[go: up one dir, main page]

JP2005081269A - Method and apparatus for treating wastewater containing organic matter - Google Patents

Method and apparatus for treating wastewater containing organic matter Download PDF

Info

Publication number
JP2005081269A
JP2005081269A JP2003317061A JP2003317061A JP2005081269A JP 2005081269 A JP2005081269 A JP 2005081269A JP 2003317061 A JP2003317061 A JP 2003317061A JP 2003317061 A JP2003317061 A JP 2003317061A JP 2005081269 A JP2005081269 A JP 2005081269A
Authority
JP
Japan
Prior art keywords
activated carbon
water
organic matter
adjusting
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003317061A
Other languages
Japanese (ja)
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003317061A priority Critical patent/JP2005081269A/en
Publication of JP2005081269A publication Critical patent/JP2005081269A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

【課題】有機物含有排水を逆浸透(RO)膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行う。
【解決手段】有機物含有排水のpHを9.5以上に調整してRO膜分離装置2に通水した後、酸を添加してpHを4〜8に調整し、その後、塩素系殺菌剤及び/又はスライムコントロール剤を添加した後、活性炭装置3に通水する。RO給水のpHを9.5以上にすることによりRO膜分離装置でのバイオファウリングを防止し、非イオン性界面活性剤の膜面付着を防止してフラックスの低下を防止する。RO透過水を活性炭(AC)処理することによりTOC値を更に低減する。AC給水をpH4〜8に調整することにより活性炭塔での差圧の上昇を防止する。塩素系殺菌剤及び/又はスライムコントロール剤を添加することにより、活性炭塔でのスライムによる差圧上昇を防止する。
【選択図】図1
[PROBLEMS] To prevent a decrease in flux and biofouling due to adhesion of organic matter in the RO membrane separator when treating and collecting wastewater containing organic matter using a reverse osmosis (RO) membrane separator for a long period of time. Perform stable processing.
After adjusting the pH of the organic substance-containing wastewater to 9.5 or more and passing it through the RO membrane separation device 2, the pH is adjusted to 4 to 8 by adding an acid, and then a chlorine-based disinfectant and After adding the slime control agent, water is passed through the activated carbon device 3. By setting the pH of the RO water supply to 9.5 or higher, biofouling in the RO membrane separation device is prevented, and the non-ionic surfactant is prevented from adhering to the membrane surface to prevent the flux from being lowered. The TOC value is further reduced by treating the RO permeate with activated carbon (AC). By adjusting the AC feed water to pH 4-8, an increase in the differential pressure in the activated carbon tower is prevented. By adding a chlorine-based disinfectant and / or slime control agent, an increase in differential pressure due to slime in the activated carbon tower is prevented.
[Selection] Figure 1

Description

本発明は、電子デバイス製造工場等から排出される高濃度ないし低濃度有機物(TOC)含有排水を逆浸透(RO)膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下や、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物含有排水の処理方法及び処理装置に関する。   In the present invention, when wastewater containing high or low concentration organic matter (TOC) discharged from an electronic device manufacturing factory or the like is treated and recovered using a reverse osmosis (RO) membrane separator, organic matter in the RO membrane separator Of organic wastewater containing high-quality treated water by efficiently reducing the TOC concentration in water while simultaneously performing stable treatment over a long period of time by preventing flux reduction and bio-fouling due to film surface adhesion And a processing apparatus.

近年、環境基準ないし水質基準は益々厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から、各種の排水を回収して再利用するためにも、高度な水処理技術の開発が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired to purify discharged water to a high degree. On the other hand, for the purpose of eliminating water shortage, development of advanced water treatment technology is also desired in order to collect and reuse various wastewater.

このような状況において、RO膜分離処理は水中の不純物(イオン類、有機物、微粒子など)を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン、イソプロピルアルコールなどを含む高濃度TOCあるいは低濃度TOC含有排水を回収して再利用する場合、これをまず生物処理してTOC成分を除去し生物処理水をRO膜処理して浄化する方法が広く採用されている(例えば、特開2002−336886号公報)。   Under such circumstances, RO membrane separation treatment can effectively remove impurities (ions, organic substances, fine particles, etc.) in water, and has recently been used in many fields. It was. For example, when recovering and recycling wastewater containing high-concentration TOC or low-concentration TOC containing acetone, isopropyl alcohol, etc. discharged from the semiconductor manufacturing process, this is first biologically treated to remove the TOC component, A method of purifying by RO membrane treatment is widely adopted (for example, JP-A-2002-336886).

しかしながら、近年、生物処理排水をRO膜分離装置に通水した場合、微生物による有機物分解で生成される生物代謝物により、RO膜の膜面が閉塞され、フラックスが低下するという問題が顕在化し始めるようになってきた。   However, in recent years, when biological treatment wastewater is passed through an RO membrane separation device, the problem that the membrane surface of the RO membrane is clogged and the flux is reduced due to biological metabolites generated by the decomposition of organic matter by microorganisms begins to become apparent. It has become like this.

一方、生物処理を用いず、これらのTOC含有排水を直接RO膜分離装置に通水した場合には、RO膜分離装置に流入するTOC濃度が高いため、RO膜分離装置内では微生物が繁殖しやすい環境となる。そこでRO膜分離装置内でのバイオファウリングを抑制する目的から、通常はTOC含有排水にスライムコントロール剤を多量に添加することが行われているが、スライムコントロール剤は高価であるため、より安価なバイオファウリング抑制方法が求められている。   On the other hand, when these TOC-containing wastewater is directly passed through the RO membrane separator without using biological treatment, the TOC concentration flowing into the RO membrane separator is high, so that microorganisms propagate in the RO membrane separator. Easy environment. Therefore, for the purpose of suppressing biofouling in the RO membrane separation apparatus, a large amount of slime control agent is usually added to TOC-containing wastewater. However, since the slime control agent is expensive, it is cheaper. There is a need for a new biofouling suppression method.

また、電子デバイス製造工場から排出される排水には、RO膜分離装置の膜面に付着し、フラックスを低下させる恐れのある非イオン性界面活性剤が混入する場合があるため、従来、このような非イオン性界面活性剤含有排水には、RO膜分離処理を適用することはできなかった。
特開2002−336886号公報
In addition, the wastewater discharged from the electronic device manufacturing factory may be mixed with a nonionic surfactant that may adhere to the membrane surface of the RO membrane separator and reduce the flux. RO membrane separation treatment could not be applied to such nonionic surfactant-containing wastewater.
JP 2002-336886 A

本発明は、上記従来の問題点を解決し、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物含有排水の処理方法及び処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and when processing / recovering wastewater containing high or low concentration organic matter discharged from an electronic device manufacturing factory and other various fields using an RO membrane separator, Organic matter that obtains high-quality treated water by efficiently reducing the TOC concentration in water while simultaneously performing stable treatment over a long period of time by preventing flux reduction and biofouling due to the membrane surface adhesion of organic matter in the separator It aims at providing the processing method and processing apparatus of contained wastewater.

本発明の有機物含有排水の処理方法は、有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整工程と、該第1のpH調整工程で得られたpH調整水を逆浸透膜分離処理する膜分離処理工程と、該膜分離処理の透過水に酸を添加してpHを4〜8に調整する第2のpH調整工程と、該第2のpH調整工程で得られたpH調整水に塩素系殺菌剤及び/又はスライムコントロール剤を添加する抗菌処理工程と、該抗菌処理水を活性炭処理する活性炭処理工程とを備えてなることを特徴とする。   The method for treating organic matter-containing wastewater of the present invention includes a first pH adjustment step of adjusting the pH to 9.5 or more by adding alkali to the organic matter-containing wastewater, and a pH adjustment obtained in the first pH adjustment step. A membrane separation treatment step for subjecting water to reverse osmosis membrane separation, a second pH adjustment step for adjusting the pH to 4 to 8 by adding an acid to the permeated water of the membrane separation treatment, and the second pH adjustment step Characterized in that it comprises an antibacterial treatment step of adding a chlorine-based disinfectant and / or slime control agent to the pH-adjusted water obtained in step 1, and an activated carbon treatment step of treating the antibacterial treatment water with activated carbon.

本発明の有機物含有排水の処理装置は、有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整手段と、該第1のpH調整手段で得られたpH調整水が導入される逆浸透膜分離装置と、該逆浸透膜分離装置の透過水に酸を添加してpHを4〜8に調整する第2のpH調整手段と、該第2のpH調整手段で得られたpH調整水に塩素系殺菌剤及び/又はスライムコントロール剤を添加する薬品注入手段と、該薬品注入手段で薬品が添加された水が導入される活性炭装置とを備えてなることを特徴とする。   The treatment apparatus for organic matter-containing wastewater of the present invention includes a first pH adjusting means for adjusting the pH to 9.5 or more by adding alkali to the organic matter-containing wastewater, and a pH adjustment obtained by the first pH adjusting means. A reverse osmosis membrane separation device into which water is introduced, a second pH adjustment means for adjusting the pH to 4 to 8 by adding an acid to the permeated water of the reverse osmosis membrane separation device, and the second pH adjustment means A chemical injection means for adding a chlorine-based disinfectant and / or a slime control agent to the pH-adjusted water obtained in the above, and an activated carbon device into which water added with the chemical by the chemical injection means is introduced. Features.

本発明においては、RO膜分離装置に導入する被処理水(以下「RO給水」と称す場合がある。)のpHを9.5以上に調整してRO膜分離装置に通水した後、酸を添加してpHを4〜8に調整し、その後、塩素系殺菌剤及び/又はスライムコントロール剤を添加した後、活性炭処理を行う。   In the present invention, after adjusting the pH of the water to be treated introduced into the RO membrane separator (hereinafter sometimes referred to as “RO water supply”) to 9.5 or higher and passing the water through the RO membrane separator, Is added to adjust the pH to 4 to 8, and then a chlorine-based disinfectant and / or slime control agent is added, followed by activated carbon treatment.

RO給水のpHを9.5以上に調整する理由は以下の通りである。   The reason for adjusting the pH of the RO water supply to 9.5 or higher is as follows.

即ち、微生物はアルカリ性域では生息することができない。そのため、RO給水のpHを9.5以上調整することにより、RO膜分離装置内において、栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、従来のような高価なスライムコントロール剤の添加を必要とすることなく、RO膜分離装置でのバイオファウリングを抑制することができる。   That is, microorganisms cannot live in the alkaline region. Therefore, by adjusting the pH of the RO feed water to 9.5 or more, it becomes possible to create an environment where there are nutrient sources but microorganisms cannot live in the RO membrane separation device. Biofouling in the RO membrane separator can be suppressed without the need for addition.

また、フラックスを低下させる恐れのある非イオン性界面活性剤はアルカリ性領域では膜面から脱着することが知られており、RO給水のpHを9.5以上にすることによりRO膜面へのこれらの成分の付着を抑制することが可能となる。   In addition, nonionic surfactants that may lower the flux are known to be desorbed from the membrane surface in the alkaline region. By increasing the pH of the RO water supply to 9.5 or higher, these are applied to the RO membrane surface. It becomes possible to suppress adhesion of these components.

また、RO膜分離処理後に活性炭処理を行う理由は以下の通りである。   The reason why the activated carbon treatment is performed after the RO membrane separation treatment is as follows.

即ち、RO給水のTOC濃度が高くなればなるほど、RO膜分離装置の透過水(以下「RO透過水」と称す場合がある。)のTOC値は悪化し、この透過水を回収、再利用するにあたり、TOC値が無視できない程度となるが、活性炭処理により、このRO膜分離装置からリークする透過水中の残留TOCを吸着除去できるため、最終処理水のTOC値の低減を図ることができる。   That is, the higher the TOC concentration of the RO feed water, the worse the TOC value of the permeated water of the RO membrane separation device (hereinafter sometimes referred to as “RO permeated water”), and this permeated water is recovered and reused. In this case, the TOC value is not negligible, but the activated carbon treatment can adsorb and remove the residual TOC in the permeated water leaking from the RO membrane separation device, so that the TOC value of the final treated water can be reduced.

この活性炭処理に供するRO透過水に添加する塩素系殺菌剤及び/又はスライムコントロール剤は、活性炭塔内でスライムが繁殖し、塔内差圧が上昇するのを抑制する目的で添加される。   The chlorine-based disinfectant and / or slime control agent added to the RO permeated water to be subjected to the activated carbon treatment is added for the purpose of suppressing the propagation of slime in the activated carbon tower and the increase in the differential pressure in the tower.

また、活性炭処理に供する水(以下「AC給水」と称す場合がある。)のpHを4〜8に調整する理由は以下の通りである。   Moreover, the reason for adjusting the pH of water used for the activated carbon treatment (hereinafter sometimes referred to as “AC feed water”) to 4 to 8 is as follows.

即ち、AC給水のpHが4未満であると、活性炭からFeなどといった無機イオンがリークし後段装置を汚染させる恐れがある。また、特に、塩素系殺菌剤を用いた場合、pH4未満では有害な塩素ガスが発生する恐れがある。AC給水のpHが8を超えると、活性炭自体の耐久性(耐アルカリ性)に問題が生じ、また、塩素系殺菌剤及び/又はスライムコントロール剤に自己分解が生じ、その効果が低減してしまう恐れがある。このため、pH4〜8の範囲で活性炭処理を行う。   That is, if the pH of the AC feed water is less than 4, inorganic ions such as Fe may leak from the activated carbon and contaminate the subsequent apparatus. In particular, when a chlorine-based disinfectant is used, harmful chlorine gas may be generated at a pH lower than 4. When the pH of the AC feed water exceeds 8, there is a problem in durability (alkali resistance) of the activated carbon itself, and self-decomposition occurs in the chlorine-based disinfectant and / or slime control agent, which may reduce the effect. There is. For this reason, activated carbon treatment is performed in the range of pH 4-8.

本発明の有機物含有排水の処理方法及び処理装置によれば、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水、特に非イオン性界面活性剤を含有する排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる。   According to the method and apparatus for treating organic matter-containing wastewater of the present invention, wastewater containing high-concentration or low-concentration organic matter discharged from an electronic device manufacturing factory and other various fields, particularly wastewater containing a nonionic surfactant. When processing / recovering using RO membrane separators, the TOC concentration in the water is reduced at the same time as performing stable treatment over a long period of time by preventing flux reduction and biofouling due to organic membrane adhesion in the RO membrane separator. Can be efficiently reduced to obtain high-quality treated water.

以下に図面を参照して本発明の有機物含有排水の処理方法及び処理装置の実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a method and apparatus for treating organic matter-containing wastewater according to the present invention will be described in detail below with reference to the drawings.

図1は本発明の有機物含有排水の処理方法及び処理装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of the method and apparatus for treating wastewater containing organic matter according to the present invention.

タンク1を経て導入される原水(有機物含有排水)に、まずアルカリ剤を添加してpH9.5以上、好ましくは10以上、より好ましくは10.5以上、例えばpH10.5〜11に調整してRO膜分離装置2に導入する。ここで使用するアルカリ剤としては水酸化ナトリウム、水酸化カリウムなど、原水のpHを9.5以上に調整できる無機物系アルカリ剤であれば良く、特に限定されない。   First, an alkaline agent is added to the raw water (organic matter-containing wastewater) introduced through the tank 1 to adjust the pH to 9.5 or more, preferably 10 or more, more preferably 10.5 or more, for example, pH 10.5 to 11. Introduced into the RO membrane separator 2. The alkaline agent used here is not particularly limited as long as it is an inorganic alkaline agent that can adjust the pH of raw water to 9.5 or higher, such as sodium hydroxide and potassium hydroxide.

RO膜分離装置のRO膜としては耐アルカリ性を有するもの、例えば、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などが好適に使用される。このRO膜は、スパイラル型、中空糸型、管状型等、いかなる型式のものであっても良い。   As the RO membrane of the RO membrane separation device, those having alkali resistance, for example, a polyetheramide composite membrane, a polyvinyl alcohol composite membrane, an aromatic polyamide membrane, etc. are preferably used. This RO membrane may be of any type such as a spiral type, a hollow fiber type, and a tubular type.

なお、RO膜分離装置2の濃縮水は必要に応じて酸を添加してpH中性に調整した後、系外へ排出される。RO膜分離装置2の透過水は、次いで酸を添加してpH4〜8に調整し、更に塩素系殺菌剤及び/又はスライムコントロール剤を添加した後活性炭装置3に通水して活性炭処理する。ここで使用する酸としては、特に制限はなく、塩酸、硫酸などの鉱酸が挙げられる。   The concentrated water of the RO membrane separation device 2 is discharged to the outside of the system after adjusting to pH neutrality by adding an acid as necessary. Next, the permeated water of the RO membrane separation device 2 is adjusted to pH 4 to 8 by adding an acid, and further added with a chlorine-based disinfectant and / or slime control agent, and then passed through the activated carbon device 3 to be treated with activated carbon. There is no restriction | limiting in particular as an acid used here, Mineral acids, such as hydrochloric acid and a sulfuric acid, are mentioned.

また、塩素系殺菌剤の種類は特に限定はなく次亜塩素酸ナトリウム、次亜塩素酸カリウムなどを挙げることができる。塩素系殺菌剤の添加濃度は残留塩素濃度で0.1〜10mg/Lであることが好ましく、0.3〜2mg/Lであることがより好ましい。残留塩素濃度が0.1mg/L未満であると、スライム防止効果を十分に発揮しない恐れがある。残留塩素濃度が10mg/Lを超えると、装置に腐食を生ずる恐れがある。   Moreover, the kind of chlorine type disinfectant is not particularly limited, and examples thereof include sodium hypochlorite and potassium hypochlorite. The addition concentration of the chlorine-based disinfectant is preferably 0.1 to 10 mg / L, more preferably 0.3 to 2 mg / L in terms of residual chlorine concentration. If the residual chlorine concentration is less than 0.1 mg / L, the slime prevention effect may not be sufficiently exhibited. If the residual chlorine concentration exceeds 10 mg / L, the apparatus may be corroded.

また、スライムコントロール剤を用いる場合もその種類に特に限定はなく、例えば2−メチル−4−イソチアゾリン−3−オン、ベンゾイソチアゾリン−3−オンなどのイソチアゾリン系スライムコントロール剤などが挙げられる。スライムコントロール剤の添加濃度は0.5〜10mg/Lであることが好ましく、1〜5mg/Lであることがより好ましい。   Moreover, when using a slime control agent, the kind is not particularly limited, and examples thereof include isothiazoline-based slime control agents such as 2-methyl-4-isothiazolin-3-one and benzoisothiazolin-3-one. The addition concentration of the slime control agent is preferably 0.5 to 10 mg / L, and more preferably 1 to 5 mg / L.

活性炭装置3としては、粉末活性炭の撹拌槽、活性炭充填塔のいずれでも良いが、処理効率、処理水質の面から活性炭充填塔が好ましい。   The activated carbon device 3 may be either a powdered activated carbon agitation tank or an activated carbon packed tower, but an activated carbon packed tower is preferred in terms of treatment efficiency and treated water quality.

活性炭塔に充填する活性炭種としては石炭系、椰子殻系等のいずれでも良く、破砕炭、造粒炭、成形炭、クロス状、繊維状等、その形状、種類等に特に制限はない。また、活性炭塔への活性炭充填方式は、流動床、膨張層、固定床などのいずれでもよいが、活性炭の流出が少ないところから固定床が好ましい。活性炭塔の通水方式は上向流通水であっても下向流通水であっても良い。   The activated carbon type to be charged in the activated carbon tower may be any of coal-based, coconut shell-based, etc., and there are no particular restrictions on the shape, type, etc. of crushed coal, granulated coal, formed coal, cloth, fiber, etc. The activated carbon filling system for the activated carbon tower may be any of a fluidized bed, an expanded bed, a fixed bed, etc., but a fixed bed is preferred because the outflow of activated carbon is small. The water flow system of the activated carbon tower may be upward circulating water or downward circulating water.

図1に示すように、原水をpH9.5以上に調整した後RO膜分離処理し、その後pHを4〜8に調整し、塩素系殺菌剤及び/又はスライムコントロール剤を添加して活性炭処理することにより、RO膜分離装置におけるフラックスの低下、活性炭塔における差圧の上昇を引き起こすことなく、長期に亘り安定な処理を行って、TOCが高度に除去された高水質処理水を得ることができる。   As shown in FIG. 1, the raw water is adjusted to pH 9.5 or higher and then subjected to RO membrane separation treatment, then the pH is adjusted to 4 to 8, and the activated carbon treatment is performed by adding a chlorine-based disinfectant and / or a slime control agent. By doing this, it is possible to obtain a high-quality treated water from which TOC is highly removed by performing a stable treatment over a long period of time without causing a decrease in flux in the RO membrane separation device and an increase in differential pressure in the activated carbon tower. .

なお、図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、RO膜分離装置による処理は一段処理に限らず、2段以上の多段処理であっても良い。また、電子デバイス製造工場から排出されるTOC含有排水等では、基本的にはスケールの原因となるカルシウムイオンなどが混入するケースは少ないが、原水中にカルシウムイオンなどが混入する場合は、RO膜分離装置の前段に軟化装置を設置しても良い。また、pH調整や塩素系殺菌剤及び/又はスライムコントロール剤の添加のための混合槽を設けても良い。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist of the present invention is not exceeded. For example, the process by the RO membrane separation apparatus is not limited to a single stage process, and may be a multistage process with two or more stages. Moreover, in TOC-containing wastewater discharged from electronic device manufacturing factories, there are few cases where calcium ions, etc., which cause scales are basically mixed, but when raw materials contain calcium ions, RO membranes You may install a softening apparatus in the front | former stage of a separation apparatus. Moreover, you may provide the mixing tank for addition of pH adjustment, a chlorine-type disinfectant, and / or a slime control agent.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
非イオン系界面活性剤を含む電子デバイス製造工場排水(pH7.2,TOC10mg)を原水としてNaOHを添加してpH10.5とした後、RO膜分離装置(日東電工製低圧芳香族ポリアミド型RO膜「NTR−759」)で回収率90%の条件でRO膜分離処理を行った。RO透過水にHClを添加してpH7に調整し、次いでNaClO
5mg/Lを添加した後活性炭装置(クラレケミカル社製活性炭「KW−10−32」充填塔)にSV10hr−1で通水した。
Example 1
After adding NaOH as a raw water from an electronic device manufacturing factory wastewater (pH 7.2, TOC 10 mg) containing a nonionic surfactant to make the pH 10.5, RO membrane separator (low pressure aromatic polyamide RO membrane manufactured by Nitto Denko) RO membrane separation treatment was performed under the conditions of “NTR-759”) with a recovery rate of 90%. Adjust the pH to 7 by adding HCl to the RO permeate, then NaClO
After adding 5 mg / L, water was passed through the activated carbon device (activated carbon “KW-10-32” packed column manufactured by Kuraray Chemical Co., Ltd.) at SV10 hr −1 .

このときのRO膜分離装置のフラックスとRO濃縮水中の生菌数の経時変化を調べ、結果を図2,3に示した。また、活性炭塔の差圧の経時変化を調べ、結果を図4に示した。   The changes over time in the flux of the RO membrane separator and the number of viable bacteria in the RO concentrated water at this time were examined, and the results are shown in FIGS. Moreover, the time-dependent change of the differential pressure of the activated carbon tower was examined, and the result is shown in FIG.

なお、各ポイントでのTOC値は表1に示す通りであった。   The TOC value at each point is as shown in Table 1.

Figure 2005081269
Figure 2005081269

比較例1
RO給水のpHを7としたこと以外は実施例1と同条件で処理を行い、RO膜分離装置の膜フラックスとRO濃縮水中の生菌数の経時変化をそれぞれ図2,3に示した。
Comparative Example 1
The treatment was carried out under the same conditions as in Example 1 except that the pH of the RO water supply was set to 7, and changes over time in the membrane flux of the RO membrane separator and the number of viable bacteria in the RO concentrated water are shown in FIGS.

比較例2
RO給水のpHを7とし、RO給水にイソチアゾリン系スライムコントロール剤(栗田工業(株)製「クリバータEC−503」)を5mg/L添加したこと以外は実施例1と同条件で処理を行い、RO膜分離装置の膜フラックスと生菌数の経時変化をそれぞれ図2,3に示した。
Comparative Example 2
The treatment was performed under the same conditions as in Example 1 except that the pH of the RO water supply was set to 7, and 5 mg / L of the isothiazoline slime control agent ("Kuriverta EC-503" manufactured by Kurita Kogyo Co., Ltd.) was added to the RO water supply. Changes in the membrane flux and viable cell count over time of the RO membrane separator are shown in FIGS.

図2より明らかな通り、実施例1においては通水開始500hr後においてもフラックスの低下は観測されなかったのに対し、比較例1では通水開始300hr後ですでに初期フラックスに対し半分程度に減少した。また、スライムコントロール剤を添加した比較例2においても通水開始300hrで初期フラックスの60%程度に低下した。   As is clear from FIG. 2, in Example 1, no decrease in flux was observed even after the start of water flow for 500 hours, whereas in Comparative Example 1, it was already about half of the initial flux after the start of water flow for 300 hours. Diminished. Moreover, also in the comparative example 2 which added the slime control agent, it fell to about 60% of the initial flux by 300 hours of water flow start.

また、図3より、実施例1及び比較例2においては、生菌数の増加は観測されなかったのに対し、比較例1では通水時間の増加と共に生菌数が増加している。   From FIG. 3, in Example 1 and Comparative Example 2, no increase in the number of viable bacteria was observed, whereas in Comparative Example 1, the number of viable bacteria increased with an increase in water passage time.

以上の結果から、比較例1においてはRO膜内での微生物の繁殖及び非イオン性界面活性剤の膜面付着の相乗効果によりフラックスが低下し、比較例2ではスライムコントロール剤の添加により微生物の繁殖は抑制できても、非イオン性界面活性剤の膜面付着によりフラックスが低下するが、本発明に係る実施例1では、RO膜分離装置内での微生物の繁殖及び非イオン性界面活性剤の膜面付着の両方を同時に抑制できることが明らかである。   From the above results, in Comparative Example 1, the flux decreased due to the synergistic effect of the propagation of microorganisms in the RO membrane and the adhesion of the nonionic surfactant to the membrane surface, and in Comparative Example 2, the addition of the slime control agent caused the microbial activity. Even though the propagation can be suppressed, the flux decreases due to the adhesion of the nonionic surfactant to the membrane surface. However, in Example 1 according to the present invention, the propagation of microorganisms in the RO membrane separation apparatus and the nonionic surfactant It is clear that both film surface adhesion can be suppressed simultaneously.

また、表1より明らかな通り、RO透過水中には0.5mg/LあったTOC値が、活性炭処理により0.1mg/L程度に低減しており、RO膜分離処理の後段で活性炭処理を行うことにより、更なるTOC値の低減化を図れることが分かる。
実施例2,3、比較例3
AC給水のpHをHClを用いて4(実施例2)、8(実施例3)、又は8.5(比較例3)としたこと以外は実施例1と同条件で処理を行い、活性炭塔内の差圧の経時変化を調べ、結果を図4に示した。
Moreover, as apparent from Table 1, the TOC value that was 0.5 mg / L in the RO permeated water was reduced to about 0.1 mg / L by the activated carbon treatment, and the activated carbon treatment was performed after the RO membrane separation treatment. It can be seen that the TOC value can be further reduced by carrying out the above process.
Examples 2 and 3, Comparative Example 3
The activated carbon tower was treated under the same conditions as in Example 1 except that the pH of the AC feed water was 4 (Example 2), 8 (Example 3), or 8.5 (Comparative Example 3) using HCl. The change over time in the differential pressure was examined, and the results are shown in FIG.

図4より、AC給水のpHを4〜8に調整した後、塩素系殺菌剤を添加することにより、活性炭塔内の差圧の上昇を抑制できることが明らかである。   From FIG. 4, it is clear that the increase in the differential pressure in the activated carbon tower can be suppressed by adjusting the pH of the AC feed water to 4 to 8 and then adding a chlorine-based disinfectant.

本発明は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の放流、又は回収・再利用のための水処理に有効に適用される。   INDUSTRIAL APPLICABILITY The present invention is effectively applied to water treatment for discharging, collecting or reusing wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields.

本発明の有機物含有排水の処理方法及び処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and processing apparatus of the organic substance containing waste_water | drain of this invention. 実施例1及び比較例1,2におけるRO膜分離装置のフラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the flux of the RO membrane separator in Example 1 and Comparative Examples 1 and 2. 実施例1及び比較例1,2におけるRO膜分離装置の生菌数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the viable cell count of the RO membrane separation apparatus in Example 1 and Comparative Examples 1 and 2. 実施例1〜3及び比較例3における活性炭塔の差圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the differential pressure | voltage of the activated carbon tower in Examples 1-3 and Comparative Example 3.

符号の説明Explanation of symbols

1 タンク
2 RO膜分離装置
3 活性炭装置
1 Tank 2 RO membrane separator 3 Activated carbon device

Claims (6)

有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整工程と、
該第1のpH調整工程で得られたpH調整水を逆浸透膜分離処理する膜分離処理工程と、
該膜分離処理の透過水に酸を添加してpHを4〜8に調整する第2のpH調整工程と、
該第2のpH調整工程で得られたpH調整水に塩素系殺菌剤及び/又はスライムコントロール剤を添加する抗菌処理工程と、
該抗菌処理水を活性炭処理する活性炭処理工程と
を備えてなる有機物含有排水の処理方法。
A first pH adjusting step of adjusting the pH to 9.5 or higher by adding alkali to the organic matter-containing wastewater;
A membrane separation treatment step of performing reverse osmosis membrane separation treatment on the pH adjusted water obtained in the first pH adjustment step;
A second pH adjusting step of adjusting the pH to 4 to 8 by adding an acid to the permeated water of the membrane separation treatment;
An antibacterial treatment step of adding a chlorine-based disinfectant and / or a slime control agent to the pH-adjusted water obtained in the second pH adjustment step;
A method for treating wastewater containing organic matter, comprising an activated carbon treatment step of treating the antibacterial treated water with activated carbon.
請求項1において、該第1のpH調整工程において、pHを10〜12に調整することを特徴とする有機物含有排水の処理方法。   In Claim 1, pH is adjusted to 10-12 in this 1st pH adjustment process, The processing method of the organic substance containing waste_water | drain characterized by the above-mentioned. 請求項1又は2において、該殺菌処理工程において、塩素系殺菌剤を残留塩素濃度で0.1〜10mg/L添加することを特徴とする有機物含有排水の処理方法。   3. The method for treating organic matter-containing wastewater according to claim 1, wherein in the sterilization treatment step, 0.1 to 10 mg / L of a chlorine-based disinfectant is added at a residual chlorine concentration. 請求項1又は2において、該殺菌処理工程において、スライムコントロール剤を0.5〜10mg/L添加することを特徴とする有機物含有排水の処理方法。   3. The method for treating organic matter-containing wastewater according to claim 1, wherein 0.5 to 10 mg / L of a slime control agent is added in the sterilization treatment step. 有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整手段と、
該第1のpH調整手段で得られたpH調整水が導入される逆浸透膜分離装置と、
該逆浸透膜分離装置の透過水に酸を添加してpHを4〜8に調整する第2のpH調整手段と、
該第2のpH調整手段で得られたpH調整水に塩素系殺菌剤及び/又はスライムコントロール剤を添加する薬品注入手段と、
該薬品注入手段で薬品が添加された水が導入される活性炭装置と
を備えてなる有機物含有排水の処理装置。
First pH adjusting means for adjusting pH to 9.5 or higher by adding alkali to organic matter-containing wastewater;
A reverse osmosis membrane separation apparatus into which the pH adjusted water obtained by the first pH adjusting means is introduced;
A second pH adjusting means for adjusting the pH to 4 to 8 by adding an acid to the permeated water of the reverse osmosis membrane separation device;
Chemical injection means for adding a chlorine-based disinfectant and / or slime control agent to the pH-adjusted water obtained by the second pH adjusting means;
An organic matter-containing wastewater treatment apparatus comprising: an activated carbon apparatus into which water to which a chemical is added by the chemical injection means is introduced.
請求項5において、該活性炭装置が活性炭充填塔を含むことを特徴とする有機物含有排水の処理装置。   6. The apparatus for treating organic matter-containing wastewater according to claim 5, wherein the activated carbon apparatus includes an activated carbon packed tower.
JP2003317061A 2003-09-09 2003-09-09 Method and apparatus for treating wastewater containing organic matter Pending JP2005081269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317061A JP2005081269A (en) 2003-09-09 2003-09-09 Method and apparatus for treating wastewater containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317061A JP2005081269A (en) 2003-09-09 2003-09-09 Method and apparatus for treating wastewater containing organic matter

Publications (1)

Publication Number Publication Date
JP2005081269A true JP2005081269A (en) 2005-03-31

Family

ID=34416765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317061A Pending JP2005081269A (en) 2003-09-09 2003-09-09 Method and apparatus for treating wastewater containing organic matter

Country Status (1)

Country Link
JP (1) JP2005081269A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from CMP wastewater containing high TOC
JP2013141643A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method and apparatus for recovery of process wastewater from electronic industry
CN103449596A (en) * 2013-08-09 2013-12-18 宝钢集团新疆八一钢铁有限公司 Improved reverse osmosis acid adjustment control method
KR20230019412A (en) 2020-05-28 2023-02-08 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane treatment method
JP7492876B2 (en) 2020-07-21 2024-05-30 オルガノ株式会社 Water treatment method and water treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from CMP wastewater containing high TOC
JP2013141643A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method and apparatus for recovery of process wastewater from electronic industry
CN103449596A (en) * 2013-08-09 2013-12-18 宝钢集团新疆八一钢铁有限公司 Improved reverse osmosis acid adjustment control method
KR20230019412A (en) 2020-05-28 2023-02-08 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane treatment method
JP7492876B2 (en) 2020-07-21 2024-05-30 オルガノ株式会社 Water treatment method and water treatment device

Similar Documents

Publication Publication Date Title
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
JP5304651B2 (en) Method and apparatus for treating water containing organic matter
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
CN103168006B (en) Ultrapure water production process
JP2007253115A (en) Method and apparatus for treating wastewater containing organic matter
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
CN102730824A (en) Processing method of organic water discharge by membrane separation activated sludge device
JP2009000591A (en) Water treatment method of organic matter-containing wastewater
JP2005081269A (en) Method and apparatus for treating wastewater containing organic matter
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2007244930A (en) Method and apparatus for treating wastewater containing organic matter
JP4552482B2 (en) Organic wastewater treatment method
TW201313625A (en) Treatment method for wastewater in semiconductor process
JP2009189943A (en) Water treatment method and apparatus
CN101597097B (en) Treatment method of wastewater containing organic matter
JPH0871593A (en) Water treatment method
JP3746803B2 (en) Semiconductor cleaning wastewater collection method
JP3387311B2 (en) Ultrapure water production equipment
JP2002336887A (en) Ultrapure water production equipment and ultrapure water production method
JP2009000590A (en) Water treatment method of organic matter-containing wastewater
JP2005081268A (en) Method and apparatus for treating wastewater containing organic matter
JP5700080B2 (en) Method and apparatus for treating waste water containing cationic surfactant