JP2005087945A - Method for producing hollow fiber membrane - Google Patents
Method for producing hollow fiber membrane Download PDFInfo
- Publication number
- JP2005087945A JP2005087945A JP2003327619A JP2003327619A JP2005087945A JP 2005087945 A JP2005087945 A JP 2005087945A JP 2003327619 A JP2003327619 A JP 2003327619A JP 2003327619 A JP2003327619 A JP 2003327619A JP 2005087945 A JP2005087945 A JP 2005087945A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- drying
- temperature
- drying chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 81
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000001035 drying Methods 0.000 claims abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000009987 spinning Methods 0.000 claims abstract description 11
- 210000003734 kidney Anatomy 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 16
- 229920000642 polymer Polymers 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000578 dry spinning Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明は、中空糸膜の製造方法に関するものである。さらに詳しくは、中空糸膜製造工程において、インラインで連続的に中空糸膜を乾燥する中空糸膜の製造方法に関するものである。 The present invention relates to a method for producing a hollow fiber membrane. More specifically, the present invention relates to a method for producing a hollow fiber membrane in which the hollow fiber membrane is continuously dried in-line in the hollow fiber membrane production process.
近年、高分子からなる中空糸は、様々な目的や用途に開発され使用されている。特に、中空糸状の高分子膜は精密濾過膜、限界濾過膜、逆浸透膜、気体分離膜、窒素富化膜、酸素富化膜、血液浄化膜、人工腎臓、人工肺などの様々な用途で実用化されている。これらの中空糸膜は、一般的に湿式紡糸法、乾式紡糸法、乾湿式紡糸法、溶融紡糸法で製糸される。 In recent years, hollow fibers made of polymers have been developed and used for various purposes and applications. In particular, hollow fiber polymer membranes are used in various applications such as microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, gas separation membranes, nitrogen-rich membranes, oxygen-rich membranes, blood purification membranes, artificial kidneys, and artificial lungs. It has been put into practical use. These hollow fiber membranes are generally produced by wet spinning, dry spinning, dry / wet spinning, and melt spinning.
例えば、湿式紡糸法では、二重環式構造からなる紡糸口金からポリマー流体を吐出させ、凝固浴での凝固、洗浄(乾燥)後、巻取られる。 For example, in the wet spinning method, a polymer fluid is discharged from a spinneret having a double ring structure, and is wound after solidification in a coagulation bath and washing (drying).
特に中空糸膜の乾燥方法については、乾燥時の変性や潰れを防ぐために、これまでにも種々の提案がなされている。その主なものとして、湿潤状態にある中空糸膜をアルコールなどの表面張力の低い液体で置換した後、乾燥させるもの(特開昭55−51818号公報、特開昭61−55208号公報、特開昭62−234510号公報、特開平1−260012号公報など)、および湿潤状態の中空糸膜を、湿潤状態を保ったままオートクレーブ中で加熱処理する方法(特開平6−327951号公報)、マイクロ波を照射するとともに、蒸気による湿熱処理を行う方法(特開平11−332980号公報)、さらには乾燥前に中空糸膜を温水で熱処理し、中空糸内部を陽圧に保持する乾燥方法(特開2002−253938)、乾燥工程内の気体の濃度を特定の値以下に調整する方法(特開2003−10654)などがある。 In particular, with respect to a method for drying a hollow fiber membrane, various proposals have been made so far in order to prevent denaturation and crushing during drying. The main one is that the hollow fiber membrane in a wet state is replaced with a liquid having a low surface tension such as alcohol and then dried (Japanese Patent Laid-Open Nos. 55-51818 and 61-55208). No. 62-234510, JP-A-1-260012, etc.), and a method of heat-treating a wet hollow fiber membrane in an autoclave while maintaining the wet state (JP-A-6-327951), A method of performing wet heat treatment with steam while irradiating with microwaves (Japanese Patent Laid-Open No. 11-332980), and further, a drying method in which the hollow fiber membrane is heat-treated with warm water before drying to maintain the inside of the hollow fiber at a positive pressure ( JP 2002-253938), a method of adjusting the gas concentration in the drying process to a specific value or less (JP 2003-10654), and the like.
しかるに、アルコールなどでの置換は、作業性、防爆設備の設置などの点で難点があり、またオートクレーブ中で加熱処理する方法はオートクレーブという特別な装置を必要とし、かつ長い処理時間を必要とするため連続して中空糸膜が供給される場合には適さない。さらに、マイクロ波を利用する方法では、糸の状態に応じてマイクロ波を制御することや、マイクロ波を中空糸膜に有効に集中させることが困難であり、かつ糸出入口などからの乾燥装置外へのマイクロ波の漏れが発生した場合、人体への悪影響が懸念されるといった問題があった。また、乾燥前に温水処理する方法では、加熱温度を実際上90℃以上に上げることができず、中空糸膜の紡糸速度が高い場合は、乾燥効率が紡糸速度に追いつかず、つぶれが頻発する。乾燥工程内の気体濃度を特定の値以下に調整する方法では、工程内に窒素ガスを導入する、圧縮冷却するなど、特殊な工程を追加する必要がある。 However, replacement with alcohol has difficulties in terms of workability and installation of explosion-proof equipment, and the heat treatment method in the autoclave requires a special device called an autoclave and requires a long processing time. Therefore, it is not suitable when the hollow fiber membrane is continuously supplied. Furthermore, in the method using microwaves, it is difficult to control the microwaves according to the state of the yarn, and to concentrate the microwaves effectively on the hollow fiber membrane, and the outside of the drying device from the yarn inlet / outlet etc. When microwave leakage into the body occurs, there is a problem that the human body may be adversely affected. Also, in the method of treating with warm water before drying, the heating temperature cannot actually be raised to 90 ° C. or higher, and when the spinning speed of the hollow fiber membrane is high, the drying efficiency cannot catch up with the spinning speed, and crushing frequently occurs. . In the method of adjusting the gas concentration in the drying step to a specific value or less, it is necessary to add a special step such as introducing nitrogen gas into the step or compressing and cooling.
本発明の目的は、上記従来技術の問題点を解消せんとするものであり、高い紡糸速度において、連続的に短時間で、潰れ発生率を低く抑えて、大量の中空糸膜を乾燥させることを可能にする中空糸膜の製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to dry a large amount of hollow fiber membranes continuously at a high spinning speed in a short time and with a low occurrence of crushing. It is an object of the present invention to provide a method for producing a hollow fiber membrane that enables the above.
上記の目的を達成するため、本発明は以下の構成を採用する。すなわち、
(1)連続して供給される中空糸膜を、熱風または、熱風および水蒸気により乾燥して中空糸膜を製造する方法において、乾燥機が乾燥室に分室されており、該乾燥室の相隣り合う2室において、中空糸膜の走行に関して上流側の乾燥室温度が常に下流側の乾燥室温度以下であり、かつ、乾燥室のうち、最上流の乾燥室温度が最下流の乾燥室温度より低いことを特徴とする中空糸膜の製造方法。
In order to achieve the above object, the present invention adopts the following configuration. That is,
(1) In a method for producing a hollow fiber membrane by drying continuously supplied hollow fiber membranes with hot air or hot air and steam, a dryer is divided into drying chambers, and adjacent to the drying chambers. In the two chambers, the upstream drying chamber temperature is always equal to or lower than the downstream drying chamber temperature with respect to the traveling of the hollow fiber membrane, and the uppermost drying chamber temperature of the drying chambers is lower than the most downstream drying chamber temperature. A method for producing a hollow fiber membrane characterized by being low.
(2)最上流の乾燥室温度と最下流の乾燥室温度の差が5℃以上であることを特徴とする(1)記載の中空糸膜の製造方法。 (2) The method for producing a hollow fiber membrane according to (1), wherein the difference between the temperature in the most upstream drying chamber and the temperature in the most downstream drying chamber is 5 ° C. or more.
(3)乾燥機の分室数が3以上であることを特徴とする(1)あるいは(2)に記載の中空糸膜の製造方法。 (3) The method for producing a hollow fiber membrane according to (1) or (2), wherein the number of compartments of the dryer is 3 or more.
(4)乾燥前に中空糸膜を温水にて加熱することを特徴とする(1)〜(3)に記載の中空糸膜の製造方法。 (4) The method for producing a hollow fiber membrane according to any one of (1) to (3), wherein the hollow fiber membrane is heated with warm water before drying.
(5)中空糸膜の紡糸速度が30m/分以上であることを特徴とする(1)〜(4)に記載の中空糸膜の製造方法。 (5) The method for producing a hollow fiber membrane according to any one of (1) to (4), wherein the spinning speed of the hollow fiber membrane is 30 m / min or more.
(6)人工腎臓用であることを特徴とする(1)〜(5)に記載の中空糸膜の製造方法。 (6) The method for producing a hollow fiber membrane according to any one of (1) to (5), wherein the method is for an artificial kidney.
本発明によれば、高い紡糸速度において、連続的に短時間で大量の中空糸膜を潰れ率を低く抑えて乾燥させることを可能にする。 According to the present invention, it is possible to dry a large amount of hollow fiber membranes continuously at a high spinning speed in a short time with a reduced crushing rate.
本発明でいう乾燥室温度とは、乾燥室内への乾燥空気の吹き出し口から吸い込み口までの直線あるいは曲線距離の中間点の温度である。 The drying chamber temperature referred to in the present invention is a temperature at the midpoint of a straight line or a curved distance from the blowout port of the dry air into the drying chamber to the suction port.
連続して供給される糸状物あるいは布状物を、熱風、もしくは熱風と水蒸気を用いて乾燥する方法は一般的に実施されている乾燥方法であるが、この乾燥方法を中空糸膜の乾燥に適用した場合、中空糸膜が潰れてしまい中空糸膜としての機能を果たさなくなる。特に人工腎臓などの血液浄化膜として用いる場合、中空糸膜の潰れは重大な欠陥となる。湿潤状態の中空糸膜を熱風、もしくは熱風と水蒸気を用いて乾燥した場合、潰れが発生する理由は、中空糸内部および膜内の水分が昇温するまでに膜外表面での昇温によって水分が蒸発し、蒸発潜熱を奪われるため、中空糸内部の温度が上がらず、陰圧となるためと考えられる。中空糸内部を陰圧にさせないためには、乾燥前の対策としてあらかじめ中空糸膜を温水で加熱する方法があり、乾燥中の対策として、中空糸内部に流入するエアーの速度を速くする方法が考えられる。エアーの流れる向きは、中空糸が移動する向きと逆であるため、紡速が速いほど、それに応じてエアーの速度も速くなる必要がある。 The method of drying continuously supplied filaments or cloths using hot air or hot air and steam is a commonly used drying method. This drying method is used for drying hollow fiber membranes. When applied, the hollow fiber membrane is crushed and does not function as a hollow fiber membrane. Particularly when used as a blood purification membrane for an artificial kidney or the like, the collapse of the hollow fiber membrane becomes a serious defect. When a wet hollow fiber membrane is dried using hot air or hot air and steam, the reason for the occurrence of crushing is that the moisture inside the hollow fiber and inside the membrane rises due to the temperature rise on the outer surface of the membrane. This is thought to be because the temperature inside the hollow fiber does not rise and a negative pressure is generated because the latent heat of vaporization is lost. In order to prevent negative pressure inside the hollow fiber, there is a method of heating the hollow fiber membrane with warm water in advance as a measure before drying, and a method of increasing the speed of the air flowing into the hollow fiber as a measure during drying. Conceivable. Since the direction of air flow is opposite to the direction in which the hollow fiber moves, the higher the spinning speed, the higher the air speed accordingly.
本発明においては、複数室に分割された乾燥機を用いる。これは、一室で温度勾配をつけようとする場合、乾燥室内の熱風および水分の移動により温度のコントロールが難しく、温度が安定しないためである。 In the present invention, a dryer divided into a plurality of chambers is used. This is because when a temperature gradient is to be applied in one room, it is difficult to control the temperature due to the movement of hot air and moisture in the drying chamber, and the temperature is not stable.
中空糸の乾燥過程の前方における乾燥温度を後方の乾燥温度よりも低くして、中空糸内部に流入するエアーの圧力を上げることにより、エアーの流入速度を速くすることによって、中空糸内部が陰圧になることを防ぐことができる。また、乾燥前の対策として温水で加熱する方法を組み合わせることもできる。 By making the drying temperature in the front of the hollow fiber drying process lower than the drying temperature in the rear and increasing the pressure of the air flowing into the hollow fiber, the inflow speed of the air is increased so that the inside of the hollow fiber is negatively affected. It can prevent becoming pressure. Moreover, the method of heating with warm water can also be combined as a countermeasure before drying.
熱風の乾燥温度は、膜構成ポリマーの耐熱性や、とりうる乾燥時間などを考慮し決定される。熱風の乾燥温度は90℃から構成ポリマーのガラス転移点温度であることが好ましい。90℃未満では中空糸膜の潰れ発生率が高くなり、また、構成ポリマーのガラス転移点を超える温度では、熱による膜構造変化が起きやすくなる。潰れ発生率は光学顕微鏡により測定することができる。潰れ発生率を見る場合の中空糸の本数は100本以上が好ましい。100本未満であると、潰れ発生率の信頼度が低い。 The drying temperature of the hot air is determined in consideration of the heat resistance of the film-forming polymer and the possible drying time. The drying temperature of the hot air is preferably from 90 ° C. to the glass transition temperature of the constituent polymer. When the temperature is lower than 90 ° C., the occurrence rate of crushing of the hollow fiber membrane is high, and when the temperature exceeds the glass transition point of the constituent polymer, the membrane structure is easily changed by heat. The occurrence rate of crushing can be measured with an optical microscope. The number of hollow fibers when looking at the occurrence rate of crushing is preferably 100 or more. If the number is less than 100, the reliability of the occurrence rate of crushing is low.
本発明では各室で温度可変な複数室の乾燥機を用い、相隣り合う乾燥室において、乾燥過程の前方の乾燥室の温度を後方よりも常に同じか、低く設定する。その温度差は、全乾燥室のうち、最前方の乾燥室と最後方の乾燥室で5℃以上にすることが好ましい。さらに好ましくは20℃以上である。5℃未満の場合は、中空糸内部へのエアーの流入速度が不足して本発明の効果が十分現れず、潰れ発生率が高くなる。たとえば、3室に分離されている場合は、乾燥工程の前方から、130℃、140℃、150℃に設定する。また、130℃、130℃、150℃といった設定も可能である。 In the present invention, a plurality of dryers each having a variable temperature are used in each chamber, and the temperature of the drying chamber in the front of the drying process is always set to be the same or lower than that in the rear in the adjacent drying chambers. The temperature difference is preferably 5 ° C. or more in the foremost drying chamber and the last drying chamber among all the drying chambers. More preferably, it is 20 degreeC or more. When the temperature is lower than 5 ° C., the inflow speed of air into the hollow fiber is insufficient, and the effect of the present invention does not sufficiently appear and the occurrence rate of crushing increases. For example, when it is separated into three chambers, it is set to 130 ° C., 140 ° C., and 150 ° C. from the front of the drying process. Also, settings such as 130 ° C., 130 ° C., and 150 ° C. are possible.
中空糸膜の紡糸速度は、高い方が、高い生産性を有するという観点から好ましく、本発明における中空糸膜の紡糸速度は30m/分以上が好ましい。30m/分未満だと本発明の有効性が充分に現れない可能性がある。 The spinning speed of the hollow fiber membrane is preferably higher from the viewpoint of high productivity, and the spinning speed of the hollow fiber membrane in the present invention is preferably 30 m / min or more. If it is less than 30 m / min, the effectiveness of the present invention may not be sufficiently exhibited.
中空糸膜は糸束状である場合、複数本を同時に処理することができ、高い生産性を有するという観点から好ましい形態である。 When the hollow fiber membrane is in the form of a bundle of yarns, it is a preferable form from the viewpoint that a plurality of the hollow fiber membranes can be processed at the same time and high productivity is obtained.
本発明では、中空糸膜が走行状態である場合、すなわち、口金吐出された中空糸膜を連続工程で乾燥処理することが可能となり、途中でプロセスを分断する場合に起こる中空糸膜の屑発生がなく、生産性が高くなり好ましい。 In the present invention, when the hollow fiber membrane is in a running state, that is, the hollow fiber membrane discharged from the die can be dried in a continuous process, and waste generation of the hollow fiber membrane occurs when the process is divided in the middle This is preferable because of high productivity.
本発明の製造方法により得られる中空糸膜は、水処理(特に浄水)用途や、医療用途における血液浄化膜にも用いることができる。また、大量処理が可能なため、通常産業用途の限外濾過膜や逆浸透膜などの用途にも有効に用いられる。特に、本発明の製造方法によって得られる中空糸膜は人工腎臓用に用いると好適である。 The hollow fiber membrane obtained by the production method of the present invention can also be used for blood purification membranes in water treatment (especially water purification) applications and medical applications. Further, since it can be processed in a large amount, it is also effectively used for applications such as ultrafiltration membranes and reverse osmosis membranes for normal industrial use. In particular, the hollow fiber membrane obtained by the production method of the present invention is preferably used for an artificial kidney.
本発明で用いられる中空糸膜の膜構成ポリマは特に限定されないが、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコール、セルロースアセテート、フッ素系樹脂、再生セルロース、ポリアミドなどの熱可塑性高分子による骨格構造を有することが好ましい。 The membrane constituting polymer of the hollow fiber membrane used in the present invention is not particularly limited, but a skeleton made of a thermoplastic polymer such as polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, fluororesin, regenerated cellulose, polyamide, etc. It preferably has a structure.
とりわけ、ガラス転移点が150℃を超えるポリマーであると、熱風などの乾燥雰囲気により膜構造が変化する可能性が少なく、すなわち膜透過特性を変化させることなく乾燥温度を高めることができるため、乾燥を高速に行うことが可能であり特に好ましい。逆にガラス転移点が100℃程度またはそれ以下のポリマーを用いると熱による膜構造変化が起きやすくそのため乾燥速度を高速に行い難くなる傾向がある。 In particular, when the polymer has a glass transition point exceeding 150 ° C., there is little possibility that the film structure changes due to a dry atmosphere such as hot air, that is, the drying temperature can be increased without changing the membrane permeation characteristics. Can be performed at high speed. On the other hand, when a polymer having a glass transition point of about 100 ° C. or lower is used, the film structure is likely to change due to heat, so that it tends to be difficult to increase the drying speed.
以下、実施例によってさらに詳細に説明する。 Hereinafter, it demonstrates still in detail according to an Example.
ポリスルホン(ガラス転移点190℃)16Wt%、ポリビニルピロリドン(K90)2Wt%、ポリビニルピロリドン(K30)4Wt%をジメチルアセトアミド77Wt%、水1Wt%に加え、90℃、14時間加熱溶解し、製膜原液とした。この原液を外径0.3mm、内径0.2mmのオリフィス型二重円筒型紡糸口金より吐出し、芯液としてジメチルアセトアミド65Wt%と水からなる混合溶液を紡速40m/分で吐出させ、乾式長350mmを通過した後、ジメチルアセトアミド20Wt%水80Wt%からなる溶液を充填した凝固浴、水を充填した水洗浴、90℃の温水浴、乾燥機を通過させた後に巻き取り、ポリスルホン中空糸膜を得た。乾燥機は3室に分離された装置を用い、前方から130℃、130℃、150℃に設定した。また、前方の2室については熱風と同時にスチーム(水蒸気)も使用した。得られた中空糸膜100本を光学顕微鏡下で観察したところ、潰れの発生率は14%であった。 Polysulfone (glass transition point 190 ° C.) 16 Wt%, polyvinyl pyrrolidone (K90) 2 Wt%, polyvinyl pyrrolidone (K30) 4 Wt% are added to dimethylacetamide 77 Wt%, water 1 Wt%, and heated and dissolved at 90 ° C. for 14 hours to form a film forming stock solution It was. This stock solution is discharged from an orifice type double cylindrical spinneret having an outer diameter of 0.3 mm and an inner diameter of 0.2 mm, and a mixed solution of dimethylacetamide 65 Wt% and water is discharged at a spinning speed of 40 m / min as a core liquid, After passing through a length of 350 mm, a coagulation bath filled with a solution consisting of 20 Wt% dimethylacetamide and 80 Wt% water, a water washing bath filled with water, a hot water bath at 90 ° C., wound after passing through a dryer, and a polysulfone hollow fiber membrane Got. The dryer was set at 130 ° C., 130 ° C., and 150 ° C. from the front using an apparatus separated into three chambers. Also, steam (water vapor) was used simultaneously with hot air in the two front chambers. When 100 hollow fiber membranes obtained were observed under an optical microscope, the occurrence rate of crushing was 14%.
(比較例1)
乾燥機温度を前方から、150℃、150℃、150℃に設定した以外は、実施例1と同様にして中空糸膜を得た。得られた中空糸膜100本について光学顕微鏡下で観察したところ、潰れの発生率は19%であった。
(Comparative Example 1)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the dryer temperature was set to 150 ° C, 150 ° C, and 150 ° C from the front. When 100 hollow fiber membranes obtained were observed under an optical microscope, the occurrence rate of crushing was 19%.
(比較例2)
乾燥機温度を前方から、170℃、170℃、150℃に設定した以外は、実施例1と同様にして中空糸膜を得た。得られた中空糸膜100本について光学顕微鏡下で観察したところ、潰れの発生率は50%であった。
(Comparative Example 2)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the dryer temperature was set to 170 ° C, 170 ° C, and 150 ° C from the front. When 100 hollow fiber membranes obtained were observed under an optical microscope, the occurrence rate of crushing was 50%.
実施例1、比較例1、比較例2の中空糸膜潰れ有無結果を表1に示す。 Table 1 shows the results of whether or not the hollow fiber membranes were crushed in Example 1, Comparative Example 1, and Comparative Example 2.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003327619A JP2005087945A (en) | 2003-09-19 | 2003-09-19 | Method for producing hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003327619A JP2005087945A (en) | 2003-09-19 | 2003-09-19 | Method for producing hollow fiber membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005087945A true JP2005087945A (en) | 2005-04-07 |
Family
ID=34457441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003327619A Pending JP2005087945A (en) | 2003-09-19 | 2003-09-19 | Method for producing hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005087945A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009104705A1 (en) * | 2008-02-21 | 2009-08-27 | 東洋紡績株式会社 | Hollow-fiber ultrafiltration membrane with excellent fouling resistance |
WO2013137237A1 (en) * | 2012-03-12 | 2013-09-19 | 三菱レイヨン株式会社 | Porous membrane production method, and porous membrane drying device |
JP5296794B2 (en) * | 2010-07-07 | 2013-09-25 | 三菱レイヨン株式会社 | Hollow fiber membrane drying apparatus and drying method |
WO2013187396A1 (en) * | 2012-06-11 | 2013-12-19 | 旭化成メディカル株式会社 | Separation membrane for blood treatment and blood treatment device having same membrane incorporated therein |
CN104946123A (en) * | 2014-03-24 | 2015-09-30 | 达兴材料股份有限公司 | composition for thermal barrier layer |
-
2003
- 2003-09-19 JP JP2003327619A patent/JP2005087945A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8794451B2 (en) | 2008-02-21 | 2014-08-05 | Toyo Boseki Kabushiki Kaisha | Hollow-fiber ultrafiltration membrane with excellent fouling resistance |
WO2009104705A1 (en) * | 2008-02-21 | 2009-08-27 | 東洋紡績株式会社 | Hollow-fiber ultrafiltration membrane with excellent fouling resistance |
US9151538B2 (en) | 2010-07-07 | 2015-10-06 | Mitsubishi Rayon Co., Ltd. | Drying device and drying method for hollow fiber membranes |
JP5296794B2 (en) * | 2010-07-07 | 2013-09-25 | 三菱レイヨン株式会社 | Hollow fiber membrane drying apparatus and drying method |
KR20140143789A (en) * | 2012-03-12 | 2014-12-17 | 미쯔비시 레이온 가부시끼가이샤 | Porous membrane production method, and porous membrane drying device |
JP5585727B2 (en) * | 2012-03-12 | 2014-09-10 | 三菱レイヨン株式会社 | Porous membrane manufacturing method and porous membrane drying apparatus |
WO2013137237A1 (en) * | 2012-03-12 | 2013-09-19 | 三菱レイヨン株式会社 | Porous membrane production method, and porous membrane drying device |
US9528760B2 (en) | 2012-03-12 | 2016-12-27 | Mitsubishi Rayon Co., Ltd. | Method for producing porous membrane and drying device of porous membrane |
KR101712714B1 (en) | 2012-03-12 | 2017-03-06 | 미쯔비시 레이온 가부시끼가이샤 | Porous membrane production method, and porous membrane drying device |
WO2013187396A1 (en) * | 2012-06-11 | 2013-12-19 | 旭化成メディカル株式会社 | Separation membrane for blood treatment and blood treatment device having same membrane incorporated therein |
CN104363933A (en) * | 2012-06-11 | 2015-02-18 | 旭化成医疗株式会社 | Separation membrane for blood treatment and blood treatment device having same membrane incorporated therein |
TWI507242B (en) * | 2012-06-11 | 2015-11-11 | Asahi Kasei Medical Co Ltd | A separation membrane for blood treatment, and a blood processor equipped with the membrane |
JPWO2013187396A1 (en) * | 2012-06-11 | 2016-02-04 | 旭化成メディカル株式会社 | Separation membrane for blood treatment and blood treatment device incorporating the membrane |
CN104946123A (en) * | 2014-03-24 | 2015-09-30 | 达兴材料股份有限公司 | composition for thermal barrier layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3117575B2 (en) | Polysulfone-based hollow fiber membrane and method for producing the same | |
JP6433513B2 (en) | Porous hollow fiber filtration membrane | |
CA2824396C (en) | Performance enhancing additives for fiber formation and polysulfone fibers | |
JP5834507B2 (en) | Method and apparatus for producing porous hollow fiber membrane | |
US5290448A (en) | Polyacrylonitrile membrane | |
US11813577B2 (en) | System and method for producing hollow fibre membranes | |
JP4051762B2 (en) | Method for forming hollow fiber membrane | |
JP2005087945A (en) | Method for producing hollow fiber membrane | |
JP2005220202A (en) | Porous membrane manufacturing method and porous membrane | |
JP5292762B2 (en) | Blood purifier with excellent mass replacement characteristics | |
JP2003010654A (en) | Manufacturing method of hollow fiber membrane | |
JP5138572B2 (en) | Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus | |
JP2703266B2 (en) | Polysulfone hollow fiber membrane and method for producing the same | |
JP2002253938A (en) | Manufacturing method of hollow fiber membrane | |
CN1094380C (en) | Material of artificial kidney for hemodialysis and its preparing process | |
JP2010142747A (en) | Method for spinning fiber of hollow-fiber membrane, and hollow-fiber membrane | |
JPH0929078A (en) | Hollow fiber membrane manufacturing method | |
JP4036740B2 (en) | Method for producing hollow fiber blood purification membrane | |
JP6155908B2 (en) | Method for producing hollow fiber membrane | |
JP4672128B2 (en) | Hollow fiber membrane and method for producing the same | |
JP2011020071A (en) | Method for manufacturing polysulfone-based hollow fiber membrane | |
JP5614470B2 (en) | Blood purifier with excellent mass replacement characteristics | |
JPH03228671A (en) | Porous regenerated cellulose membrane for mycoplasma removal and mycoplasma removal method | |
JP6149577B2 (en) | Method for producing hollow fiber membrane | |
JP3317876B2 (en) | Method for producing hollow fiber type blood purification membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060817 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20080502 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080513 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20080930 Free format text: JAPANESE INTERMEDIATE CODE: A02 |