[go: up one dir, main page]

JP2005083989A - Input circuit of thermocouple - Google Patents

Input circuit of thermocouple Download PDF

Info

Publication number
JP2005083989A
JP2005083989A JP2003318698A JP2003318698A JP2005083989A JP 2005083989 A JP2005083989 A JP 2005083989A JP 2003318698 A JP2003318698 A JP 2003318698A JP 2003318698 A JP2003318698 A JP 2003318698A JP 2005083989 A JP2005083989 A JP 2005083989A
Authority
JP
Japan
Prior art keywords
thermocouple
disconnection
signal
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003318698A
Other languages
Japanese (ja)
Inventor
Chihiro Onishi
千尋 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2003318698A priority Critical patent/JP2005083989A/en
Publication of JP2005083989A publication Critical patent/JP2005083989A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an input circuit of a thermocouple exerting no influence on a temperature detection value of a thermo-electromotive force (direct-current voltage) by using an alternative-current signal, having a simple constitution, a rough design and excellent convenience, and capable of detecting a disconnection. <P>SOLUTION: This circuit is equipped with a temperature sensor comprising a thermocouple 2 and a compensating lead wire 3, and a disconnection detection means 4 having a signal generation means 7, an amplification means 8 and a disconnection determination means 9. When detecting the temperature of an object, a thermo-electromotive force (direct-current voltage) VT value acquired by converting the temperature can be detected accurately, and when the thermocouple 2 or the compensating lead wire 3 is disconnected, the disconnection can be surely determined from the state (VO→VH) wherein the alternative-current signal is changed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は熱電対と補償導線を接続して温度センサを形成し、対象物の温度を検出する熱電対の入力回路に係り、特に、交流信号を用いて温度の直流検出値に影響を及ぼすことがなく、熱電対または補償導線の断線を検出する熱電対の入力回路に関する。   The present invention relates to a thermocouple input circuit that detects the temperature of an object by forming a temperature sensor by connecting a thermocouple and a compensating lead wire, and in particular, affects the DC detection value of temperature using an AC signal. The present invention relates to a thermocouple input circuit for detecting disconnection of a thermocouple or a compensating lead wire.

従来の熱電対の入力回路は、直流電圧を抵抗器を介して印加し、熱電対と補償導線に微少な直流電流を流し、熱電対または補償導線に断線が生じた場合、印加した直流電圧が変化した状態に基づいて断線の検出がなされている。   In the conventional thermocouple input circuit, when a DC voltage is applied via a resistor, a minute DC current is passed through the thermocouple and the compensating conductor, and the disconnection occurs in the thermocouple or the compensating conductor, the applied DC voltage is Disconnection is detected based on the changed state.

図7に従来の熱電対の入力回路の一実施例構成図を示す。図7において、熱電対の入力回路50は、熱電対51と補償導線52の一端を接続点A,Bで接続して温度センサを構成し、補償導線53の他端を接続点B1,B2を介して増幅器53に接続する。また、接続点B1には、抵抗器Rを介して基準直流電源Vrfを接続する。   FIG. 7 shows a block diagram of an embodiment of a conventional thermocouple input circuit. In FIG. 7, a thermocouple input circuit 50 includes a temperature sensor by connecting one end of a thermocouple 51 and a compensating lead wire 52 at connection points A and B, and connecting the other end of the compensation lead wire 53 to connection points B1 and B2. To the amplifier 53. Further, the reference DC power supply Vrf is connected to the connection point B1 through the resistor R.

補償導線52は、熱電対51を構成する2種の合金とそれぞれ同じかまたは近い合金材料で形成した補償導線L1と補償導線L2の2種の導線で形成し、合金材料および長さXによって変化する補償導線抵抗rを有する。   The compensating lead wire 52 is formed of two kinds of lead wires, ie, a compensating lead wire L1 and a compensating lead wire L2, which are formed of an alloy material which is the same as or close to the two kinds of alloys constituting the thermocouple 51, and changes depending on the alloy material and the length X. A compensating lead wire resistance r.

熱電対51と補償導線52からなる温度センサは、対象物の温度に応じた熱起電力(直流電圧)を接続端子B1,B2間に発生する。また、接続端子B1,B2間には、基準直流電源Vrf→抵抗器R→接続端子B1→補償導線L1→接続端子A1→熱電対51→接続端子A2→補償導線L2→接続端子B2→接地(GND)の電流経路で温度センサの断線を検知するためのμA(マイクロアンペア)オーダの微少電流ISを流す。この微少電流ISにより、接続端子B1,B2に、補償導線L1の補償導線抵抗r、熱電対51の抵抗および補償導線L2の補償導線抵抗rを加算した抵抗の電圧降下が発生する。   The temperature sensor composed of the thermocouple 51 and the compensating conductor 52 generates a thermoelectromotive force (DC voltage) according to the temperature of the object between the connection terminals B1 and B2. Between the connection terminals B1 and B2, the reference DC power supply Vrf → resistor R → connection terminal B1 → compensation lead L1 → connection terminal A1 → thermocouple 51 → connection terminal A2 → compensation lead L2 → connection terminal B2 → ground ( A minute current IS of the order of μA (microampere) for detecting disconnection of the temperature sensor is passed through the current path of GND). Due to this minute current IS, a voltage drop of a resistance obtained by adding the compensation lead wire resistance r of the compensation lead wire L1, the resistance of the thermocouple 51, and the compensation lead wire resistance r of the compensation lead wire L2 to the connection terminals B1 and B2.

熱電対51と補償導線52の温度センサに断線がない場合、接続端子B1,B2間に発生する直流電圧は、温度センサが発生する熱起電力と抵抗の電圧降下を加算した電圧値となる。   When the temperature sensors of the thermocouple 51 and the compensating lead wire 52 are not disconnected, the DC voltage generated between the connection terminals B1 and B2 is a voltage value obtained by adding the thermoelectromotive force generated by the temperature sensor and the voltage drop of the resistor.

一方、熱電対51と補償導線52の温度センサに断線(例えば、切断点P1または切断点P2)が生じた場合には、接続端子B1,B2間に発生する直流電圧は、基準直流電源Vrfの電圧となる。   On the other hand, when a disconnection (for example, the cutting point P1 or the cutting point P2) occurs in the temperature sensors of the thermocouple 51 and the compensation lead wire 52, the DC voltage generated between the connection terminals B1 and B2 is the reference DC power supply Vrf. Voltage.

増幅器53は、接続端子B1,B2間に発生する熱起電力と抵抗の電圧降下を加算した電圧値、または基準直流電源Vrfの電圧を所定利得(例えば、ゲインG1)で増幅し、断線がない状態の温度検出電圧VDまたは断線状態の温度検出電圧VHを出力する。   The amplifier 53 amplifies the voltage value obtained by adding the thermoelectromotive force generated between the connection terminals B1 and B2 and the voltage drop of the resistor, or the voltage of the reference DC power supply Vrf with a predetermined gain (for example, gain G1), and there is no disconnection. The temperature detection voltage VD in the state or the temperature detection voltage VH in the disconnection state is output.

なお、断線の有無の状態から、断線がない状態の温度検出電圧VDは、断線状態の温度検出電圧VHよりもはるかに小さい値(VD≪VH)となるため、温度検出電圧VDから温度センサの温度、温度検出電圧VHから温度センサの断線を検出する。   Note that the temperature detection voltage VD in the absence of disconnection from the presence / absence of disconnection becomes a value (VD << VH) that is much smaller than the temperature detection voltage VH in the disconnection state. The disconnection of the temperature sensor is detected from the temperature and the temperature detection voltage VH.

表示器54は、温度検出電圧VDを対応する温度に変換し、温度を数値で液晶表示器(LCD)等に表示する。   The display 54 converts the temperature detection voltage VD into a corresponding temperature and displays the temperature numerically on a liquid crystal display (LCD) or the like.

コンパレータ55は、温度検出電圧VHと予め設定した基準値を比較し、温度検出電圧VHが基準値を超える場合に、断線信号HSを出力する。   The comparator 55 compares the temperature detection voltage VH with a preset reference value, and outputs a disconnection signal HS when the temperature detection voltage VH exceeds the reference value.

図8に従来の熱電対の入力回路の温度検出電圧波形図を示す。図8において、熱電対51と補償導線52の温度センサに断線がない正常な場合、温度検出電圧VDは、温度センサが発生した熱起電力に対応する温度検出電圧VTに抵抗の電圧降下(誤差)ΔVを合わせた値で検出される。   FIG. 8 shows a temperature detection voltage waveform diagram of an input circuit of a conventional thermocouple. In FIG. 8, when the temperature sensors of the thermocouple 51 and the compensating lead wire 52 are normal and there is no disconnection, the temperature detection voltage VD is a resistance voltage drop (error) to the temperature detection voltage VT corresponding to the thermoelectromotive force generated by the temperature sensor. ) It is detected by a value obtained by adding ΔV.

一方、熱電対51と補償導線52の温度センサに断線がある場合、温度検出電圧VHは、基準直流電源Vrfに対応した大きな値となり、温度検出電圧VDよりもはるかに大きな値<VH≫VD>になる。   On the other hand, when the temperature sensors of the thermocouple 51 and the compensating lead wire 52 are disconnected, the temperature detection voltage VH becomes a large value corresponding to the reference DC power supply Vrf, and is a value much larger than the temperature detection voltage VD <VH >> VD>. become.

また、従来の非接触型温度検出装置は、「特許文献1」に開示されているように、サーモパイル等のセンサ素子を有する温度センサを用いて図7に示す構成の抵抗器Rと直列にスイッチ素子を接続し、スイッチ素子をマイコンで開閉制御し、スイッチが開放されている期間に温度測定を実行し、スイッチが閉結されている期間にセンサの断線検出を実行するように構成している。   Further, as disclosed in “Patent Document 1”, the conventional non-contact temperature detecting device uses a temperature sensor having a sensor element such as a thermopile to switch in series with the resistor R having the configuration shown in FIG. The device is connected, the switch element is controlled to open and close by a microcomputer, temperature measurement is performed while the switch is open, and disconnection detection of the sensor is performed while the switch is closed .

したがって、温度測定の期間には、直流電流を流さないため、誤差ΔVを含まない真値VTを検出するとともに、断線検出の期間には、温度センサが断線状態にあると、真値VTよりもはるかに大きな電圧値VH<VH≫VD>を検出することができる。
特開2001−153726号公報(図1を参照)
Therefore, since a direct current is not passed during the temperature measurement period, a true value VT that does not include the error ΔV is detected, and during the disconnection detection period, if the temperature sensor is in a disconnected state, the true value VT is exceeded. A much larger voltage value VH <VH >>VD> can be detected.
JP 2001-153726 A (see FIG. 1)

従来の熱電対の入力回路は、断線検出のため、温度センサに微少電流ISを流し、温度検出と断線検出を同時に実行する構成のため、温度検出電圧VDに微少電流ISによる抵抗の電圧降下に伴う誤差電圧ΔVが含まれ、熱起電力に伴う真値の温度検出電圧VTが得られない課題がある。   The conventional thermocouple input circuit has a configuration in which a minute current Is is passed through the temperature sensor to detect disconnection, and the temperature detection and disconnection detection are performed at the same time. Therefore, the temperature detection voltage VD has a resistance voltage drop due to the minute current IS. The accompanying error voltage ΔV is included, and there is a problem that the true temperature detection voltage VT accompanying the thermoelectromotive force cannot be obtained.

誤差電圧ΔVを補正すれば、真値の温度検出電圧VTを得ることができるが、基準直流電源Vrfの管理、補償導線L1および補償導線L2の種類や長さXによる補償導線抵抗rの測定をして予め誤差電圧ΔVを設定しなければならず、煩雑な作業や管理が要求される課題がある。   If the error voltage ΔV is corrected, a true temperature detection voltage VT can be obtained. However, the management of the reference DC power supply Vrf and the measurement of the compensation conductor resistance r according to the types and lengths X of the compensation conductor L1 and the compensation conductor L2 can be performed. Thus, the error voltage ΔV must be set in advance, and there is a problem that requires complicated work and management.

また、「特許文献1」に開示された非接触型温度検出装置は、温度測定と断線検出を分離して実行するため、誤差のない温度測定ができるが、温度測定期間と断線検出期間を決定するスイッチング素子、スイッチング素子の開閉を制御するマイコン、スイッチング素子の開閉に同期して温度測定および断線検出を実行する手段が必要となり、本願発明の熱電対の入力回路に適用する場合には、回路規模が大きく、構成が複雑になる基本的な課題がある。   Further, since the non-contact temperature detection device disclosed in “Patent Document 1” performs temperature measurement and disconnection detection separately, temperature measurement without error is possible, but the temperature measurement period and disconnection detection period are determined. Switching device, microcomputer for controlling switching of the switching device, means for executing temperature measurement and disconnection detection in synchronization with the switching of the switching device are required, and when applied to the thermocouple input circuit of the present invention, There is a basic problem of large scale and complicated configuration.

この発明はこのような課題を解決するためになされたもので、その目的は交流信号を用いて熱起電力(直流電圧)の温度検出値に影響を及ぼすことがなく、単純構成かつラフ設計で断線検出が可能な利便性に優れた熱電対の入力回路を提供することにある。   The present invention has been made to solve such a problem, and the object thereof is not to affect the temperature detection value of the thermoelectromotive force (DC voltage) using an AC signal, and has a simple configuration and rough design. An object of the present invention is to provide a thermocouple input circuit excellent in convenience capable of detecting disconnection.

前記課題を解決するためこの発明に係る熱電対の入力回路は、熱電対と補償導線を接続し、対象物の温度を対応する熱起電力(直流電圧)に変換して検出する熱電対の入力回路において、熱電対および補償導線に交流信号を印加し、熱電対または補償導線に断線が生じた場合に、熱電対が変換した熱起電力(直流電圧)に重畳した交流信号の変化に基づいて断線を検出する断線検出手段を備えたことを特徴とする。   In order to solve the above problems, an input circuit of a thermocouple according to the present invention is an input of a thermocouple that detects the temperature by converting the temperature of an object into a corresponding thermoelectromotive force (DC voltage) by connecting a thermocouple and a compensating conductor. In the circuit, when an AC signal is applied to the thermocouple and the compensation lead, and the disconnection occurs in the thermocouple or the compensation lead, based on the change in the AC signal superimposed on the thermoelectromotive force (DC voltage) converted by the thermocouple A disconnection detecting means for detecting disconnection is provided.

この発明に係る熱電対の入力回路は、熱電対および補償導線に交流信号を印加し、熱電対または補償導線に断線が生じた場合に、熱電対が変換した熱起電力(直流電圧)に重畳した交流信号の変化に基づいて断線を検出する断線検出手段を備えたので、対象物の温度検出時には、温度を変換した熱起電力(直流電圧)値を正確に検出できるとともに、熱電対または補償導線の断線時には、交流信号の変化した状態から確実に断線を判定することができる。   In the thermocouple input circuit according to the present invention, when an AC signal is applied to the thermocouple and the compensating lead wire, and the thermocouple or the compensating lead wire is disconnected, it is superimposed on the thermoelectromotive force (DC voltage) converted by the thermocouple. Because it is equipped with a disconnection detection means that detects disconnection based on the change in the AC signal, the thermoelectromotive force (DC voltage) value converted from the temperature can be accurately detected when detecting the temperature of the object, and a thermocouple or compensation When the conducting wire is disconnected, the disconnection can be reliably determined from the state in which the AC signal is changed.

また、この発明に係る断線検出手段は、交流信号を発生する信号発生手段と、熱電対が変換した熱起電力(直流電圧)および交流信号を増幅する増幅手段と、増幅器が増幅した交流信号と基準レベルを比較し、増幅した交流信号が基準レベルを上回る場合に、断線を判定して断線信号を出力する断線判定手段と、を備えたことを特徴とする。   Further, the disconnection detecting means according to the present invention includes a signal generating means for generating an AC signal, a thermoelectromotive force (DC voltage) converted by the thermocouple and an amplifying means for amplifying the AC signal, and an AC signal amplified by the amplifier. It is characterized by comprising a disconnection determining means for comparing a reference level and determining a disconnection and outputting a disconnection signal when the amplified AC signal exceeds the reference level.

この発明に係る断線検出手段は、交流信号を発生する信号発生手段と、熱電対が変換した熱起電力(直流電圧)および交流信号を増幅する増幅手段と、増幅器が増幅した交流信号と基準レベルを比較し、増幅した交流信号が基準レベルを上回る場合に、断線を判定して断線信号を出力する断線判定手段と、を備えたので、熱電対または補償導線の断線を交流信号の増幅と、増幅した交流信号と基準レベルの比較で判定することができる。   The disconnection detecting means according to the present invention comprises: a signal generating means for generating an AC signal; a thermoelectromotive force (DC voltage) converted by a thermocouple; an amplifying means for amplifying the AC signal; an AC signal amplified by the amplifier; and a reference level When the amplified AC signal exceeds the reference level, the disconnection determining means for determining the disconnection and outputting the disconnection signal is provided, so that the disconnection of the thermocouple or the compensating lead wire is amplified with the AC signal, This can be determined by comparing the amplified AC signal with a reference level.

さらに、この発明に係る信号発生手段は、周波数およびレベルに限定されない交流信号を発生することを特徴とする。   Furthermore, the signal generating means according to the present invention generates an AC signal that is not limited to frequency and level.

この発明に係る信号発生手段は、周波数およびレベルに限定されない交流信号を発生するので、交流信号の周波数、信号レベル、または交流信号がパルスの場合にはパルス幅(デューティ比)を含めて任意に設定することができる。   Since the signal generating means according to the present invention generates an AC signal that is not limited to frequency and level, the frequency, signal level, or pulse width (duty ratio) of the AC signal is arbitrarily selected when the AC signal is a pulse. Can be set.

また、この発明に係る断線判定手段は、コンパレータを備えたことを特徴とする。   Moreover, the disconnection determination means according to the present invention is characterized by comprising a comparator.

この発明に係る断線判定手段は、コンパレータを備えたので、交流信号を基準電圧値と比較するだけで断線を判定することができる。   Since the disconnection determination means according to the present invention includes the comparator, the disconnection can be determined only by comparing the AC signal with the reference voltage value.

さらに、この発明に係る断線検出手段は、温度調節器に適用することを特徴とする。   Furthermore, the disconnection detecting means according to the present invention is applied to a temperature controller.

この発明に係る断線検出手段は、温度調節器に適用するので、温度調節器の温度検出値の補正が不要となり、交流信号に制約がなくなるとともに、高精度の温度検出ならびに確実な断線判定を単純化することができる。   Since the disconnection detecting means according to the present invention is applied to the temperature controller, it is not necessary to correct the temperature detection value of the temperature controller, the AC signal is not limited, and highly accurate temperature detection and reliable disconnection determination are simplified. Can be

この発明に係る熱電対の入力回路は、熱電対および補償導線に交流信号を印加し、熱電対または補償導線に断線が生じた場合に、熱電対が変換した熱起電力(直流電圧)に重畳した交流信号の変化に基づいて断線を検出する断線検出手段を備えたので、対象物の温度検出時には、温度を変換した熱起電力(直流電圧)値を正確に検出できるとともに、熱電対または補償導線の断線時には、交流信号の変化した状態から確実に断線を判定することができ、交流信号を用いた単純な構成かつラフな設計で、利便性の向上を図ることができる。   In the thermocouple input circuit according to the present invention, when an AC signal is applied to the thermocouple and the compensating lead wire, and the thermocouple or the compensating lead wire is disconnected, it is superimposed on the thermoelectromotive force (DC voltage) converted by the thermocouple. Because it is equipped with a disconnection detection means that detects disconnection based on the change in the AC signal, the thermoelectromotive force (DC voltage) value converted from the temperature can be accurately detected when detecting the temperature of the object, and a thermocouple or compensation When the conductor is disconnected, the disconnection can be reliably determined from the state in which the AC signal is changed, and convenience can be improved with a simple configuration and a rough design using the AC signal.

また、この発明に係る断線検出手段は、交流信号を発生する信号発生手段と、熱電対が変換した熱起電力(直流電圧)および交流信号を増幅する増幅手段と、増幅器が増幅した交流信号と基準レベルを比較し、増幅した交流信号が基準レベルを上回る場合に、断線を判定して断線信号を出力する断線判定手段と、を備えたので、熱電対または補償導線の断線を交流信号の増幅と、増幅した交流信号と基準レベルの比較で判定することができ、温度検出の正確性および断線判定の容易性をアピールすることができる。   Further, the disconnection detecting means according to the present invention includes a signal generating means for generating an AC signal, a thermoelectromotive force (DC voltage) converted by the thermocouple and an amplifying means for amplifying the AC signal, and an AC signal amplified by the amplifier. The reference level is compared, and when the amplified AC signal exceeds the reference level, the disconnection judging means for judging the disconnection and outputting the disconnection signal is provided. Therefore, the disconnection of the thermocouple or the compensation lead wire is amplified. Thus, it can be determined by comparing the amplified AC signal with a reference level, and the accuracy of temperature detection and the ease of disconnection determination can be appealed.

さらに、この発明に係る信号発生手段は、周波数およびレベルに限定されない交流信号を発生するので、交流信号の周波数、信号レベル、または交流信号がパルスの場合にはパルス幅(デューティ比)を含めて任意に設定することができ、交流信号になんら制約がなく、回路の単純化を実現することができる。   Furthermore, since the signal generating means according to the present invention generates an AC signal that is not limited to the frequency and level, the frequency of the AC signal, the signal level, or the pulse width (duty ratio) is included when the AC signal is a pulse. It can be set arbitrarily, there is no restriction on the AC signal, and the circuit can be simplified.

また、この発明に係る断線判定手段は、コンパレータを備えたので、交流信号を基準レベルと比較するだけで断線を判定することができ、断線を極めて容易に判定することができる。   Moreover, since the disconnection determination means according to the present invention includes a comparator, it is possible to determine disconnection only by comparing the AC signal with the reference level, and it is possible to determine disconnection extremely easily.

さらに、この発明に係る断線検出手段は、温度調節器に適用するので、温度調節器の温度検出値の補正が不要となり、交流信号に制約がなくなるとともに、高精度の温度検出ならびに確実な断線判定を単純化することができ、温度調節器の使い勝手の良さをアピールすることができる。   Further, since the disconnection detecting means according to the present invention is applied to the temperature controller, it is not necessary to correct the temperature detection value of the temperature controller, there is no restriction on the AC signal, high-accuracy temperature detection, and reliable disconnection determination. Can be simplified, and the ease of use of the temperature controller can be appealed.

以下、この発明の実施の形態を添付図面に基づいて説明する。図1はこの発明に係る熱電対の入力回路の一実施の形態ブロック構成図である。図1において、熱電対の入力回路1は、熱電対2と、補償導線L1および補償導線L2からなる補償導線3とを接続端子A1,A2で接続した温度センサと、断線検出手段4と、温度出力手段5と、通知手段6とから構成する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a thermocouple input circuit according to the present invention. In FIG. 1, a thermocouple input circuit 1 includes a thermocouple 2, a temperature sensor in which a compensation conductor 3 composed of a compensation conductor L1 and a compensation conductor L2 is connected by connection terminals A1 and A2, a disconnection detecting means 4, a temperature It comprises output means 5 and notification means 6.

補償導線3は、補償導線L1および補償導線L2をそれぞれ熱電対2と同じまたは近い特性の合金材料で構成し、熱電対2と接続端子B1,B2との間の長さXを延長して接続する。補償導線L1および補償導線L2は、合金材料で決定され、長さXに対応した補償導線抵抗rを有する。   Compensation lead 3 comprises compensation lead L1 and compensation lead L2 made of an alloy material having the same or similar characteristics as thermocouple 2, and is connected by extending length X between thermocouple 2 and connection terminals B1 and B2. To do. The compensation lead L1 and the compensation lead L2 are determined by an alloy material and have a compensation lead resistance r corresponding to the length X.

熱電対2と補償導線3からなる温度センサは、接続端子B1,B2の両端に、熱電対2が検知した温度に対応した熱起電力(直流電圧)VKを発生する。   The temperature sensor composed of the thermocouple 2 and the compensating conductor 3 generates a thermoelectromotive force (DC voltage) VK corresponding to the temperature detected by the thermocouple 2 at both ends of the connection terminals B1 and B2.

断線検出手段4は、熱電対2および補償導線3に交流信号を印加し、熱電対2または補償導線3に断線が生じた場合に、熱電対2が変換した熱起電力(直流電圧)VKに重畳した交流信号の変化に基づいて断線を検出する。   The disconnection detection means 4 applies an AC signal to the thermocouple 2 and the compensation lead wire 3, and when the disconnection occurs in the thermocouple 2 or the compensation lead wire 3, the disconnection detection means 4 generates the thermoelectromotive force (DC voltage) VK converted by the thermocouple 2. Disconnection is detected based on the change of the superimposed AC signal.

断線検出手段4は、信号発生手段7、増幅手段8、断線判定手段9を備える。信号発生手段7は、正弦波信号や、クロックパルスなどのパルス信号を微分回路等で微分した微分波形信号等の交流信号を発生する発振器で構成する。なお、正弦波信号またはパルス信号の周波数、レベルは、任意に設定することができる。また、パルス信号のデューティ比も任意に設定する。このことは、交流信号を温度センサ(熱電対2+補償導線3)の断線検出において、交流電流IKが流れているか否かの検出に利用すればよく、交流信号であれば周波数、レベル、デューティ比などを正確に設定する必要がないことに拠る。   The disconnection detection unit 4 includes a signal generation unit 7, an amplification unit 8, and a disconnection determination unit 9. The signal generating means 7 is composed of an oscillator that generates an AC signal such as a differential waveform signal obtained by differentiating a sine wave signal or a pulse signal such as a clock pulse with a differentiation circuit or the like. The frequency and level of the sine wave signal or pulse signal can be set arbitrarily. The duty ratio of the pulse signal is also set arbitrarily. This is because the AC signal may be used for detecting whether or not the AC current IK is flowing in the disconnection detection of the temperature sensor (thermocouple 2 + compensating lead 3). It is based on the fact that it is not necessary to set such as accurately.

このように、この発明に係る信号発生手段7は、周波数およびレベルに限定されない交流信号(交流電圧VS)を発生するので、交流信号(交流電圧VS)の周波数、信号レベル、または交流信号(交流電圧VS)がパルスの場合にはパルス幅(デューティ比)を含めて任意に設定することができ、交流信号になんら制約がなく、設計もラフでよく、回路の単純化を実現することができる。   As described above, the signal generating means 7 according to the present invention generates an AC signal (AC voltage VS) that is not limited to the frequency and level. Therefore, the frequency, signal level, or AC signal (AC signal) of the AC signal (AC voltage VS) When the voltage VS) is a pulse, it can be arbitrarily set including the pulse width (duty ratio), there is no restriction on the AC signal, the design is rough, and the circuit can be simplified. .

発生した交流信号の交流電圧VSからコンデンサCおよび抵抗器R1を介して交流電流IKを温度センサ(熱電対2と補償導線3で構成)に流す。交流電流IKは、信号発生手段7→コンデンサC→抵抗器R1→接続端子B1→補償導線L1→接続端子A1→熱電対2→接続端子A2→補償導線L2→接続端子B2→接地(GND)の電流経路で流れる。なお、抵抗器R1は、補償導線L1、補償導線L2の補償導線抵抗rおよび熱電対2の抵抗よりも充分大きな抵抗値に設定し、交流電流IKを、例えばμA(マイクロアンペア)やmA(ミリアンペア)オーダにする。   An AC current IK is passed from the AC voltage VS of the generated AC signal to the temperature sensor (comprising the thermocouple 2 and the compensating conductor 3) through the capacitor C and the resistor R1. The alternating current IK is the signal generation means 7 → capacitor C → resistor R1 → connection terminal B1 → compensation lead L1 → connection terminal A1 → thermocouple 2 → connection terminal A2 → compensation lead L2 → connection terminal B2 → ground (GND). It flows in the current path. The resistor R1 is set to a resistance value sufficiently larger than the resistance of the compensation conductor L1, the compensation conductor resistance r of the compensation conductor L2, and the resistance of the thermocouple 2, and the alternating current IK is set to, for example, μA (microampere) or mA (milliampere). ) Make an order.

熱電対2や補償導線3に断線がない状態では、交流電流IKが流れることに伴い、接続端子B1,B2間に交流成分VA(交流電圧降下)が発生する。交流成分VAは、補償導線L1と補償導線L2の補償導線抵抗2rおよび熱電対2の抵抗値の合成抵抗と交流電流IKの積となる。   In a state where the thermocouple 2 and the compensating conductor 3 are not disconnected, an alternating current component VA (alternating voltage drop) is generated between the connection terminals B1 and B2 as the alternating current IK flows. The AC component VA is the product of the combined resistance of the compensation conductor resistance 2r of the compensation conductor L1 and the compensation conductor L2 and the resistance value of the thermocouple 2 and the AC current IK.

一方、熱電対2や補償導線3に断線(例えば、切断点P1または切断点P2)が生じた状態では、交流電流IKが流れず、接続端子B1,B2間に交流電圧VSが現れる。   On the other hand, when the thermocouple 2 or the compensating lead wire 3 is disconnected (for example, the cutting point P1 or the cutting point P2), the alternating current IK does not flow and the alternating voltage VS appears between the connection terminals B1 and B2.

増幅手段8は、+VC電圧および−VC電圧で駆動されるオペアンプ(演算増幅器)等で構成し、2入力端をそれぞれ接続端子B1,B2に接続する。また、増幅手段8は、充分大きな所定のゲインに設定する。   The amplifying means 8 is composed of an operational amplifier (operational amplifier) driven by a + VC voltage and a -VC voltage, and has two input terminals connected to connection terminals B1 and B2, respectively. The amplification means 8 is set to a sufficiently large predetermined gain.

増幅手段8は、熱電対2や補償導線3に断線がない状態で入力される熱起電力(直流電圧)VKおよび交流成分VAを増幅し、増幅した温度検出電圧VTおよび交流成分VOを温度出力手段5に供給する。また、コンデンサC1を介して交流成分VOを断線判定手段9に供給する。   The amplifying means 8 amplifies the thermoelectromotive force (DC voltage) VK and the AC component VA that are input without disconnection of the thermocouple 2 and the compensating lead wire 3, and outputs the amplified temperature detection voltage VT and AC component VO as temperature. Supply to means 5. Further, the AC component VO is supplied to the disconnection determining means 9 through the capacitor C1.

図2はこの発明に係る増幅手段の一実施の形態出力電圧波形図である。(a)図は断線がない場合の出力電圧波形図、(b)図は断線が生じた場合の出力電圧波形図を表わす。(a)図において、増幅手段8の入力である熱起電力(直流電圧)VKは、増幅されて温度検出電圧VTとなる。一方、交流成分VAも増幅されて交流成分VOとなる。本実施の形態では、交流信号に正弦波を用いた場合を示し、直流の温度検出電圧VTおよび交流成分VOは、プラス(+)側で現れる。なお、交流成分VOの振幅が大きな場合には、波形の一部がマイナス(−)側で現れるケースもある。   FIG. 2 is an output voltage waveform diagram of an embodiment of the amplifying means according to the present invention. (A) The figure shows the output voltage waveform diagram when there is no disconnection, (b) The figure shows the output voltage waveform diagram when the disconnection occurs. (A) In the figure, the thermoelectromotive force (DC voltage) VK which is an input of the amplifying means 8 is amplified to become a temperature detection voltage VT. On the other hand, the AC component VA is also amplified to become an AC component VO. In the present embodiment, a case where a sine wave is used as an AC signal is shown, and the DC temperature detection voltage VT and the AC component VO appear on the plus (+) side. When the amplitude of the AC component VO is large, a part of the waveform may appear on the minus (−) side.

(b)図において、増幅手段8の入力である交流電圧VSは、増幅されて正弦波が増幅手段8の駆動電源+VCおよび−VCで飽和し、矩形波に近い交流成分VHで現れる。   (B) In the figure, the AC voltage VS which is the input of the amplifying means 8 is amplified and the sine wave is saturated with the drive power sources + VC and -VC of the amplifying means 8 and appears as an AC component VH close to a rectangular wave.

断線判定手段9は、整流・平滑回路、コンパレータで構成し、増幅手段8から供給される断線状態でない交流成分VOまたは断線状態の交流成分VHを直流成分に変換し、直流成分と基準レベルを比較し、直流成分が基準レベルを上回る場合には、断線状態と判断して断線信号HDを出力する。   The disconnection determination means 9 is composed of a rectification / smoothing circuit and a comparator, converts the AC component VO that is not disconnected or the AC component VH that is disconnected from the amplification means 8 into a DC component, and compares the DC component with a reference level. If the DC component exceeds the reference level, it is determined that the disconnection state has occurred, and the disconnection signal HD is output.

図3はこの発明に係る断線判定手段の一実施の形態要部構成図である。図3において、断線判定手段9は、ダイオードブリッジDBで構成した全波整流回路、平滑コンデンサC2、コンパレータ10を備え、増幅手段8から供給される交流成分VOまたは交流成分VHを整流・平滑して交流成分VO対応する直流成分VO1または交流成分VHに対応する直流成分VH1とし、直流成分VO1または直流成分VH1をコンパレータ10に供給する。   FIG. 3 is a block diagram showing the principal part of one embodiment of the disconnection judging means according to the present invention. In FIG. 3, the disconnection determining means 9 includes a full-wave rectifier circuit constituted by a diode bridge DB, a smoothing capacitor C2, and a comparator 10, and rectifies and smoothes the AC component VO or AC component VH supplied from the amplifying means 8. The DC component VO1 corresponding to the AC component VO or the DC component VH1 corresponding to the AC component VH is used, and the DC component VO1 or DC component VH1 is supplied to the comparator 10.

コンパレータ10は、直流成分VO1または直流成分VH1と基準レベルVαを比較し、直流成分VO1、直流成分VH1が基準レベルVαを超える(VO1>Vα、VH1>Vα)場合には、断線信号HDを発生し、断線信号HDを通知手段6に提供する。   The comparator 10 compares the DC component VO1 or the DC component VH1 with the reference level Vα, and generates a disconnection signal HD when the DC component VO1 and the DC component VH1 exceed the reference level Vα (VO1> Vα, VH1> Vα). Then, the disconnection signal HD is provided to the notification means 6.

一方、コンパレータ10は、直流成分VO1、直流成分VH1が基準レベルVα以下(VO1≦Vα、VH1≦Vα)の場合には、断線信号HDを発生しない。   On the other hand, the comparator 10 does not generate the disconnection signal HD when the DC component VO1 and the DC component VH1 are below the reference level Vα (VO1 ≦ Vα, VH1 ≦ Vα).

断線が発生しない状態では断線信号HDを発生せず、断線が発生した状態で断線信号HDを発生するため、基準レベルVαは、直流成分VO1を上回り、直流成分VH1を下回るように設定(VO1<Vα<VH1)し、例えば基準レベルVα=VC/2に設定する。   Since the disconnection signal HD is not generated in the state where disconnection does not occur and the disconnection signal HD is generated in the state where disconnection occurs, the reference level Vα is set to be higher than the DC component VO1 and lower than the DC component VH1 (VO1 < Vα <VH1), for example, the reference level Vα = VC / 2 is set.

このように、この発明に係る断線検出手段4は、交流信号を発生する信号発生手段7と、熱電対2が変換した熱起電力(直流電圧)VKおよび交流信号(交流成分VA)を増幅する増幅手段8と、増幅器8が増幅した交流信号(VO、VH)と基準レベルVαを比較し、増幅した交流信号が基準レベルを上回る場合に、断線を判定して断線信号HDを出力する断線判定手段9と、を備えたので、熱電対2または補償導線3の断線を交流信号(交流電圧VS)の増幅と、増幅した交流信号と基準レベルVαの比較で判定することができ、温度検出の正確性および断線判定の容易性をアピールすることができる。   Thus, the disconnection detecting means 4 according to the present invention amplifies the signal generating means 7 for generating an AC signal, the thermoelectromotive force (DC voltage) VK and the AC signal (AC component VA) converted by the thermocouple 2. The amplifying means 8 and the AC signal (VO, VH) amplified by the amplifier 8 are compared with the reference level Vα, and when the amplified AC signal exceeds the reference level, the disconnection is determined and the disconnection signal HD is output. Therefore, the disconnection of the thermocouple 2 or the compensating conductor 3 can be determined by amplifying the AC signal (AC voltage VS) and comparing the amplified AC signal with the reference level Vα. It is possible to appeal the accuracy and ease of disconnection determination.

また、この発明に係る断線判定手段9は、コンパレータ10を備えたので、交流信号(交流成分VH)を基準レベルVαと比較するだけで断線を判定することができ、断線を極めて容易に判定することができる。   Further, since the disconnection determination means 9 according to the present invention includes the comparator 10, it is possible to determine disconnection only by comparing the AC signal (AC component VH) with the reference level Vα, and it is very easy to determine disconnection. be able to.

図1に戻り、温度出力手段5は温度検出電圧VTと温度データTDの対応テーブルを備え、増幅手段8から供給される温度検出電圧VTを対応テーブルの温度データTDに変換し、温度データTDを通知手段6に提供する。   Returning to FIG. 1, the temperature output means 5 includes a correspondence table between the temperature detection voltage VT and the temperature data TD, converts the temperature detection voltage VT supplied from the amplification means 8 into the temperature data TD in the correspondence table, and converts the temperature data TD into the temperature data TD. Provide to the notification means 6.

図4はこの発明に係る温度出力手段の一実施の形態要部ブロック構成図である。図4において、温度出力手段5は、メモリアクセス手段11、温度記憶手段12を備える。メモリアクセス手段11は、増幅手段8から供給される温度検出電圧VTを取り込んで、温度記憶手段12にアクセスし、温度検出電圧VTに対応した温度データTDを温度記憶手段12から読み出し、読み出した温度データTDを通知手段6に提供する。   FIG. 4 is a block diagram showing the principal part of an embodiment of the temperature output means according to the present invention. In FIG. 4, the temperature output unit 5 includes a memory access unit 11 and a temperature storage unit 12. The memory access means 11 takes in the temperature detection voltage VT supplied from the amplification means 8, accesses the temperature storage means 12, reads the temperature data TD corresponding to the temperature detection voltage VT from the temperature storage means 12, and reads the read temperature. Data TD is provided to the notification means 6.

温度記憶手段12は、EEPROM等の書替え可能なメモリで構成し、温度検出電圧VTと温度データTDの対応テーブルを予め格納し、メモリアクセス手段11から温度検出電圧VTのアクセスがあると、温度検出電圧VTに対応する温度データTDをメモリアクセス手段11に提供する。   The temperature storage means 12 is composed of a rewritable memory such as an EEPROM, stores a correspondence table between the temperature detection voltage VT and the temperature data TD in advance, and if the memory access means 11 accesses the temperature detection voltage VT, the temperature detection means 12 Temperature data TD corresponding to the voltage VT is provided to the memory access means 11.

図5はこの発明に係る通知手段の一実施の形態構成図である。図5において、通知手段6は、温度出力手段5から提供される温度データTDを表示するための表示駆動手段13と、温度データTDを表示するLCD表示器14を備える。また、通知手段6は、断線判定手段9から提供される断線信号HDを音声で出力するスピーカSPと、点灯または点滅で表示する発光ダイオードLEDを備える。   FIG. 5 is a block diagram of an embodiment of the notification means according to the present invention. In FIG. 5, the notification means 6 includes a display driving means 13 for displaying the temperature data TD provided from the temperature output means 5 and an LCD display 14 for displaying the temperature data TD. The notification unit 6 includes a speaker SP that outputs the disconnection signal HD provided from the disconnection determination unit 9 by voice, and a light-emitting diode LED that displays the signal by lighting or blinking.

表示駆動手段13は、温度データTDをLCD(液晶デバイス)に合わせたフォーマットの駆動信号SDに変換してLCD表示器14に供給し、LCD表示器14は、駆動信号SDに基づいて熱電対2が検知した温度を表示する。   The display drive means 13 converts the temperature data TD into a drive signal SD in a format matched to the LCD (liquid crystal device) and supplies it to the LCD display 14. The LCD display 14 receives the thermocouple 2 based on the drive signal SD. Displays the temperature detected by.

以上、説明したように、この発明に係る熱電対の入力回路1は、熱電対2および補償導線3に交流信号を印加し、熱電対2または補償導線3に断線が生じた場合に、熱電対2が変換した熱起電力(直流電圧)VKに重畳した交流信号の変化(VA→VS)に基づいて断線を検出する断線検出手段4を備えたので、対象物の温度検出時には、温度を変換した熱起電力(直流電圧)VT値を正確に検出できるとともに、熱電対2または補償導線3の断線時には、交流信号の変化した状態(VO→VH)から確実に断線を判定することができ、交流信号を用いた単純な構成かつラフな設計で、利便性の向上を図ることができる。   As described above, the thermocouple input circuit 1 according to the present invention applies an AC signal to the thermocouple 2 and the compensating conductor 3, and when the thermocouple 2 or the compensating conductor 3 is disconnected, the thermocouple 2 is provided with disconnection detection means 4 for detecting disconnection based on the change of the AC signal (VA → VS) superimposed on the thermoelectromotive force (DC voltage) VK converted, so that the temperature is converted when detecting the temperature of the object. The detected thermoelectromotive force (DC voltage) VT value can be accurately detected, and when the thermocouple 2 or the compensating lead wire 3 is disconnected, the disconnection can be reliably determined from the state in which the AC signal has changed (VO → VH). Convenience can be improved with a simple configuration and rough design using an AC signal.

なお、本実施の形態では、温度センサを熱電対2と補償導線3で構成したが、対象物の物理量を検知して直流電圧に変換できるセンサであれば、本発明の熱電対の入力回路を適用することができる。   In the present embodiment, the temperature sensor is composed of the thermocouple 2 and the compensating lead wire 3. However, if the sensor can detect a physical quantity of the object and convert it into a DC voltage, the thermocouple input circuit of the present invention is used. Can be applied.

次に、この発明に係る熱電対の入力回路を温度調節器に適用した例について説明する。図6はこの発明に係る熱電対の入力回路を適用した温度調節器の一実施例構成図である。図6において、温度調節器15は、温度設定部16、温度制御演算部17、SSR駆動部18、電流測定部19、熱電対の入力回路20を備え、所定駆動量でSSR(ソリッド・ステート・リレー)22をオン/オフ駆動し、交流電源VACを断続して炉24のヒータHTにヒータ電流IHを流し、炉内の半導体ウェハー25の温度を熱電対21を有する熱電対の入力回路20で検出して測定することにより、測定した半導体ウェハー25の温度が予め設定した温度となるように所定駆動量を制御するとともに、ヒータHTに流れる交流のヒータ電流IHを検出して測定する。   Next, an example in which the thermocouple input circuit according to the present invention is applied to a temperature controller will be described. FIG. 6 is a block diagram of an embodiment of a temperature controller to which the thermocouple input circuit according to the present invention is applied. In FIG. 6, the temperature controller 15 includes a temperature setting unit 16, a temperature control calculation unit 17, an SSR drive unit 18, a current measurement unit 19, and a thermocouple input circuit 20, and an SSR (solid state circuit) with a predetermined drive amount. Relay) 22 is turned on / off, AC power supply VAC is intermittently connected, heater current IH is supplied to heater HT of furnace 24, and the temperature of semiconductor wafer 25 in the furnace is controlled by thermocouple input circuit 20 having thermocouple 21. By detecting and measuring, the predetermined drive amount is controlled so that the measured temperature of the semiconductor wafer 25 becomes a preset temperature, and the AC heater current IH flowing through the heater HT is detected and measured.

温度調節器15は、温度設定部16で予め設定した設定温度に対応した駆動量をSSR駆動部18が出力し、駆動量でSSR(ソリッド・ステート・リレー)22をオン/オフ駆動する。   In the temperature controller 15, the SSR driving unit 18 outputs a driving amount corresponding to the temperature set in advance by the temperature setting unit 16, and drives the SSR (solid state relay) 22 on / off with the driving amount.

SSR22は、駆動量でオン/オフ駆動され、交流電源VACを断続して炉24のヒータHTに駆動量に対応したヒータ電流IHを流す。ヒータHTにヒータ電流IHが流れ、炉24を加熱して半導体ウェハー25が暖まり、半導体ウェハー25の温度を熱電対21が検出し、検出した温度を熱電対の入力回路20に提供する。   The SSR 22 is driven on / off with a driving amount, and the AC power source VAC is intermittently supplied, and a heater current IH corresponding to the driving amount is supplied to the heater HT of the furnace 24. The heater current IH flows through the heater HT, the furnace 24 is heated to warm the semiconductor wafer 25, the temperature of the semiconductor wafer 25 is detected by the thermocouple 21, and the detected temperature is provided to the input circuit 20 of the thermocouple.

熱電対の入力回路20は、熱電対21から提供された温度を測定し、測定した温度を温度制御演算部17に供給する。温度制御演算部17は、温度設定部16で設定された設定温度と熱電対の入力回路20から供給された温度の温度偏差を演算し、温度偏差をSSR駆動部18に供給する。   The thermocouple input circuit 20 measures the temperature provided from the thermocouple 21 and supplies the measured temperature to the temperature control calculation unit 17. The temperature control calculation unit 17 calculates a temperature deviation between the set temperature set by the temperature setting unit 16 and the temperature supplied from the thermocouple input circuit 20 and supplies the temperature deviation to the SSR drive unit 18.

SSR駆動部18は、温度制御演算部17から供給される温度偏差に対応して駆動量を調整し、調整した駆動量でSSR(ソリッド・ステート・リレー)22をオン/オフ駆動することにより、ヒータHTに流れるヒータ電流IHを調節し、炉24の半導体ウェハー25の温度を調節する。   The SSR drive unit 18 adjusts the drive amount corresponding to the temperature deviation supplied from the temperature control calculation unit 17 and drives the SSR (solid state relay) 22 on / off with the adjusted drive amount, The heater current IH flowing through the heater HT is adjusted to adjust the temperature of the semiconductor wafer 25 in the furnace 24.

再度、半導体ウェハー25の温度を熱電対21が検出し、熱電対の入力回路20が温度を測定して温度制御演算部17が温度偏差を演算し、SSR駆動部18が温度偏差に対応した駆動量でSSR22を駆動することを繰り返し、測定温度と設定温度が一致した時点で、駆動量が一定値となり、ヒータ電流IHも一定値になる。なお、設定温度、測定温度および温度偏差の系は、帰還(負帰還)ループを形成する。   Again, the thermocouple 21 detects the temperature of the semiconductor wafer 25, the thermocouple input circuit 20 measures the temperature, the temperature control calculation unit 17 calculates the temperature deviation, and the SSR drive unit 18 drives corresponding to the temperature deviation. The driving of the SSR 22 with the amount is repeated, and when the measured temperature matches the set temperature, the driving amount becomes a constant value and the heater current IH also becomes a constant value. The set temperature, measurement temperature, and temperature deviation system forms a feedback (negative feedback) loop.

電流値測定手段19は、ヒータHTに流れる交流電流のヒータ電流IHを変流器23が交流電圧で検出し、検出した交流電圧の0値から正極側のピーク値をディジタル値に変換した最大値電流として測定するので、ヒータ電流IHの微少電流値もリニアで測定する。   The current value measuring means 19 is a maximum value obtained by detecting a heater current IH of an alternating current flowing through the heater HT with an AC voltage by the current transformer 23 and converting a peak value on the positive electrode side from a detected zero value to a digital value. Since the current is measured as a current, the minute current value of the heater current IH is also measured linearly.

このように、この発明に係る断線検出手段は、温度調節器15に適用するので、温度調節器15の温度検出値の補正が不要となり、交流信号に制約がなくなるとともに、高精度の温度検出ならびに確実な断線判定を単純化することができ、温度調節器の使い勝手の良さをアピールすることができる。   As described above, since the disconnection detecting means according to the present invention is applied to the temperature controller 15, correction of the temperature detection value of the temperature controller 15 is not required, the AC signal is not restricted, and highly accurate temperature detection and Reliable disconnection determination can be simplified and the ease of use of the temperature controller can be appealed.

本発明に係る熱電対の入力回路は、熱電対と補償導線で構成した温度センサに交流信号を印加することにより、直流電圧による温度検出と交流信号による温度センサの断線検出を容易に実行することができ、物理量を直流電圧で検出するあらゆるセンサおよびセンサを備えた装置の断線検出に適用することができる。   The thermocouple input circuit according to the present invention easily performs temperature detection using a DC voltage and temperature sensor disconnection detection using an AC signal by applying an AC signal to a temperature sensor composed of a thermocouple and a compensating conductor. The present invention can be applied to detection of disconnection of any sensor that detects a physical quantity with a DC voltage and a device including the sensor.

この発明に係る熱電対の入力回路の一実施の形態ブロック構成図1 is a block diagram of a thermocouple input circuit according to an embodiment of the present invention. この発明に係る増幅手段の一実施の形態出力電圧波形図One embodiment of amplifying means according to the present invention Output voltage waveform diagram この発明に係る断線判定手段の一実施の形態要部構成図Block diagram of one embodiment of a disconnection determining means according to the present invention この発明に係る温度出力手段の一実施の形態要部ブロック構成図Block diagram of main part of one embodiment of temperature output means according to the present invention この発明に係る通知手段の一実施の形態構成図Configuration of one embodiment of notification means according to the present invention この発明に係る熱電対の入力回路を適用した温度調節器の一実施例構成図1 is a block diagram of an embodiment of a temperature controller to which a thermocouple input circuit according to the present invention is applied. 従来の熱電対の入力回路の温度検出電圧図Temperature detection voltage diagram of conventional thermocouple input circuit 従来の熱電対の入力回路の温度検出電圧波形図Temperature detection voltage waveform diagram of conventional thermocouple input circuit

符号の説明Explanation of symbols

1 熱電対の入力回路
2,21 熱電対
3 補償導線
4 断線検出手段
5 温度出力手段
6 通知手段
7 信号発生手段
8 増幅手段
9 断線判定手段
10 コンパレータ
11 メモリアクセス手段
12 温度記憶手段
13 表示駆動手段
14 LCD表示器
15 温度調節器
16 温度設定部
17 温度制御演算部
18 SSR駆動部
19 電流測定部
22 SSR(ソリッド・ステート・リレー)
23 変流器
24 炉
25 半導体ウェハー
X 補償導線長
r 補償導線抵抗
DB ダイオードブリッジ
SP スピーカ
LED 発光ダイオード
VK 熱起電力(直流電圧)
VS 交流電圧
IK 交流電流
VA,VO,VH 交流成分
VT 温度検出電圧
Vα 基準レベル
TD 温度データ
HD 断線信号
DESCRIPTION OF SYMBOLS 1 Input circuit of thermocouple 2,21 Thermocouple 3 Compensation lead 4 Disconnection detection means 5 Temperature output means 6 Notification means 7 Signal generation means 8 Amplification means 9 Disconnection determination means 10 Comparator 11 Memory access means 12 Temperature storage means 13 Display drive means DESCRIPTION OF SYMBOLS 14 LCD display device 15 Temperature controller 16 Temperature setting part 17 Temperature control calculating part 18 SSR drive part 19 Current measurement part 22 SSR (solid state relay)
23 Current transformer 24 Furnace 25 Semiconductor wafer X Compensation lead length r Compensation lead resistance DB Diode bridge SP Speaker LED Light emitting diode VK Thermoelectromotive force (DC voltage)
VS AC voltage IK AC current VA, VO, VH AC component VT Temperature detection voltage Vα Reference level TD Temperature data HD Disconnection signal

Claims (5)

熱電対と補償導線を接続し、対象物の温度を対応する熱起電力(直流電圧)に変換して検出する熱電対の入力回路において、
前記熱電対および前記補償導線に交流信号を印加し、前記熱電対または前記補償導線に断線が生じた場合に、前記熱電対が変換した熱起電力(直流電圧)に重畳した交流信号の変化に基づいて断線を検出する断線検出手段を備えたことを特徴とする熱電対の入力回路。
In the input circuit of the thermocouple that connects the thermocouple and the compensating lead, converts the temperature of the object into the corresponding thermoelectromotive force (DC voltage) and detects it,
When an AC signal is applied to the thermocouple and the compensation conductor, and a disconnection occurs in the thermocouple or the compensation conductor, the change in the AC signal superimposed on the thermoelectromotive force (DC voltage) converted by the thermocouple An input circuit for a thermocouple, characterized by comprising disconnection detecting means for detecting disconnection on the basis thereof.
前記断線検出手段は、交流信号を発生する信号発生手段と、前記熱電対が変換した熱起電力(直流電圧)および交流信号を増幅する増幅手段と、前記増幅器が増幅した交流信号と基準レベルを比較し、増幅した交流信号が基準レベルを上回る場合に、断線を判定して断線信号を出力する断線判定手段と、を備えたことを特徴とする請求項1記載の熱電対の入力回路。 The disconnection detecting means includes a signal generating means for generating an AC signal, a thermoelectromotive force (DC voltage) converted by the thermocouple and an amplifying means for amplifying the AC signal, an AC signal amplified by the amplifier and a reference level. 2. The thermocouple input circuit according to claim 1, further comprising: a disconnection determination unit configured to determine disconnection and output a disconnection signal when the compared and amplified AC signal exceeds a reference level. 前記信号発生手段は、周波数およびレベルに限定されない交流信号を発生することを特徴とする請求項2記載の熱電対の入力回路。 3. The thermocouple input circuit according to claim 2, wherein the signal generating means generates an AC signal that is not limited to a frequency and a level. 前記断線判定手段は、コンパレータを備えたことを特徴とする請求項2記載の熱電対の入力回路。 The thermocouple input circuit according to claim 2, wherein the disconnection determination means includes a comparator. 前記断線検出手段は、温度調節器に適用することを特徴とする請求項1記載の熱電対の入力回路。
The thermocouple input circuit according to claim 1, wherein the disconnection detecting means is applied to a temperature controller.
JP2003318698A 2003-09-10 2003-09-10 Input circuit of thermocouple Pending JP2005083989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003318698A JP2005083989A (en) 2003-09-10 2003-09-10 Input circuit of thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003318698A JP2005083989A (en) 2003-09-10 2003-09-10 Input circuit of thermocouple

Publications (1)

Publication Number Publication Date
JP2005083989A true JP2005083989A (en) 2005-03-31

Family

ID=34417908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003318698A Pending JP2005083989A (en) 2003-09-10 2003-09-10 Input circuit of thermocouple

Country Status (1)

Country Link
JP (1) JP2005083989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206413A1 (en) * 2013-06-28 2014-12-31 Pr Electronics A/S System and method for detection of wire breakage
CN104535217A (en) * 2014-12-30 2015-04-22 郑州光力科技股份有限公司 Multi-channel temperature measurement circuit
EP3021100A1 (en) * 2014-11-12 2016-05-18 Kidde Technologies, Inc. Bleed air duct system real-time fault detection
US11307101B2 (en) 2019-06-17 2022-04-19 Mitsubishi Electric Corporation Temperature input unit, temperature measuring device, and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206413A1 (en) * 2013-06-28 2014-12-31 Pr Electronics A/S System and method for detection of wire breakage
US9599652B2 (en) 2013-06-28 2017-03-21 Pr Electronics A/S System and method for detection of wire breakage
EP3021100A1 (en) * 2014-11-12 2016-05-18 Kidde Technologies, Inc. Bleed air duct system real-time fault detection
US9823154B2 (en) 2014-11-12 2017-11-21 Kidde Technologies, Inc. Bleed air duct leak system real-time fault detection
CN104535217A (en) * 2014-12-30 2015-04-22 郑州光力科技股份有限公司 Multi-channel temperature measurement circuit
US11307101B2 (en) 2019-06-17 2022-04-19 Mitsubishi Electric Corporation Temperature input unit, temperature measuring device, and recording medium

Similar Documents

Publication Publication Date Title
US9209794B2 (en) Magnetic element control device, magnetic element control method and magnetic detection device
US20100223991A1 (en) Thermal flow meter
KR100791431B1 (en) Fluid Metering and Fluid Metering Methods
US9297865B2 (en) Hall effect measurement instrument with temperature compensation
WO2017038513A1 (en) Disconnection detector
JP4579523B2 (en) Magnetic bridge type power sensor
CN105547382B (en) Reference generator
WO2019031329A1 (en) Wind speed measurement device and air flow measurement device
JP2005083989A (en) Input circuit of thermocouple
JP6276678B2 (en) Standard signal generator
JP3726261B2 (en) Thermal flow meter
JPH04318424A (en) Electromagnetic flowmeter
US9784800B2 (en) Inspection circuit for magnetic field detector, and inspection method for the same
TWI458992B (en) Integrated current sensing apparatus
JPH0750134B2 (en) AC / DC difference comparison device for thermoelectric AC / DC converter
JPH11281688A (en) Constant current source and resistance measuring device
JP2016085148A (en) Standard signal generator
CN106687785A (en) Resistance temperature detection with single current source current splitter
JPH065635Y2 (en) Flow velocity sensor
JP2005241404A (en) Device for measuring electrical conductivity, and its control method
SU993365A1 (en) Device for measuring internal resistance of electrochemical current source
JP2003097990A (en) Thermal flow meter
JP2007052679A (en) Two-wire measuring instrument
JP2005083963A (en) Thermoregulator
KR900002111Y1 (en) Relative Humidity Detection Circuit