[go: up one dir, main page]

JP2005090901A - Energy supply system that effectively uses waste - Google Patents

Energy supply system that effectively uses waste Download PDF

Info

Publication number
JP2005090901A
JP2005090901A JP2003327072A JP2003327072A JP2005090901A JP 2005090901 A JP2005090901 A JP 2005090901A JP 2003327072 A JP2003327072 A JP 2003327072A JP 2003327072 A JP2003327072 A JP 2003327072A JP 2005090901 A JP2005090901 A JP 2005090901A
Authority
JP
Japan
Prior art keywords
waste
boiler
exhaust gas
supply system
prime mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003327072A
Other languages
Japanese (ja)
Other versions
JP4037812B2 (en
Inventor
Minoru Nakayasu
稔 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003327072A priority Critical patent/JP4037812B2/en
Publication of JP2005090901A publication Critical patent/JP2005090901A/en
Application granted granted Critical
Publication of JP4037812B2 publication Critical patent/JP4037812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】 廃棄物をボイラ用燃料として有効利用できるのみならず、廃棄物を乾燥処理した際の排ガスを廃棄物ボイラの燃焼用エアとして有効利用することで、さらに熱効率を向上させることができるエネルギ供給システムを提供する。
【解決手段】 廃棄物M1を有効利用するエネルギ供給システムであって、動力を発生する原動機1と、前記原動機1の排ガスを熱源として蒸気を発生する排熱ボイラ2と、前記排ガスを熱源として廃棄物M1を乾燥させる乾燥装置3と、乾燥された廃棄物M2を燃料とする廃棄物燃焼ボイラ4とを備えている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide energy that can not only effectively use waste as a fuel for boilers but also can further improve thermal efficiency by effectively using exhaust gas generated when drying waste as combustion air for waste boilers Provide a supply system.
An energy supply system that effectively uses waste M1, a prime mover 1 that generates power, a waste heat boiler 2 that generates steam using the exhaust gas of the prime mover 1 as a heat source, and a waste that uses the exhaust gas as a heat source A drying apparatus 3 for drying the product M1 and a waste combustion boiler 4 using the dried waste M2 as fuel are provided.
[Selection] Figure 1

Description

本発明は、例えば食品工場などで残さ物として大量に出るコーヒ豆の滓、茶殻などの食品製造副産物や、下水処理場の汚泥のような廃棄物をボイラ用燃料などの資源として有効利用するエネルギ供給システムに関する。   The present invention is an energy that effectively uses wastes such as food production by-products such as coffee beans and tea husk that are produced in large quantities as a residue in food factories and sludge from sewage treatment plants as resources for boiler fuel. Regarding the supply system.

コーヒ飲料や日本茶、ウーロン茶などの茶飲料の飲料メーカーでは、コーヒ豆の滓や茶殻などの残さ物が食品製造副産物として大量に発生する。これらの食品製造副産物は、これまでは資源として有効利用されることなく、その多くが一般産業廃棄物として焼却処分されたり、あるいは焼却減量化したうえで埋め立て処分されていた。しかし、前記食品製造副産物は、その性質上多量の水分を含んでいてその取扱が必ずしも容易ではないことから、取扱性の向上およびその有効利用が望まれていた。   Coffee beverage manufacturers such as coffee, Japanese tea, and oolong tea produce large amounts of residue such as coffee beans and tea leaves as food by-products. Until now, these food production by-products have not been effectively used as resources, and many of them have been incinerated as general industrial waste or disposed of in landfill after incineration reduction. However, the food production by-product contains a large amount of moisture and is not always easy to handle. Therefore, it has been desired to improve the handleability and effectively use it.

このような課題に応える関連技術として、例えば次のような先行技術1,2がある。先行技術1では、売れ残り食品のような食品廃棄物をコージェネレーションシステムの排熱ボイラを出た排ガスの熱を利用した温水により乾燥して減量化し、あるいは減量化したものを飼料等に利用する(特許文献1参照)。   For example, there are the following prior arts 1 and 2 as related techniques for meeting such a problem. In Prior Art 1, food waste such as unsold foods is dried with hot water using the heat of the exhaust gas from the exhaust heat boiler of the cogeneration system to reduce the amount, or the reduced amount is used as feed ( Patent Document 1).

また、先行技術2は、都市ごみ、下水汚泥、産業廃棄物、畜産廃棄物などの各種廃棄物の乾燥処理に関し、その乾燥熱源としてコージェネレーションシステムの排熱ボイラから排出される高温の排ガスを利用しようというものである。これにより、廃棄物の乾燥に要する燃料代を削減できるとしている(特許文献2参照)。
特開2001−321740号公報 特開2002−276915号公報
Prior art 2 relates to the drying treatment of various wastes such as municipal waste, sewage sludge, industrial waste, livestock waste, etc., and uses high-temperature exhaust gas discharged from the exhaust heat boiler of the cogeneration system as the drying heat source. It is to try. As a result, the fuel cost required for drying the waste can be reduced (see Patent Document 2).
JP 2001-321740 A JP 2002-276915 A

ところが前記先行技術1の場合、乾燥処理された製品は、飼料として利用できる可能性があるものの、ボイラ用燃料としての使用は想定されていない。また、温水での食品乾燥のため、温水熱交換器出口の排ガスが有効利用されない。   However, in the case of the prior art 1, the dried product is not expected to be used as boiler fuel, although it may be used as feed. Moreover, since the food is dried with warm water, the exhaust gas at the outlet of the warm water heat exchanger is not effectively used.

前記先行技術2の場合も、先行技術1と同様、乾燥処理された製品は、ボイラ用燃料としての使用が想定されていない。また、乾燥装置出口の約150℃の排ガスが有効利用されない。   In the case of the prior art 2, as in the prior art 1, the dried product is not assumed to be used as boiler fuel. Also, the exhaust gas at about 150 ° C. at the outlet of the drying device is not effectively used.

そこで、本発明は、排熱ボイラを出た排ガスの熱を利用して廃棄物を乾燥させたのち、廃棄物燃焼ボイラ用の燃料として有効利用できるエネルギ供給システムを提供することを目的とする。   Then, an object of this invention is to provide the energy supply system which can be effectively utilized as a fuel for waste combustion boilers, after drying waste using the heat | fever of the waste gas which came out of the exhaust heat boiler.

上記目的を達成するため、本発明の一構成に係る廃棄物を有効利用するエネルギ供給システムは、動力を発生する原動機と、前記原動機の排ガスを熱源として蒸気を発生する排熱ボイラと、前記排熱ボイラを出た排ガスを熱源として廃棄物を乾燥させる乾燥装置と、乾燥された廃棄物を燃料とする廃棄物燃焼ボイラとを備えている。ここで、前記生産副産物とは、例えば茶殻やコーヒ豆の滓などの食品製造残さ物、豆腐製造時に出るおから、および各種缶詰工場から発生する魚介類や野菜果実の屑など、食品工場から出る食品廃棄物を含み、さらに下水処理場の汚泥など、水分を多く含有する産業または生活廃棄物も含む。   In order to achieve the above object, an energy supply system that effectively uses waste according to one configuration of the present invention includes a prime mover that generates power, a waste heat boiler that generates steam using the exhaust gas of the prime mover as a heat source, and the exhaust gas. The apparatus includes a drying device that dries waste using the exhaust gas discharged from the heat boiler as a heat source, and a waste combustion boiler that uses the dried waste as fuel. Here, the production by-products come from food factories, such as food manufacturing residues such as tea husk and coffee beans, okara from tofu production, and seafood and vegetable fruit scraps generated from various canning factories. It includes food waste, and also includes industrial or domestic waste that contains a lot of water, such as sludge from sewage treatment plants.

この構成によれば、従来大気中へ排出していた排熱ボイラ出口からの比較的高温(例えば約150℃)の排ガスは乾燥装置に導かれ、水分を多く含む廃棄物の乾燥処理に有効利用される。乾燥された廃棄物は、燃料として廃棄物燃焼ボイラで有効利用される。これにより、廃棄物燃焼ボイラに付設されるボイラ用バーナで使用する燃料を削減することができる。このように、前記原動機出口の高温排ガスは、無駄なく有効利用され、かつ乾燥処理した廃棄物も廃棄物燃焼ボイラにて燃料として有効に利用されるので、システム全体として熱効率が向上する。前記廃棄物のうちの食品廃棄物は、炭素(C)成分が多いために発熱量が大きく、しかも重金属を殆ど含まないため、排気による環境汚染の問題も少ないので、燃料として優れている。   According to this configuration, the exhaust gas at a relatively high temperature (for example, about 150 ° C.) from the outlet of the exhaust heat boiler that has been exhausted to the atmosphere in the past is led to the drying device, and is effectively used for the drying treatment of waste containing a lot of moisture. Is done. The dried waste is effectively used as a fuel in a waste combustion boiler. Thereby, the fuel used with the boiler burner attached to a waste combustion boiler can be reduced. Thus, the high-temperature exhaust gas at the prime mover outlet is effectively used without waste, and the waste that has been dried is also effectively used as fuel in the waste combustion boiler, so that the thermal efficiency of the entire system is improved. Among the wastes, food waste is excellent as a fuel because it has a large amount of carbon (C) and generates a large amount of heat, and hardly contains heavy metals, so there are few problems of environmental pollution due to exhaust.

本発明の好ましい実施形態では、前記乾燥装置を通った後の排ガスが前記廃棄物燃焼ボイラに燃焼用空気として供給される。   In a preferred embodiment of the present invention, the exhaust gas after passing through the drying device is supplied to the waste combustion boiler as combustion air.

この構成によれば、前記乾燥装置を通った後の排ガスは、未だ温度も高く(例えば約80℃程度)、通常、残存空気を13〜16%程度含むために、燃焼用空気としての価値は高いので、これを廃棄物燃焼ボイラにおいて燃焼用空気として利用することで、前記廃棄物燃焼ボイラに付設されるバーナでの助燃用燃料をさらに削減することができる。また、前記乾燥装置での乾燥処理により排ガス中に臭気が含まれていても、この臭気成分は前記廃棄物燃焼ボイラでの高温燃焼により熱分解して低減させることができ、周辺環境への臭気汚染のおそれもない。   According to this configuration, the exhaust gas after passing through the drying device is still high in temperature (for example, about 80 ° C.), and usually contains about 13 to 16% of residual air. Since this is high, by using this as combustion air in the waste combustion boiler, it is possible to further reduce the auxiliary combustion fuel in the burner attached to the waste combustion boiler. Moreover, even if odor is contained in the exhaust gas by the drying treatment in the drying device, the odor component can be thermally decomposed and reduced by high-temperature combustion in the waste combustion boiler, and odor to the surrounding environment. There is no risk of contamination.

本発明の好ましい実施形態では、さらに、前記廃棄物燃焼ボイラで発生した蒸気により駆動される蒸気タービンを備えている。   In a preferred embodiment of the present invention, a steam turbine driven by steam generated in the waste combustion boiler is further provided.

この構成によれば、前記蒸気タービンによって、例えば発電機を駆動するような方法により、廃棄物燃焼ボイラで発生した蒸気を有効利用できるので、エネルギー効率が高くなる。   According to this configuration, since the steam generated in the waste combustion boiler can be effectively used by the steam turbine, for example, by a method of driving a generator, energy efficiency is increased.

本発明の好ましい実施形態では、前記原動機がガスタービンであり、前記廃棄物燃焼ボイラで発生した蒸気がガスタービンの燃焼器に供給される。   In a preferred embodiment of the present invention, the prime mover is a gas turbine, and steam generated in the waste combustion boiler is supplied to a combustor of the gas turbine.

この構成によれば、ガスタービンの燃焼器に対し、外部の蒸気発生手段で発生させた蒸気ではなく、前記廃棄物燃焼ボイラで発生した蒸気をそのまま供給するので、ガスタービンの出力および熱効率を効果的に向上させることができる。   According to this configuration, the steam generated in the waste combustion boiler is supplied to the combustor of the gas turbine as it is, not the steam generated by the external steam generating means, so that the output and thermal efficiency of the gas turbine are effective. Can be improved.

本発明の好ましい実施形態では、前記乾燥装置から排出される臭気成分を含んだ乾燥排気が前記原動機に吸気として供給される。   In a preferred embodiment of the present invention, dry exhaust gas containing odor components discharged from the drying device is supplied to the prime mover as intake air.

この構成によれば、前記乾燥装置から排出される臭気成分を含んだ乾燥排気は、残存空気を少なくとも約13〜16%程度含むので、これを吸気として原動機で利用することで、原動機への吸入空気量を少なくし、かつ前記臭気成分の熱分解によって周辺環境への臭気対策も図れる。既に脱臭装置が設置されている場合は、原動機での処理により、脱臭装置での脱臭用燃料の削減が可能となる。   According to this configuration, the dry exhaust gas containing the odor component discharged from the drying device includes at least about 13 to 16% of the remaining air. Therefore, when this is used as the intake air in the prime mover, the intake to the prime mover is performed. The amount of air can be reduced and odor countermeasures to the surrounding environment can be achieved by thermal decomposition of the odor components. In the case where a deodorizing device is already installed, it is possible to reduce the fuel for deodorization in the deodorizing device by the processing in the prime mover.

本発明の好ましい実施形態では、さらに前記原動機により駆動される第1発電機を備えている。   In a preferred embodiment of the present invention, a first generator driven by the prime mover is further provided.

この構成によれば、前記原動機からの排熱を廃棄物の乾燥処理に利用し、乾燥した前記廃棄物を廃棄物燃焼ボイラで燃料として有効利用して蒸気を生成するのに加え、前記原動機により第1発電機を駆動するので、総合効率の高いエネルギ供給システムが得られる。   According to this configuration, waste heat from the prime mover is used for waste drying treatment, and the dried waste is effectively used as fuel in a waste combustion boiler to generate steam, and by the prime mover, Since the first generator is driven, an energy supply system with high overall efficiency can be obtained.

本発明の好ましい実施形態では、さらに前記蒸気タービンにより駆動される第2発電機を備えている。   In a preferred embodiment of the present invention, a second generator driven by the steam turbine is further provided.

この構成によれば、前記原動機により駆動される第1発電機に加え、前記蒸気タービンにより駆動される第2発電機を備えているので、高い発電効率を有するコンバインドサイクルシステムが得られる。   According to this configuration, since the second generator driven by the steam turbine is provided in addition to the first generator driven by the prime mover, a combined cycle system having high power generation efficiency can be obtained.

また、本発明の他の構成に係る廃棄物を有効利用するエネルギ供給システムは、動力を発生する原動機と、前記原動機の排ガスを熱源として蒸気を発生する排熱ボイラと、前記排ガスを熱源として廃棄物を乾燥させる乾燥装置と、乾燥された廃棄物を蒸し焼きにして熱分解ガスを発生させて前記原動機に燃料として供給するガス化溶融ボイラを備えている。   An energy supply system that effectively uses waste according to another configuration of the present invention includes a prime mover that generates power, a waste heat boiler that generates steam using the exhaust gas of the prime mover as a heat source, and a waste that uses the exhaust gas as a heat source. A drying apparatus for drying the product, and a gasification melting boiler for steaming and baking the dried waste to generate pyrolysis gas and supplying it as fuel to the prime mover.

この構成によれば、廃棄物は乾燥処理された後、ガス化溶融ボイラ内で、例えば乾留、つまり、蒸し焼きの状態で焼成処理されることにより熱分解ガスが発生する。この熱分解ガスには、一酸化炭素や水素成分が多量に含まれるので、これを前記原動機に燃料として供給することにより、原動機に供給される重油などの燃料を削減でき、システム全体からみてランニングコストを低減することができる。また、ガス化溶融ボイラで焼成処理された前記廃棄物は大幅に減量され、取扱性が向上するので、埋め立てなどによる廃棄処分が行いやすい。   According to this configuration, after the waste is dried, a pyrolysis gas is generated by, for example, dry distillation, that is, steaming in a gasification and melting boiler. Since this pyrolysis gas contains a large amount of carbon monoxide and hydrogen components, fuel such as heavy oil supplied to the prime mover can be reduced by supplying this to the prime mover as fuel. Cost can be reduced. Moreover, since the said waste baked with the gasification melting boiler is reduced significantly and handling property improves, it is easy to perform disposal by landfill.

本発明の廃棄物を有効利用するエネルギ供給システムによれば、排熱ボイラ出口排ガスを、従来、廃棄処理されていた食品工場から出るコーヒ豆の滓や茶殻などの廃棄物の乾燥に利用でき、乾燥された廃棄物は高カロリー燃料として廃棄物燃焼ボイラに投入し蒸気として回収できる。または、ガス化溶融ボイラで熱分解ガスを発生させて、このガスを原動機の燃料として利用するので、廃棄物を燃料資源として有効に利用することができる。   According to the energy supply system that effectively uses the waste of the present invention, the exhaust gas from the exhaust heat boiler can be used for drying waste such as coffee beans and tea leaves from a food factory that has been conventionally disposed of, The dried waste can be recovered as steam by putting it into a waste combustion boiler as a high calorie fuel. Alternatively, a pyrolysis gas is generated by a gasification melting boiler, and this gas is used as a fuel for a prime mover. Therefore, waste can be effectively used as a fuel resource.

以下、本発明の好ましい実施形態について図面にしたがって説明する。図1は、本発明の第1実施形態に係る廃棄物を有効利用するエネルギー供給システムであるコンバインドサイクルを示す系統図である。同図に示すシステムは、原動機であるガスタービン1と、これに付設した排熱ボイラ2と、食品廃棄物の一種である、茶殻やコーヒ豆の滓などの食品製造残さ物(以下、単に「残さ物」という)M1を乾燥させる乾燥装置3と、乾燥された残さ物M2を燃料とする廃棄物燃焼ボイラ4とから基本的に構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a combined cycle that is an energy supply system that effectively uses waste according to the first embodiment of the present invention. The system shown in FIG. 1 includes a gas turbine 1 as a prime mover, a waste heat boiler 2 attached thereto, and food production residues such as tea husks and coffee beans (hereinafter simply referred to as “waste”). This is basically composed of a drying device 3 that dries M1) and a waste combustion boiler 4 that uses the dried residue M2 as fuel.

前記ガスタービン1は、圧縮機Cと燃焼器FCとタービンTとを有し、その回転軸X1に負荷である第1発電機G1が連結されている。   The gas turbine 1 includes a compressor C, a combustor FC, and a turbine T, and a first generator G1 that is a load is connected to a rotation shaft X1 thereof.

前記圧縮機Cに空気Aを供給する吸気通路P1には吸気冷却器5が設けられ、この吸気冷却器5は、外部から取り入れた空気Aを、例えば地下水Wの循環により冷却する。   An intake air cooler 5 is provided in the intake passage P1 for supplying the air A to the compressor C. The intake air cooler 5 cools the air A taken from the outside, for example, by circulation of groundwater W.

また、前記タービンTと排熱ボイラ2の間は、タービン排気通路P2で連結され、タービンTからの排ガスEGが排熱ボイラ2に供給される。   The turbine T and the exhaust heat boiler 2 are connected by a turbine exhaust passage P <b> 2, and the exhaust gas EG from the turbine T is supplied to the exhaust heat boiler 2.

前記排熱ボイラ2と乾燥装置3との間の排ガス導入通路P3には、エコノマイザ6と、三方排気ダンパ7とが設けられ、前記三方排気ダンパ7には不要な排ガスEGを大気に放出する排気塔8が接続されている。この三方排気ダンパ7は、ダンパ角度調整の制御によって、排ガスEGを乾燥装置3側に供給したり、乾燥装置3の停止時には排気塔8側に流して大気へ放出することができるようになっている。   An exhaust gas introduction passage P3 between the exhaust heat boiler 2 and the drying device 3 is provided with an economizer 6 and a three-way exhaust damper 7. The three-way exhaust damper 7 exhausts unnecessary exhaust gas EG into the atmosphere. A tower 8 is connected. The three-way exhaust damper 7 can supply the exhaust gas EG to the drying device 3 side by controlling the damper angle, or can flow to the exhaust tower 8 side and release to the atmosphere when the drying device 3 is stopped. Yes.

ボイラ用の給水タンク9内の水は給水ポンプにより加圧され、給水通路P4により前記エコノマイザ6を経て排熱ボイラ2のドラム10内に供給される。排ガスEGを熱源とする排熱ボイラ2からの蒸気は、ドラム10を経て、その一部がガスタービン用蒸気導入通路P5によりガスタービン1の燃焼器FCに供給される。蒸気の他の部分は、圧力制御弁11を経て低圧蒸気となったのち、プロセス蒸気通路P6を通って種々の蒸気消費設備、例えば工場の蒸気洗浄器、温水生成装置などに向けて、プロセス蒸気PSとして供給される。なお、プロセス蒸気PSとして供給するのに代えて、二点鎖線P20で示すように、後述する蒸気タービンSTに供給してもよい。   Water in the boiler water supply tank 9 is pressurized by a water supply pump and supplied to the drum 10 of the exhaust heat boiler 2 through the economizer 6 through the water supply passage P4. The steam from the exhaust heat boiler 2 using the exhaust gas EG as a heat source passes through the drum 10 and a part thereof is supplied to the combustor FC of the gas turbine 1 through the gas turbine steam introduction passage P5. The other part of the steam becomes low-pressure steam through the pressure control valve 11, and then passes through the process steam passage P6 toward various steam consuming equipment, for example, a factory steam cleaner, a hot water generator, etc. Supplied as PS. Instead of being supplied as the process steam PS, it may be supplied to a steam turbine ST described later as indicated by a two-dot chain line P20.

前記乾燥装置3内には、水分を多量に含んだ残さ物M1がバッチ式または連続的に投入されるようになっており、この乾燥装置3で所定水分含有量まで乾燥された残さ物M2は、高カロリー燃料として廃棄物燃焼ボイラ4内にバッチ式または連続的に投入されるようになっている。ここで、前記残さ物M1の水分含有量は、例えば約80%程度であり、乾燥後の残さ物M2の水分含有量は、例えば7%以下である。   In the drying device 3, a residue M1 containing a large amount of water is batch-wise or continuously charged, and the residue M2 dried to a predetermined moisture content by the drying device 3 is As a high-calorie fuel, the waste-fired boiler 4 is fed batchwise or continuously. Here, the moisture content of the residue M1 is, for example, about 80%, and the moisture content of the residue M2 after drying is, for example, 7% or less.

また、乾燥装置3の出口と廃棄物燃焼ボイラ4に付設したバーナ41とを燃焼用排ガス供給通路P7で連結し、乾燥装置3出口の排ガスEGが通路P7に設けられた排風機12によってバーナ41に送り込まれ、廃棄物燃焼ボイラ4の燃焼用空気の一部として使用できるようにしている。なお、前記バーナ41には、外部から燃料fが供給される。                                                         Further, the outlet of the drying device 3 and the burner 41 attached to the waste combustion boiler 4 are connected by the combustion exhaust gas supply passage P7, and the exhaust gas EG at the outlet of the drying device 3 is connected to the burner 41 by the exhaust fan 12 provided in the passage P7. So that it can be used as part of the combustion air of the waste combustion boiler 4. The burner 41 is supplied with fuel f from the outside.

一方、前記乾燥装置3と前記吸気冷却器5との間を回収通路P8で連結し、乾燥装置3の稼動中、残さ物M1の乾燥処理時に発生する臭気成分を含んだ廃棄物ガスが前記吸気冷却器5を通してガスタービン1に吸入されるようにしている。これにより、前記臭気成分は、ガスタービン1で熱分解されるので、簡単で効果的な臭気対策となる。   On the other hand, the drying device 3 and the intake air cooler 5 are connected by a recovery passageway P8, and waste gas containing odor components generated during the drying process of the residue M1 during operation of the drying device 3 is taken into the intake air. The gas turbine 1 is sucked through the cooler 5. Thereby, since the said odor component is thermally decomposed by the gas turbine 1, it becomes a simple and effective odor countermeasure.

前記廃棄物燃焼ボイラ4内に高カロリー燃料として投入された残さ物M2の燃焼により発生した蒸気は、蒸気タービン用蒸気送給通路P9を経由して蒸気タービンSTに動力源として供給される。この蒸気タービンSTの回転軸X2は第2発電機G2に連結され、発電用に利用される。   The steam generated by the combustion of the residue M2 charged as the high calorie fuel in the waste combustion boiler 4 is supplied as a power source to the steam turbine ST via the steam supply path P9 for the steam turbine. The rotary shaft X2 of the steam turbine ST is connected to the second generator G2, and is used for power generation.

また、前記廃棄物燃焼ボイラ4の排ガス出口には、廃棄物燃焼ボイラ4からのボイラ排気BGを大気に放出するための排出通路P10が取り付けられ、この排出通路P10にボイラ排気BG中のダストを集塵除去するマルチサイクロン14、エコノマイザ15、空気プリヒータ16、およびボイラ排気BGを放出するための誘引ファン17が設けられている。前記空気プリヒータ16では、ファン18により取り込んだ燃焼用空気A1がボイラ排気BGによって加熱されたのち、空気通路P11により廃棄物燃焼ボイラ4のバーナ41に送り込まれる。また、前記蒸気タービンST出口の蒸気は,復水器19から水回収通路P12に入り、エコノマイザ15で予熱されたのち、前記廃棄物燃焼ボイラ4側のドラム13に戻される。   Further, a discharge passage P10 for releasing the boiler exhaust BG from the waste combustion boiler 4 to the atmosphere is attached to the exhaust gas outlet of the waste combustion boiler 4, and dust in the boiler exhaust BG is put into the discharge passage P10. A multi-cyclone 14 for collecting and removing dust, an economizer 15, an air preheater 16, and an induction fan 17 for releasing boiler exhaust BG are provided. In the air preheater 16, the combustion air A1 taken in by the fan 18 is heated by the boiler exhaust BG and then sent to the burner 41 of the waste combustion boiler 4 through the air passage P11. The steam at the outlet of the steam turbine ST enters the water recovery passage P12 from the condenser 19 and is preheated by the economizer 15 and then returned to the drum 13 on the waste combustion boiler 4 side.

上記構成において、ガスタービン1により第1発電機G1が駆動されて電力が得られる。ガスタービン1が通常運転を行っているとき、タービンTからの排ガスEGは、タービン排気通路P2を通って排熱ボイラ2に供給されて熱回収される。他方、給水タンク9から給水ポンプにて加圧された水は給水通路P4によりエコノマイザ6を通って予熱されたのち、排熱ボイラ2の上部のドラム10に入り、ここから排熱ボイラ2内の水管に入って、排ガスEGにより加熱されて蒸気化される。こうして得られた蒸気は、ドラム10を経て、その一部がガスタービン用蒸気導入通路P5を経由して燃焼器FCに供給され、ガスタービン1の出力および熱効率の向上と排ガスEG中のNOX 低減とが実現される。ドラム10からの蒸気の他の部分は、プロセス蒸気通路P6を経由してプロセス蒸気PSとして外部のユーザに供給される。 In the above configuration, the first generator G1 is driven by the gas turbine 1 to obtain electric power. When the gas turbine 1 is performing normal operation, the exhaust gas EG from the turbine T is supplied to the exhaust heat boiler 2 through the turbine exhaust passage P2 and recovered. On the other hand, the water pressurized by the water supply pump from the water supply tank 9 is preheated through the economizer 6 through the water supply passage P4, and then enters the drum 10 at the upper part of the exhaust heat boiler 2, from which the inside of the exhaust heat boiler 2 It enters the water pipe, is heated by the exhaust gas EG, and is vaporized. A part of the steam thus obtained is supplied to the combustor FC through the gas turbine steam introduction passage P5 through the drum 10 to improve the output and thermal efficiency of the gas turbine 1 and the NO x in the exhaust gas EG. Reduction is realized. The other part of the steam from the drum 10 is supplied to an external user as the process steam PS via the process steam passage P6.

排ガスボイラ2を出た排ガスEGは、排ガス導入通路P3を通って乾燥装置3に導かれるが、このとき、三方排気ダンパ7のダンパ角度調整を行って排ガス量を制御しながら乾燥装置3に供給する。これにより、従来大気中へ排出していた排熱ボイラ出口からの比較的高温(例えば約150℃)の排ガスは乾燥装置に導かれ、水分を多く含む廃棄物の乾燥処理に有効利用される。乾燥装置3の停止時には、三方排気ダンパ5のダンパ制御により排ガスEGの全量が排気筒8から大気に放出される。乾燥装置3内には、その上方からホッパなどを介して一定量の残さ物M1(例えば水分含有量80%)をバッチ式に投入する。投入された残さ物M1は、この乾燥装置3内で乾燥処理されて残さ物M2(例えば水分含有量7%以下)となる。   The exhaust gas EG exiting the exhaust gas boiler 2 is guided to the drying device 3 through the exhaust gas introduction passage P3. At this time, the damper angle of the three-way exhaust damper 7 is adjusted to supply the drying device 3 while controlling the amount of exhaust gas. To do. As a result, the exhaust gas having a relatively high temperature (for example, about 150 ° C.) from the outlet of the exhaust heat boiler that has been discharged into the atmosphere in the past is guided to the drying device, and is effectively used for the drying treatment of waste containing a lot of moisture. When the drying device 3 is stopped, the entire amount of the exhaust gas EG is released from the exhaust pipe 8 to the atmosphere by damper control of the three-way exhaust damper 5. A predetermined amount of residue M1 (for example, moisture content of 80%) is fed into the drying apparatus 3 from above through a hopper or the like. The charged residue M1 is dried in the drying device 3 to become a residue M2 (for example, a moisture content of 7% or less).

この残さ物M2は乾燥した高カロリー燃料として、廃棄物燃焼ボイラ4に投入される。このとき同時に、前記乾燥装置3出口から排ガスEGが、燃焼用排ガス供給通路P7を通り、排風機12によって前記廃棄物燃焼ボイラ4に付設したバーナ41に供給される。この排ガスEGは廃棄物燃焼ボイラ4の燃焼用空気の一部となるもので、重油のような燃料fと混合されて前記廃棄物燃焼ボイラ4内のバーナ噴出口で点火され、そのバーナ炎BFによって前記廃棄物燃焼ボイラ4内で残さ物M2が燃焼処理される。   This residue M2 is put into the waste combustion boiler 4 as a dry high-calorie fuel. At the same time, the exhaust gas EG is supplied from the outlet of the drying device 3 through the combustion exhaust gas supply passage P7 to the burner 41 attached to the waste combustion boiler 4 by the exhaust fan 12. This exhaust gas EG becomes part of the combustion air of the waste combustion boiler 4 and is mixed with fuel f such as heavy oil and ignited at the burner outlet in the waste combustion boiler 4, and the burner flame BF Thus, the residue M2 is burned in the waste combustion boiler 4.

このように、乾燥した廃棄物M2を燃料として使用することにより、廃棄物燃焼ボイラ4に付設されるボイラ用バーナ41で使用する燃料fを削減することができる。また、乾燥装置3を通った後の排ガスEGは、未だ温度も高く(例えば約80℃程度)、通常、残存空気を13〜16%程度含むために、燃焼用空気としての価値は高いので、これを廃棄物燃焼ボイラ4において燃焼用空気として利用することで、廃棄物燃焼ボイラ4に付設されるバーナでの助燃用燃料fをさらに削減することができる。さらに、乾燥装置3での乾燥処理により排ガスEG中に臭気が含まれていても、この臭気成分は廃棄物燃焼ボイラ4での高温燃焼により熱分解して低減させることができ、周辺環境への臭気汚染のおそれもない。また、臭気成分処理用の脱臭装置が不要になり、既に脱臭装置が設置されている場合には、脱臭装置用の燃料を削減できる。   Thus, by using the dried waste M2 as fuel, the fuel f used in the boiler burner 41 attached to the waste combustion boiler 4 can be reduced. Further, the exhaust gas EG after passing through the drying device 3 is still high in temperature (for example, about 80 ° C.) and usually contains about 13 to 16% of residual air, so the value as combustion air is high. By using this as combustion air in the waste combustion boiler 4, the auxiliary combustion fuel f in the burner attached to the waste combustion boiler 4 can be further reduced. Furthermore, even if the odor is contained in the exhaust gas EG by the drying process in the drying device 3, the odor component can be thermally decomposed and reduced by high-temperature combustion in the waste combustion boiler 4, and can be reduced to the surrounding environment. There is no risk of odor contamination. Moreover, the deodorizing apparatus for odor component processing becomes unnecessary, and when the deodorizing apparatus is already installed, the fuel for a deodorizing apparatus can be reduced.

廃棄物燃焼ボイラ4で発生した蒸気は、蒸気タービン用蒸気送給通路P9を経由して蒸気タービンSTに供給され、第2発電機G2を駆動する。この蒸気タービンSTを出た蒸気は復水器19から水回収通路P12によりエコノマイザ15を通ってドラム13に戻され、再び、ボイラ用水として利用される。   The steam generated in the waste combustion boiler 4 is supplied to the steam turbine ST through the steam supply passage P9 for the steam turbine, and drives the second generator G2. The steam leaving the steam turbine ST is returned from the condenser 19 to the drum 13 through the economizer 15 through the water recovery passage P12, and again used as boiler water.

このように、前記原動機出口の高温排ガスは、乾燥装置3と廃棄物燃焼ボイラ4で無駄なく有効利用され、かつ乾燥処理した廃棄物も廃棄物燃焼ボイラ4にて燃料として有効に利用されるので、システム全体として熱効率が向上する。   Thus, the high-temperature exhaust gas at the prime mover outlet is effectively used without waste in the drying device 3 and the waste combustion boiler 4, and the dried waste is also effectively used as fuel in the waste combustion boiler 4. , The thermal efficiency of the whole system is improved.

図2に示す第2実施形態は、ガスタービンと蒸気タービンの両方で発電を行う前記第1実施形態のコンバインドサイクルと異なり、エネルギ供給システム自体に蒸気タービンSTが組み込まれていないコージェネレーションシステムである。第2実施形態の基本的構成は、前記第1実施形態と同様であり、同一部分についてはその説明を省略し、相異点についてのみ説明する。図2に示すように、廃棄物燃焼ボイラ4側のドラム13とガスタービン用第1蒸気導入通路P5とが、ガスタービン用第2蒸気導入通路P13により連結され、廃棄物燃焼ボイラ4で発生した蒸気を、前記第1および第2導入通路P13により燃焼器FCに注入できるようになっている。第2蒸気導入通路P13には、第1蒸気導入通路P5の圧力に合致させるための圧力調整弁22が設けられている。このような構成とすることで、ガスタービン1の出力および熱効率の大幅な向上が図られる。   The second embodiment shown in FIG. 2 is a cogeneration system in which the steam turbine ST is not incorporated in the energy supply system itself, unlike the combined cycle of the first embodiment in which power generation is performed by both the gas turbine and the steam turbine. . The basic configuration of the second embodiment is the same as that of the first embodiment. The description of the same parts is omitted, and only the differences are described. As shown in FIG. 2, the drum 13 on the waste combustion boiler 4 side and the first steam introduction passage P5 for the gas turbine are connected by the second steam introduction passage P13 for the gas turbine, and are generated in the waste combustion boiler 4. Steam can be injected into the combustor FC through the first and second introduction passages P13. The second steam introduction passage P13 is provided with a pressure adjusting valve 22 for matching the pressure of the first steam introduction passage P5. By setting it as such a structure, the output of the gas turbine 1 and a thermal efficiency are improved significantly.

図3に示す第3実施形態も前記第2実施形態と同様の、コージェネレーションシステムである。第3実施形態の基本的構成は、前記第1実施形態と同様であり、同一部分についてはその説明を省略し、相異点についてのみ説明する。図3に示すように、前記第1および第2実施形態で使用した廃棄物燃焼ボイラ4を廃止し、これに代えてガス化溶融ボイラ20を用いている。このガス化溶融ボイラ20で残さ物M2を乾留、つまり、蒸し焼きして、発生した熱分解ガスを、ガス供給通路P14によりガスタービン1の燃焼器FCに直接供給するようにしている。ここで、前記熱分解ガスは、一酸化炭素や水素分を多量に含んだ高カロリー燃料となりうるものであって、この熱分解ガスを燃焼器FCに燃料として供給することで、本来、燃焼器FCに供給する重油などの燃料量を削減することができる。また、この第3実施形態では、前記残さ物M2は蒸し焼き状態で焼成されることによって著しい減量化が可能となり、その後の取扱いや廃棄処理が極めて容易になる。   The third embodiment shown in FIG. 3 is also a cogeneration system similar to the second embodiment. The basic configuration of the third embodiment is the same as that of the first embodiment. The description of the same parts is omitted, and only the differences are described. As shown in FIG. 3, the waste combustion boiler 4 used in the first and second embodiments is abolished, and a gasification melting boiler 20 is used instead. The residue M2 is dry-distilled, that is, steamed and burned by the gasification melting boiler 20, and the generated pyrolysis gas is directly supplied to the combustor FC of the gas turbine 1 through the gas supply passage P14. Here, the pyrolysis gas can be a high calorie fuel containing a large amount of carbon monoxide and hydrogen. By supplying this pyrolysis gas to the combustor FC as a fuel, The amount of fuel such as heavy oil supplied to FC can be reduced. Further, in the third embodiment, the residue M2 can be significantly reduced by being baked in a steamed state, and the subsequent handling and disposal processing becomes extremely easy.

本発明の廃棄物を有効利用するエネルギ供給システムは、コーヒ豆の滓や茶殻などの廃棄物を大量に発生する食品工場での適用のみならず、各種発電プラントやゴミ処理設備での廃棄物処理設備など、その他のこれに類する処理設備で、廃棄物をエネルギー資源としてリサイクルし、有効活用するシステムとして幅広く適用できる。   The energy supply system that effectively uses the waste of the present invention is applied not only to food factories that produce a large amount of waste such as coffee beans and tea husk, but also to waste treatment at various power plants and garbage treatment facilities. It can be widely applied as a system for recycling and effectively utilizing waste as an energy resource in other similar processing facilities such as equipment.

本発明の第1実施形態に係る廃棄物を有効利用するエネルギ供給システムを示す系統図である。1 is a system diagram showing an energy supply system that effectively uses waste according to a first embodiment of the present invention. 本発明の第2実施形態に係る廃棄物を有効利用するエネルギ供給システムを示す系統図である。It is a systematic diagram which shows the energy supply system which uses effectively the waste which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る廃棄物を有効利用するエネルギ供給システムを示す系統図である。It is a systematic diagram which shows the energy supply system which uses effectively the waste which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 ガスタービン(原動機)
2 排熱ボイラ
3 乾燥装置
4 廃棄物燃焼ボイラ
20 ガス化溶融ボイラ
FC 燃焼器
G1 第1発電機
G2 第2発電機
M1 廃棄物
ST 蒸気タービン
1 Gas turbine (motor)
2 Waste heat boiler 3 Drying device 4 Waste combustion boiler 20 Gasification melting boiler FC Combustor G1 1st generator G2 2nd generator M1 Waste ST Steam turbine

Claims (8)

動力を発生する原動機と、
前記原動機の排ガスを熱源として蒸気を発生する排熱ボイラと、
前記排熱ボイラを出た排ガスを熱源として廃棄物を乾燥させる乾燥装置と、
乾燥された廃棄物を燃料とする廃棄物燃焼ボイラと、
を備えたエネルギ供給システム。
A prime mover generating power,
An exhaust heat boiler that generates steam using the exhaust gas of the prime mover as a heat source;
A drying device for drying waste using the exhaust gas from the exhaust heat boiler as a heat source;
A waste-fired boiler that uses dried waste as fuel,
Energy supply system with
請求項1において、前記乾燥装置を通った後の排ガスが前記廃棄物燃焼ボイラに燃焼用空気として供給されるエネルギ供給システム。   The energy supply system according to claim 1, wherein the exhaust gas after passing through the drying device is supplied to the waste combustion boiler as combustion air. 請求項1または請求項2において、さらに、前記廃棄物燃焼ボイラで発生した蒸気により駆動される蒸気タービンを備えたエネルギ供給システム。   3. The energy supply system according to claim 1, further comprising a steam turbine driven by steam generated in the waste combustion boiler. 請求項1から3のいずれかにおいて、前記原動機がガスタービンであり、前記廃棄物燃焼ボイラで発生した蒸気がガスタービンの燃焼器に供給されるエネルギ供給システム。   4. The energy supply system according to claim 1, wherein the prime mover is a gas turbine, and steam generated in the waste combustion boiler is supplied to a combustor of the gas turbine. 請求項1から4のいずれかにおいて、前記乾燥装置から排出される臭気成分を含んだ乾燥排気が前記原動機に吸気として供給されるエネルギ供給システム。   5. The energy supply system according to claim 1, wherein dry exhaust gas containing odor components discharged from the drying device is supplied to the prime mover as intake air. 6. 請求項1から5のいずれかにおいて、さらに前記原動機により駆動される第1発電機を備えたエネルギ供給システム。   6. The energy supply system according to claim 1, further comprising a first generator driven by the prime mover. 請求項3において、さらに前記蒸気タービンにより駆動される第2発電機を備えたエネルギ供給システム。   4. The energy supply system according to claim 3, further comprising a second generator driven by the steam turbine. 動力を発生する原動機と、
前記原動機の排ガスを熱源として蒸気を発生する排熱ボイラと、
前記排熱ボイラを出た排ガスを熱源として廃棄物を乾燥させる乾燥装置と、
乾燥された廃棄物を蒸し焼きにして熱分解ガスを発生させて前記原動機に燃料として供給するガス化溶融ボイラと、
を備えたエネルギ供給システム。

A prime mover generating power,
An exhaust heat boiler that generates steam using the exhaust gas of the prime mover as a heat source;
A drying device for drying waste using the exhaust gas from the exhaust heat boiler as a heat source;
A gasification and melting boiler that steams the dried waste to generate pyrolysis gas and supplies it as fuel to the prime mover;
Energy supply system with

JP2003327072A 2003-09-19 2003-09-19 Energy supply system that effectively uses waste Expired - Fee Related JP4037812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327072A JP4037812B2 (en) 2003-09-19 2003-09-19 Energy supply system that effectively uses waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327072A JP4037812B2 (en) 2003-09-19 2003-09-19 Energy supply system that effectively uses waste

Publications (2)

Publication Number Publication Date
JP2005090901A true JP2005090901A (en) 2005-04-07
JP4037812B2 JP4037812B2 (en) 2008-01-23

Family

ID=34457040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327072A Expired - Fee Related JP4037812B2 (en) 2003-09-19 2003-09-19 Energy supply system that effectively uses waste

Country Status (1)

Country Link
JP (1) JP4037812B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167782A (en) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd Waste treatment method
JP2008308570A (en) * 2007-06-14 2008-12-25 Nippon Steel Engineering Co Ltd Method for utilizing highly hydrous waste and treatment apparatus
JP2010514981A (en) * 2006-12-28 2010-05-06 ヨルゲン スコムスヴォルド,アーゲ Rotating device
WO2010057279A1 (en) * 2008-11-24 2010-05-27 Ribeiro Sergio Vieira Guerreir High efficiency waste to energy power plants combining municipal solid waste and natural gas
EP2886985A1 (en) 2013-12-17 2015-06-24 MECOPLAN GmbH Drying assembly and method for same
KR101744314B1 (en) * 2016-06-22 2017-06-07 김건택 Electric Power Generator
KR102147876B1 (en) * 2019-09-03 2020-08-25 주식회사 세영기술 Power generation system using livestock excretion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167782A (en) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd Waste treatment method
JP2010514981A (en) * 2006-12-28 2010-05-06 ヨルゲン スコムスヴォルド,アーゲ Rotating device
JP2013053631A (en) * 2006-12-28 2013-03-21 Rotoboost As Rotating device
JP2008308570A (en) * 2007-06-14 2008-12-25 Nippon Steel Engineering Co Ltd Method for utilizing highly hydrous waste and treatment apparatus
WO2010057279A1 (en) * 2008-11-24 2010-05-27 Ribeiro Sergio Vieira Guerreir High efficiency waste to energy power plants combining municipal solid waste and natural gas
EP2401478A4 (en) * 2008-11-24 2017-08-09 Sergio Vieira Guerreiro Ribeiro High efficiency waste to energy power plants combining municipal solid waste and natural gas
EP2886985A1 (en) 2013-12-17 2015-06-24 MECOPLAN GmbH Drying assembly and method for same
KR101744314B1 (en) * 2016-06-22 2017-06-07 김건택 Electric Power Generator
WO2017222236A1 (en) * 2016-06-22 2017-12-28 김건택 Electricity generating device
KR102147876B1 (en) * 2019-09-03 2020-08-25 주식회사 세영기술 Power generation system using livestock excretion

Also Published As

Publication number Publication date
JP4037812B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
KR20100047813A (en) Power production process with gas turbine from solid fuel and waste heat ad the equipment for the performing of this process
CN109958535A (en) A kind of system for waste incineration and combustion turbine combined power generation
EP2933030A1 (en) Waste treatment system connected to sewage treatment plant
JP4037812B2 (en) Energy supply system that effectively uses waste
JPH0894050A (en) Exhaust heat utilizing generator
JP2001241624A (en) Waste-incinerating plant
JP2004144308A (en) Combined power generation system
RU2726979C1 (en) Power complex for solid household wastes processing
JP4160973B2 (en) Sludge concentration system
CN218154255U (en) Self-balancing reheating system of waste incineration disposal power station
RU2137981C1 (en) Technological power plant for thermal processing of solid waste
JP4186181B2 (en) Cogeneration method and cogeneration system
JP2004143253A (en) Vegetable organic waste-carbonizing system
JPH11200882A (en) Sludge power generation equipment
CN207907242U (en) A kind of power generation by waste combustion system
JP2002339709A (en) Refuse incinerating power plant
JPH1194460A (en) Hot air dryer unit and production system for solidified waste fuel equipped with hot air dryer unit
US7000401B2 (en) Method for operating a steam power plant and steam power plant for carrying out said method
CN110500585A (en) A kind of waste incineration and generating electricity waste heat ammonia steaming system
JPH10213317A (en) Operating method of refuse incinerator
CN218721492U (en) Cement kiln is refuse and waste heat recovery system of handling in coordination
JP2002161281A (en) Garbage gasification system
JPH0559905A (en) Refuse incinerating gas turbine composite plate
JP3769204B2 (en) Combustion treatment method of waste including organic waste
JPH11244645A (en) Waste gas treatment method for waste drying equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Ref document number: 4037812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141109

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees