[go: up one dir, main page]

JP2005095784A - Cleaning method of nitrate nitrogen-containing wastewater - Google Patents

Cleaning method of nitrate nitrogen-containing wastewater Download PDF

Info

Publication number
JP2005095784A
JP2005095784A JP2003333281A JP2003333281A JP2005095784A JP 2005095784 A JP2005095784 A JP 2005095784A JP 2003333281 A JP2003333281 A JP 2003333281A JP 2003333281 A JP2003333281 A JP 2003333281A JP 2005095784 A JP2005095784 A JP 2005095784A
Authority
JP
Japan
Prior art keywords
nitrate nitrogen
nitrogen
catalyst
solid catalyst
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003333281A
Other languages
Japanese (ja)
Inventor
Takaaki Hashimoto
高明 橋本
Junichi Miyake
純一 三宅
Toru Ishii
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003333281A priority Critical patent/JP2005095784A/en
Publication of JP2005095784A publication Critical patent/JP2005095784A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method of nitrate nitrogen-containing wastewater which treats the nitrate nitrogen-containing wastewater in the presence of a reducing substance at a temperature lower than 100°C to remove the nitrate nitrogen with high efficiency. <P>SOLUTION: As a solid catalyst, for example, a solid catalyst made by carrying at least one element selected from palladium and platinum on at least one oxide of an element selected from iron, titanium, and zirconium is used. As the reducing substance, for example, at least one selected from formic acid, formate, oxalic acid, oxalate, methanol, ethanol, and formaldehyde is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排水中に含まれる硝酸態窒素を窒素等に湿式還元処理する方法に関する。より詳しくは、本発明は、火力発電設備、原子力発電設備、化学プラント、金属工業設備、金属鉱業設備等で生じる産業排水等に含まれる硝酸態窒素を、還元性物質の存在下、100℃未満の温度にて、排水を固体触媒と接触させて、硝酸態窒素を窒素等に湿式還元する方法に関するものである。   The present invention relates to a method of performing wet reduction treatment of nitrate nitrogen contained in waste water to nitrogen or the like. More specifically, the present invention relates to nitrate nitrogen contained in industrial wastewater generated in thermal power generation facilities, nuclear power generation facilities, chemical plants, metal industrial facilities, metal mining facilities, etc. in the presence of reducing substances, and less than 100 ° C. The method relates to a method of wet-reducing nitrate nitrogen to nitrogen or the like by contacting waste water with a solid catalyst at this temperature.

なお、本発明の「窒素等」とは、窒素および/またはアンモニアを意味する。   In the present invention, “nitrogen etc.” means nitrogen and / or ammonia.

海域、湖沼、河川等において、富栄養化によって赤潮の発生、かび臭の発生することが問題となって久しいが、これは、該水域に流入する生活雑排水、窒素肥料を含んだ農業排水や該水域に排出される工業排水等に含有される硝酸態窒素が原因のひとつとされている。したがって、排水を海域、湖沼、河川等へ排出する前に、硝酸態窒素を排水から削減することが重要な課題となっている。   Occurrence of red tide and musty odor due to eutrophication has long been a problem in sea areas, lakes, rivers, etc., but this may be caused by miscellaneous wastewater flowing into the water area, agricultural wastewater containing nitrogen fertilizer, One of the causes is nitrate nitrogen contained in industrial wastewater discharged into water bodies. Therefore, it is an important issue to reduce nitrate nitrogen from the wastewater before discharging the wastewater to the sea area, lakes, rivers and the like.

硝酸態窒素の除去技術としては、現在、生物処理法や、イオン交換法、電気透析法、電気化学的方法等の物理化学的方法が実用化または検討されている。   As a technique for removing nitrate nitrogen, a physicochemical method such as a biological treatment method, an ion exchange method, an electrodialysis method, and an electrochemical method has been put into practical use or studied.

生物処理法は、例えば嫌気性処理を行って硝酸態窒素を窒素ガスとする方法であるが、高濃度の排水は希釈する必要があったり、処理時間を長くとる必要があったりするために、必然的に装置規模が大きくなるという問題点がある。また、pHが高すぎる排水または低すぎる排水、生物毒となる物質が存在する排水、有機物濃度が高い排水等は生物処理が困難であり、あえて処理する場合には操作性が煩雑になるという問題点もある。更に、微生物に由来して発生する汚泥の処理が別途必要になる問題も挙げられる。   The biological treatment method is, for example, a method of performing anaerobic treatment to convert nitrate nitrogen into nitrogen gas, but it is necessary to dilute high concentration wastewater or to take a long treatment time. Inevitably, there is a problem that the apparatus scale becomes large. In addition, wastewater whose pH is too high or too low, wastewater containing substances that become biotoxins, wastewater with high organic matter concentration, etc., are difficult to biologically treat, and the problem is that operability becomes complicated when treated intentionally. There is also a point. Furthermore, there is a problem that it is necessary to separately treat sludge generated from microorganisms.

イオン交換法では、イオン交換樹脂を頻繁に再生する必要があり、更には、排水中に硫酸イオン等の多価イオンが存在する場合には、硝酸イオンの選択性が低くなる問題もある。また、再生時に発生する硝酸含有水の処理が別途必要になるため根本的な処理にはならない。その他、電気透析法、電気化学的方法等が検討されているが、いずれも処理コストが高くつくなどの問題がある。   In the ion exchange method, it is necessary to regenerate the ion exchange resin frequently, and further, when multivalent ions such as sulfate ions are present in the waste water, there is a problem that the selectivity of nitrate ions is lowered. In addition, since the treatment of nitric acid-containing water generated at the time of regeneration is required separately, it is not a fundamental treatment. In addition, electrodialysis methods, electrochemical methods, and the like have been studied, but all have problems such as high processing costs.

その他の硝酸態窒素の処理方法としては、硝酸態窒素含有水に水素ガスを導入し、パラジウム触媒やロジウム触媒と接触させて亜硝酸態窒素および/または硝酸態窒素を選択的に窒素ガスに転換する方法が提案されている(例えば、特許文献1参照)。この方法は低濃度の硝酸態窒素を除去するのには適するが、高濃度の硝酸態窒素を含有する場合には処理効率は不十分である。また、触媒担体としてはγ−アルミナやシリカ等が使用されているが、γ−アルミナやシリカを担体とした触媒は耐久性が不十分なものであり、長期の運転中に触媒強度が低下し、触媒が崩壊することにより触媒層での圧力損失が上昇したり、触媒活性が低下したりするという問題点もある。   As another method of treating nitrate nitrogen, hydrogen gas is introduced into nitrate nitrogen-containing water and contacted with a palladium catalyst or rhodium catalyst to selectively convert nitrite nitrogen and / or nitrate nitrogen to nitrogen gas. A method has been proposed (see, for example, Patent Document 1). This method is suitable for removing low-concentration nitrate nitrogen, but the treatment efficiency is insufficient when high-concentration nitrate nitrogen is contained. In addition, although γ-alumina, silica, etc. are used as the catalyst carrier, the catalyst using γ-alumina or silica as the carrier is insufficient in durability, and the catalyst strength decreases during long-term operation. Further, there is a problem that the pressure loss in the catalyst layer increases or the catalyst activity decreases due to the collapse of the catalyst.

同様に、高濃度の硝酸態窒素含有排水を処理するために、排水への溶解度を超える水素ガスを添加して高濃度の硝酸態窒素を含有する排水を処理する方法が提案されている(例えば、特許文献2参照)。ただし、過剰の水素を添加するため、反応後の余剰した水素を分離するための回収装置が必要であり、装置が複雑化する。更に、爆発性のある水素ガスを100℃以上の圧力下で液と接触させるため、安全管理上の問題もある。   Similarly, in order to treat high-concentration nitrate nitrogen-containing wastewater, a method for treating wastewater containing high-concentration nitrate nitrogen by adding hydrogen gas exceeding the solubility in wastewater has been proposed (for example, , See Patent Document 2). However, since excess hydrogen is added, a recovery device for separating the surplus hydrogen after the reaction is necessary, which complicates the device. Furthermore, since explosive hydrogen gas is brought into contact with the liquid under a pressure of 100 ° C. or higher, there is a problem in safety management.

その他、還元剤として、ヒドラジンを使用した硝酸態窒素含有排水の処理方法が提案されているが(例えば、特許文献3参照)、還元剤として窒素化合物を用いるため、水溶液中の全窒素量を低下させることが困難となる場合が多い。また、触媒成分の耐久性に問題があった。   In addition, although a method for treating nitrate nitrogen-containing wastewater using hydrazine as a reducing agent has been proposed (see, for example, Patent Document 3), since a nitrogen compound is used as the reducing agent, the total amount of nitrogen in the aqueous solution is reduced. It is often difficult to do. There was also a problem with the durability of the catalyst component.

一方、120〜370℃の温度かつ排水が液相を保持する圧力下、固体触媒の存在下にて、還元剤を添加して硝酸態窒素を還元する方法が提案されている(例えば、特許文献4参照)。この方法は、上記の反応条件下においては、処理性能に優れた方法である。しかしながら、100℃以上の反応温度のもと、液相を保持するため圧力をかける必要があり、装置コストが高くなるなどの問題がある。 同様に、80〜170℃、反応圧力が常圧〜1MPaにて、還元剤と固体触媒の存在下、湿式還元する方法も提案されている(例えば、特特許文献5参照)が、100℃未満での処理性能は十分なものではなかった。   On the other hand, a method has been proposed in which nitrate nitrogen is reduced by adding a reducing agent in the presence of a solid catalyst under a temperature of 120 to 370 ° C. and a pressure at which wastewater maintains a liquid phase (for example, Patent Documents). 4). This method is excellent in processing performance under the above reaction conditions. However, under the reaction temperature of 100 ° C. or higher, it is necessary to apply pressure to maintain the liquid phase, and there is a problem that the apparatus cost is increased. Similarly, a method of wet reduction in the presence of a reducing agent and a solid catalyst at 80 to 170 ° C. and a reaction pressure of normal pressure to 1 MPa has also been proposed (see, for example, Patent Document 5), but less than 100 ° C. The processing performance at was not sufficient.

従来、一般に用いられてきた100℃以上、かつ液相を保持する圧力下における反応では、還元剤が熱により分解されてしまうことが多く、還元剤が硝酸態窒素の還元反応に有効に使用されていないことが多かった。また、温度、圧力が高くなると、装置のコストが高くなるだけでなく、触媒の耐久性が低下する問題があった。   Conventionally, in a reaction at a temperature of 100 ° C. or higher and a pressure that maintains a liquid phase, which is generally used, the reducing agent is often decomposed by heat, and the reducing agent is effectively used for the reduction reaction of nitrate nitrogen. There were many things that were not. Further, when the temperature and pressure are increased, there is a problem that not only the cost of the apparatus is increased, but also the durability of the catalyst is lowered.

特開平2−111495号公報JP-A-2-111495 特開平6−226268号公報JP-A-6-226268 特開2003−126872号公報JP 2003-126872 A 特開平9−70589号公報Japanese Patent Laid-Open No. 9-70589 特開2000−126782号公報JP 2000-126782 A

本発明の課題は、前記のような通常の技術では、100℃未満で十分に処理することが困難な硝酸態窒素を含有する排水を100℃未満で処理して硝酸態窒素を高効率に除去する硝酸態窒素含有排水の浄化方法を提供することにある。   The object of the present invention is to remove nitrate nitrogen with high efficiency by treating wastewater containing nitrate nitrogen, which is difficult to sufficiently treat at less than 100 ° C., with less than 100 ° C. An object of the present invention is to provide a purification method for wastewater containing nitrate nitrogen.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、硝酸態窒素含有排水を還元性物質の存在下、100℃未満の温度において固体触媒と接触させて排水中の硝酸態窒素を窒素等に湿式還元するに際し、特定の固体触媒と特定の還元性物質とを組み合わせて使用すると硝酸態窒素を効率よく窒素等に湿式還元できること、またこの方法はコスト的にも優れていることを見出し、本発明を完成するに至った。本発明は、以下のとおり特定されるものである。
(1)硝酸態窒素を含有する排水を還元性物質の存在下に固体触媒と接触させて硝酸態窒素を窒素等に湿式還元して浄化する方法において、100℃未満の温度において反応させることを特徴とする硝酸態窒素含有排水の浄化方法。
(2)固体触媒として、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、マンガン、コバルト、ニッケル、銅、錫、セリウム、インジウムおよび亜鉛から選ばれる少なくとも1種の元素の金属および/または化合物を、鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の化合物、または活性炭に担持してなる固体触媒を、また還元性物質として、アルコール類、有機酸類、アルデヒド類、ケトン類、無機硫黄化合物類、窒素化合物、フェノール類および水素から選ばれる少なくとも1種を用いる上記(1)の硝酸態窒素含有排水の浄化方法。
(3)固体触媒として、パラジウムおよび白金から選ばれる少なくとも1種の元素を鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒を、また還元性物質として、ギ酸、ギ酸塩、シュウ酸、シュウ酸塩、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種を用いる上記(2)の硝酸態窒素含有排水の浄化方法。
(4)固体触媒として、パラジウムおよび白金から選ばれる少なくとも1種の元素と銅および鉄から選ばれる少なくとも1種の元素とを活性炭に担持してなる固体触媒を、また還元性物質として、ギ酸、ギ酸塩、シュウ酸、シュウ酸塩、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種を用いる上記(2)の硝酸態窒素含有排水の浄化方法。
As a result of intensive studies to solve the above problems, the inventors of the present invention brought nitrate nitrogen-containing wastewater into contact with a solid catalyst at a temperature of less than 100 ° C. in the presence of a reducing substance, thereby reducing nitrate nitrogen in the wastewater. When wet-reducing to nitrogen, etc., it is possible to efficiently reduce nitrate nitrogen to nitrogen, etc. by using a combination of a specific solid catalyst and a specific reducing substance, and this method is also excellent in cost. The headline and the present invention were completed. The present invention is specified as follows.
(1) In a method in which wastewater containing nitrate nitrogen is brought into contact with a solid catalyst in the presence of a reducing substance and nitrate nitrogen is wet-reduced to nitrogen or the like to be purified, the reaction is performed at a temperature of less than 100 ° C. A method for purifying drainage containing nitrate nitrogen.
(2) Metal and / or compound of at least one element selected from gold, silver, platinum, palladium, rhodium, ruthenium, iridium, manganese, cobalt, nickel, copper, tin, cerium, indium and zinc as a solid catalyst Is a compound of at least one element selected from iron, titanium and zirconium, or a solid catalyst which is supported on activated carbon, and as a reducing substance, alcohols, organic acids, aldehydes, ketones, inorganic sulfur compounds (1) The method for purifying nitrate nitrogen-containing wastewater according to (1) above, wherein at least one selected from the group consisting of nitrogen, nitrogen compounds, phenols and hydrogen is used.
(3) As a solid catalyst, a solid catalyst obtained by supporting at least one element selected from palladium and platinum on an oxide of at least one element selected from iron, titanium and zirconium, and a reducing substance, The method for purifying nitrate nitrogen-containing wastewater according to (2) above, wherein at least one selected from formic acid, formate, oxalic acid, oxalate, methanol, ethanol and formaldehyde is used.
(4) As a solid catalyst, a solid catalyst obtained by supporting activated carbon with at least one element selected from palladium and platinum and at least one element selected from copper and iron, and as a reducing substance, formic acid, The method for purifying wastewater containing nitrate nitrogen as described in (2) above, wherein at least one selected from formate, oxalic acid, oxalate, methanol, ethanol and formaldehyde is used.

本発明の方法により、100℃未満の反応温度にて、排水中の硝酸態窒素を高効率で窒素等に湿式還元することができる。   By the method of the present invention, nitrate nitrogen in waste water can be wet reduced to nitrogen or the like with high efficiency at a reaction temperature of less than 100 ° C.

本発明の方法は、従来技術に比べ安価、効率的、安定的かつ操作容易であり、硝酸態窒素含有排水の工業的規模での浄化に好適である。   The method of the present invention is cheaper, more efficient, stable and easier to operate than the prior art, and is suitable for purification of nitrate nitrogen-containing wastewater on an industrial scale.

本発明に係る「硝酸態窒素」(以下、「NO ―N」と表示する場合もある)とは、広く硝酸イオンを構成する窒素原子を意味し、硝酸イオンまたは亜硝酸イオンを構成する窒素原子を意味する。したがって、本発明の硝酸態窒素含有排水とは、硝酸イオンおよび/または亜硝酸イオンを含む排水を意味する。 “Nitrate nitrogen” according to the present invention (hereinafter sometimes referred to as “NO 3 —N”) means a nitrogen atom that widely constitutes nitrate ions, and constitutes nitrate ions or nitrite ions. Means a nitrogen atom. Therefore, the nitrate nitrogen-containing waste water of the present invention means waste water containing nitrate ions and / or nitrite ions.

例えば、還元性物質としてメタノールを用いた場合の硝酸態窒素の窒素への還元は、以下に示す反応がおこるものと考えられる。   For example, reduction of nitrate nitrogen to nitrogen when methanol is used as the reducing substance is considered to occur by the following reaction.

HNO +5/6CHOH→ 1/2N + 5/6CO+13/6 H
一方、硝酸態窒素のアンモニアへの還元は、次の反応式で表わされる。
HNO 3 + 5 / 6CH 3 OH → 1 / 2N 2 + 5 / 6CO 2 +13/6 H 2 O
On the other hand, the reduction of nitrate nitrogen to ammonia is represented by the following reaction formula.

HNO +4/3CHOH → NH+4/3CO + 5/3H
本発明では、排水中の硝酸態窒素を窒素ガスまで還元するのに必要な還元性物質の量関係を規定比1と表記する。
HNO 3 + 4 / 3CH 3 OH → NH 3 + 4 / 3CO 2 + 5 / 3H 2 O
In the present invention, the quantity relationship of reducing substances necessary for reducing nitrate nitrogen in waste water to nitrogen gas is expressed as a specified ratio of 1.

本発明において対象となる排水は、上記硝酸態窒素を含有している排水であれば特に限定されない。排水中の硝酸態窒素の濃度については、排水中に硝酸態窒素を含有するものであれば特に限定されないが、好ましくは硝酸態窒素として10〜50,000mg/リットル、さらに好ましくは20〜20,000mg/リットル、最も好ましくは30〜10,000mg/リットルである。10mg/リットル未満の場合は、処理コストの面で本発明の優位性が得られない一方で、他の方法でも十分排水を処理することができるため、本発明の方法による必要がない。50,000mg/リットルを超える場合は、装置の配管等で塩が析出し、系内の閉塞を起こすことがあり好ましくない。   In the present invention, the target wastewater is not particularly limited as long as the wastewater contains nitrate nitrogen. The concentration of nitrate nitrogen in the wastewater is not particularly limited as long as it contains nitrate nitrogen in the wastewater, but is preferably 10 to 50,000 mg / liter as nitrate nitrogen, more preferably 20 to 20, 000 mg / liter, most preferably 30 to 10,000 mg / liter. When the amount is less than 10 mg / liter, the superiority of the present invention cannot be obtained in terms of treatment cost, but the wastewater can be treated sufficiently by other methods, and thus there is no need for the method of the present invention. If it exceeds 50,000 mg / liter, salt may be deposited in the piping of the apparatus, etc., causing clogging in the system, which is not preferable.

また、排水中には、硝酸態窒素のほか、通常、排水中に含まれる成分が存在していてもよく、例えば、COD成分を含有するものであってもよい。   Further, in addition to nitrate nitrogen, components usually contained in the wastewater may be present in the wastewater, and for example, it may contain a COD component.

本発明において排水のpHは特に限定されるものではないが、装置材質上の制約等から通常2〜13であり、3〜12であることがより好ましい。硝酸態窒素を多量に含有する場合は、pHが低くなることが予想されるため、そのような場合は、適宜pHを調整するために、アルカリ性物質を添加してもよい。アルカリ性物質としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム等、一般にpHを調整することに使用する物質を適宜使用すればよい。   In the present invention, the pH of the wastewater is not particularly limited, but is usually 2 to 13 and more preferably 3 to 12 due to restrictions on the material of the apparatus. When a large amount of nitrate nitrogen is contained, the pH is expected to be low. In such a case, an alkaline substance may be added to adjust the pH appropriately. As the alkaline substance, a substance generally used for adjusting pH, such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, etc. may be used as appropriate.

本発明に係わる還元性物質は、湿式還元処理において硝酸態窒素を還元する能力を有する物質である。還元性物質の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;エチレングリコールなどのグリコール類;ギ酸、酢酸、シュウ酸、プロピオン酸等の有機酸類(その塩も含む。);ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン等のケトン類;チオ硫酸ナトリウム、硫化ナトリウム等の無機硫黄化合物類;ヒドラジン、アミン類、アンモニア等の窒素化合物;フェノール類;水素などを挙げることができる。上記還元性物質は、単独で用いてもよいし、複数種の物質を用いてもよい。また、上記有機酸類の塩としては、ギ酸ナトリウム、酢酸ナトリウム、シュウ酸ナトリウム等の有機酸アルカリ金属塩を挙げることができる。これらのうち、取り扱い性、経済性、後処理のしやすさなどからして、特に、メタノール、エタノール、ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸、シュウ酸塩(例えば、シュウ酸ナトリウム)およびホルムアルデヒドが好適に用いられる。   The reducing substance according to the present invention is a substance having an ability to reduce nitrate nitrogen in a wet reduction process. Specific examples of the reducing substance include alcohols such as methanol, ethanol, isopropanol and butanol; glycols such as ethylene glycol; organic acids such as formic acid, acetic acid, oxalic acid and propionic acid (including salts thereof); formaldehyde Aldehydes such as acetaldehyde and propylaldehyde; Ketones such as acetone and methyl ethyl ketone; Inorganic sulfur compounds such as sodium thiosulfate and sodium sulfide; Nitrogen compounds such as hydrazine, amines and ammonia; Phenols; Can do. The reducing substance may be used alone or in combination of two or more kinds. Examples of the organic acid salts include organic acid alkali metal salts such as sodium formate, sodium acetate, and sodium oxalate. Of these, methanol, ethanol, formic acid, formate (e.g., sodium formate), oxalic acid, oxalate (e.g., sodium oxalate), especially in terms of handleability, economy, and ease of post-treatment ) And formaldehyde are preferably used.

なお、鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒を使用する場合、触媒の耐久性の面から還元性物質としてギ酸よりもギ酸塩を用いるのが好ましい。   When using a solid catalyst supported on an oxide of at least one element selected from iron, titanium and zirconium, it is preferable to use a formate rather than formic acid as a reducing substance in terms of durability of the catalyst. preferable.

還元性物質の添加方法としては、例えば、排水タンク中の排水に直接投入し、混合する方法をとることもできるが、還元性物質を排水供給ポンプの吐出部から反応塔までの入口までの任意の位置に定量ポンプを用いて供給する方法をとることもできる。また、反応塔の途中に還元性物質を供給することも可能である。本発明において、還元性物質を過剰量添加した場合、本発明に係る還元処理を行なった後、触媒湿式酸化処理により、酸化分解処理することも可能であるし、蒸留等により還元性物質を回収し、再利用することもできる。上記の還元性物質を含む排水であれば、還元性物質を添加することなく反応させることが可能である。   As a method for adding the reducing substance, for example, it can be directly put into the wastewater in the drainage tank and mixed, but the reducing substance can be added arbitrarily from the discharge part of the drainage supply pump to the inlet to the reaction tower. It is also possible to use a method in which a metering pump is used to supply the position. It is also possible to supply a reducing substance in the middle of the reaction tower. In the present invention, when an excessive amount of a reducing substance is added, after performing the reduction treatment according to the present invention, it can be subjected to oxidative decomposition treatment by catalytic wet oxidation treatment, and the reducing substance is recovered by distillation or the like. And can be reused. If it is the waste water containing said reducing substance, it is possible to make it react, without adding a reducing substance.

還元性物質は、排水中の硝酸態窒素を窒素ガスに還元するのに必要な量(規定比1)の0.9〜10倍量を用いる。すなわち、前記のように、排水中の硝酸態窒素を窒素ガスに還元するのに必要な還元剤の量関係を規定比1と表記すると、本発明の還元性物質は、規定比が0.9〜5、好ましくは1〜4となる量で使用する。0.9より少ないと、硝酸態窒素が残留し、規定比が4を超える場合は、還元性物質が未処理のまま大量に残留するが硝酸態窒素の処理効率はあまりあがらず、薬剤コストや残留した還元性物質の処理コストが増大するだけである。   The reducing substance is used in an amount of 0.9 to 10 times the amount necessary for reducing nitrate nitrogen in the wastewater to nitrogen gas (specified ratio 1). That is, as described above, when the amount of reducing agent necessary for reducing nitrate nitrogen in waste water to nitrogen gas is expressed as a specified ratio 1, the reducing substance of the present invention has a specified ratio of 0.9. It is used in an amount of ˜5, preferably 1˜4. When the ratio is less than 0.9, nitrate nitrogen remains, and when the specified ratio exceeds 4, a large amount of the reducing substance remains untreated, but the nitrate nitrogen treatment efficiency does not increase so much. Only the processing costs of the remaining reducing substances are increased.

本発明に係る排水の供給量は、固体触媒層に対しての液空間速度で0.1〜20hr-1であることが好ましく、0.1〜5hr-1がより好ましい。液空間速度が0.1hr-1未満では処理コストが増大し、一方液空間速度が20hr-1を越える場合は処理水中に硝酸態窒素が無視できない濃度で残留することが多くなる。 The supply amount of waste water according to the present invention is preferably 0.1 to 20 hr −1 , more preferably 0.1 to 5 hr −1 in terms of the liquid space velocity with respect to the solid catalyst layer. When the liquid space velocity is less than 0.1 hr −1 , the processing cost increases. On the other hand, when the liquid space velocity exceeds 20 hr −1 , nitrate nitrogen often remains in the treated water at a concentration that cannot be ignored.

本発明に係わる固体触媒は、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、マンガン、コバルト、ニッケル、銅、錫、セリウム、インジウムおよび亜鉛よりなる群から選ばれた少なくとも1種の元素の金属および/または化合物と鉄、チタンおよびジルコニウムよりなる群から選ばれた少なくとも1種の元素の化合物、または活性炭とを含有するものである。鉄、チタン、およびジルコニウムよりなる群から選ばれた少なくとも1種の元素の化合物または活性炭をA成分、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、マンガン、コバルト、ニッケル、銅、錫、セリウム、インジウムおよび亜鉛よりなる群から選ばれた少なくとも1種の元素の金属および/または化合物をB成分とすると、本発明の固体触媒は、A成分を80〜99.95質量%、B成分を0.05〜20質量%含有するものである。   The solid catalyst according to the present invention comprises at least one element selected from the group consisting of gold, silver, platinum, palladium, rhodium, ruthenium, iridium, manganese, cobalt, nickel, copper, tin, cerium, indium and zinc. It contains a metal and / or compound and a compound of at least one element selected from the group consisting of iron, titanium and zirconium, or activated carbon. A compound of at least one element selected from the group consisting of iron, titanium, and zirconium or activated carbon is converted to A component, gold, silver, platinum, palladium, rhodium, ruthenium, iridium, manganese, cobalt, nickel, copper, tin, When the metal and / or compound of at least one element selected from the group consisting of cerium, indium and zinc is the B component, the solid catalyst of the present invention has an A component of 80 to 99.95% by mass and a B component of It contains 0.05 to 20% by mass.

A成分の含有量は、80〜99.95質量%であることが、触媒の耐久性および経済性の面から好ましい。B成分の含有量は、0.05〜20質量%であることが効果的であるが、0.1〜15質量%であることが好ましく、0.2〜10質量%であることがより好ましい。B成分の含有量が0.05質量%未満の場合は、触媒活性が不十分であり、20質量%を超える場合は、コストに見合った触媒性能が得られない。   The content of the component A is preferably 80 to 99.95% by mass from the viewpoint of durability and economical efficiency of the catalyst. The content of component B is effectively 0.05 to 20% by mass, preferably 0.1 to 15% by mass, and more preferably 0.2 to 10% by mass. . When the content of the component B is less than 0.05% by mass, the catalyst activity is insufficient, and when it exceeds 20% by mass, the catalyst performance corresponding to the cost cannot be obtained.

A成分としては、チタンと鉄および/またはジルコニウムとの酸化物(すなわち、チタンと鉄との酸化物、チタンとジルコニウムとの酸化物およびチタンと鉄とジルコニウムとの酸化物)、および鉄とジルコニウムとの酸化物を用いることが好ましい。チタンと鉄および/またはジルコニウムとの酸化物を用いる場合、A成分を100%とした場合、鉄の酸化物の含有量が10〜98質量%であることが好ましい。鉄の酸化物の含有量が98質量%を超える場合、触媒の耐久性が不十分となり、一方、鉄の酸化物の含有量が10質量%未満である場合には、触媒の耐久性が不十分となることがある。   As the component A, oxides of titanium and iron and / or zirconium (that is, oxides of titanium and iron, oxides of titanium and zirconium and oxides of titanium, iron and zirconium), and iron and zirconium It is preferable to use an oxide. When using an oxide of titanium and iron and / or zirconium, the content of the iron oxide is preferably 10 to 98% by mass when the component A is 100%. When the iron oxide content exceeds 98 mass%, the durability of the catalyst becomes insufficient. On the other hand, when the iron oxide content is less than 10 mass%, the durability of the catalyst is inadequate. May be sufficient.

B成分としては、白金、パラジウム、ロジウム、ルテニウム、イリジウム、マンガン、コバルト、ニッケル、銅、錫、セリウム、インジウムおよび亜鉛から選ばれる少なくとも1種の元素および/またはその化合物である。この中でも、白金、パラジウム、イリジウム、ルテニウムおよび銅から選ばれる少なくとも一種の元素の金属および/またはその化合物を用いることが好ましく、更に好ましくは、パラジウムの金属およびその化合物、またはパラジウムと白金および銅から選ばれる少なくとも一種の元素/またはその化合物とを組み合わせて用いることが好ましい。   The component B is at least one element selected from platinum, palladium, rhodium, ruthenium, iridium, manganese, cobalt, nickel, copper, tin, cerium, indium and zinc and / or a compound thereof. Among these, it is preferable to use a metal of at least one element selected from platinum, palladium, iridium, ruthenium and copper and / or a compound thereof, more preferably from a metal of palladium and a compound thereof, or palladium, platinum and copper. It is preferable to use a combination of at least one selected element / or a compound thereof.

本発明の方法においては、固体触媒と還元性物質とを適宜組み合わせることにより効果的に硝酸態窒素の窒素等への湿式還元を行うことができる。好適な組み合わせを以下に示す。
(1)
固体触媒:パラジウムおよび白金から選ばれる少なくとも1種の元素を鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒
還元性物質:ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸、シュウ酸塩(例えば、シュウ酸ナトリウム)、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種
(2)
固体触媒:パラジウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒
還元性物質:ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸およびシュウ酸塩(例えば、シュウ酸ナトリウム)から選ばれる少なくと1種
(3)
固体触媒:パラジウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒
還元性物質:ギ酸およびギ酸塩(例えば、ギ酸ナトリウム)から選ばれる少なくと1種
(4)
固体触媒:パラジウムおよび白金を鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒
還元性物質:メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくと1種
(5)
固体触媒:パラジウムおよび白金から選ばれる少なくとも1種の元素を活性炭に担持してなる固体触媒
還元性物質:ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸、シュウ酸塩(例えば、シュウ酸ナトリウム)、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種
(6)
固体触媒:パラジウムおよび白金から選ばれる少なくとも1種の元素と銅および鉄から選ばれる少なくとも1種の元素とを活性炭に担持してなる固体触媒
還元性物質:ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸、シュウ酸塩(例えば、シュウ酸ナトリウム)、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種
(7)
固体触媒:パラジウムおよび白金と銅または鉄とを活性炭に担持してなる固体触媒
還元性物質:メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種
(8)
固体触媒:パラジウムと銅または鉄とを活性炭に担持してなる固体触媒
還元性物質:ギ酸、ギ酸塩(例えば、ギ酸ナトリウム)、シュウ酸およびシュウ酸塩(例えば、シュウ酸ナトリウム)から選ばれる少なくとも1種
(9)
固体触媒:パラジウムと銅または鉄とを活性炭に担持してなる固体触媒
還元性物質:ギ酸およびギ酸塩(例えば、ギ酸ナトリウム)から選ばれる少なくとも1種
(10)
固体触媒:パラジウムおよびルテニウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物、または活性炭に担持してなる固体触媒
還元性物質:メタノール、エタノール、ギ酸、ギ酸塩、ホルムアルデヒド、ヒドラジンおよび水素ガスから選ばれる少なくとも1種
(11)
固体触媒:パラジウムおよびイリジウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物、または活性炭に担持してなる固体触媒
還元性物質:メタノール、エタノール、ギ酸、ギ酸塩、ホルムアルデヒド、ヒドラジンおよび水素ガスから選ばれる少なくとも1種
(12)
固体触媒:白金およびルテニウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物、または活性炭に担持してなる固体触媒
還元性物質:メタノール、エタノール、ギ酸、ギ酸塩、ホルムアルデヒド、ヒドラジンおよび水素ガスから選ばれる少なくとも1種
(13)
固体触媒:白金およびイリジウムを鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物、または活性炭に担持してなる固体触媒
還元性物質:メタノール、エタノール、ギ酸、ギ酸塩、ホルムアルデヒド、ヒドラジンおよび水素ガスから選ばれる少なくとも1種
上記の(1)〜(13)のなかでも、(2)、(4)、(7)および(12)が好ましい。
In the method of the present invention, wet reduction of nitrate nitrogen to nitrogen or the like can be effectively performed by appropriately combining a solid catalyst and a reducing substance. Suitable combinations are shown below.
(1)
Solid catalyst: Solid catalyst reducing substance formed by supporting at least one element selected from palladium and platinum on an oxide of at least one element selected from iron, titanium and zirconium: formic acid, formate (for example, formic acid Sodium), oxalic acid, oxalate (eg, sodium oxalate), at least one selected from methanol, ethanol and formaldehyde (2)
Solid catalyst: Solid catalyst reducing substance formed by supporting palladium on an oxide of at least one element selected from iron, titanium and zirconium: formic acid, formate (for example, sodium formate), oxalic acid and oxalate ( For example, at least one selected from sodium oxalate (3)
Solid catalyst: Solid catalyst reducing substance formed by supporting palladium on an oxide of at least one element selected from iron, titanium and zirconium: At least one selected from formic acid and formate (for example, sodium formate) ( 4)
Solid catalyst: Palladium and platinum supported on an oxide of at least one element selected from iron, titanium and zirconium. Solid catalyst reducing substance: At least one selected from methanol, ethanol and formaldehyde (5)
Solid catalyst: Solid catalyst reducing substance formed by supporting at least one element selected from palladium and platinum on activated carbon: Formic acid, formate (for example, sodium formate), oxalic acid, oxalate (for example, sodium oxalate) ), At least one selected from methanol, ethanol and formaldehyde (6)
Solid catalyst: At least one element selected from palladium and platinum and at least one element selected from copper and iron supported on activated carbon. Solid catalyst reducing substance: formic acid, formate (for example, sodium formate) , Oxalic acid, oxalate (for example, sodium oxalate), at least one selected from methanol, ethanol and formaldehyde (7)
Solid catalyst: Palladium and platinum and copper or iron supported on activated carbon. Solid catalyst reducing substance: at least one selected from methanol, ethanol and formaldehyde (8)
Solid catalyst: a solid catalyst reducing substance comprising palladium and copper or iron supported on activated carbon: at least selected from formic acid, formate (for example, sodium formate), oxalic acid and oxalate (for example, sodium oxalate) 1 type (9)
Solid catalyst: Solid catalyst reducing substance obtained by supporting palladium and copper or iron on activated carbon: At least one selected from formic acid and formate (for example, sodium formate) (10)
Solid catalyst: Palladium and ruthenium supported on oxide of at least one element selected from iron, titanium and zirconium, or solid catalyst reducing substance: methanol, ethanol, formic acid, formate, formaldehyde, hydrazine and At least one selected from hydrogen gas (11)
Solid catalyst: Palladium and iridium supported on an oxide of at least one element selected from iron, titanium and zirconium, or a solid catalyst reducing substance: methanol, ethanol, formic acid, formate, formaldehyde, hydrazine and At least one selected from hydrogen gas (12)
Solid catalyst: Platinum and ruthenium supported on oxide of at least one element selected from iron, titanium and zirconium, or solid catalyst reducing substance: methanol, ethanol, formic acid, formate, formaldehyde, hydrazine and At least one selected from hydrogen gas (13)
Solid catalyst: Platinum and iridium on an oxide of at least one element selected from iron, titanium and zirconium, or a solid catalyst reducing substance formed by supporting activated carbon: methanol, ethanol, formic acid, formate, formaldehyde, hydrazine and At least one selected from hydrogen gas Among the above (1) to (13), (2), (4), (7) and (12) are preferable.

本発明に係る固体触媒の形状としては、球状、ペレット状、ハニカム状、繊維状、破砕状等種々のものを採用することができる。球状、ペレット状、破砕状の触媒としては、平均粒径が好ましくは0.2〜10mm、より好ましくは0.3〜7mmである。平均粒径が0.2mm未満であると圧力損失が増大する恐れがあり、一方、平均粒径が10mmよりも大きい場合には十分な幾何学的表面積をとることができず、接触効率が低下して十分な処理能力が得られなくなる恐れがある。なお、本発明における平均粒径の定義は、一定方向に測定して得られる定方向径の平均値とする。   As the shape of the solid catalyst according to the present invention, various shapes such as a spherical shape, a pellet shape, a honeycomb shape, a fiber shape, and a crushed shape can be adopted. As a spherical, pellet-shaped or crushed catalyst, the average particle size is preferably 0.2 to 10 mm, more preferably 0.3 to 7 mm. If the average particle size is less than 0.2 mm, the pressure loss may increase. On the other hand, if the average particle size is larger than 10 mm, sufficient geometric surface area cannot be obtained and the contact efficiency is lowered. As a result, sufficient processing capacity may not be obtained. In addition, the definition of the average particle diameter in this invention is taken as the average value of the fixed direction diameter obtained by measuring in a fixed direction.

ハニカム状触媒の形状としては、貫通孔の相当直径が2〜20mm、セル肉厚が0.1〜3mmおよび開孔率が50〜90%の範囲が好ましく、貫通孔の相当直径が2.5〜15mm、セル肉厚が0.5〜3mmおよび開孔率が50〜90%の範囲内にあることがより好ましい。貫通孔の相当直径が2mm未満である場合には圧力損失が大きくなり、貫通孔の相当直径が20mmを越える場合には圧力損失が小さくなるが、接触率が低下して触媒活性が低くなる恐れがある。セル肉厚が0.1mm以下の場合には圧力損失が小さくなり、触媒を軽量化できるという利点があるが、触媒の機械的強度が低下する恐れがあり、セル肉厚が3mmを越える場合には機械的強度は十分であるが、触媒の有効接触面積が触媒量に対して小さくなってしまい、触媒量に応じた活性を期待することができない。開孔率についても上記と同様な理由から50〜90%が好ましい。   As the shape of the honeycomb-shaped catalyst, it is preferable that the equivalent diameter of the through holes is 2 to 20 mm, the cell thickness is 0.1 to 3 mm, and the open area ratio is 50 to 90%, and the equivalent diameter of the through holes is 2.5. More preferably, the thickness is ˜15 mm, the cell thickness is 0.5 to 3 mm, and the open area ratio is 50 to 90%. When the equivalent diameter of the through hole is less than 2 mm, the pressure loss increases, and when the equivalent diameter of the through hole exceeds 20 mm, the pressure loss decreases, but the contact rate may decrease and the catalytic activity may decrease. There is. When the cell thickness is 0.1 mm or less, there is an advantage that the pressure loss is reduced and the weight of the catalyst can be reduced. However, there is a possibility that the mechanical strength of the catalyst may be lowered, and when the cell thickness exceeds 3 mm. Although the mechanical strength is sufficient, the effective contact area of the catalyst becomes smaller than the amount of the catalyst, and the activity corresponding to the amount of the catalyst cannot be expected. The porosity is preferably 50 to 90% for the same reason as described above.

本発明に係る固体触媒のBET法比表面積は、触媒成分として活性炭以外の物質を用いる場合は、好ましくは5〜200m/g、より好ましくは10〜100m/gである。5m/g未満の場合には硝酸態窒素および還元剤と触媒との接触効率が低下し、触媒活性が低下する。更に、触媒成分として活性炭を用いる場合は、好ましくは100〜5,000m/g、より好ましくは500〜2,000m/gである。100m/g未満の場合には硝酸態窒素および還元剤と触媒との接触効率が低下し、触媒活性が低下する。 The BET specific surface area of the solid catalyst according to the present invention is preferably 5 to 200 m 2 / g, more preferably 10 to 100 m 2 / g when a substance other than activated carbon is used as the catalyst component. In the case of less than 5 m 2 / g, the contact efficiency between the nitrate nitrogen and the reducing agent and the catalyst is lowered, and the catalytic activity is lowered. Furthermore, in the case of using activated carbon as a catalyst component, preferably 100~5,000m 2 / g, more preferably 500~2,000m 2 / g. When it is less than 100 m 2 / g, the contact efficiency between the nitrate nitrogen and the reducing agent and the catalyst is lowered, and the catalytic activity is lowered.

本発明に係る固体触媒は、種々の触媒調製方法により作成することができ、特に限定されるものではないが、B成分の溶液をA成分からなるペレットに含浸することや、B成分の溶液をA成分からなる粉体と混練することによっても得ることができる。A成分のペレットは、各成分を共沈することにより得た粉体を成型することや、各成分を混練し、成型すること等により得ることができる。   The solid catalyst according to the present invention can be prepared by various catalyst preparation methods, and is not particularly limited. However, impregnation of the B component solution into pellets composed of the A component, It can also be obtained by kneading with a powder comprising the component A. The pellet of component A can be obtained by molding powder obtained by coprecipitation of each component, kneading and molding each component, or the like.

本発明に係る排水処理時の温度は、10℃以上100℃未満である。さらに好ましくは、50℃以上98℃未満である。排水処理時の温度が10℃未満の場合は、処理効率が不十分となり、一方、100℃を超えると還元性物質が熱により分解され、硝酸態窒素の還元に還元性物質が有効に使用できなくなる。   The temperature at the time of waste water treatment according to the present invention is 10 ° C. or more and less than 100 ° C. More preferably, it is 50 degreeC or more and less than 98 degreeC. When the temperature during wastewater treatment is less than 10 ° C, the treatment efficiency becomes insufficient. On the other hand, when the temperature exceeds 100 ° C, the reducing substance is decomposed by heat, and the reducing substance can be used effectively for the reduction of nitrate nitrogen. Disappear.

本発明に係わる排水処理時の圧力は、常圧下でも十分反応させることができるが、1MPaG(ゲージ)未満で反応すればよい。また、さらに好ましくは0.5MPaG未満、より好ましくは0.2MPaG未満である。1MPaG以上では還元性物質が硝酸態窒素の還元反応に有効に使用できなくなるだけではなく、装置コストも高くなるため好ましくない。   The pressure at the time of wastewater treatment according to the present invention can be sufficiently reacted even under normal pressure, but may be reacted at less than 1 MPaG (gauge). Further, it is more preferably less than 0.5 MPaG, more preferably less than 0.2 MPaG. If it is 1 MPaG or more, it is not preferable because the reducing substance cannot be effectively used for the reduction reaction of nitrate nitrogen, and the cost of the apparatus increases.

本発明における湿式還元処理は、実質的に酸素の非供給下で反応してもよいが、酸素が供給された条件で実施してもよい。これまでの100℃以上、液相を保持する圧力下の反応では、酸素存在下にて、還元性物質が完全酸化してしまうことが多く、還元性物質が硝酸態窒素の還元に使用されないことがあった。しかしながら、本発明のような温和な反応条件下では、例えば、メタノール、ホルムアルデヒド等は、酸化により中間生成物としてギ酸が生成することがあるため、酸素供給下においても還元処理を実施することが可能である。   The wet reduction treatment in the present invention may be carried out under substantially no supply of oxygen, but may be carried out under conditions in which oxygen is supplied. In the reaction under the pressure that maintains the liquid phase at 100 ° C. or higher, the reducing substance is often completely oxidized in the presence of oxygen, and the reducing substance is not used for the reduction of nitrate nitrogen. was there. However, under mild reaction conditions as in the present invention, for example, methanol, formaldehyde, and the like may form formic acid as an intermediate product by oxidation, so that reduction treatment can be performed even under oxygen supply. It is.

本発明における液の流通形式については、触媒層に対して上向流、下向流のいずれで流しても構わないが、触媒と液との接触時間を長くするためには、上向流で反応させることが好ましい。一方、気液を触媒層に通過させる場合においては、上向流、下向流のいずれで通過させてもよい。なお、常圧下で反応させる場合、液または気液を触媒層へ供給させるためには、少なくとも触媒層での圧損以上に加圧する必要はある。ただし、排水の処理が進行する反応場全体を高度に加圧する必要はない。すなわち、従来の排水処理技術では、反応場の出口に圧力制御弁等を設けて反応場全体を加圧していた。これに対し、本発明方法では、高度な加圧装置は必要でなく、反応場(図1の例でいえば「反応塔」)の出口を開放系で排水処理することができる。つまり、本発明に係る排水の処理方法における常圧とは、液および気液を反応場へ導入される前にかけられた圧力の影響による当該圧力の僅かな上昇も、常圧の範囲に含まれるものとする。   Regarding the flow mode of the liquid in the present invention, it may flow either upward or downward with respect to the catalyst layer, but in order to increase the contact time between the catalyst and the liquid, It is preferable to react. On the other hand, when the gas and liquid are passed through the catalyst layer, they may be passed either upward or downward. In addition, when making it react under a normal pressure, in order to supply a liquid or a gas-liquid to a catalyst layer, it is necessary to pressurize more than the pressure loss in a catalyst layer at least. However, it is not necessary to highly pressurize the entire reaction field where wastewater treatment proceeds. That is, in the conventional wastewater treatment technology, a pressure control valve or the like is provided at the outlet of the reaction field to pressurize the entire reaction field. On the other hand, in the method of the present invention, an advanced pressurizing apparatus is not required, and the outlet of the reaction field (“reaction tower” in the example of FIG. 1) can be drained in an open system. That is, the normal pressure in the wastewater treatment method according to the present invention includes a slight increase in the pressure due to the pressure applied before the liquid and gas-liquid are introduced into the reaction field. Shall.

本発明において使用する反応塔は、単管式または多管式のいずれの形式であってもよく、特に限定されるものではない。また、反応塔の設置方法については、1つの反応塔のみで反応してもよいし、直列に設置して連続的に処理してもよい。直列に設置した場合、一度処理した後の液に、更に、還元性物質を添加し後段の反応塔で処理させることも可能である。   The reaction column used in the present invention may be either a single tube type or a multi-tube type, and is not particularly limited. Moreover, about the installation method of a reaction tower, you may react by only one reaction tower, may install in series and may process continuously. When installed in series, it is also possible to add a reducing substance to the liquid after the treatment once and to treat it in the reaction tower at the subsequent stage.

本発明においては、還元処理後、アンモニア等が生成する。なお、生成したアンモニアを更に処理する必要がある場合、例えばストリッピング法、触媒を用いた湿式酸化法等により適宜処理することが可能である。例えば、ストリッピング法を用いる場合には、還元処理水中のアンモニア態窒素を加熱ガス等により気化させた後、触媒を用いて接触気相酸化分解により窒素等に分解することもできるほか、気化させたアンモニア態窒素含有ガスからアンモニアのみを分離回収することもできる。また、その他のアンモニア態窒素の処理方法としては、アンモニア態窒素を湿式酸化処理により窒素、水に分解することもできる。なお、これらの方法のうち、いずれの方法を採用するかは設備の設置条件、全窒素の処理目標値、還元処理水中のアンモニア態窒素濃度等を考慮し適宜決定することができる。   In the present invention, ammonia or the like is generated after the reduction treatment. In addition, when it is necessary to further process the produced ammonia, it can be appropriately processed by, for example, a stripping method, a wet oxidation method using a catalyst, or the like. For example, when the stripping method is used, ammonia nitrogen in the reduction water can be vaporized with a heated gas, etc., and then decomposed into nitrogen etc. by catalytic vapor phase oxidation decomposition using a catalyst. In addition, only ammonia can be separated and recovered from the ammonia nitrogen-containing gas. As another method for treating ammonia nitrogen, ammonia nitrogen can be decomposed into nitrogen and water by wet oxidation. Of these methods, which method is adopted can be appropriately determined in consideration of the installation conditions of the equipment, the treatment target value of total nitrogen, the concentration of ammonia nitrogen in the reduction treated water, and the like.

以下、本発明の具体的な実施例にかかる触媒の調製例と、それらの触媒を用いた実施例を詳細に説明するが、本発明はこれらに限定されるものではない。
(触媒1)
硫酸チタニルの硫酸水溶液および硝酸第2鉄を水に溶解させ、この溶液に炭酸ナトリウムを加えてpHを9とし、生成した沈澱物をろ過洗浄した。得られたケーキを150℃で一晩乾燥させ、さらに450℃で焼成した。得られた固形物はチタンおよび鉄を含む粉体で、TiO2とFe23との質量比に換算すると、蛍光X線法による分析でTiO2:Fe23=20:80であった。
Hereinafter, although the preparation example of the catalyst concerning the specific Example of this invention and the Example using those catalysts are demonstrated in detail, this invention is not limited to these.
(Catalyst 1)
A sulfuric acid aqueous solution of titanyl sulfate and ferric nitrate were dissolved in water, sodium carbonate was added to this solution to adjust the pH to 9, and the resulting precipitate was washed by filtration. The obtained cake was dried at 150 ° C. overnight and further baked at 450 ° C. The obtained solid was a powder containing titanium and iron. When converted to a mass ratio of TiO 2 and Fe 2 O 3 , the analysis by the fluorescent X-ray method showed TiO 2 : Fe 2 O 3 = 20: 80. It was.

かくして得られた粉体にデンプンを加え、さらに粉体1kgに対しパラジウムが1質量%になるように硝酸パラジウム水溶液を加え、よく混合した後、平均粒径4mm、平均長さ5mmのペレット状に成型した。その後、120℃で10時間乾燥、450℃で3時間焼成後、400℃で2時間水素還元を実施し、完成触媒を得た。
(触媒2)
触媒1で調整したTiO2:Fe23=20:80からなる焼成後の粉体に、デンプンを加えた、さらに粉体1kgに対し白金が1質量%になるように、ジニトロジアンミン硝酸白金水溶液を加え、よく混合した後、平均粒径4mm、平均長さ5mmのペレット状に成形した。その後、120℃で10時間乾燥、450℃で3時間焼成後、400℃で2時間水素還元を実施し、完成触媒を得た。
(触媒3)
触媒1で調整したTiO2:Fe23=20:80からなる焼成後の粉体に、デンプンを加えた、さらに粉体1kgに対し白金が0.5質量%、パラジウムが0.75質量%になるように、ジニトロジアンミン硝酸白金水溶液および硝酸パラジウム水溶液を加え、よく混合した後、平均粒径4mm、平均長さ5mmのペレット状に成形した。その後、120℃で10時間乾燥、450℃で3時間焼成後、400℃で2時間水素還元を実施し、完成触媒を得た。
(触媒4)
硝酸ジルコニルおよび硝酸第2鉄を水に溶解し、この溶液に炭酸ナトリウム水溶液を加えてpHを9とし、生成した沈澱物をろ過洗浄した。得られたケーキを120℃で一晩乾燥させ、さらに500℃で焼成した。得られた固形物はジルコニウムおよび鉄を含む粉体で、ZrO2とFe23との質量比に換算すると、蛍光X線法による分析ではZrO2:Fe23=30:70であった。
Starch is added to the powder thus obtained, and an aqueous palladium nitrate solution is added so that palladium is 1% by mass with respect to 1 kg of the powder. After mixing well, pellets having an average particle diameter of 4 mm and an average length of 5 mm are formed. Molded. Then, after drying at 120 ° C. for 10 hours and calcining at 450 ° C. for 3 hours, hydrogen reduction was carried out at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 2)
Starch is added to the calcined powder composed of TiO 2 : Fe 2 O 3 = 20: 80 prepared with catalyst 1, and platinum dinitrodiammine nitrate is added so that 1% by mass of platinum per 1 kg of the powder. After adding an aqueous solution and mixing well, it was formed into pellets having an average particle diameter of 4 mm and an average length of 5 mm. Then, after drying at 120 ° C. for 10 hours and calcining at 450 ° C. for 3 hours, hydrogen reduction was carried out at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 3)
Starch was added to the baked powder consisting of TiO 2 : Fe 2 O 3 = 20: 80 prepared with Catalyst 1, and 0.5% by mass of platinum and 0.75% by mass of palladium with respect to 1 kg of the powder. %, A dinitrodiammine platinum nitrate aqueous solution and a palladium nitrate aqueous solution were added and mixed well, and then formed into pellets having an average particle diameter of 4 mm and an average length of 5 mm. Then, after drying at 120 ° C. for 10 hours and calcining at 450 ° C. for 3 hours, hydrogen reduction was carried out at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 4)
Zirconyl nitrate and ferric nitrate were dissolved in water, an aqueous sodium carbonate solution was added to this solution to adjust the pH to 9, and the resulting precipitate was washed by filtration. The obtained cake was dried at 120 ° C. overnight and further baked at 500 ° C. The obtained solid was a powder containing zirconium and iron. When converted to a mass ratio of ZrO 2 and Fe 2 O 3 , ZrO 2 : Fe 2 O 3 = 30: 70 was found by analysis by the fluorescent X-ray method. It was.

得られた粉体にデンプンを加え、よく混合した後、平均粒径3mm、平均長さ4mmのペレット状に成型し、120℃で10時間乾燥後、450℃で4時間焼成した。   Starch was added to the obtained powder and mixed well, then formed into pellets having an average particle size of 3 mm and an average length of 4 mm, dried at 120 ° C. for 10 hours, and then fired at 450 ° C. for 4 hours.

得られたペレットに、ルテニウムが3質量%となるように硝酸ルテニウム水溶液を含浸し、150℃で10時間乾燥させた。その後、300℃で4時間焼成し、400℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒5)
触媒4で調製したZrO2:Fe23からなるペレットに、イリジウムが3質量%、白金が2質量%となるように塩化イリジウム溶液およびジニトロジアンミン白金溶液を同時に含浸し、120℃で10時間乾燥させた。その後、300℃で4時間焼成し、400℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒6)
平均粒径4mm、平均長さ6mmのペレット状のジルコニアに、金が2質量%になるように塩化金酸水溶液を含浸した。120℃で10時間乾燥後、300℃で4時間焼成し、完成触媒を得た。
(触媒7)
粒度が10〜32メッシュの破砕状の活性炭に、パラジウムが0.5質量%になるように硝酸パラジウム水溶液を含浸した。次に、窒素雰囲気下において300℃で4時間焼成し、その後400℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒8)
触媒7で使用した粒度が10〜32メッシュの破砕状の活性炭に、ルテニウムで1.0質量%になるように硝酸ルテニウム水溶液を含浸した。次に、窒素雰囲気下において300℃で4時間焼成し、その後400℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒9)
粒度が10〜32メッシュの破砕状の活性炭に、パラジウムが0.5質量%、銅が1質量%になるように、硝酸パラジウム水溶液および硝酸銅水溶液を含浸した。次に、窒素雰囲気下において300℃で4時間焼成し、その後400℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒10)
平均粒径4mm、平均長さ5mmの粒状活性炭に、白金が1質量%になるように、ヘキサアンミン白金テトラクロライド水溶液を含浸した。100℃で1晩乾燥後、窒素雰囲気下、500℃で2時間焼成し、その後、500℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒11)
平均粒径4mm、平均長さ5mmの粒状活性炭に、白金が0.5質量%、パラジウムが1質量%、銅が1質量%になるように、ジニトロジアンミン白金水溶液、硝酸パラジウム水溶液および硝酸銅水溶液を含浸した。100℃で1晩乾燥後、窒素雰囲気下、500℃で2時間焼成し、その後、500℃で2時間水素還元処理を実施し、完成触媒を得た。
(触媒12〜15)
触媒1に準じた方法により下記成分を含有する触媒を調製した。
The obtained pellets were impregnated with an aqueous ruthenium nitrate solution so that the content of ruthenium was 3% by mass, and dried at 150 ° C. for 10 hours. Then, it baked at 300 degreeC for 4 hours, and implemented hydrogen reduction process at 400 degreeC for 2 hours, and obtained the completed catalyst.
(Catalyst 5)
The pellet made of ZrO 2 : Fe 2 O 3 prepared with catalyst 4 was impregnated with an iridium chloride solution and a dinitrodiammine platinum solution so that iridium was 3% by mass and platinum was 2% by mass, and the resulting mixture was 120 ° C. for 10 hours. Dried. Then, it baked at 300 degreeC for 4 hours, and implemented hydrogen reduction process at 400 degreeC for 2 hours, and obtained the completed catalyst.
(Catalyst 6)
A pelleted zirconia having an average particle diameter of 4 mm and an average length of 6 mm was impregnated with an aqueous chloroauric acid solution so that the gold content was 2 mass%. After drying at 120 ° C. for 10 hours and calcining at 300 ° C. for 4 hours, a finished catalyst was obtained.
(Catalyst 7)
A pulverized activated carbon having a particle size of 10 to 32 mesh was impregnated with an aqueous palladium nitrate solution so that the palladium content was 0.5 mass%. Next, it was calcined at 300 ° C. for 4 hours in a nitrogen atmosphere, and then subjected to hydrogen reduction treatment at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 8)
Crushed activated carbon having a particle size of 10 to 32 mesh used in Catalyst 7 was impregnated with ruthenium nitrate aqueous solution so as to be 1.0% by mass with ruthenium. Next, it was calcined at 300 ° C. for 4 hours in a nitrogen atmosphere, and then subjected to hydrogen reduction treatment at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 9)
A pulverized activated carbon having a particle size of 10 to 32 mesh was impregnated with an aqueous palladium nitrate solution and an aqueous copper nitrate solution so that palladium was 0.5 mass% and copper was 1 mass%. Next, it was calcined at 300 ° C. for 4 hours in a nitrogen atmosphere, and then subjected to hydrogen reduction treatment at 400 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 10)
A granular activated carbon having an average particle diameter of 4 mm and an average length of 5 mm was impregnated with an aqueous hexaammine platinum tetrachloride solution so that platinum was 1% by mass. After drying at 100 ° C. overnight, it was calcined at 500 ° C. for 2 hours in a nitrogen atmosphere, and then subjected to hydrogen reduction treatment at 500 ° C. for 2 hours to obtain a finished catalyst.
(Catalyst 11)
Dinitrodiammine platinum aqueous solution, palladium nitrate aqueous solution and copper nitrate aqueous solution so that the granular activated carbon having an average particle diameter of 4 mm and an average length of 5 mm has a platinum content of 0.5 mass%, a palladium content of 1 mass% and a copper content of 1 mass%. Impregnated. After drying at 100 ° C. overnight, it was calcined at 500 ° C. for 2 hours in a nitrogen atmosphere, and then subjected to hydrogen reduction treatment at 500 ° C. for 2 hours to obtain a finished catalyst.
(Catalysts 12-15)
A catalyst containing the following components was prepared by a method according to Catalyst 1.

Figure 2005095784
Figure 2005095784

実施例1〜6
図1に示す湿式還元処理装置により、硝酸態窒素を含む排水として硝酸アンモニウム1質量%の排水を以下のような方法で処理した。排水タンク1中で、還元性物質としてギ酸ソーダを表1に示す規定比になるように排水に添加した。還元性物質添加後の排水を排水用定量ポンプ2を用いて、液空間速度(触媒容積基準)0.5hr−1で装置内に供給した。排水を熱交換器3で予熱後、表2に示す触媒10リットルを充填した反応塔4へ導入した。反応塔中の排水をヒーターによりさらに加熱し、90℃となるように温度に保ち、反応塔を通過した処理水を熱交換器3により冷却した。系内の圧力は常圧となるようにした。
Examples 1-6
With the wet reduction treatment apparatus shown in FIG. 1, wastewater containing 1% by mass of ammonium nitrate was treated by the following method as wastewater containing nitrate nitrogen. In the wastewater tank 1, sodium formate was added to the wastewater so as to have the specified ratio shown in Table 1 as a reducing substance. The waste water after the addition of the reducing substance was supplied into the apparatus at a liquid space velocity (catalyst volume standard) of 0.5 hr −1 using the drainage quantitative pump 2. The waste water was preheated by the heat exchanger 3 and then introduced into the reaction tower 4 filled with 10 liters of the catalyst shown in Table 2. The waste water in the reaction tower was further heated by a heater and maintained at a temperature of 90 ° C., and the treated water that passed through the reaction tower was cooled by the heat exchanger 3. The pressure in the system was set to normal pressure.

得られた処理水の硝酸態窒素(NO −N)、アンモニア態窒素(NH −N)および全窒素の濃度を求め、硝酸態窒素除去率および窒素ガスへの選択率を下記式に従って求めた。
硝酸態窒素除去率(%)=(処理前の排水中の硝酸態窒素濃度−処理水の硝酸態窒素濃度)/(処理前の排水中の硝酸態窒素濃度)(×100)
窒素ガスへの選択率(%)=[1−{(処理水の全窒素濃度−処理水の硝酸態窒素濃度)/(処理前の排水中の硝酸態窒素濃度−処理水の硝酸態窒素濃度)}]×100
実施例7〜9
表2に示す触媒を使用し、硝酸ナトリウム2質量%を含有する排水を処理した。実施例1に準じた方法にて、表2の条件で処理テストを実施した。
実施例10〜15
表2に示す触媒を使用し、還元性物質として実施例1のギ酸ソーダの代わりに、メタノールを使用した。実施例1と同様の処理装置を用いて、常圧、反応温度90℃の条件で、表2に示すLHSV、規定比で処理を実施した。得られた処理水の硝酸態窒素(NO −N)、アンモニア態窒素(NH −N)および全窒素の濃度を求め、硝酸態窒素除去率および窒素ガスへの選択率を求めた。結果を表2に示す。
実施例16
硝酸ナトリウム2質量%の排水を、触媒1を使用して、還元性物質としてホルムアルデヒドを規定比2.0になる量で排水に添加し、LHSV 0.5hr−1で処理した以外は実施例1と同様の装置、同様の条件にて処理を行った。得られた処理水の硝酸態の除去率および窒素ガスへの選択率を表2に示す。
実施例17、18
硝酸ナトリウム質量%の排水を、還元性物質としてメタノールを規定比3.0になる量で排水に添加した。液の供給量がLHSV0.5hr−1となるようにして反応塔の上部より供給し、常圧の条件下、反応温度は90℃の条件下、触媒1(実施例17)または触媒3(実施例18)を使用して湿式還元を実施した。得られた処理水の硝酸態窒素(NO −N)、アンモニア態窒素(NH −N)および全窒素の濃度を求め、硝酸態窒素除去率および窒素ガスへの選択率を求めた。結果を表2に示す。
比較例1
触媒を用いなかった以外は、実施例1と同様の条件で処理を行った。硝酸態窒素の除去率は3%であり、触媒を使用したときと比較して、硝酸態窒素は除去されなかった。結果を表2に示す。
比較例2
還元性物質を添加しなかった以外は実施例1と同様の条件で処理を行った。そのときの硝酸態窒素の除去率は5%であった。結果を表2に示す。
比較例3
実施例1と同じ触媒、還元性物質を使用し250℃、7MPaGの条件下に表2に示すLHSV、規定比で処理を行った。90℃のときと比較して硝酸態窒素除去率は低下した。
The concentration of nitrate nitrogen (NO 3 —N), ammonia nitrogen (NH 4 + —N) and total nitrogen obtained in the treated water was determined, and the nitrate nitrogen removal rate and the selectivity to nitrogen gas were expressed by the following formula: Sought according to.
Nitrate nitrogen removal rate (%) = (nitrate nitrogen concentration in waste water before treatment−nitrate nitrogen concentration in treated water) / (nitrate nitrogen concentration in waste water before treatment) (× 100)
Selectivity to nitrogen gas (%) = [1-{(total nitrogen concentration of treated water−nitrate nitrogen concentration of treated water) / (nitrate nitrogen concentration in waste water before treatment−nitrate nitrogen concentration of treated water) )}] × 100
Examples 7-9
Using the catalyst shown in Table 2, wastewater containing 2% by mass of sodium nitrate was treated. A processing test was performed under the conditions shown in Table 2 by the method according to Example 1.
Examples 10-15
The catalysts shown in Table 2 were used, and methanol was used in place of the sodium formate of Example 1 as the reducing substance. Using the same processing apparatus as in Example 1, the treatment was carried out under the conditions of normal pressure and reaction temperature of 90 ° C., with LHSV and specified ratio shown in Table 2. The obtained treated water of nitrate nitrogen (NO 3 - -N), determine the concentration of ammonia nitrogen (NH 4 + -N) and total nitrogen were determined selectivity to nitrate nitrogen removal ratio and a nitrogen gas . The results are shown in Table 2.
Example 16
Example 1 except that wastewater containing 2% by mass of sodium nitrate was added to the wastewater in an amount to give a specified ratio of 2.0 as a reducing substance using the catalyst 1, and treated with LHSV 0.5hr - 1. The process was performed under the same apparatus and the same conditions. Table 2 shows the nitrate removal rate of the treated water and the selectivity to nitrogen gas.
Examples 17 and 18
The waste water of sodium nitrate mass% was added to the waste water in an amount of methanol as the reducible substance to a specified ratio of 3.0. The liquid was supplied from the top of the reaction column so that the amount of LHSV was 0.5 hr −1, and the catalyst 1 (Example 17) or the catalyst 3 (implementation) was performed under conditions of normal pressure and reaction temperature of 90 ° C. Wet reduction was carried out using Example 18). The obtained treated water of nitrate nitrogen (NO 3 - -N), determine the concentration of ammonia nitrogen (NH 4 + -N) and total nitrogen were determined selectivity to nitrate nitrogen removal ratio and a nitrogen gas . The results are shown in Table 2.
Comparative Example 1
The treatment was performed under the same conditions as in Example 1 except that the catalyst was not used. The removal rate of nitrate nitrogen was 3%, and nitrate nitrogen was not removed as compared with the case of using a catalyst. The results are shown in Table 2.
Comparative Example 2
The treatment was performed under the same conditions as in Example 1 except that no reducing substance was added. The removal rate of nitrate nitrogen at that time was 5%. The results are shown in Table 2.
Comparative Example 3
The same catalyst and reducing substance as in Example 1 were used, and the treatment was carried out under the conditions of 250 ° C. and 7 MPaG with the LHSV and specified ratio shown in Table 2. Compared with the case of 90 ° C., the nitrate nitrogen removal rate decreased.

Figure 2005095784
Figure 2005095784

表2において、Ti−Fe、Fe−Zrとは、それぞれ、チタンと鉄との酸化物および鉄とジルコニウムとの酸化物を意味する。   In Table 2, Ti-Fe and Fe-Zr mean an oxide of titanium and iron and an oxide of iron and zirconium, respectively.

本発明の方法の一実施態様を示す系統図である。It is a systematic diagram which shows one embodiment of the method of this invention.

符号の説明Explanation of symbols

1.排水タンク
2.排水用定量ポンプ
3.熱交換器
4.反応塔
1. Drain tank 2. 2. Metering pump for drainage Heat exchanger 4. Reaction tower

Claims (4)

硝酸態窒素を含有する排水を還元性物質の存在下に固体触媒と接触させて硝酸態窒素を窒素等に湿式還元して浄化する方法において、100℃未満の温度において反応させることを特徴とする硝酸態窒素含有排水の浄化方法。 In a method of purifying wastewater containing nitrate nitrogen by bringing it into contact with a solid catalyst in the presence of a reducing substance and wet reducing nitrate nitrogen to nitrogen or the like, the reaction is performed at a temperature of less than 100 ° C. Purification method for wastewater containing nitrate nitrogen. 固体触媒として、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、マンガン、コバルト、ニッケル、銅、錫、セリウム、インジウムおよび亜鉛から選ばれる少なくとも1種の元素の金属および/または化合物を、鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の化合物、または活性炭に担持してなる固体触媒を、また還元性物質として、アルコール類、有機酸類、アルデヒド類、ケトン類、無機硫黄化合物類、窒素化合物、フェノール類および水素から選ばれる少なくとも1種を用いる請求項1記載の硝酸態窒素含有排水の浄化方法。 As a solid catalyst, a metal and / or compound of at least one element selected from gold, silver, platinum, palladium, rhodium, ruthenium, iridium, manganese, cobalt, nickel, copper, tin, cerium, indium and zinc, iron , A compound of at least one element selected from titanium and zirconium, or a solid catalyst supported on activated carbon, and as a reducing substance, alcohols, organic acids, aldehydes, ketones, inorganic sulfur compounds, nitrogen The method for purifying nitrate nitrogen-containing wastewater according to claim 1, wherein at least one selected from a compound, phenols and hydrogen is used. 固体触媒として、パラジウムおよび白金から選ばれる少なくとも1種の元素を鉄、チタンおよびジルコニウムから選ばれる少なくとも1種の元素の酸化物に担持してなる固体触媒を、また還元性物質として、ギ酸、ギ酸塩、シュウ酸、シュウ酸塩、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種を用いる請求項2記載の硝酸態窒素含有排水の浄化方法。 A solid catalyst obtained by supporting at least one element selected from palladium and platinum on an oxide of at least one element selected from iron, titanium and zirconium as a solid catalyst, and formic acid and formic acid as reducing substances The method for purifying nitrate nitrogen-containing wastewater according to claim 2, wherein at least one selected from salt, oxalic acid, oxalate, methanol, ethanol and formaldehyde is used. 固体触媒として、パラジウムおよび白金から選ばれる少なくとも1種の元素と銅および鉄から選ばれる少なくとも1種の元素とを活性炭に担持してなる固体触媒を、また還元性物質として、ギ酸、ギ酸塩、シュウ酸、シュウ酸塩、メタノール、エタノールおよびホルムアルデヒドから選ばれる少なくとも1種を用いる請求項2記載の硝酸態窒素含有排水の浄化方法。

As the solid catalyst, a solid catalyst obtained by supporting at least one element selected from palladium and platinum and at least one element selected from copper and iron on activated carbon, and as a reducing substance, formic acid, formate, The method for purifying nitrate nitrogen-containing wastewater according to claim 2, wherein at least one selected from oxalic acid, oxalate, methanol, ethanol and formaldehyde is used.

JP2003333281A 2003-09-25 2003-09-25 Cleaning method of nitrate nitrogen-containing wastewater Pending JP2005095784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333281A JP2005095784A (en) 2003-09-25 2003-09-25 Cleaning method of nitrate nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333281A JP2005095784A (en) 2003-09-25 2003-09-25 Cleaning method of nitrate nitrogen-containing wastewater

Publications (1)

Publication Number Publication Date
JP2005095784A true JP2005095784A (en) 2005-04-14

Family

ID=34461325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333281A Pending JP2005095784A (en) 2003-09-25 2003-09-25 Cleaning method of nitrate nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP2005095784A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023522A (en) * 2006-06-20 2008-02-07 Jgc Corp Method and apparatus for treating aqueous solution of sodium nitrate
JP2009183902A (en) * 2008-02-07 2009-08-20 Sud-Chemie Catalysts Inc Treatment method of nitrate nitrogen-containing water
JP2010149050A (en) * 2008-12-25 2010-07-08 Sud-Chemie Catalysts Inc Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst
JP2013170983A (en) * 2012-02-22 2013-09-02 Japan Atomic Energy Agency Nitrogen ion reduction method
CN118892828A (en) * 2024-07-17 2024-11-05 华中师范大学 A catalytic reaction filter membrane and its preparation method and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023522A (en) * 2006-06-20 2008-02-07 Jgc Corp Method and apparatus for treating aqueous solution of sodium nitrate
JP2009183902A (en) * 2008-02-07 2009-08-20 Sud-Chemie Catalysts Inc Treatment method of nitrate nitrogen-containing water
JP2010149050A (en) * 2008-12-25 2010-07-08 Sud-Chemie Catalysts Inc Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst
JP2013170983A (en) * 2012-02-22 2013-09-02 Japan Atomic Energy Agency Nitrogen ion reduction method
CN118892828A (en) * 2024-07-17 2024-11-05 华中师范大学 A catalytic reaction filter membrane and its preparation method and application

Similar Documents

Publication Publication Date Title
US5122496A (en) Catalyst for removing the nitrite and/or nitrate content in water
EP1116694A2 (en) Catalyst for treating waste water, method for preparing the same and process for treating waste water
CN1655870A (en) Fischer-Tropsch catalyst prepared with high-purity iron precursor
JP4895215B2 (en) Method for treating wastewater containing inorganic sulfur compounds
KR101404597B1 (en) Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst
JP2005095784A (en) Cleaning method of nitrate nitrogen-containing wastewater
JP2004105831A (en) Method of treating waste water
Massa et al. Catalyst systems for the oxidation of phenol in water
JP3252696B2 (en) Purification method of exhaust gas containing oxidizable nitrogen compound
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
Hung et al. Catalytic wet oxidation of ammonia solution: activity of the copper–lanthanum–cerium composite catalyst
JP3374010B2 (en) Treatment method for wastewater containing nitrate nitrogen
CN114011426B (en) Ozone oxidation catalyst for wastewater treatment and application method thereof
CN109796073A (en) Nitrogen-containing wastewater processing method
JP4703227B2 (en) Wastewater treatment method
JP2002079091A (en) Catalyst for treating wastewater and wastewataer treatment method using the same
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP2002079092A (en) Catalyst for treating wastewater and wastewtaer treatment method using the same
JPH11300374A (en) Treatment of waste water
JPH07328654A (en) Treatment of ammoniacal nitrogen-containing waste water
JP3226565B2 (en) Wastewater treatment method
JP2008207102A (en) Wastewater treatment method
JPH0910602A (en) Method for regenerating catalyst for wet oxidation treatment
CN106582705B (en) Multiphase wet oxidation catalyst
WO2003028887A1 (en) Catalytic systems and process for treatment of industrial process and waste streams

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014