21c,21b’,21c’ スイッチ
23 集水孔
24 ストレーナ層
25 集水管
31 電極ブロック
32 土槽
DESCRIPTION OF SYMBOLS 1 Earth tank 3 Cathode 3W, 3W ', 3B, 3B' Side surface part 3d Floor surface part 3-1 Perforated board 3-2 Back board 3-3 Strainer layer 4 Water collecting pipe 5 Supply pipe 6 Anode 6a, 6b, 6c, 6n , 6b ', 6c', 6n 'Anode group 6-1 Insulating plate 6-2 Perforated plate 6-3 Strainer layer 7 Water collecting pipe 8a, 8b, 8c, 8n, 8b', 8c ', 8n' Switch 10 DC power supply Device 11 Electric wire 12 Switch 15 Vacuum pump device 20a, 20b, 20c, 20b ', 20c' Permeable positive / negative bipolar electrode group 21a, 21b, 21c, 21b ', 21c' Switch 23 Water collecting hole 24 Strainer layer 25 Water collecting pipe 31 Electrode block 32 Earth tank

Claims (9)

上部を開口し、地下、半地下又は地上に設置されて高含水土砂(G)を貯留する土槽(1)と、
土槽(1)の内面を覆う側面部(3W,3W’,3B,3B’)と床面部(3d)からなる透水性の陰極(3)と、
陰極(3)と離隔してその内方に設置され、それぞれほぼ等距離に配列した複数の陽極群(6a,6b,6c,6n,6b’,6c’,6n’)および、または複数の透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)と、
陰極(3)と複数の陽極群(6)および、または複数の透水性陽陰両極化電極群(20)とに接続して直流電圧を両極間に印加する直流電源装置(10)と、
電圧印加による電気浸透で高含水土砂(G)から透水性陰極(3)および、または透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)内に浸透した水を集水して土槽外に排水する排水装置(15)と
を備えることを特徴とする高含水土砂脱水装置。
An earth tank (1) that is open at the top and is installed underground, semi-underground or above ground to store highly hydrous soil (G);
A water-permeable cathode (3) composed of side surfaces (3W, 3W ′, 3B, 3B ′) and a floor surface portion (3d) covering the inner surface of the earth tub (1);
A plurality of anode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′) and / or a plurality of water permeation units installed inwardly and spaced apart from the cathode (3) Sex positive / negative bipolar electrode group (20a, 20b, 20c, 20b ′, 20c ′),
A DC power supply device (10) connected to the cathode (3) and the plurality of anode groups (6) and / or the plurality of water permeable positive / negative bipolar electrode groups (20) to apply a DC voltage between the two electrodes;
Water that permeated into the permeable cathode (3) and / or the permeable positive / negative bipolar electrode group (20a, 20b, 20c, 20b ′, 20c ′) from the highly hydrous soil (G) by electroosmosis by applying voltage is collected. A highly water-containing earth and sand dewatering device comprising a drainage device (15) for draining water outside the soil tank.
土槽(1)の上部開口を塞ぐと共に複数の陽極群(6a,6b,6c,6n,6b’,6c’,6n’)を所定位置に保持する絶縁板(6−1)を更に備え、絶縁板(6−1)は土槽内の高含水土砂に接する側に透水性のストレーナ層(6−3)を有し、陰極(3)の各面部(3W,3W’,3B,3B’,3d)の内部に延長する集水管(4)および絶縁板(6−1)のストレーナ層(6−3)の内部に通ずる集水管(7)と、排水用の真空ポンプ装置(15)とにより陰極内に浸透した水と共に土槽内の高含水土砂の上層に分離した水をも集水し得ることを特徴とする請求項1記載の高含水土砂脱水装置。   An insulating plate (6-1) for closing the upper opening of the earth tub (1) and holding a plurality of anode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′) in a predetermined position; The insulating plate (6-1) has a permeable strainer layer (6-3) on the side in contact with the highly hydrous sand in the earth tub, and each surface portion (3W, 3W ′, 3B, 3B ′) of the cathode (3). 3d), a water collecting pipe (4) extending to the inside, a water collecting pipe (7) leading to the inside of the strainer layer (6-3) of the insulating plate (6-1), a vacuum pump device (15) for drainage, The high water-containing earth and sand dewatering device according to claim 1, wherein water separated into the upper layer of the high water-containing earth and sand in the soil tank can be collected together with the water that has penetrated into the cathode. 複数の透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)はそれぞれ表面に集水孔(23)を有するストレーナ層(24)と、ストレーナ層(24)内に浸透した水を集水して真空ポンプ装置(15)に送る集水管(25)とでなり、直流電源装置(10)はそれぞれ直流電源の正極側(10−1)に接続したa端子と負極側(10−2)に接続したb端子と複数の透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)の各々に接続したc端子とを有するスイッチ(21a,21b,21c,21b’,21c’)および直流電源の負極側(10−2)と陰極(3)の間を接続するスイッチ(12)を含み、複数の両極化電極群にそれらの配列順に交互に正電圧と負電圧を印加し得るようにしたことを特徴とする請求項1記載の高含水土砂脱水装置。   A plurality of permeable positive / negative bipolar electrode groups (20a, 20b, 20c, 20b ′, 20c ′) penetrate into the strainer layer (24) and the strainer layer (24) each having a water collecting hole (23) on the surface. The water collecting pipe (25) that collects the collected water and sends it to the vacuum pump device (15), and the DC power supply device (10) is connected to the positive terminal (10-1) of the direct current power supply and the negative terminal side A switch (21a, 21b,) having a b terminal connected to (10-2) and a c terminal connected to each of the plurality of water permeable positive / negative bipolar electrode groups (20a, 20b, 20c, 20b ′, 20c ′) 21c, 21b ′, 21c ′) and a switch (12) for connecting between the negative electrode side (10-2) of the DC power source and the cathode (3), and a plurality of bipolar electrode groups are alternately arranged in the order of their arrangement. The ability to apply voltage and negative voltage High water sediment dewatering apparatus according to claim 1, wherein. 複数の陽極群(6a,6b,6c,6n,6b’,6c’,6n’)および、または複数の透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)でなる陽極(6)および側面部(3W,3W’,3B,3B’)と床面部(3d)でなる陰極(3)は電極ブロック(31)として形成され、この電極ブロック(31)をユニットとして複数の電極ブロックを収容し得る寸法に土槽(1)が形成され、電極ブロック(31)は土槽に対し出し入れ自在であることを特徴とする請求項2および請求項3記載の高含水土砂脱水装置。   A plurality of anode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′) and / or a plurality of water permeable positive / negative bipolar electrode groups (20a, 20b, 20c, 20b ′, 20c ′) The anode (6) and the cathode (3) composed of the side surface portions (3W, 3W ′, 3B, 3B ′) and the floor surface portion (3d) are formed as an electrode block (31), and a plurality of the electrode blocks (31) are used as a unit. 4. A highly hydrous soil dewatering according to claim 2, wherein the earth basin (1) is formed to a size capable of accommodating a plurality of electrode blocks, and the electrode block (31) can be inserted into and removed from the earth basin. apparatus. 上部を開口して高含水土砂(G)を貯留する土槽(1)を地下、半地下または地上に設置し、
土槽(1)の内面を覆う側面部(3W,3W’,3B,3B’)と床面部(3d)からなる透水性の陰極(3)を設け、
それぞれほぼ等距離に配列した複数の陽極群(6a,6b,6c,6n,6b’,6c’,6n’)および、または複数の透水性陽陰両極化電極群(20a,20b,20c,20b’,20c’)を陰極(3)の内方に離隔して配列し、
直流電源装置(10)を陰極(3)と複数の陽極群(6)および、または複数の透水性陽陰両極化電極群(20)に接続して直流電圧を両極間に印加し、
排水装置(15)を透水性陰極(3)および、または透水性陽陰両極化電極群(20)に接続して電圧印加による電気浸透で高含水土砂(G)から透水性陰極(3)および、または透水性陽陰両極化電極群(20)内に浸透した水を集水し土槽外に排水することを特徴とする高含水土砂脱水方法。
An earth tank (1) that opens the upper part and stores the highly hydrous sand (G) is installed underground, semi-underground or above ground.
A water-permeable cathode (3) comprising a side surface portion (3W, 3W ′, 3B, 3B ′) and a floor surface portion (3d) covering the inner surface of the earth tub (1) is provided,
A plurality of anode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′) and / or a plurality of permeable positive / negative bipolar electrode groups (20a, 20b, 20c, 20b) arranged at approximately equal distances, respectively. ', 20c') spaced apart inward of the cathode (3),
A DC power supply (10) is connected to the cathode (3) and the plurality of anode groups (6) and / or the plurality of water permeable positive / negative bipolar electrode groups (20) to apply a DC voltage between the two electrodes,
The drainage device (15) is connected to the permeable cathode (3) and / or the permeable positive / negative bipolar electrode group (20), and the permeable cathode (3) Alternatively, a highly water-containing earth and sand dewatering method characterized in that water that has permeated into the permeable positive / negative bipolar electrode group (20) is collected and drained out of the soil tank.
直流電源装置(10)をその正電圧側において陽極(6)の電極群(6a,6b,6c,6n,6b’,6c’,6n’)の各々と開閉スイッチ(8a,8b,8c,8n,8b’,8c’,8n’)のそれぞれを介して接続し、直流電圧印加はスイッチ(12)を閉じて陰極(3)を直流電源装置(10)の負電圧側に接続する間に
(a)先ず中央に配置した陽極電極群(6a)に接続したスイッチ(8a)を閉じ、次いで外側に隣接する対の電極群(6b,6b’)に接続したスイッチ(8b,8b’)を閉じ、更に外側に隣接する対の電極群(6c,6c’)に接続したスイッチ(8c,8c’)から最外側の対の電極群(6n,6n’)に接続したスイッチ(8n,8n’)まで順次閉じることによって中央の電極群からその両側に最外側の電極群までの全部に対し行う、
(b)先ず中央の陽極電極群(6a)のスイッチ(8a)から順次両側に隣接する対の電極群(6b,6b’)のスイッチ(8b,8b’)を経て最外側の対の電極群(6n,6n’)のスイッチ(8n,8n’)まで順次閉じた後開くことにより行う、または
(c)全ての陽極電極群(6a,6b,6c,6n,6b’,6c’,6n’)の全てのスイッチ(8a,8b,8c,8n,8b’,8c’,8n’)を同時に閉じることにより行う、
のいずれかを脱水状況に応じて選択して行うことを特徴とする請求項5記載の高含水土砂脱水方法。
On the positive voltage side of the DC power supply device (10), each of the electrode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′) of the anode (6) and the open / close switches (8a, 8b, 8c, 8n) , 8b ′, 8c ′, 8n ′) and DC voltage application is performed while the switch (12) is closed and the cathode (3) is connected to the negative voltage side of the DC power supply device (10). a) First, the switch (8a) connected to the anode electrode group (6a) disposed in the center is closed, and then the switch (8b, 8b ′) connected to the pair of electrode groups (6b, 6b ′) adjacent to the outside is closed. Further, the switch (8n, 8n ′) connected to the outermost pair of electrode groups (6n, 6n ′) from the switch (8c, 8c ′) connected to the pair of electrode groups (6c, 6c ′) adjacent to the outside. To the outermost electrode group on both sides of the center electrode group. Made to the whole of,
(B) First, the outermost pair of electrode groups through the switch (8b, 8b ′) of the pair of electrode groups (6b, 6b ′) adjacent to both sides sequentially from the switch (8a) of the central anode electrode group (6a). (6n, 6n ′) is performed by sequentially closing and opening the switches (8n, 8n ′), or (c) all anode electrode groups (6a, 6b, 6c, 6n, 6b ′, 6c ′, 6n ′). ) By simultaneously closing all the switches (8a, 8b, 8c, 8n, 8b ′, 8c ′, 8n ′).
6. The method of dewatering a highly hydrous soil according to claim 5, wherein any one of the above is selected according to the dewatering situation.
陽極(6)の電極群(20a,20b,20c,20b’,20c’)としてそれぞれ表面に集水孔(23)を有するストレーナ層(24)と、ストレーナ層(24)内に浸透した水を集水して真空ポンプ装置(15)に送る集水管(25)とでなるものを配列し、スイッチ(21)としてそれぞれ直流電源装置(10)の正極側(10−1)に接続したa端子と負極側(10−2)に接続したb端子と電極群(20a,20b,20c,20b’,20c’)の各々に接続したc端子とを有するスイッチ(21a,21b,21c,21b’,21c’)および直流電源装置(10)の負極側(10−2)と陰極(3)の間を接続するスイッチ(12)を配設し、直流電圧印加はスイッチ(12)を閉じて陰極(3)を直流電源装置(10)の負電圧側に接続する間に、
(a)先ず中央に配置した陽極電極群(20a)に接続したスイッチ(21a)のc端子をa端子側に接続し、他の両側のそれぞれ対の電極群(20b,20b’,20c,20c’)のc端子はa,b両端子の中間にセットし、以後外側の対の電極群(20b,20b’)のスイッチ(21b,21b’)から最外側の対の電極群(20c,20c’)のスイッチ(21c,21c’)までのc端子を順次a端子に接続することによって行う、
(b)中央の陽極電極群(20a)のスイッチ(21a)のc端子をa端子に接続し、その外側の対の電極群(20b,20b’)のスイッチ(21b,21b’)のc端子をb端子に接続し、最外側の対の電極群(20c,20c’)のスイッチ(21c,21c’)のc端子をa端子に接続して行う、または
(c)(b)の状態から中央電極群(20a)のスイッチ(21a)のc端子をb端子に接続し、外側の対の電極群(20b,20b’)のスイッチ(21b,21b’)のc端子をa端子に接続して行う、
のいずれかを脱水状況に応じて選択して行うことを特徴とする請求項5記載の高含水土砂脱水方法。
As a group of electrodes (20a, 20b, 20c, 20b ′, 20c ′) of the anode (6), a strainer layer (24) having water collecting holes (23) on the surface and water that has permeated into the strainer layer (24). A terminal connected to the positive electrode side (10-1) of the DC power supply device (10) as a switch (21) in which a water collecting pipe (25) that collects water and sends it to the vacuum pump device (15) is arranged. And switches (21a, 21b, 21c, 21b ′, b terminals connected to the negative electrode side (10-2) and c terminals connected to each of the electrode groups (20a, 20b, 20c, 20b ′, 20c ′), 21c ′) and a switch (12) connecting between the negative electrode side (10-2) of the DC power supply device (10) and the cathode (3) are arranged, and DC voltage application is performed by closing the switch (12) and applying the cathode ( 3) The negative power of the DC power supply (10) While connected to the side,
(A) First, the c terminal of the switch (21a) connected to the anode electrode group (20a) disposed at the center is connected to the a terminal side, and the pair of electrode groups (20b, 20b ′, 20c, 20c) on the other sides. The c terminal of ') is set in the middle of both terminals a and b, and thereafter the outermost electrode group (20c, 20c) from the switch (21b, 21b') of the outer electrode group (20b, 20b '). ') By sequentially connecting the c terminals up to the switches (21c, 21c') to the a terminal.
(B) The c terminal of the switch (21a) of the central anode electrode group (20a) is connected to the a terminal, and the c terminal of the switch (21b, 21b ′) of the outer pair of electrode groups (20b, 20b ′). Is connected to the b terminal, and the c terminal of the switch (21c, 21c ′) of the outermost pair of electrodes (20c, 20c ′) is connected to the a terminal, or (c) from the state of (b) The c terminal of the switch (21a) of the central electrode group (20a) is connected to the b terminal, and the c terminal of the switch (21b, 21b ′) of the outer pair of electrode groups (20b, 20b ′) is connected to the a terminal. Do,
6. The method of dewatering a highly hydrous soil according to claim 5, wherein any one of the above is selected according to the dewatering situation.
中央の陽極電極群(6a;20a)から順次隣接外側の対の電極群(6b,6b’;20b20b’)を介して最外側の対の電極群(6n,6n’;20c,20c’)までのそれぞれと陰極(3)との間に印加する電圧を順次低くして直流電圧印加を行うと共に,脱水状況により,最外側の電極群への印加後,印加電圧を順次高くして中央電極群(6a;20a)まで印加することを特徴とする請求項6または7記載の高含水土砂脱水方法。   From the central anode electrode group (6a; 20a) to the outermost pair of electrode groups (6n, 6n ′; 20c, 20c ′) sequentially through the adjacent outer pair of electrode groups (6b, 6b ′; 20b20b ′) The voltage applied between each of the cathodes and the cathode (3) is sequentially lowered to apply a DC voltage, and depending on the dehydration condition, after application to the outermost electrode group, the applied voltage is gradually increased to increase the central electrode group. The high water-containing earth and sand dewatering method according to claim 6 or 7, characterized by applying up to (6a; 20a). 両極間電圧印加による電気浸透での高含水土砂の脱水を、高含水土砂に電解質等を添加することにより行うことを特徴とする請求項5から8のいずれかに記載の高含水土砂脱水方法。   The method of dehydrating a highly hydrous soil according to any one of claims 5 to 8, wherein the dehydration of the highly hydrous soil by electroosmosis by applying voltage between both electrodes is performed by adding an electrolyte or the like to the highly hydrous soil.
JP2003334789A 2003-09-26 2003-09-26 Apparatus and method for dehydrating highly hydrated earth and sand Pending JP2005095814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334789A JP2005095814A (en) 2003-09-26 2003-09-26 Apparatus and method for dehydrating highly hydrated earth and sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334789A JP2005095814A (en) 2003-09-26 2003-09-26 Apparatus and method for dehydrating highly hydrated earth and sand

Publications (1)

Publication Number Publication Date
JP2005095814A true JP2005095814A (en) 2005-04-14

Family

ID=34462361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334789A Pending JP2005095814A (en) 2003-09-26 2003-09-26 Apparatus and method for dehydrating highly hydrated earth and sand

Country Status (1)

Country Link
JP (1) JP2005095814A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891365A (en) * 2010-07-20 2010-11-24 浙江大学 Mobile electrode electroosmotic dehydration device for municipal sewage sludge dewatering
CN104016559A (en) * 2014-05-12 2014-09-03 惠楠 Electroosmosis sludge dehydration device
CN107551656A (en) * 2017-10-10 2018-01-09 山东百川同创能源有限公司 A kind of DC electric field combination vertical pressurization height contains interior water dehydration device and method
CN108275855A (en) * 2018-03-10 2018-07-13 杭州渗源环境科技有限公司 A kind of sludge dewatering method and control system
CN114878784A (en) * 2022-05-18 2022-08-09 江苏科技大学 Soft soil solidification test device and method
CN114397428B (en) * 2022-01-17 2023-04-14 甘肃省水利水电勘测设计研究院有限责任公司 Electroosmosis drainage combined electrode anchoring improved loess slope model test device
CN117753772A (en) * 2023-12-25 2024-03-26 水利部交通运输部国家能源局南京水利科学研究院 An in-situ dispersive soil modification method and modification system based on the principle of electroosmosis
CN118724423A (en) * 2024-08-07 2024-10-01 中山大学 A waste mud treatment device based on electric principle and its use method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891365A (en) * 2010-07-20 2010-11-24 浙江大学 Mobile electrode electroosmotic dehydration device for municipal sewage sludge dewatering
CN101891365B (en) * 2010-07-20 2011-09-21 浙江大学 Mobile electrode electroosmotic dehydration device for municipal sewage sludge dewatering
CN104016559A (en) * 2014-05-12 2014-09-03 惠楠 Electroosmosis sludge dehydration device
CN107551656A (en) * 2017-10-10 2018-01-09 山东百川同创能源有限公司 A kind of DC electric field combination vertical pressurization height contains interior water dehydration device and method
CN108275855A (en) * 2018-03-10 2018-07-13 杭州渗源环境科技有限公司 A kind of sludge dewatering method and control system
CN108275855B (en) * 2018-03-10 2023-05-19 杭州渗源环境科技有限公司 Sludge dewatering method and control system
CN114397428B (en) * 2022-01-17 2023-04-14 甘肃省水利水电勘测设计研究院有限责任公司 Electroosmosis drainage combined electrode anchoring improved loess slope model test device
CN114878784A (en) * 2022-05-18 2022-08-09 江苏科技大学 Soft soil solidification test device and method
CN114878784B (en) * 2022-05-18 2023-09-22 江苏科技大学 Soft soil solidification test device and method
CN117753772A (en) * 2023-12-25 2024-03-26 水利部交通运输部国家能源局南京水利科学研究院 An in-situ dispersive soil modification method and modification system based on the principle of electroosmosis
CN118724423A (en) * 2024-08-07 2024-10-01 中山大学 A waste mud treatment device based on electric principle and its use method

Similar Documents

Publication Publication Date Title
EP1144764B1 (en) An electro kinetic geosynthetic structure
AU2019203224B2 (en) Soil-treatment system, geocomposite for such a system, and soil consolidation method
CN101748724B (en) Electroosmosis electrode and mounting mode
CN106284293A (en) A kind of system and method for vacuum pre-pressed joint electric osmose reinforcing soft ground
Kaniraj et al. Electro-osmotic consolidation experiments on an organic soil
JP2005095814A (en) Apparatus and method for dehydrating highly hydrated earth and sand
CN201620411U (en) Eletroosmosis electrode
CA2891390C (en) Capacitive electrokinetic dewatering of suspensions and soils
JP2584421B2 (en) Forced water collection method applying electroosmosis phenomenon
CN110550848A (en) Horizontal-arranged cathode vacuum electroosmosis sludge dewatering device and method
JP3661130B2 (en) Dewatering method for hydrous sand
CN109914442B (en) Integrative stake of electroosmosis drainage
CN110961446A (en) Vacuum suction filtration and electrokinetic combined polluted soil decontamination device and use method thereof
JPH1121871A (en) Electro-osmosis draining method
CN204676521U (en) A kind of consolidating mud soil electrochemical modification hardened system
CN115446103A (en) Device for in-situ ex-situ remediation of heavy metal contaminated soil and remediation method thereof
US7135102B2 (en) Method and system for dewatering particulate materials
SI9011062A (en) Device for electrokinetic desalination of walls
JP2004263388A (en) Dehydration processing method of hydrous earth and sand and dehydrating earth tank
JP2004188233A (en) Dehydration treatment method using earth and sand hopper with dehydration function for water-containing earth sand, and earth and sand hopper with dehydration function
KR0134077B1 (en) Apparatus and method for solidifying soft alluvial soil
JP2004324046A (en) Dehydration method for wet sediment and dehydration soil tank
CN218521822U (en) Waterproof construction of tower crane foundation infiltration in basement bottom plate
CN108343051A (en) A kind of mixing cured processing method of electric osmose for shallow layer foundation
CN217174719U (en) Bidirectional drainage structure for electrochemical dehydration drying technology