[go: up one dir, main page]

JP2005089843A - High-strength copper alloy sheet and manufacturing method therefor - Google Patents

High-strength copper alloy sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2005089843A
JP2005089843A JP2003326452A JP2003326452A JP2005089843A JP 2005089843 A JP2005089843 A JP 2005089843A JP 2003326452 A JP2003326452 A JP 2003326452A JP 2003326452 A JP2003326452 A JP 2003326452A JP 2005089843 A JP2005089843 A JP 2005089843A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
strength
precipitates
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003326452A
Other languages
Japanese (ja)
Other versions
JP4664584B2 (en
Inventor
Masahiro Yanagawa
政洋 柳川
Hiroshi Arai
浩史 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003326452A priority Critical patent/JP4664584B2/en
Publication of JP2005089843A publication Critical patent/JP2005089843A/en
Application granted granted Critical
Publication of JP4664584B2 publication Critical patent/JP4664584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Corson alloy having adequate bendability, a tensile strength as high as 900 MPa or higher, and an electroconductivity of 20% IACS or higher. <P>SOLUTION: The copper alloy sheet comprises 4.0-5.0 mass% Ni, and Si so that a mass ratio Ni/Si of Ni to Si can be in a range of 4 to 5, and the balance substantially copper with unavoidable impurities; includes such Ni<SB>2</SB>Si precipitates (A) with grain sizes (d) of which the average is 3 to 10 nm and with spaces (l) among them of which the average 25 nm or less, in a structure of the copper alloy sheet after having been artificially aged, when the structure of the copper alloy sheet is observed by using a transmission electron microscope with a magnification of million times; and has the tensile strength of 900 MPa or higher and the electroconductivity of 20% IACS or higher. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度かつ高導電率で、曲げ加工性が優れた銅合金に関し、自動車用コネクタ等に好適な電気・電子部品用の高強度銅合金板および高強度銅合金板の製造方法に関する。   The present invention relates to a copper alloy having high strength, high conductivity, and excellent bending workability, and relates to a high-strength copper alloy plate for electrical and electronic parts suitable for automobile connectors and the like, and a method for producing a high-strength copper alloy plate. .

電子機器の小型化及び軽量化の要請に伴い、電気・電子部品の小型化及び軽量化が進んでいる。そして、この電気・電子部品の小型化及び軽量化のために、これらに使用される銅合金材料も板厚及び幅が小さくなり、ICにおいては、板厚が0.1 〜0.15mmと薄い銅合金板も使用されるようになってきている。その結果、これらの電気・電子部品に使用される銅合金材料には、より一層高い引張強度が求められるようになっている。例えば、自動車用コネクタなどでは、900MPa以上の高強度銅合金板が求められるようになっている。   With the demand for downsizing and weight reduction of electronic devices, downsizing and weight reduction of electric / electronic parts are progressing. And in order to reduce the size and weight of these electrical / electronic components, the copper alloy materials used for them are also reduced in thickness and width, and in the case of IC, the copper alloy plate is as thin as 0.1 to 0.15 mm. Are also being used. As a result, copper alloy materials used for these electric / electronic parts are required to have higher tensile strength. For example, high strength copper alloy plates of 900 MPa or more are required for automobile connectors and the like.

また、これらコネクタ、端子、スイッチ、リレー、リードフレームなどに用いられる銅合金板は、前記高強度および高導電率はもちろんのこと、ノッチング後の90°曲げなど厳しい曲げ加工性が要求されることが多くなってきている。しかも、電子部品の小型化に伴い、従来厳しい曲げ加工は圧延方向に直角の曲げ線で行われる(いわゆるG.W.)のが通例であったのが、圧延方向に平行の曲げ線で行われる(いわゆるB.W.)ことが多くなってきている。   In addition, the copper alloy plates used for connectors, terminals, switches, relays, lead frames, etc. must be subjected to severe bending workability such as 90 ° bending after notching as well as the high strength and high conductivity. There are many more. In addition, along with the downsizing of electronic components, conventionally, severe bending work is usually performed with a bend line perpendicular to the rolling direction (so-called GW), but it is usually performed with a bend line parallel to the rolling direction. (So-called B.W.) is increasing.

更に、電気・電子部品の前記薄板化及び幅狭化の傾向は、銅合金材料の導電性部分の断面積を減少させる。この断面積の減少による導電性の低下を補うためには、銅合金材料自体に、導電率が20%IACS 以上の良好な導電率が求められるようになっている。   Further, the tendency of the electric and electronic parts to become thinner and narrower reduces the cross-sectional area of the conductive portion of the copper alloy material. In order to compensate for the decrease in conductivity due to the reduction in the cross-sectional area, the copper alloy material itself is required to have a good conductivity of 20% IACS or more.

従来から、高強度な銅合金材料としては、42アロイ(Fe-42 質量% Ni合金)が知られている。この42アロイは約580MPa程度の引張強さを有し、異方性も少なく、また曲げ加工性も良好である。しかしながら、この42アロイは900MPa以上の高強度化の要求には応えられない。また、42アロイはNiを多量に含有するため、価格が高いという問題点もある。   Conventionally, 42 alloy (Fe-42 mass% Ni alloy) is known as a high-strength copper alloy material. This 42 alloy has a tensile strength of about 580 MPa, little anisotropy, and good bending workability. However, this 42 alloy cannot meet the demand for higher strength of 900 MPa or more. In addition, 42 alloy contains a large amount of Ni, and therefore has a problem of high price.

このため、前記種々の特性に優れ、且つ安価なコルソン合金(Cu-Ni-Si系)が電気・電子部品用に使用されるようになった。このコルソン合金はケイ化ニッケル化合物(Ni2Si)の銅に対する固溶限が温度によって著しく変化する合金で、焼入・焼戻によって硬化する析出硬化型合金の1種であり、耐熱性や高温強度も良好で、これまでも、導電用各種バネや高抗張力用電線などに広く使用されている。 For this reason, the Corson alloy (Cu-Ni-Si system) which is excellent in the above-mentioned various properties and is inexpensive has come to be used for electric / electronic parts. This Corson alloy is an alloy in which the solubility limit of nickel silicide compound (Ni 2 Si) in copper changes significantly with temperature. It is a kind of precipitation hardening type alloy that hardens by quenching and tempering. It has good strength and has been widely used for various conductive springs and high tensile strength electric wires.

しかし、このコルソン合金においても、銅合金材料の強度を向上させると、やはり導電性や曲げ加工性は低下する。即ち、高強度のコルソン合金において、良好な導電率及び曲げ加工性とすることは非常に困難な課題である。   However, even in this Corson alloy, when the strength of the copper alloy material is improved, the conductivity and the bending workability are also lowered. That is, in a high-strength Corson alloy, it is a very difficult task to achieve good conductivity and bending workability.

このような課題に対して、曲げ加工性が優れた高強度銅合金として、Ni;2 乃至5 重量%、Si;0.5 乃至1.5 重量%、Zn;0.1 乃至2 重量%、Mn;0.01乃至0.1 重量%、Cr;0.001 乃至0.1 重量%、Al;0.001 乃至0.15重量%、Co;0.05乃至2 重量%を含有し、不純物成分のSの含有量を15ppm 以下に規制した、コルソン合金が提案されている( 特許文献1参照) 。   As a high-strength copper alloy having excellent bending workability, Ni: 2 to 5 wt%, Si: 0.5 to 1.5 wt%, Zn: 0.1 to 2 wt%, Mn: 0.01 to 0.1 wt. Corson alloys have been proposed that contain the following elements: Cr, 0.001 to 0.1 wt%, Al; 0.001 to 0.15 wt%, Co; 0.05 to 2 wt%, and the content of S as an impurity component is regulated to 15 ppm or less. (See Patent Document 1).

また、曲げ加工性が優れた銅合金として、Ni;2 〜4 重量%、Si;0.5 〜1.0 重量%、Zn;0.1 〜1.0 重量%、Al;0.001 〜0.15重量%、Mn;0.01〜0.1 重量%、Cr;0.001 〜0.1 重量%を含有し、S;0.002 重量%以下に規制し、残部が実質的に銅及び不可避的不純物からなる銅合金であって、析出物の大きさが10nm以下、析出物の分布密度が1×105 個/(μm3 )以上であり、硬度Hv が220以上であるコルソン合金も提案されている( 特許文献2参照) 。 Further, as a copper alloy having excellent bending workability, Ni: 2 to 4% by weight, Si: 0.5 to 1.0% by weight, Zn: 0.1 to 1.0% by weight, Al; 0.001 to 0.15% by weight, Mn: 0.01 to 0.1% by weight %, Cr; 0.001 to 0.1% by weight, S; 0.002% by weight or less, the balance being a copper alloy substantially composed of copper and inevitable impurities, the size of the precipitate being 10 nm or less, A Corson alloy having a distribution density of precipitates of 1 × 10 5 pieces / (μm 3 ) or more and a hardness Hv of 220 or more has also been proposed (see Patent Document 2).

更に、曲げ加工性が優れた銅合金板として、Ni:0.4〜5%、Si:0.1〜1%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm2以上でかつ耐力と引張強さの比が0.95以下、さらに、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上であるコルソン合金が提案されている (特許文献3参照) 。   Furthermore, as a copper alloy plate having excellent bending workability, Ni: 0.4 to 5%, Si: 0.1 to 1%, the balance Cu and inevitable impurities, parallel and perpendicular to the rolling direction Corson alloy having a yield strength of 450 N / mm 2 or more, a ratio of yield strength to tensile strength of 0.95 or less, a ratio of uniform elongation to total elongation of 0.5 or more, and an n value of 0.05 or more. Has been proposed (see Patent Document 3).

特許3049137 号公報(1、6 〜10頁)Japanese Patent No. 3049137 (pages 1, 6-10) 特開平6 −184680号公報(1、5 〜7 頁)JP-A-6-184680 (pages 1, 5-7) 特開2002−266042号公報(1、6 〜7 頁)JP 2002-266042 A (pages 1, 6-7)

しかし、これら改良されたコルソン合金においても、銅合金材料の強度を向上させると、やはり導電性や曲げ加工性は低下する。特に、前記した900MPa以上の引張強度を持たせようとすると、導電性が必然的に導電率が20%IACS 未満程度に著しく低下する。   However, even in these improved Corson alloys, when the strength of the copper alloy material is improved, the conductivity and bending workability are also lowered. In particular, if the tensile strength of 900 MPa or more is to be given, the conductivity is inevitably lowered to a level of less than 20% IACS.

例えば、前記特許文献1では、引張強度が916MPa程度と最も高いコルソン合金でも導電率が26.3%IACS 程度しかない。しかも、導電率を下げるAlや、鋳造性を低下させるCrなどを含み、生産性が悪く、また安定的に高強度と高導電性の銅合金板を得にくい。また、前記特許文献2では、引張強度が最も高い892MPa程度のコルソン合金の導電率が44%IACS 程度である。また、前記特許文献3では、引張強度が710 〜730MPa程度の最も高いコルソン合金の導電率が46%IACS 程度である。   For example, in Patent Document 1, even the highest Corson alloy having a tensile strength of about 916 MPa has a conductivity of only about 26.3% IACS. In addition, it contains Al that lowers the conductivity, Cr that lowers the castability, and the productivity is poor, and it is difficult to stably obtain a copper alloy plate having high strength and high conductivity. In Patent Document 2, the conductivity of the Corson alloy having the highest tensile strength of about 892 MPa is about 44% IACS. In Patent Document 3, the highest Corson alloy having a tensile strength of about 710 to 730 MPa has a conductivity of about 46% IACS.

即ち、これらの事実から、900MPa以上の引張強度を有する高強度の電気・電子部品用銅合金にとって、特に高導電率化が両立できず、導電率を20%IACS 以上とするとともに、良好な曲げ加工性を確保することが非常に困難な課題であることが分かる。   That is, from these facts, a high strength copper alloy for electrical and electronic parts having a tensile strength of 900 MPa or more cannot achieve high electrical conductivity, and the electrical conductivity is set to 20% IACS or more and good bending It can be seen that securing workability is a very difficult task.

本発明はこのような課題を解決するためになされたものであって、900MPa以上の引張強度を有する高強度を有し、かつ、導電率を20%IACS 以上とするとともに、良好な曲げ加工性を有するコルソン合金を提供することである。   The present invention has been made to solve such problems, has a high strength having a tensile strength of 900 MPa or more, and has an electrical conductivity of 20% IACS or more and good bending workability. It is to provide a Corson alloy having

この目的を達成するために、本発明の高強度銅合金板の要旨は、 Ni;4.0 〜5.0 質量% を含み、かつSiをNiとSiとの質量比Ni/Si が4 〜5 の範囲となるように含み、残部が実質的に銅及び不可避的不純物からなる銅合金板であって、人工時効硬化処理後の銅合金板を100 万倍の透過型電子顕微鏡で銅合金板組織を観察した際の、銅合金板組織中に存在するNi2Si 析出物の平均粒径が3 〜10nmであるとともに、Ni2Si 析出物の平均間隔が25nm以下であり、かつ、この銅合金板の引張強さが900MPa以上、導電率が20%IACS 以上であることとする。 In order to achieve this object, the gist of the high-strength copper alloy sheet of the present invention is as follows: Ni: 4.0 to 5.0% by mass, and Si is a mass ratio of Ni to Si Ni / Si is in the range of 4 to 5. A copper alloy plate that is substantially composed of copper and unavoidable impurities, and the copper alloy plate after artificial age hardening treatment was observed with a transmission electron microscope of 1 million times. The average particle size of Ni 2 Si precipitates present in the copper alloy sheet structure is 3 to 10 nm, the average interval of Ni 2 Si precipitates is 25 nm or less, and the tensile strength of the copper alloy sheet The strength is 900 MPa or more, and the conductivity is 20% IACS or more.

また、上記目的を達成するために、本発明の高強度銅合金の製造方法の要旨は、Ni;4.0〜5.0 質量% を含み、かつSiをNiとSiとの質量比Ni/Si が4 〜5 の範囲となるように含み、残部が実質的に銅及び不可避的不純物からなり、残部が実質的に銅及び不可避的不純物からなる銅合金圧延板を、溶体化処理後に水冷し、更に、冷間圧延後に人工時効硬化処理を施すか、またはこの冷間圧延と人工時効硬化処理とを施す工程を2 回以上繰り返して行って、銅合金板を得、100 万倍の透過型電子顕微鏡でこの銅合金板組織を観察した際の、銅合金板組織中に存在するNi2Si 析出物の平均粒径を3 〜10nmとするとともに、Ni2Si 析出物の平均間隔を25nm以下とし、銅合金板の引張強さを900MPa以上で、導電率を20%IACS 以上とすることである。 In order to achieve the above object, the summary of the method for producing a high-strength copper alloy of the present invention includes Ni: 4.0 to 5.0% by mass, and Si has a mass ratio of Ni to Si of Ni / Si of 4 to 4 The copper alloy rolled sheet is included so that the balance is substantially composed of copper and unavoidable impurities, and the balance is substantially composed of copper and unavoidable impurities. Perform an artificial age hardening treatment after cold rolling, or repeat the process of cold rolling and artificial age hardening treatment twice or more to obtain a copper alloy sheet. When observing the copper alloy sheet structure, the average particle size of the Ni 2 Si precipitates present in the copper alloy sheet structure is 3 to 10 nm and the average interval between the Ni 2 Si precipitates is 25 nm or less. The tensile strength of the plate is 900 MPa or more, and the conductivity is 20% IACS or more.

本発明では、銅合金板の上記特定の成分組成と、上記特定の観察条件で特定される組織との組み合わせによって、900MPa以上の引張強度を有する高強度を有し、かつ、導電率を20%IACS 以上とするとともに、良好な曲げ加工性を有するコルソン系銅合金板を提供できる。   In the present invention, the combination of the specific component composition of the copper alloy plate and the structure specified under the specific observation condition has a high strength having a tensile strength of 900 MPa or more, and a conductivity of 20%. It is possible to provide a Corson-based copper alloy sheet having an IACS or higher and good bending workability.

また、上記特定の製造方法とすることで、人工時効硬化処理されたコルソン系銅合金板の組織を、上記特定の観察条件で特定される組織とすることができ、引張強さを900MPa以上で、導電率を20%IACS 以上とし、曲げ加工性にも優れるものとすることができる。   In addition, by using the above specific manufacturing method, the structure of the corson-based copper alloy plate subjected to artificial age hardening treatment can be a structure specified under the above specific observation conditions, and the tensile strength is 900 MPa or more. Further, the electrical conductivity can be 20% IACS or more, and the bending workability can be excellent.

この際、上記銅合金板および上記特定の製造方法で得られる銅合金板は、より高強度でより高導電率であることが好ましい。したがって、好ましくは引張強度で930MPa以上、より好ましくは950MPa以上とする。また、好ましくは導電率で30%IACS 以上、より好ましくは40%IACS 以上とする。   At this time, it is preferable that the copper alloy plate and the copper alloy plate obtained by the specific manufacturing method have higher strength and higher conductivity. Accordingly, the tensile strength is preferably 930 MPa or more, more preferably 950 MPa or more. The conductivity is preferably 30% IACS or more, more preferably 40% IACS or more.

(Ni2Si 析出物)
本発明で言うNi2Si 析出物とは、後述する本発明銅合金板の100 万倍の透過型電子顕微鏡組織(TEM) 写真である図1 、2 に示すA の析出物であって、人工時効硬化処理後の銅合金板組織中に存在する、平均粒径が3 〜10nmの微細Ni2Si 析出物のことを言う。図1 、2 に示すNi2Si 析出物A は、楕円状の黒点中を横断する形で、幅を持った白線状の形状で現れている。
(Ni 2 Si precipitate)
The Ni 2 Si precipitate referred to in the present invention is a precipitate of A shown in FIGS. 1 and 2 which is a transmission electron microscope (TEM) photograph of 1 million times the copper alloy plate of the present invention described later. This refers to fine Ni 2 Si precipitates having an average particle size of 3 to 10 nm, which are present in the copper alloy sheet structure after age hardening. The Ni 2 Si precipitate A shown in FIGS. 1 and 2 appears in the shape of a white line having a width, crossing the elliptical black spot.

このNi2Si 析出物は、本発明高強度銅合金板の製造に際し、特定条件の溶体化処理により銅組織中に一旦固溶したNi、Siが、その後の特定条件の人工時効硬化処理によって母相から微細に析出したNi2Si 相 (化合物相) である。 This Ni 2 Si precipitate is formed by the Ni, Si once dissolved in the copper structure by the solution treatment under specific conditions during the production of the high strength copper alloy sheet of the present invention. Ni 2 Si phase (compound phase) finely precipitated from the phase.

但し、人工時効硬化処理後の銅合金板組織中に存在するNi2Si 相としては、上記微細Ni2Si 析出物の他に、人工時効硬化処理前に既に存在し、人工時効硬化処理後にも存在するNi2Si 相も存在する。このような人工時効硬化処理前に既に存在しているNi2Si 相は、主として、銅合金板の製造に際し、鋳塊の段階で既に存在する晶出物である。この晶出物を含めて、人工時効硬化処理前に既に存在し、人工時効硬化処理後にも残存するNi2Si 相は、粒径が数十μm 程度以上の粗大なものであり、本発明で規定した上記100 万倍の超高倍率の透過型電子顕微鏡では観察できない。言い換えると、本発明で規定した上記100 万倍の透過型電子顕微鏡観察条件は、特定条件の人工時効硬化処理によって母相から新たに微細に析出したNi2Si 相のみを観察しうる特有の条件であると言える。 However, the Ni 2 Si phase present in the copper alloy sheet structure after the artificial age hardening treatment is already present before the artificial age hardening treatment, in addition to the fine Ni 2 Si precipitate, and even after the artificial age hardening treatment. There is also a Ni 2 Si phase present. The Ni 2 Si phase that already exists before the artificial age hardening treatment is mainly a crystallized substance that already exists at the ingot stage in the production of the copper alloy sheet. Including the crystallized product, the Ni 2 Si phase that already exists before the artificial age hardening treatment and remains after the artificial age hardening treatment is a coarse particle having a particle size of about several tens of μm or more. It cannot be observed with the specified transmission electron microscope with a magnification of 1 million times. In other words, the transmission electron microscope observation conditions of 1 million times specified in the present invention are specific conditions for observing only the Ni 2 Si phase newly precipitated from the mother phase by artificial age hardening treatment under specific conditions. It can be said that.

(銅合金板組織条件)
本発明の銅合金板組織では、人工時効硬化処理された銅合金板組織中に存在するNi2Si 析出物の平均粒径を3 〜10nmとするとともに、Ni2Si 析出物の平均間隔を25nm以下と規定する。
(Copper alloy sheet structure conditions)
In the copper alloy sheet structure of the present invention, the average particle size of Ni 2 Si precipitates present in the artificial age-hardened copper alloy sheet structure is 3 to 10 nm, and the average interval of Ni 2 Si precipitates is 25 nm. It is defined as follows.

前記した本発明の透過型電子顕微鏡組織観察条件により撮影した倍率が100 万倍の組織写真を各々図1 、2 に示す。図1 は後述する実施例の表2 における発明例3 、図2 は後述する実施例における比較例17の組織写真である。各図1 、2 中において、A はNi2Si 析出物、d は Ni2Si析出物の粒径 (nm) 、l は Ni2Si析出物の間隔(nm)を各々示す。 FIGS. 1 and 2 show tissue photographs taken at the magnification of 1,000,000, respectively, taken under the transmission electron microscope structure observation conditions of the present invention. FIG. 1 is a structural photograph of Invention Example 3 in Table 2 of Examples described later, and FIG. 2 is a structural photograph of Comparative Example 17 in Examples described later. In the figures 1, 2, A represents Ni 2 Si precipitates, d is the particle diameter of the Ni 2 Si precipitates (nm), l respectively denote an interval of Ni 2 Si precipitates (nm).

本発明において、析出物の粒径d とは、図1 、2 に示す通り、Ni2Si 析出物の前記白線の長さ (長辺側あるいは最も長い辺) の長さを言う。そして、観察視野内の各Ni2Si 析出物A の各粒径d を平均化したものが、本発明で言う平均粒径である。 In the present invention, the particle size d of the precipitate refers to the length of the white line (long side or longest side) of the Ni 2 Si precipitate as shown in FIGS. Then, those each particle diameter d of each Ni 2 Si precipitates A in the observation field of view was averaged, the average particle size referred to in the present invention.

また、本発明において、Ni2Si 析出物の間隔l とは、図1 、2 に示す通り、観察視野内の隣り合う各Ni2Si 析出物A 、A 同士の間隔l を言う。ただ、計算上は単位体積V 中に存在するNi2Si 析出物A の個数n から、本発明で言う平均間隔l AV. を求める。即ち、l AV. =V/n 、l AV. =3√(V/n) より求める。 In the present invention, the interval 1 between Ni 2 Si precipitates means the interval 1 between adjacent Ni 2 Si precipitates A 1 and A 2 in the observation field, as shown in FIGS. However, in the calculation, the average interval l AV. Referred to in the present invention is obtained from the number n of Ni 2 Si precipitates A present in the unit volume V. That, l AV. = V / n , l AV. = 3 obtained from √ (V / n).

ここで単位体積V は観察用試料の体積であり、この試料の大きさ、縦(nm)×横(nm)×膜厚(nm)より、x nm3 と求められる。したがって、Ni2Si 析出物A の平均間隔l AV. は、この観察用試料の体積V(x nm3)と、視野中に存在するNi2Si 析出物A の測定個数n より、3 √(x/n) により計算できる。 Here, the unit volume V is the volume of the sample for observation, and is obtained as x nm 3 from the size of the sample, length (nm) × width (nm) × film thickness (nm). Therefore, the average distance l AV of the Ni 2 Si precipitates A. Is the volume V of the sample for observation (x nm 3), from the measurement number n of present in the visual field Ni 2 Si precipitates A, 3 √ ( x / n).

人工時効硬化処理された銅合金板組織中のNi2Si 析出物の上記平均粒径を3 〜10nmとすることによって、高強度化、高曲げ加工化、高導電率化に寄与する微細なNi2Si 析出物の量 (数) を多くしうる。前記した本発明の固有の透過型電子顕微鏡観察条件からして、ここで言う微細なNi2Si 析出物とは、実質的に、特定条件の人工時効硬化処理によって母相から新たに微細に析出したNi2Si 相からなる。 Fine Ni that contributes to high strength, high bending work, and high conductivity by setting the above average particle size of the Ni 2 Si precipitate in the structure of artificial age-hardened copper alloy sheet to 3 to 10 nm 2 The amount (number) of Si precipitates can be increased. Based on the transmission electron microscope observation conditions inherent to the present invention described above, the fine Ni 2 Si precipitate referred to here is substantially newly precipitated from the parent phase by artificial age hardening treatment under specific conditions. Ni 2 Si phase.

Ni2Si 析出物の平均粒径が10nmを越えた場合、高強度化に寄与する微細なNi2Si 析出物の量 (数) が不足する。このため、銅合金板の引張強さを900MPa以上に高強度化できず、導電率との両立ができない。一方、Ni2Si 析出物の平均粒径を3nm 未満に細かくすると、転位によってNi2Si 析出物が切断されてしまうため、やはり、銅合金板の引張強さを900MPa以上に高強度化できず、導電率との両立ができない。したがって、人工時効硬化処理された銅合金板組織中に存在するNi2Si 析出物の平均粒径は3 〜10nmの範囲とする。 When the average particle size of Ni 2 Si precipitates exceeds 10 nm, the amount (number) of fine Ni 2 Si precipitates contributing to high strength is insufficient. For this reason, the tensile strength of the copper alloy plate cannot be increased to 900 MPa or more, and the electrical conductivity cannot be achieved. On the other hand, if the average particle size of Ni 2 Si precipitates is made smaller than 3 nm, the Ni 2 Si precipitates are cut by dislocations, so the tensile strength of the copper alloy sheet cannot be increased to 900 MPa or more. Incompatible with conductivity. Therefore, the average particle size of the Ni 2 Si precipitates present in the artificial age-hardened copper alloy sheet structure is in the range of 3 to 10 nm.

また、人工時効硬化処理された銅合金板組織中のNi2Si 析出物の上記平均間隔を25nm以下と小さくすることによって、銅合金板の引張強さを900MPa以上に高強度化できる。Ni2Si 析出物の平均間隔が25nmを越えた場合、銅合金板の引張強さを900MPa以上に高強度化できず、導電率との両立ができない。したがって、Ni2Si 析出物の平均間隔を25nm以下と規定する。 In addition, the tensile strength of the copper alloy sheet can be increased to 900 MPa or more by reducing the average distance between the Ni 2 Si precipitates in the artificial age-hardened copper alloy sheet structure to 25 nm or less. When the average interval between Ni 2 Si precipitates exceeds 25 nm, the tensile strength of the copper alloy sheet cannot be increased to 900 MPa or more, and the electrical conductivity cannot be achieved. Therefore, the average interval between Ni 2 Si precipitates is defined as 25 nm or less.

なお、人工時効硬化処理後の銅合金板組織中に存在するNi2Si 相として、上記微細Ni2Si 析出物の他に存在する、人工時効硬化処理前に既に存在し、人工時効硬化処理後にも存在するNi2Si 相はできるだけ少なくする方が好ましい。このような人工時効硬化処理前に既に存在しているNi2Si 相は、前記した通り、粒径が数十μm 程度以上の粗大なものであり、強度の向上には寄与しない。また、NiやSiをこれらNi2Si 相で消費すると、人工時効硬化処理後に生成し、強度や曲げ加工性向上に寄与する上記微細Ni2Si 析出物の量が減る。 The Ni 2 Si phase present in the copper alloy sheet structure after the artificial age hardening treatment is already present before the artificial age hardening treatment, in addition to the fine Ni 2 Si precipitate, and after the artificial age hardening treatment. It is preferable to reduce the Ni 2 Si phase present as much as possible. The Ni 2 Si phase already present before such artificial age hardening treatment is coarse with a particle size of about several tens of μm or more as described above, and does not contribute to improvement in strength. Further, when Ni or Si is consumed in these Ni 2 Si phases, the amount of the fine Ni 2 Si precipitates generated after the artificial age hardening treatment and contributing to improvement in strength and bending workability is reduced.

但し、鋳造技術の限界もあり、人工時効硬化処理前に既に存在し、人工時効硬化処理後にも存在するNi2Si 相を無くすことはできない。このため、本発明では人工時効硬化処理後の銅合金板組織中に、これら粗大なNi2Si 相の混在を許容する。言い換えると、本発明では、これら人工時効硬化処理前に既に存在し、人工時効硬化処理後にも存在するNi2Si 相が、人工時効硬化処理後の銅合金板組織中に存在 (混在) しても、銅合金板の引張強さ900MPa以上の高強度化と導電率20%IACS 以上の高導電率化、曲げ加工性などを両立できる利点がある。 However, due to limitations in casting technology, it is not possible to eliminate the Ni 2 Si phase that already exists before the artificial age hardening treatment and exists after the artificial age hardening treatment. Therefore, the copper alloy sheet in tissue after artificial aging treatment in the present invention allows a mix of these coarse Ni 2 Si phase. In other words, in the present invention, the Ni 2 Si phase that already exists before the artificial age hardening treatment and also exists after the artificial age hardening treatment is present (mixed) in the copper alloy sheet structure after the artificial age hardening treatment. However, there is an advantage that the tensile strength of the copper alloy sheet can be increased to 900 MPa or more, the conductivity can be increased to 20% IACS or more, and the bending workability can be compatible.

(銅合金板組織観察条件)
本発明で規定した100 万倍の超高倍率より倍率の低い、透過型電子顕微鏡観察では、晶出物を含めた人工時効硬化処理前に既に存在し、人工時効硬化処理後にも残存するNi2Si 相をも混同して観察する可能性がある。また、Ni2Si 相自体を識別乃至観察できない可能性がある。
(Conditions for observation of copper alloy sheet structure)
In transmission electron microscope observation with a magnification lower than the ultrahigh magnification of 1 million times defined in the present invention, Ni 2 which already exists before the artificial age hardening treatment including the crystallized substance and remains after the artificial age hardening treatment. There is a possibility that the Si phase will be confused and observed. In addition, the Ni 2 Si phase itself may not be identified or observed.

図3 と図4 とに、Niが各々3.9%と4.4 % のコルソン合金板の、例えば15万倍の透過型電子顕微鏡観察結果を示す。図3 と図4 とから分かる通り、銅合金板の冷間圧延によって銅合金板組織中に導入される転位と、Ni2Si 相との組織的な識別が困難である。特に、冷間圧延の加工率が高くなるほど、銅合金板組織中に導入される転位の量が多くなって、透過型電子顕微鏡による微細析出Ni2Si 相の組織観察が困難となる。この点、本発明で規定した上記100 万倍の超高倍率の透過型電子顕微鏡でないと、上記図3 と図4 のように、転位と微細析出Ni2Si 相の区別が組織観察上困難となる。 FIGS. 3 and 4 show, for example, 150,000 times transmission electron microscope observation results of Corson alloy plates having Ni of 3.9% and 4.4%, respectively. As can be seen from FIGS. 3 and 4, it is difficult to systematically distinguish the dislocations introduced into the copper alloy sheet structure by cold rolling of the copper alloy sheet from the Ni 2 Si phase. In particular, as the cold rolling ratio increases, the amount of dislocations introduced into the copper alloy sheet structure increases, making it difficult to observe the structure of the finely precipitated Ni 2 Si phase with a transmission electron microscope. In this regard, unless the transmission electron microscope with the ultra-high magnification of 1 million times defined in the present invention is used, it is difficult to distinguish between dislocations and finely precipitated Ni 2 Si phases as shown in FIGS. 3 and 4 above. Become.

上記倍率以外の好ましい透過型電子顕微鏡による組織観察条件を以下に説明する。透過型電子顕微鏡における試料の膜厚は、好ましくは1 〜100 nmとする。観察用試料の膜厚が100 nmを越えた場合、十分鮮明な組織像が得られない。   The preferred structure observation conditions with a transmission electron microscope other than the above magnification will be described below. The film thickness of the sample in the transmission electron microscope is preferably 1 to 100 nm. When the film thickness of the observation sample exceeds 100 nm, a sufficiently clear tissue image cannot be obtained.

一方、観察用試料の膜厚が1 nm未満の場合、観察されるNi2Si 析出物の数がより少なくなる。このため、特に平均間隔を実際よりも多めに観察しやすく、実際の銅合金板の性能が、引張強さ900MPa以上の高強度化と導電率20%IACS 以上の高導電率化を両立しているにも関わらず、組織的な条件を満足しないと誤認しやすくなる。 On the other hand, when the film thickness of the observation sample is less than 1 nm, the number of Ni 2 Si precipitates observed is smaller. For this reason, it is easy to observe especially the average interval more than the actual, and the performance of the actual copper alloy sheet is compatible with both high strength with a tensile strength of 900 MPa or more and high conductivity with a conductivity of 20% IACS or more. Despite this, it is easy to misunderstand that organizational conditions are not satisfied.

この他の条件、例えば、透過型電子顕微鏡の加速電圧は、100 〜300kV の間ではあまり影響しないが、一応、200kV と一定にすることが好ましい。なお、透過型電子顕微鏡によるNi2Si 析出物の観察において、100 万倍に拡大した組織画面を画像処理するか、または撮影写真の目視観察などするかは適宜選択できる。 Other conditions, for example, the accelerating voltage of the transmission electron microscope does not affect much between 100 and 300 kV, but it is preferable to keep it constant at 200 kV. In observation of Ni 2 Si precipitates with a transmission electron microscope, it is possible to appropriately select whether to perform image processing on a tissue screen magnified 1 million times or to visually observe a photograph.

なお、前記特許文献2でも、析出物の大きさが10nm以下、析出物の分布密度を1 ×105 個/(μm3 )以上と規定している。特許文献2では、析出硬化型合金であるコルソン合金が、Ni2Si 析出物 (金属間化合物) の分布状態、即ち、析出物の大きさと距離 (間隔) に影響されることを開示している。そして、特許文献2では、前記鋳塊の段階で既に存在する晶出物のような人工時効処理前に既に存在するNi2Si 相を少なくして、人工時効処理で新たに析出するNi2Si 相を多くしようとしている。具体的には、この人工時効処理で新たに析出するNi2Si 析出物の大きさと距離を小さくすることにより、良好な曲げ加工性を維持しながら強度を向上させている。 In Patent Document 2, the size of the precipitate is defined as 10 nm or less, and the distribution density of the precipitate is defined as 1 × 10 5 pieces / (μm 3 ) or more. Patent Document 2 discloses that a Corson alloy, which is a precipitation hardening type alloy, is affected by the distribution state of Ni 2 Si precipitates (intermetallic compounds), that is, the size and distance (interval) of the precipitates. . Then, in Patent Document 2, with less Ni 2 Si phase already already present before artificial aging, such as crystallized substances present at the stage of the ingot, Ni 2 Si to be newly deposited in artificial aging Trying to increase the number of phases. Specifically, by reducing the size and distance of Ni 2 Si precipitates newly deposited by this artificial aging treatment, the strength is improved while maintaining good bending workability.

にも関わらず、前記特許文献2では、導電率が44%IACS 程度あるコルソン合金の、引張強度が最も高くても892MPa程度でしかなく、900MPa以上の引張強さが得られていない。また、35% 以上の高導電率化と900MPa以上の高強度化とが両立できていない。   Nevertheless, in Patent Document 2, the Corson alloy having a conductivity of about 44% IACS has a tensile strength of at most about 892 MPa, and a tensile strength of 900 MPa or more is not obtained. Also, it is impossible to achieve both high conductivity of 35% or more and high strength of 900 MPa or more.

この理由は、特許文献2の実施例に記載する、透過型電子顕微鏡による組織観察が、本発明で規定した上記100 万倍の超高倍率では無く、15万倍と低いためと考えられる。即ち、15万倍など、より倍率の低い透過型電子顕微鏡による組織観察では、上記した通り、人工時効硬化処理によって母相から新たに微細に析出したNi2Si 相のみを正確に観察できない。したがって、特許文献2は、20% 以上の高導電率化と900MPa以上の高強度化とが両立するためのNi2Si 相のあり方を正確に規定していない。 The reason is considered that the structure observation by the transmission electron microscope described in the example of Patent Document 2 is not 150,000 times the ultra high magnification defined in the present invention but 150,000 times as low. That is, in the structure observation with a transmission electron microscope having a lower magnification such as 150,000 times, as described above, it is not possible to accurately observe only the Ni 2 Si phase newly precipitated from the mother phase by the artificial age hardening treatment. Therefore, Patent Document 2 does not accurately define the ideal Ni 2 Si phase for achieving both high conductivity of 20% or more and high strength of 900 MPa or more.

また、特許文献2のNi含有量は、多くても4 重量% 程度と、比較的低いため、人工時効処理で新たに析出するNi2Si 相の量が必然的に少なくなる。この結果、特許文献2では、前記鋳塊の段階で既に存在する晶出物のような人工時効処理前に既に存在するNi2Si 相を少なくして、人工時効処理で新たに析出するNi2Si 相を多くしようとしているにもかかわらず、人工時効処理後の実際の銅合金板の組織は、人工時効処理で新たに析出する微細なNi2Si 相がより少ない組織となっていると考えられる。このため、銅合金板の引張強さを900MPa以上に安定的に高強度化させることができないか、引張強さを高くしても、導電率を20% 以上に高くすることができない。 Further, since the Ni content in Patent Document 2 is relatively low, at most about 4% by weight, the amount of Ni 2 Si phase newly precipitated by artificial aging treatment is inevitably reduced. As a result, in Patent Document 2, the Ni 2 Si phase already existing before the artificial aging treatment such as the crystallized material already existing at the ingot stage is reduced, and Ni 2 newly precipitated by the artificial aging treatment is reduced. Despite attempts to increase the Si phase, the structure of the actual copper alloy sheet after artificial aging treatment is thought to be a structure with less fine Ni 2 Si phase newly precipitated by artificial aging treatment. It is done. For this reason, the tensile strength of the copper alloy plate cannot be stably increased to 900 MPa or higher, or the electrical conductivity cannot be increased to 20% or higher even if the tensile strength is increased.

(銅合金板の成分組成)
以下に、人工時効硬化処理後の銅合金板組織を上記本発明規定の組織とするためなどの、本発明銅合金板における化学成分組成の限定理由を説明する。
(Component composition of copper alloy sheet)
Below, the reason for limitation of the chemical component composition in this invention copper alloy board, such as making the copper alloy board structure | tissue after artificial age hardening processing into the structure | tissue of the said this invention provision is demonstrated.

(Ni;4.0〜5.0 %)
Niは後述するSiと共に必須に含有されて、人工時効処理で析出したNi2Si 相を形成して、銅合金板の強度の向上に寄与する元素である。Niの含有量が4.0 % 未満の場合は、前記Ni2Si 相が不足し、銅合金板の引張強さを900MPa以上とすることができない。一方、Niの含有量が5.0%を越えると、導電率が低下し、銅合金板の導電率を20%IACS 以上とすることができない。更に、鋳造での鋳造性や曲げ加工性が低下する。したがって、Ni含有量は4.0 〜5.0 % の範囲とする。
(Ni; 4.0-5.0%)
Ni is an element that is essential in addition to Si, which will be described later, and forms a Ni 2 Si phase precipitated by artificial aging treatment, thereby contributing to the improvement of the strength of the copper alloy sheet. When the Ni content is less than 4.0%, the Ni 2 Si phase is insufficient, and the tensile strength of the copper alloy sheet cannot be 900 MPa or more. On the other hand, if the Ni content exceeds 5.0%, the electrical conductivity decreases, and the electrical conductivity of the copper alloy sheet cannot be made 20% IACS or more. Furthermore, castability and bending workability in casting are deteriorated. Therefore, the Ni content is in the range of 4.0 to 5.0%.

(Si)
Siも前記Niと共に必須に含有されて、人工時効処理で析出したNi2Si 相を形成して、銅合金板の強度の向上に寄与する元素である。但し、銅合金板の導電率を20%IACS 以上のできるだけ高い値とし、銅合金板の引張強さを900MPa以上とするためには、前記NiとSiとは、前記互いの含有量の範囲内において、前記NiとSiとが、Ni2Si 相を形成するに必要な当量づつ含まれることが必要である。これをNiとSiとの質量比Ni/Si で表すと、Ni2Si の構成比率に近い4 〜5 の範囲である。したがって、Siの含有量は、NiとSiとの質量比Ni/Si で表す。
(Si)
Si is also an essential element together with Ni, and forms an Ni 2 Si phase precipitated by artificial aging treatment, thereby contributing to improvement of the strength of the copper alloy sheet. However, in order to make the conductivity of the copper alloy plate as high as possible as 20% IACS or more and the tensile strength of the copper alloy plate to be 900 MPa or more, the Ni and Si are within the range of the content of each other. In the above, it is necessary that the Ni and Si are included in an equivalent amount necessary for forming the Ni 2 Si phase. When this is expressed by the mass ratio Ni / Si between Ni and Si, it is in the range of 4 to 5 close to the composition ratio of Ni 2 Si. Therefore, the content of Si is expressed by a mass ratio Ni / Si between Ni and Si.

この範囲から外れ、NiとSiとが各々過剰に含まれた場合、銅合金板の引張強さを900MPa以上とすることができるが、過剰な分のNiまたはSiが銅のマトリックス中に固溶し、銅合金板の導電率が低下する。また、Siが過剰に含まれた場合、鋳造での鋳造性や、熱間および冷間での圧延加工も低下し、鋳造割れや圧延割れが生じやすくなる。一方、この範囲から外れ、Siの含有量が少な過ぎる場合は、Ni2Si 相が不足し、銅合金板の引張強さを900MPa以上とすることができない。 If Ni and Si are excessively contained outside this range, the tensile strength of the copper alloy plate can be 900 MPa or more, but the excess Ni or Si is dissolved in the copper matrix. In addition, the conductivity of the copper alloy plate is reduced. Moreover, when Si is contained excessively, the castability in casting and the hot and cold rolling processes are also lowered, and casting cracks and rolling cracks are likely to occur. On the other hand, if it is out of this range and the Si content is too small, the Ni 2 Si phase is insufficient and the tensile strength of the copper alloy sheet cannot be made 900 MPa or more.

(その他の合金元素)
本発明高強度銅合金板は、その他の合金元素として、質量% で、Sn:0.1〜4.0%、Zn:0.1〜1.0%、Ag:0.001〜1.0%、Mn:0.01 〜0.1%、Zr:0.001〜0.1%、Co:0.01 〜0.3%、の一種または二種以上を、選択的に、あるいは必要に応じて含有することができる。これらの元素は、いずれも本発明銅合金の主たる目的である強度や導電率あるいは曲げ加工性のいずれかを向上させる共通の効果がある同効元素である。以下に、各元素の特徴的な作用効果と含有範囲の意義を記載する。
(Other alloy elements)
The high-strength copper alloy sheet of the present invention is, as other alloy elements, in mass%, Sn: 0.1-4.0%, Zn: 0.1-1.0%, Ag: 0.001-1.0%, Mn: 0.01-0.1%, Zr: 0.001 One or two or more of -0.1% and Co: 0.01-0.3% can be contained selectively or as required. All of these elements are synergistic elements having a common effect of improving any one of the main purposes of the copper alloy of the present invention, strength, conductivity, and bending workability. Below, the characteristic effect of each element and the significance of the content range are described.

(Sn:0.1 〜4.0%)
Snは主に銅合金板の強度を向上させる元素であり、これらの特性を重視する用途に使用する場合には、選択的に含有させる。Snの含有量が0.1%未満ではその強度向上効果が無い。一方、Snを含有させると銅合金板の導電率が低下する。特に、Snが4.0%を超えて含有されると、銅合金板の導電率を20%IACS 以上とすることができない。したがって、含有させる場合には、Snの含有量を0.1 〜4.0%の範囲とする。
(Sn: 0.1-4.0%)
Sn is an element mainly improving the strength of the copper alloy sheet, and is selectively contained when used for applications in which these characteristics are important. If the Sn content is less than 0.1%, the strength improving effect is not obtained. On the other hand, when Sn is contained, the electrical conductivity of the copper alloy plate is lowered. In particular, if Sn is contained in excess of 4.0%, the conductivity of the copper alloy sheet cannot be made 20% IACS or more. Therefore, when it contains, content of Sn shall be 0.1 to 4.0% of range.

(Zn:0.1 〜1.0%)
Znは主に半田の対剥離性や耐マイグレーション性を向上させる元素であり、これらの特性を重視する用途に使用する場合には、選択的に含有させる。Znの含有量が0.1%未満ではその効果が無い。一方、Znを含有させると銅合金板の導電率が低下し、Znが1.0%を超えて含有されると、銅合金板の導電率を20%IACS 以上とすることができない。したがって、含有させる場合には、Znの含有量を0.1 〜1.0%の範囲とする。
(Zn: 0.1 to 1.0%)
Zn is an element mainly improving the releasability and migration resistance of solder, and is selectively contained when used for applications in which these characteristics are important. If the Zn content is less than 0.1%, there is no effect. On the other hand, if Zn is contained, the electrical conductivity of the copper alloy plate is lowered, and if Zn is contained in excess of 1.0%, the electrical conductivity of the copper alloy plate cannot be 20% IACS or more. Therefore, when it is contained, the Zn content is in the range of 0.1 to 1.0%.

(Ag:0.001 〜1.0%)
Agは主に導電率を向上させる。したがって、導電率を向上させたい場合には、選択的に含有させる。Agの含有量が0.001%未満ではその効果が無い。一方、Agを1.0%を超えて含有させても、高価なAgによってコストが大幅に上昇してしまう。したがって、含有させる場合には、Agの含有量を0.001 〜1.0%の範囲とする。
(Ag: 0.001 to 1.0%)
Ag mainly improves conductivity. Therefore, when it is desired to improve the electrical conductivity, it is selectively contained. If the Ag content is less than 0.001%, the effect is not obtained. On the other hand, even if Ag is contained in excess of 1.0%, the cost increases significantly due to expensive Ag. Therefore, when contained, the content of Ag is set to a range of 0.001 to 1.0%.

(Mn:0.01〜0.1%)
Mnは主に熱間圧延での加工性を向上させる。したがって、熱間加工性を向上させたい場合には、選択的に含有させる。Mnの含有量が0.01% 未満ではその効果が無い。一方、Mnが0.1%を超えて含有されると、銅合金の造塊時の湯流れ性が悪化して造塊歩留まりが低下する。したがって、含有させる場合には、Mnの含有量を0.01〜0.1%の範囲とする。
(Mn: 0.01-0.1%)
Mn mainly improves the workability in hot rolling. Therefore, when it is desired to improve hot workability, it is selectively contained. If the Mn content is less than 0.01%, the effect is not obtained. On the other hand, if Mn is contained in an amount exceeding 0.1%, the hot metal flowability at the time of agglomeration of the copper alloy deteriorates and the agglomeration yield decreases. Therefore, when it is contained, the Mn content is in the range of 0.01 to 0.1%.

(Zr:0.001 〜0.1%)
Zrは主に結晶粒を微細化させて、銅合金板の強度や曲げ加工性を向上させる。したがって、強度や曲げ加工性を向上させたい場合には、選択的に含有させる。Zrの含有量が0.001%未満ではその効果が無い。一方、Zrが0.1%を超えて含有されると、化合物を形成し、銅合金板の圧延などの加工性が低下する。したがって、含有させる場合には、Zrの含有量を0.001 〜0.1%の範囲とする。
(Zr: 0.001 to 0.1%)
Zr mainly refines the crystal grains and improves the strength and bending workability of the copper alloy sheet. Therefore, when it is desired to improve strength and bending workability, it is selectively contained. If the Zr content is less than 0.001%, the effect is not obtained. On the other hand, when Zr is contained in an amount exceeding 0.1%, a compound is formed and workability such as rolling of a copper alloy sheet is lowered. Therefore, when it is contained, the Zr content is in the range of 0.001 to 0.1%.

(Co:0.01〜0.3%)
Coも主に結晶粒を微細化させて、銅合金板の強度や曲げ加工性を向上させる。したがって、強度や曲げ加工性を向上させたい場合には、選択的に含有させる。Coの含有量が0.01% 未満ではその効果が無い。一方、Coが0.3%を超えて含有されると、化合物を形成し、銅合金板の圧延などの加工性が低下する。したがって、含有させる場合には、Coの含有量を0.01〜0.3%の範囲とする。
(Co: 0.01-0.3%)
Co mainly refines crystal grains to improve the strength and bending workability of copper alloy sheets. Therefore, when it is desired to improve strength and bending workability, it is selectively contained. If the Co content is less than 0.01%, the effect is not obtained. On the other hand, when Co exceeds 0.3%, a compound is formed and workability such as rolling of a copper alloy sheet is lowered. Therefore, when it contains, content of Co shall be 0.01 to 0.3% of range.

この他の元素として、Al、Cr、Fe、Ti、P、Be、V、Nb、Mo、W、Mgなどは、銅合金板の特性を劣化させる不純物である。但し、これらの総量で0.5質量% までの含有量であれば、本発明高強度銅合金板の特性は損なわれることがない。したがって、前記範囲内でのこれらの合金元素の含有は許容される。   As other elements, Al, Cr, Fe, Ti, P, Be, V, Nb, Mo, W, Mg, and the like are impurities that deteriorate the characteristics of the copper alloy plate. However, if the total content of these is up to 0.5% by mass, the characteristics of the high-strength copper alloy sheet of the present invention are not impaired. Therefore, the inclusion of these alloy elements within the above range is allowed.

また、本発明高強度銅合金板において、特に、規制すべき不純物としては、B、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等があげられる。これらは、各々鋳造性や熱間加工性、あるいは高強度銅合金板の特性などを損なう。したがって、これらの不純物はできるだけ含有量を規制して低くする。より具体的には、これらの総量で0.1 質量% までとし、できるだけ含有量を低くする。   In the high-strength copper alloy plate of the present invention, particularly, impurities to be regulated include B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, MM (Misch metal), etc. Can be given. These impair the castability, hot workability, or the characteristics of the high-strength copper alloy sheet. Therefore, the content of these impurities is restricted as much as possible. More specifically, the total amount is limited to 0.1% by mass, and the content is made as low as possible.

次に、人工時効硬化処理後の銅合金板組織を上記本発明規定の組織とするためなどの、好ましい製造条件について以下に説明する。本発明銅合金板の製造工程自体は、特別な工程は不要で、常法と同じ工程で製造できる。即ち、質量% で、Ni;4.0〜5.0 % 、Si;0.5〜1.5 % を含み、残部が実質的に銅及び不可避的不純物、更には、前記選択的な添加元素を加えて成分調整した溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。その後、中延べと言われる一次冷間圧延して、必要により焼鈍、洗浄後、更に仕上げ冷間圧延して、製品板厚の銅合金板とする。   Next, preferable manufacturing conditions such as making the copper alloy sheet structure after the artificial age hardening treatment the structure defined in the present invention will be described below. The manufacturing process itself of the copper alloy sheet of the present invention does not require any special process, and can be manufactured by the same process as that of a conventional method. That is, a molten metal containing 4.0% to 5.0% of Ni and 4.0% to 5.0% of Si and 0.5% to 1.5% of the balance, with the balance being substantially copper and unavoidable impurities, and further adding the selective additive elements to adjust the components. Cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. After that, primary cold rolling, which is said to be intermediate rolling, is annealed and washed as necessary, and further finish cold-rolled to obtain a copper alloy plate having a product thickness.

仕上げ冷間圧延の前後(通常は仕上げ冷間圧延の前)で、銅合金板の溶体化処理および水冷による焼き入れ処理を行なう。この際、溶体化処理温度は、750 〜1000℃の範囲から選択されるが、880 〜920 ℃の比較的高温とすることが好ましい。880 ℃未満のような低温の溶体化処理温度では、前記した通り、晶出物のような人工時効硬化処理前に既に存在するNi2Si 相が、溶体化処理時の加熱で完全に固溶せずに、そのまま残存して、人工時効硬化処理後にも銅合金板中に多く混在してしまう可能性がある。また、前記人工時効処理前に既に存在するNi2Si 相として、かなりのNi2Si が予め消費されてしまい、人工時効処理において、新たに析出するNi2Si 相の量が必然的に少なくなる。一方、溶体化処理温度を920 ℃を越えて上げると、バーニングの問題が生じやすく、製造コストの点で不利となる可能性がある。 Before and after finish cold rolling (usually before finish cold rolling), a solution treatment of the copper alloy plate and a quenching treatment by water cooling are performed. At this time, the solution treatment temperature is selected from a range of 750 to 1000 ° C., but is preferably a relatively high temperature of 880 to 920 ° C. At a low solution treatment temperature, such as less than 880 ° C, as described above, the Ni 2 Si phase already present before the artificial age hardening treatment such as the crystallized product is completely dissolved by heating during the solution treatment. However, it may remain as it is and may be mixed in the copper alloy plate after the artificial age hardening treatment. In addition, as the Ni 2 Si phase already present before the artificial aging treatment, a considerable amount of Ni 2 Si is consumed in advance, and the amount of newly precipitated Ni 2 Si phase is inevitably reduced in the artificial aging treatment. . On the other hand, if the solution treatment temperature exceeds 920 ° C., burning problems are likely to occur, which may be disadvantageous in terms of manufacturing costs.

冷間圧延の内、前記仕上げ冷間圧延の加工率はできるだけ高い方が好ましい。具体的には、銅合金板の高強度化や、Ni2Si 析出物の析出量や微細析出確保のために、仕上げ冷間圧延の加工率を20% 以上とすることが好ましい。仕上げ冷間圧延の加工率が20% 未満では、加工硬化 (オロワン機構による導入転位の高堆積化) による銅合金板の高強度化が期待できない。また、人工時効硬化処理によるNi2Si 析出物の析出量も少なくなる。更に、人工時効硬化処理により析出するNi2Si 析出物のサイズが粗大化する可能性もある。これらの結果、銅合金板の引張強さ900MPa以上の高強度化と導電率20%IACS 以上の高導電率化、高曲げ加工化を両立できない可能性が生じる。 Of the cold rolling, the finishing cold rolling is preferably as high as possible. Specifically, in order to increase the strength of the copper alloy sheet and to secure the precipitation amount and fine precipitation of Ni 2 Si precipitates, it is preferable that the finish cold rolling process rate be 20% or more. If the finish cold rolling processing rate is less than 20%, it is not possible to expect a high strength copper alloy sheet due to work hardening (high deposition of introduced dislocations by the Orowan mechanism). In addition, the amount of Ni 2 Si precipitates deposited by artificial age hardening is reduced. Furthermore, there is a possibility that the size of the Ni 2 Si precipitate deposited by the artificial age hardening treatment becomes coarse. As a result, there is a possibility that the copper alloy sheet cannot have both a tensile strength of 900 MPa or more, a conductivity of 20% IACS or more, and a high bending process.

冷間圧延後の人工時効硬化処理は、高強度化、高曲げ加工化、高導電率化に寄与する微細なNi2Si 析出物を析出させる役割を果たす。この際、人工時効硬化処理された銅合金板組織中に存在するNi2Si 析出物の平均粒径を3 〜10nmとするとともに、Ni2Si 析出物の平均間隔を25nm以下とすることが重要である。 Artificial age hardening after cold rolling plays a role in precipitating fine Ni 2 Si precipitates that contribute to high strength, high bending work, and high electrical conductivity. At this time, it is important that the average particle size of the Ni 2 Si precipitates existing in the artificial age-hardened copper alloy sheet structure is 3 to 10 nm and the average interval of the Ni 2 Si precipitates is 25 nm or less. It is.

このために、人工時効硬化処理条件は、350 〜550 ℃の温度範囲と2 〜6 時間の処理範囲から、銅合金板の引張強さが900MPa以上の最高値あるいは最高値に近くなる条件を選択される。本発明成分組成のコルソン合金では、前記人工時効硬化処理の条件範囲で銅合金板の引張強さが最高となるピークを有する。このピーク値を生じる人工時効硬化処理の温度と時間とは、銅合金板の成分組成によって異なる。したがって、人工時効硬化処理の上記温度と時間との範囲から、その特定銅合金板の引張強さの最高値あるいは最高値に近くなる条件を選択する。このピークを外れた温度と時間では、引張強さがピーク値に比して大きく低下し、銅合金板の引張強さ900MPa以上の高強度化することができない。   For this reason, the conditions for artificial age hardening treatment are selected from the temperature range of 350 to 550 ℃ and the treatment range of 2 to 6 hours so that the tensile strength of the copper alloy sheet is 900 MPa or higher or close to the highest value. Is done. The Corson alloy having the composition of the present invention has a peak in which the tensile strength of the copper alloy sheet is maximum within the range of conditions for the artificial age hardening treatment. The temperature and time of the artificial age hardening treatment that causes this peak value vary depending on the component composition of the copper alloy sheet. Therefore, a condition that makes the maximum value or the maximum value of the tensile strength of the specific copper alloy sheet is selected from the range of the temperature and time of the artificial age hardening treatment. At a temperature and time outside this peak, the tensile strength is greatly reduced compared to the peak value, and the tensile strength of the copper alloy sheet of 900 MPa or more cannot be increased.

但し、処理温度は430 〜480 ℃の範囲と、処理時間は3 〜5 時間の範囲から選択することが、銅合金板の引張強さを900MPa以上の最高値とする点で好ましい。上記好ましい温度範囲と処理時間範囲を外れた場合には、成分範囲との関係で、Ni2Si 析出物の平均粒径および/ またはNi2Si 析出物の平均間隔が、本発明規定を満足できなくなる可能性が高くなる。このため、高強度化、高曲げ加工化、高導電率化が両立できない可能性が高くなる。 However, it is preferable that the processing temperature is selected from the range of 430 to 480 ° C. and the processing time is selected from the range of 3 to 5 hours from the viewpoint of setting the tensile strength of the copper alloy sheet to 900 MPa or more. When out of the range the preferred temperature range and treatment time, in relation to the component range, the average distance between the average particle size and / or Ni 2 Si precipitate Ni 2 Si precipitates, can satisfy the present invention defined The possibility of disappearing is increased. For this reason, there is a high possibility that high strength, high bending work, and high conductivity cannot be achieved at the same time.

なお、上記仕上げ冷間圧延と、この冷延後の人工時効硬化処理との一連の工程を、1 回のみではなく、2 回以上繰り返して行っても良い。この場合、より冷間加工率をかせぐことができ、上記仕上げ冷間圧延による、銅合金板の高強度化や、Ni2Si 析出物の析出量や微細析出確保などの効果を更に発揮できる利点がある。 The series of steps of the finish cold rolling and the artificial age hardening after cold rolling may be repeated not only once but twice or more. In this case, the cold work rate can be further increased, and the above-mentioned finish cold rolling has the advantage that the copper alloy sheet can be strengthened, the amount of Ni 2 Si precipitates deposited and the fine precipitation ensured. There is.

以下に本発明の実施例を説明する。下記表1 に示す各組成の銅合金を鋳造して銅合金板を製造し、各特性を評価した。なお、表1 に示す各組成の銅合金板において、表1 に記載以外の他の元素として、Al、Cr、Fe、Ti、P、Be、V、Nb、Mo、W、Mgは、これらの総量で0.5質量% 以下であった。また、B、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素は、これらの総量で0.1 質量% 以下であった。   Examples of the present invention will be described below. Copper alloy sheets were produced by casting copper alloys having the respective compositions shown in Table 1 below, and each characteristic was evaluated. In addition, in the copper alloy plates having the respective compositions shown in Table 1, as elements other than those described in Table 1, Al, Cr, Fe, Ti, P, Be, V, Nb, Mo, W, and Mg are those The total amount was 0.5% by mass or less. Further, the total amount of elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch metal) was 0.1% by mass or less.

具体的な銅合金板の製造方法としては、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mm の鋳塊を得た。そして、鋳塊の表面を面削した後、950 ℃の温度で厚さが15mmになるまで熱間圧延し、750 ℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延を行い、厚さが0.7mm の板を得た。   A specific method for producing a copper alloy sheet is to melt in a kryptor furnace in the atmosphere under charcoal coating and cast into a cast iron book mold to form an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm. Obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. to a thickness of 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, primary cold rolling was performed to obtain a plate having a thickness of 0.7 mm.

続いて、塩浴炉を使用し、表2 、3 に示す温度で共通して30秒間加熱する溶体化処理を行なった後に、水中に急冷した。次に、仕上げ冷間圧延により、各々厚さが0.20mm (加工率70%)〜0.6mm(加工率10%)の範囲で、加工率を変えて冷延板にした。この冷延板を、表2 、3 に示すように、温度 (℃) と時間(hr)とを変えて人工時効硬化処理した。   Subsequently, using a salt bath furnace, a solution treatment was performed by heating for 30 seconds in common at the temperatures shown in Tables 2 and 3, and then rapidly cooled in water. Next, by cold-rolling finishes, each of the thicknesses was in the range of 0.20 mm (processing rate 70%) to 0.6 mm (processing rate 10%), and the processing rate was changed into cold rolled sheets. As shown in Tables 2 and 3, this cold-rolled sheet was subjected to artificial age hardening treatment at different temperatures (° C.) and times (hr).

このようにして製造した銅合金板に対して、各例とも、人工時効硬化処理後に銅合金板から切り出した試料を使用し、以下に示す試験及び評価を実施した。   With respect to the copper alloy plate thus produced, in each example, the test and evaluation shown below were performed using a sample cut out from the copper alloy plate after the artificial age hardening treatment.

析出物の平均粒径 (サイズ:nm)及び平均間隔(nm)は、前記した本発明の透過型電子顕微鏡組織観察条件により撮影した倍率が100 万倍の組織写真、および前記した算出方法から測定、算出した。表2 に示す発明例3 と比較例17との組織写真を各々図1 、2 に示す。図1 、2 において、前記した通り、A は析出物、d は析出物の粒径 (nm) 、B は析出物同士の間隔(nm)を各々示す。   The average particle size (size: nm) and average interval (nm) of the precipitates were measured from the structure photograph taken at the magnification of 1,000,000 times according to the transmission electron microscope structure observation conditions of the present invention described above and the calculation method described above. Calculated. Structure photographs of Invention Example 3 and Comparative Example 17 shown in Table 2 are shown in FIGS. 1 and 2, as described above, A represents a precipitate, d represents a particle size (nm) of the precipitate, and B represents an interval (nm) between the precipitates.

引張り試験は、圧延方向に平行に切り出してJIS13号の試験片を作成し、この試験片を使用して行った。   The tensile test was carried out using this test piece by cutting out in parallel with the rolling direction to prepare a JIS No. 13 test piece.

導電率は、幅10mm×長さ300mm の試験片を使用し、ダブルブリッジにより電気抵抗を測定して平均断面積法により算出した。   The conductivity was calculated by an average cross-sectional area method using a test piece having a width of 10 mm and a length of 300 mm, measuring the electric resistance with a double bridge.

曲げ加工性は、実プレスにおいて、R=0.15mmで、曲げ線を圧延方向に平行(BW)及び直角(GW)に設定し、90°曲げを行った。そして、曲げ部を20倍のルーペで観察し、クラックの発生の有無により曲げ加工性を評価した。即ち、曲げ部にクラックが無く、曲げ加工条件が厳しくても、曲げ加工性が良いものを○と評価した。また、大きなクラックは無いが小さなクラックが存在し、曲げ加工条件を緩和すれば、曲げ加工が可能するものを△、大きなクラックが存在し、曲げ加工条件を緩和しても、曲げ加工が不可のものを×と各々評価した。
これらの試験結果も下記表2 、3 に示す。なお、表2 は発明例、表3 は比較例を各々示す。
The bending workability was R = 0.15 mm in an actual press, the bending line was set parallel (BW) and right angle (GW) to the rolling direction, and 90 ° bending was performed. And the bending part was observed with the magnifier of 20 times, and bending workability was evaluated by the presence or absence of generation | occurrence | production of a crack. That is, even if there were no cracks in the bent part and the bending process conditions were strict, those having good bending workability were evaluated as “good”. In addition, there are no large cracks, but there are small cracks. If the bending conditions are relaxed, the bending is possible. Δ. Large cracks are present, and even if the bending conditions are relaxed, bending is not possible. Each was rated as x.
These test results are also shown in Tables 2 and 3 below. Table 2 shows invention examples, and Table 3 shows comparative examples.

表1 および2 から明らかな通り、Ni;4.0〜5.0 質量% を含み、かつSiをNiとSiとの質量比Ni/Si が4 〜5 の範囲となるように含む、発明組成内の発明例合金1 〜10を用いた発明例1 〜14は、製造方法も好ましい条件内で製造されている。このため、発明例3 の例を図1 に示す通り、人工時効硬化処理後の銅合金板を100 万倍の透過型電子顕微鏡で銅合金板組織を観察した際の、銅合金板組織中に存在するNi2Si 析出物の平均粒径が3 〜10nmであるとともに、Ni2Si 析出物の平均間隔を25nm以下である。この結果、人工時効硬化処理後の銅合金板の引張強さが900MPa以上、導電率が20%IACS 以上である。また、発明例1 〜14は曲げ加工性にも優れる。 As is apparent from Tables 1 and 2, an example of the invention within the inventive composition containing Ni; 4.0 to 5.0% by mass, and containing Si so that the mass ratio Ni / Si of Ni to Si is in the range of 4 to 5 Invention Examples 1 to 14 using Alloys 1 to 10 are manufactured under preferable conditions for the manufacturing method. For this reason, as shown in FIG. 1 of the example 3 of the invention, the copper alloy plate structure after the artificial age hardening treatment was observed in the copper alloy plate structure when the copper alloy plate structure was observed with a transmission electron microscope of 1 million times. The average particle size of the Ni 2 Si precipitates present is 3 to 10 nm, and the average interval between the Ni 2 Si precipitates is 25 nm or less. As a result, the tensile strength of the copper alloy sheet after the artificial age hardening treatment is 900 MPa or more, and the conductivity is 20% IACS or more. Inventive Examples 1 to 14 are also excellent in bending workability.

これに対して、表1 および表3 から明らかな通り、比較例15は、用いた比較合金例11のNiが含有量は範囲内だがSiに対し過剰で、Ni/Si が5 を超えている。このため、製造方法は好ましい条件内で製造されているものの、Ni2Si 析出物の平均間隔が25nmを超え、人工時効硬化処理後の銅合金板の引張強さが900MPa未満である。 On the other hand, as is clear from Tables 1 and 3, in Comparative Example 15, the content of Ni in Comparative Alloy Example 11 used was within the range but was excessive with respect to Si, and Ni / Si exceeded 5 . For this reason, although the manufacturing method is manufactured within preferable conditions, the average interval of Ni 2 Si precipitates exceeds 25 nm, and the tensile strength of the copper alloy sheet after artificial age hardening is less than 900 MPa.

比較例16は、用いた比較合金例12のSiがNiに対し過剰で、Ni/Si が4 未満である。このため、製造方法は好ましい条件内で製造されており、Ni2Si 析出物の平均粒径とNi2Si 析出物の平均間隔も範囲内であるものの、人工時効硬化処理後の銅合金板の導電率が20%IACS 未満である。また、曲げ加工性も低い。 In Comparative Example 16, the Si of Comparative Alloy Example 12 used is excessive with respect to Ni, and Ni / Si is less than 4. Therefore, the manufacturing method is manufactured in the preferred conditions, although the average distance between the average particle diameter and the Ni 2 Si precipitate Ni 2 Si precipitates are also within the scope of the copper alloy plate after the artificial age hardening treatment Conductivity is less than 20% IACS. Also, bending workability is low.

比較例17は、用いた比較合金例13のNi含有量が少な過ぎる。このため、製造方法は好ましい条件内で製造されているものの、Ni2Si 析出物の平均粒径が10nmを超えるとともに平均間隔が25nmを超え、人工時効硬化処理後の銅合金板の引張強さが900MPa未満である。 In Comparative Example 17, the Ni content of Comparative Alloy Example 13 used is too small. Therefore, although the manufacturing method is manufactured within preferable conditions, the average particle size of the Ni 2 Si precipitate exceeds 10 nm and the average interval exceeds 25 nm, and the tensile strength of the copper alloy sheet after artificial age hardening treatment Is less than 900MPa.

比較例18は、用いた比較合金例14のNi含有量が多過ぎる。このため、製造方法は好ましい条件内で製造されているものの、人工時効硬化処理後の銅合金板の導電率が20%IACS 未満である。また、曲げ加工性も低い。   In Comparative Example 18, the Ni content of Comparative Alloy Example 14 used is too large. For this reason, although the manufacturing method is manufactured under preferable conditions, the electrical conductivity of the copper alloy sheet after the artificial age hardening treatment is less than 20% IACS. Also, bending workability is low.

比較例19は、用いた比較合金例15のSi含有量が多過ぎ、Ni/Si が5 を超える。このため、製造方法は好ましい条件内で製造されているものの、Ni2Si 析出物の平均粒径が10nmを超えるとともに平均間隔が25nmを超え、人工時効硬化処理後の銅合金板の引張強さが900MPa未満である。 In Comparative Example 19, the Si content of Comparative Alloy Example 15 used is too large, and Ni / Si is more than 5. Therefore, although the manufacturing method is manufactured within preferable conditions, the average particle size of the Ni 2 Si precipitate exceeds 10 nm and the average interval exceeds 25 nm, and the tensile strength of the copper alloy sheet after artificial age hardening treatment Is less than 900MPa.

比較例20は、用いた比較合金例16のSi含有量が少な過ぎ、Ni/Si が4 未満である。このため、製造方法は好ましい条件内で製造されており、Ni2Si 析出物の平均粒径とNi2Si 析出物の平均間隔も範囲内であるものの、人工時効硬化処理後の銅合金板の導電率が20%IACS 未満である。また、曲げ加工性も低い。 In Comparative Example 20, the Si content of Comparative Alloy Example 16 used was too small, and Ni / Si was less than 4. Therefore, the manufacturing method is manufactured in the preferred conditions, although the average distance between the average particle diameter and the Ni 2 Si precipitate Ni 2 Si precipitates are also within the scope of the copper alloy plate after the artificial age hardening treatment Conductivity is less than 20% IACS. Also, bending workability is low.

比較例21は、発明合金例2 を用いているが、溶体化処理温度が低過ぎ、Ni2Si 析出物の平均粒径が上限の10nmであり、平均間隔が25nmを超え、人工時効硬化処理後の銅合金板の引張強さが900MPa未満である。 Comparative Example 21 uses Inventive Alloy Example 2, but the solution treatment temperature is too low, the average particle size of Ni 2 Si precipitates is the upper limit of 10 nm, the average interval exceeds 25 nm, and the artificial age hardening treatment The tensile strength of the later copper alloy sheet is less than 900 MPa.

比較例22は、発明合金例2 を用いているが、仕上げ冷間圧延加工率が低過ぎ、溶体化処理温度が低過ぎ、Ni2Si 析出物の平均間隔が25nmを超え、人工時効硬化処理後の銅合金板の引張強さが900MPa未満である。 Comparative Example 22 uses Inventive Alloy Example 2, but the finish cold rolling rate is too low, the solution treatment temperature is too low, the average interval of Ni 2 Si precipitates exceeds 25 nm, and the artificial age hardening treatment The tensile strength of the later copper alloy sheet is less than 900 MPa.

比較例23、24は、発明合金例2 を用いているが、人工時効硬化処理温度が高過ぎるて、Ni2Si 析出物の平均粒径が10nmを超えるとともに、Ni2Si 析出物の平均間隔が25nmを超える。この結果、人工時効硬化処理後の銅合金板の引張強さが900MPa未満の著しく低い値である。 Comparative Example 23 and 24, but using the invention alloy Example 2, by artificial age hardening treatment temperature is too high, with an average particle size of the Ni 2 Si precipitates exceeds 10 nm, the average distance between the Ni 2 Si precipitate Exceeds 25nm. As a result, the tensile strength of the copper alloy sheet after the artificial age hardening treatment is a remarkably low value of less than 900 MPa.

比較例25、26は、発明合金例2 を用いているが、人工時効硬化処理温度が低過ぎて、Ni2Si 析出物の平均粒径が3nm 未満であるとともに、Ni2Si 析出物の平均間隔が25nmを超える。この結果、人工時効硬化処理後の銅合金板の引張強さが900MPa未満の著しく低い値である。 Comparative Example 25 and 26, but using the invention alloy Example 2, the average artificial age hardening treatment temperature is too low, with an average particle size of the Ni 2 Si precipitates is less than 3 nm, the Ni 2 Si precipitate The interval exceeds 25 nm. As a result, the tensile strength of the copper alloy sheet after the artificial age hardening treatment is a remarkably low value of less than 900 MPa.

以上の結果から、人工時効硬化処理後の銅合金板の引張強さを900MPa以上、導電率を20%IACS 以上とし、曲げ加工性にも優れさせるための、本発明銅合金板の成分組成、および組織中のNi2Si 析出物の平均粒径規定と、Ni2Si 析出物の平均間隔規定との臨界的な意義が裏付けられる。
From the above results, the component composition of the copper alloy sheet of the present invention for making the tensile strength of the copper alloy sheet after artificial age hardening treatment 900 MPa or more, the conductivity 20% IACS or more, and excellent bending workability, and the average particle diameter defined in the Ni 2 Si precipitates in the tissue, the critical significance of the mean spacing provisions of Ni 2 Si precipitate is supported.

Figure 2005089843
Figure 2005089843

Figure 2005089843
Figure 2005089843

Figure 2005089843
Figure 2005089843

以上説明したように、本発明によれば、900MPa以上の引張強度を有する高強度を有し、かつ、導電率を20%IACS 以上とするとともに、良好な曲げ加工性を有するコルソン系銅合金板を提供することができる。この結果、小型化及び軽量化した電子機器の、コネクタ、端子、スイッチ、リレー、リードフレームなどであって、900MPa以上の引張強度と20%IACS 以上の導電率が要求される用途であって、かつ、ノッチング後の90°曲げなど厳しい曲げ加工性が要求される用途に適用することができる。   As described above, according to the present invention, a Corson-based copper alloy plate having a high strength having a tensile strength of 900 MPa or more, an electrical conductivity of 20% IACS or more, and good bending workability. Can be provided. As a result, it is a connector, terminal, switch, relay, lead frame, etc. of electronic equipment that has been reduced in size and weight, and it is an application that requires a tensile strength of 900 MPa or more and a conductivity of 20% IACS or more, Moreover, it can be applied to applications that require strict bending workability such as 90 ° bending after notching.

本発明銅合金板の組織を示し、図面に代わる100万倍の透過型電子顕微鏡組織写真である。It shows the structure of the copper alloy plate of the present invention, and is a transmission electron microscope structure photograph of 1 million times instead of the drawing. 比較例銅合金板の組織を示し、図面に代わる100万倍の透過型電子顕微鏡組織写真である。The structure of a comparative example copper alloy board is shown, and it is a transmission electron microscope structure photograph of 1 million times instead of drawing. 銅合金板組織を15万倍の透過型電子顕微鏡で見た、図面に代わる組織写真である。It is the structure | tissue photograph replaced with drawing which looked at the copper alloy board structure | tissue with the transmission electron microscope of 150,000 times. 銅合金板組織を15万倍の透過型電子顕微鏡で見た、図面に代わる組織写真である。It is the structure | tissue photograph replaced with drawing which looked at the copper alloy board structure | tissue with the transmission electron microscope of 150,000 times.

Claims (4)

Ni;4.0〜5.0 質量% を含み、かつSiをNiとSiとの質量比Ni/Si が4 〜5 の範囲となるように含み、残部が実質的に銅及び不可避的不純物からなる銅合金板であって、人工時効硬化処理後の銅合金板を100 万倍の透過型電子顕微鏡で銅合金板組織を観察した際の、銅合金板組織中に存在するNi2Si 析出物の平均粒径が3 〜10nmであるとともに、Ni2Si 析出物の平均間隔が25nm以下であり、かつ、この銅合金板の引張強さが900MPa以上、導電率が20%IACS 以上であることを特徴とする高強度銅合金板。 A copper alloy plate containing Ni; 4.0 to 5.0% by mass, Si containing a mass ratio of Ni and Si, Ni / Si being in the range of 4 to 5, and the balance being substantially made of copper and inevitable impurities The average particle size of Ni 2 Si precipitates present in the copper alloy sheet structure when the copper alloy sheet after the artificial age hardening treatment was observed with a transmission electron microscope of 1 million times. 3 to 10 nm, the average interval of Ni 2 Si precipitates is 25 nm or less, the tensile strength of this copper alloy plate is 900 MPa or more, and the conductivity is 20% IACS or more. High strength copper alloy sheet. 前記銅合金板が更に、質量% で、Sn:0.1〜4.0%、Zn:0.1〜1.0%、Ag:0.001〜1.0%、Mn:0.01 〜0.1%、Zr:0.001〜0.1%、Co:0.01 〜0.3%、の一種または二種以上を含有する請求項1に記載の高強度銅合金板。   The copper alloy plate is further mass%, Sn: 0.1-4.0%, Zn: 0.1-1.0%, Ag: 0.001-1.0%, Mn: 0.01-0.1%, Zr: 0.001-0.1%, Co: 0.01- The high-strength copper alloy sheet according to claim 1, containing 0.3%, one kind or two or more kinds. Ni;4.0〜5.0 質量% を含み、かつSiをNiとSiとの質量比Ni/Si が4 〜5 の範囲となるように含み、残部が実質的に銅及び不可避的不純物からなり、残部が実質的に銅及び不可避的不純物からなる銅合金圧延板を、溶体化処理後に水冷し、更に、冷間圧延後に人工時効硬化処理を施すか、またはこの冷間圧延と人工時効硬化処理とを施す工程を2 回以上繰り返して行って、銅合金板を得、100 万倍の透過型電子顕微鏡でこの銅合金板組織を観察した際の、銅合金板組織中に存在するNi2Si 析出物の平均粒径を3 〜10nmとするとともに、Ni2Si 析出物の平均間隔を25nm以下とし、銅合金板の引張強さを900MPa以上で、導電率を20%IACS 以上とすることを特徴とする高強度銅合金板の製造方法。 Ni; 4.0 to 5.0% by mass, and Si is included so that the mass ratio of Ni and Si is in the range of 4 to 5, with the balance being substantially composed of copper and inevitable impurities, and the balance being A copper alloy rolled plate substantially composed of copper and inevitable impurities is water-cooled after solution treatment, and further subjected to artificial age hardening treatment after cold rolling, or this cold rolling and artificial age hardening treatment are performed. step is performed repeatedly two or more times to obtain a copper alloy sheet, of observing a copper alloy sheet tissues million times of transmission electron microscope, the Ni 2 Si precipitates present in the copper alloy plate in tissue The average particle size is 3 to 10 nm, the average interval of Ni 2 Si precipitates is 25 nm or less, the tensile strength of the copper alloy plate is 900 MPa or more, and the conductivity is 20% IACS or more. A method for producing a high-strength copper alloy sheet. 前記銅合金圧延板が更に、質量% で、Sn:0.1〜4.0%、Zn:0.1〜1.0%、Ag:0.001〜1.0%、Mn:0.01 〜0.1%、Zr:0.001〜0.1%、Co:0.01 〜0.3%、の一種または二種以上を含有する請求項3に記載の高強度銅合金の製造方法。
The rolled copper alloy sheet is further mass%, Sn: 0.1-4.0%, Zn: 0.1-1.0%, Ag: 0.001-1.0%, Mn: 0.01-0.1%, Zr: 0.001-0.1%, Co: 0.01 The manufacturing method of the high intensity | strength copper alloy of Claim 3 containing 1 type or 2 types or more of -0.3%.
JP2003326452A 2003-09-18 2003-09-18 High strength copper alloy plate and method for producing high strength copper alloy plate Expired - Fee Related JP4664584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326452A JP4664584B2 (en) 2003-09-18 2003-09-18 High strength copper alloy plate and method for producing high strength copper alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326452A JP4664584B2 (en) 2003-09-18 2003-09-18 High strength copper alloy plate and method for producing high strength copper alloy plate

Publications (2)

Publication Number Publication Date
JP2005089843A true JP2005089843A (en) 2005-04-07
JP4664584B2 JP4664584B2 (en) 2011-04-06

Family

ID=34456640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326452A Expired - Fee Related JP4664584B2 (en) 2003-09-18 2003-09-18 High strength copper alloy plate and method for producing high strength copper alloy plate

Country Status (1)

Country Link
JP (1) JP4664584B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
WO2007138956A1 (en) 2006-05-26 2007-12-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength, high electric conductivity and excellent bending workability
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
WO2008126681A1 (en) 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
JP2010242154A (en) * 2009-04-03 2010-10-28 Mitsubishi Electric Corp Copper alloy and method for producing the same
JP2011508081A (en) * 2007-12-21 2011-03-10 ジービーシー メタルズ、エルエルシー Copper-nickel-silicon alloy
JP2015161009A (en) * 2014-02-28 2015-09-07 Dowaメタルテック株式会社 High-strength copper alloy sheet material and manufacturing method thereof
JP2022022812A (en) * 2020-07-07 2022-02-07 古河電気工業株式会社 Copper alloy material, and manufacturing method thereof
WO2025120909A1 (en) * 2023-12-07 2025-06-12 Jx金属株式会社 Copper alloy sheet, electronic component, and copper alloy sheet production method
WO2025120906A1 (en) * 2023-12-07 2025-06-12 Jx金属株式会社 Copper alloy sheet, electronic component, and method for producing copper alloy sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JPH08325681A (en) * 1985-04-26 1996-12-10 Olin Corp Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP2002180161A (en) * 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The High strength copper alloy
JP2002266042A (en) * 2001-03-09 2002-09-18 Kobe Steel Ltd Copper alloy sheet having excellent bending workability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325681A (en) * 1985-04-26 1996-12-10 Olin Corp Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP2002180161A (en) * 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The High strength copper alloy
JP2002266042A (en) * 2001-03-09 2002-09-18 Kobe Steel Ltd Copper alloy sheet having excellent bending workability

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
US8357248B2 (en) 2006-05-26 2013-01-22 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
WO2007138956A1 (en) 2006-05-26 2007-12-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength, high electric conductivity and excellent bending workability
US9177686B2 (en) 2006-05-26 2015-11-03 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
EP2426225A2 (en) 2006-05-26 2012-03-07 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength, high electrical conductivity, and excellent bendability
US8268098B2 (en) 2006-05-26 2012-09-18 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
WO2008126681A1 (en) 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2011508081A (en) * 2007-12-21 2011-03-10 ジービーシー メタルズ、エルエルシー Copper-nickel-silicon alloy
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
JP2010242154A (en) * 2009-04-03 2010-10-28 Mitsubishi Electric Corp Copper alloy and method for producing the same
JP2015161009A (en) * 2014-02-28 2015-09-07 Dowaメタルテック株式会社 High-strength copper alloy sheet material and manufacturing method thereof
JP2022022812A (en) * 2020-07-07 2022-02-07 古河電気工業株式会社 Copper alloy material, and manufacturing method thereof
JP7575209B2 (en) 2020-07-07 2024-10-29 古河電気工業株式会社 Copper alloy material and its manufacturing method
WO2025120909A1 (en) * 2023-12-07 2025-06-12 Jx金属株式会社 Copper alloy sheet, electronic component, and copper alloy sheet production method
WO2025120906A1 (en) * 2023-12-07 2025-06-12 Jx金属株式会社 Copper alloy sheet, electronic component, and method for producing copper alloy sheet

Also Published As

Publication number Publication date
JP4664584B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
CN100510131C (en) Copper alloy plate for electric and electronic parts having bending workability
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4830035B2 (en) Cu-Si-Co alloy for electronic materials and method for producing the same
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP5619389B2 (en) Copper alloy material
JP2002180165A (en) Copper base alloy excellent in press punching property and method for producing the same
JP2004225093A (en) Copper-based alloy and method for producing the same
JP2011117034A (en) Copper-alloy material
JP2006265731A (en) Copper alloy
JPWO2008123433A1 (en) Cu-Ni-Si alloy for electronic materials
WO2010016429A1 (en) Copper alloy material for electrical/electronic component
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
KR20010077917A (en) Copper alloy for electronic materials
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
WO2009123159A1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components
CN112055756A (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2010215976A (en) Copper alloy sheet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4664584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees