[go: up one dir, main page]

JP2005074931A - Rapid prototyping modeling method and model - Google Patents

Rapid prototyping modeling method and model Download PDF

Info

Publication number
JP2005074931A
JP2005074931A JP2003310994A JP2003310994A JP2005074931A JP 2005074931 A JP2005074931 A JP 2005074931A JP 2003310994 A JP2003310994 A JP 2003310994A JP 2003310994 A JP2003310994 A JP 2003310994A JP 2005074931 A JP2005074931 A JP 2005074931A
Authority
JP
Japan
Prior art keywords
modeling
rapid prototyping
data
modeling method
fine hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003310994A
Other languages
Japanese (ja)
Inventor
Hidetoshi Matsuzaka
英俊 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Original Assignee
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Science Systems Ltd filed Critical Hitachi Science Systems Ltd
Priority to JP2003310994A priority Critical patent/JP2005074931A/en
Publication of JP2005074931A publication Critical patent/JP2005074931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a shaped article in which microholes are not shrunk or do not disappear by the conversion of three-dimensional CAD data when the microholes are shaped by rapid prototyping. <P>SOLUTION: The method for producing the shaped article comprises dividing the shaped article into a plurality of laminated parts using a three-dimensional CAD model, sequentially hardening the shaping materials of the divided laminated parts, and then stacking the laminated parts. The method is characterized by minimizing the shaping error not greater than a laminating thickness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、3次元CADモデルデータを用いた光造形や粉末焼結、または粉末融着等のラピッドプロトタイピング造形方法および造形品に関する。   The present invention relates to a rapid prototyping modeling method such as stereolithography, powder sintering, and powder fusion using three-dimensional CAD model data, and a modeled article.

従来の3次元CADモデルデータを用いたラピッドプロトタイピングでの造形法は、特許文献1(特開2002−166481号公報)に示されている。この造形法を図5で説明する。   A conventional modeling method using rapid prototyping using three-dimensional CAD model data is disclosed in Japanese Patent Application Laid-Open No. 2002-166481. This modeling method will be described with reference to FIG.

まず、3次元CADで作成した立体データ51を水平方向にスライスした等高線データに変換52する。   First, the solid data 51 created by three-dimensional CAD is converted 52 into contour line data sliced in the horizontal direction.

その等高線データに基づいて粉末状の造形素材を硬化させるビームの軌跡データに座標変換53する。その後、等高線データの厚さ分(スライスピッチ)に、造形素材、例えば粉末プラスチックを散布し(敷き)、粉末プラスチックの薄膜を形成する54。   Based on the contour line data, coordinate conversion 53 is performed on the locus data of the beam for curing the powdery modeling material. Thereafter, a modeling material, for example, powdered plastic, is spread (spread) on the thickness (slice pitch) of the contour line data to form a powdered plastic thin film 54.

そして、その敷かれた粉末プラスチックの上から敷き厚さ方向に光ビームを照射することによって、粉末プラスチックの造形素材を硬化させる55。その上に積み重ねるように造形素材を前回と同じ厚さに敷き、かつその積層された造形素材に光ビーム(粒子線)を同様に照射して熱硬化させる。これを順次、等高線データの枚数分(積層分)繰り返し56、粉末にあたかも埋まっているような製品Pが形成され、それを粉末の中から掘り出すように取り出すと57、3次元CADモデルデータと同様の造形品Pが生成される。   Then, the powder plastic molding material is cured 55 by irradiating a light beam in the thickness direction on the spread powder plastic. The modeling material is laid on the same thickness as the previous layer so as to be stacked thereon, and the stacked modeling material is similarly irradiated with a light beam (particle beam) to be thermally cured. This is sequentially repeated 56 times as many as the number of contour line data (lamination), and a product P as if it is buried in the powder is formed, and when it is taken out from the powder 57, it is the same as 57-dimensional CAD model data A shaped product P is generated.

図5の右側に示した(51a)〜(57g)は、図5の(51)〜(57)に対応して、生成される造形品のイメージを示している。この例では、造形品Pを生成する過程を示している。   (51a) to (57g) shown on the right side of FIG. 5 show images of the shaped products to be generated corresponding to (51) to (57) of FIG. In this example, a process of generating a shaped product P is shown.

ここで、図5に示す52の過程で、立体データを水平方向にスライスし、等高線データを作成する際、積層方向に積層厚さ未満の硬化領域があった場合、その差分は硬化領域と判断される。そして図5に示す55の過程で積層厚さ分全てを硬化するため、実質的には諸望の寸法よりも積層厚さの差分の厚さ分造形品は大きくなる。   Here, when the solid data is sliced in the horizontal direction and the contour line data is created in the process of 52 shown in FIG. 5, if there is a hardened area less than the stacking thickness in the stacking direction, the difference is determined as the hardened area. Is done. Then, since all of the stacking thickness is cured in the process 55 shown in FIG. 5, the shaped product is substantially larger by the thickness of the difference of the stacking thickness than the desired dimensions.

例えば、図1の(A)に示すように、積層厚さ1が0.15mm、データ上の硬化領域高さ2が0.17mmの場合、硬化したい領域3はスライスデータ分割面4により3分割(場合によっては2分割)されることになる。   For example, as shown in FIG. 1A, when the stacking thickness 1 is 0.15 mm and the hardening area height 2 on the data is 0.17 mm, the area 3 to be hardened is divided into three by the slice data dividing surface 4. (In some cases, it is divided into two).

すなわち、図1の(A)の場合には、高さ7が0.01mm、高さ8が0.15mm、高さ9が0.01mmに硬化領域を3分割した構成になっており、積層方向の硬化は照射ビームのON/OFFだけなので、0.01mmの高さを硬化したい場合でも、積層厚さ分0.15mmが硬化されてしますので、最終的には硬化結果5のように硬化領域高さ6に示す0.45mmの高さを硬化することになる。このため、3次元CADデータには存在しない(3次元CADデータとは異なる)不要な領域(丈の高い領域)が硬化されてしまう。   That is, in the case of FIG. 1A, the cured area is divided into three parts having a height 7 of 0.01 mm, a height 8 of 0.15 mm, and a height 9 of 0.01 mm. Since curing of the direction is only ON / OFF of the irradiation beam, even if it is desired to cure the height of 0.01 mm, the stacking thickness of 0.15 mm is cured, so finally the cured result 5 The height of 0.45 mm shown in the curing area height 6 will be cured. For this reason, an unnecessary area (high area) that does not exist in the 3D CAD data (different from the 3D CAD data) is hardened.

この3次元CADデータとは異なる不要な領域の硬化は、特に微細穴がある場合などに顕著に現れる。このため、特に微細穴がある3次元CADモデルデータを用いて積層造形した場合、造形品の穴は諸望の穴寸法より小さくなる現象がある。   Hardening of an unnecessary area different from the three-dimensional CAD data is particularly noticeable when there are fine holes. For this reason, in particular, when layered modeling is performed using three-dimensional CAD model data having fine holes, there is a phenomenon that the holes of the shaped product become smaller than the desired hole dimensions.

特開2002−166481号公報Japanese Patent Laid-Open No. 2002-166481

前記従来技術は、硬化領域が積層方向であることから、積層の厚さを薄くすることにより、造形精度を向上する方法もある。しかし、造形材料散布の不均一性による硬化欠落、造形時間増加(積層厚さが薄くなれば、積層数が多くなるので造形時間が増す)のデメリットが生じ、一般的には、予め与えられた積層厚さで照射硬化処理をする。また本発明でも、ある程度の厚さの材料散布が必要である。   In the prior art, since the hardened region is in the stacking direction, there is a method of improving the modeling accuracy by reducing the thickness of the stack. However, there is a demerit of lack of curing due to non-uniformity of the modeling material distribution and an increase in modeling time (when the lamination thickness is thin, the number of laminations increases, so the modeling time increases), generally given in advance Irradiation curing treatment is performed with the laminated thickness. Also in the present invention, it is necessary to spread a material with a certain thickness.

上記のような問題に対処し、本発明の目的は、諸望の3次元モデルに対し、高精度な造形品を得るラピッドプロトタイピング造形方法および造形品を提供することにある。   In view of the above problems, an object of the present invention is to provide a rapid prototyping modeling method and a modeled article that obtain a highly accurate modeled product for a desired three-dimensional model.

本発明は、粉末状の造形素材を敷き、敷き詰められた造形素材には、固めたい個所に光ビームを含む粒子線を造形素材の敷き厚さ方向に照射して熱硬化させ、その上に積み重ねるように造形素材を前回と同じ厚さに敷き、かつその積層された造形素材に粒子線を同様に照射して熱硬化させ、この造形素材の積層および粒子線の照射を繰り返して造形品を形成する過程で造形品に貫通する微細穴をも一緒に形成するラビッドプロトタイピング造形方法において、前記微細穴の丈が、各積層の厚さ分の倍数の高さを有し、かつ微細穴の上下面が各積層間の境界面に来ることを特徴とする。   In the present invention, a powdery modeling material is laid, and on the laid modeling material, a particle beam including a light beam is irradiated in the thickness direction of the modeling material to be hardened, and is thermally cured and stacked thereon In the same way, lay the modeling material to the same thickness as the previous time, and irradiate the laminated modeling material with the particle beam in the same way to heat cure, and repeat this lamination of the modeling material and irradiation of the particle beam to form a modeled product In the rapid prototyping modeling method in which a fine hole penetrating a shaped article is formed together in the process of forming, the length of the fine hole has a height that is a multiple of the thickness of each laminate, and is above the fine hole. The lower surface comes to the boundary surface between each lamination | stacking, It is characterized by the above-mentioned.

本発明のラピッドプロトタイピングにより、複数の微細穴を塞ぐことがない生成加工を実現し、微細穴を有する所望のメッシュ造形品を生成することができる。   By rapid prototyping according to the present invention, it is possible to realize generation processing that does not block a plurality of fine holes, and to generate a desired mesh shaped article having fine holes.

まず、図1に沿って説明する。   First, it demonstrates along FIG.

図1の(B)に示すように、例えば、造形素材の積層の厚さ10が0.15mmの場合、硬化領域高さ11を積層高さ10の倍数とし、硬化したい領域12の上下面をスライスデータ分割面13と一致させることにより、諸望の硬化結果14が得られる。   As shown in FIG. 1B, for example, when the thickness 10 of the modeling material stack is 0.15 mm, the cured region height 11 is a multiple of the stacked height 10, and the upper and lower surfaces of the region 12 to be cured are By making it coincide with the slice data dividing surface 13, a desired curing result 14 is obtained.

この記載内容から理解できるように、造形品に形成する微細穴の丈が積層の厚さと同じ(0.15mm)ないし倍数(正の整数倍)で、かつ微細穴の上下面をスライスデータ分割面(各積層間の境界面)と一致させることにより、0.15mmの高さの穴ができる。すなわち、微細穴の丈を積層の厚さの倍数とし、かつ微細穴の上下面を各積層間の境界面に来るようにすることで、ラピッドプロトタイピングの造形品を形成する過程で造形品に貫通する微細穴をも一緒に形成できる。   As can be understood from this description, the height of the fine hole formed in the molded product is the same as the thickness of the stack (0.15 mm) or a multiple (positive integer multiple), and the upper and lower surfaces of the fine hole are sliced data dividing surfaces. By making it coincide with (the boundary surface between the respective layers), a hole having a height of 0.15 mm is formed. In other words, by making the length of the microholes a multiple of the thickness of the stack and making the top and bottom surfaces of the microholes come to the boundary between each stack, it becomes a model in the process of forming a model for rapid prototyping Through holes can be formed together.

この微細穴は、メッシュ状(網目状)に多数形成でき、しかも、精度のバラツキ等があっても上下方向の丈は最小限でも積層の厚さ分が確保される。丈の低い微細穴を塞がらずに作るには、上下面が積層間の境界面に沿って延在するように形成することが望ましい。   A large number of fine holes can be formed in a mesh shape (mesh shape), and even if there are variations in accuracy, the thickness in the vertical direction can be ensured even if the vertical length is minimal. In order to make a fine hole without being blocked, it is desirable to form the upper and lower surfaces so as to extend along the boundary surface between the stacked layers.

積層間の境界面は、分離される分割面とは違って熱溶着の結合面なっており、積層構造物の区分境界である。   Unlike the divided planes to be separated, the boundary surface between the stacks is a bonding surface for heat welding, and is a partition boundary of the stacked structure.

微細穴の形成では収縮率等を特に注意しなければならない。   In the formation of fine holes, special attention must be paid to the shrinkage rate.

ラピッドプロトタイピングの造形品は、粉末状の造形素材(粉末プラスチック)を光ビームで熱硬化/熱溶着するので熱収縮し、全体が小さな寸法になってしまう。このため、微細穴は殊のほか小さくなって穴の機能を失い兼ねない。   The rapid prototyping shaped product is thermally cured / heat-welded with a light beam of a powdery shaped material (powdered plastic), so that the entire size becomes small. For this reason, the fine holes are particularly small and may lose the function of the holes.

そこで、次のような対応を講じた。   Therefore, the following measures were taken.

まず、図2の(A)に示す従来のプロセスでは、外観形状を3次元CADで作成20し、さらに微細穴等を作成を加え21、その後、形状データに造形の収縮率をかけ22、等高線データに変換23した。   First, in the conventional process shown in FIG. 2 (A), the external shape is created 20 by three-dimensional CAD, further fine holes are created 21, and then the shape data is multiplied by the shrinkage of modeling 22, contour lines Converted to data 23.

この場合、21の工程で、微細穴を積層高さ10の倍数とし、硬化したい領域12の上下面をスライスデータ分割面13と一致させても、22の工程で、微細穴に収縮率をかけることにより、微細穴は積層高さ10の倍数とならなくなり、図1の(A)のように諸望の形状が得られなくなる。   In this case, even if the fine hole is made a multiple of the stacking height 10 in step 21 and the upper and lower surfaces of the region 12 to be hardened are made coincident with the slice data dividing surface 13, the shrinkage rate is applied to the fine hole in step 22. As a result, the fine hole is not a multiple of the stacking height 10, and the desired shape cannot be obtained as shown in FIG.

この現象を未然に防ぐためには、図2の(B)に示すように高精度造形のプロセスを考えた。   In order to prevent this phenomenon, a high-precision modeling process was considered as shown in FIG.

造形品の外観形状を3次元CADで作成24し、形状データの造形の収縮率をかけ25、その後に微細穴等を作成26し、等高線データに変換27する。この方法により、収縮率をかける工程が入っても、微細穴が積層高さ10の倍数で作り、上下面をスライスデータ分割面13と一致させることにより、諸望の硬化結果14が得られる。   The external shape of the modeled product is created 24 by three-dimensional CAD, multiplied by the model data shrinkage rate 25, and then a minute hole is created 26, which is converted into contour data 27. By this method, even if the step of applying the shrinkage rate is entered, the desired hardening result 14 can be obtained by making the fine holes by a multiple of the stacking height 10 and making the upper and lower surfaces coincide with the slice data dividing surface 13.

図4、図3を加えて更に詳しく説明する。   This will be described in more detail with reference to FIGS.

図4の(A)に示すように、C字型のモデルに複数の微細穴を有する造形品を生成する場合について説明する。   As shown in FIG. 4A, the case where a shaped product having a plurality of fine holes is generated in a C-shaped model will be described.

まず、3次元CAD上で、C字型の外観形状を作成する。図4の(A)の41〜44、および穴と穴の間隔はすべて図1の(B)の積層厚さ10の倍数になるように配置し、微細穴の断面は長方形で直線的にかつ平行にあける。   First, a C-shaped appearance is created on a three-dimensional CAD. 4A and 41B of FIG. 4 and the intervals between the holes are arranged to be a multiple of the laminated thickness 10 of FIG. 1B, and the cross-section of the micro holes is rectangular and linear. Keep parallel.

モデルに収縮率をかける場合は、微細穴を配置する前に、C字型の外観形状をモデリングした時点で収縮率をかけ、微細穴には収縮率をかけない。その後、積層面に対し、微細穴の軸が平行になるように図4の(B)に示すように、図4の(A)の3次元CADデータを、90度回転させる。   When the shrinkage rate is applied to the model, the shrinkage rate is applied at the time when the C-shaped appearance shape is modeled before the fine holes are arranged, and the shrinkage rate is not applied to the fine holes. Thereafter, as shown in FIG. 4B, the three-dimensional CAD data in FIG. 4A is rotated by 90 degrees so that the axis of the fine hole is parallel to the laminated surface.

そして、硬化したい領域12の上下面をスライスデータ分割面13と一致させることが、本発明の造形方法である。これ以降は従来技術で示したように図5のステップ53〜56の処理をおこない、ステップ57で造形品Pを取り出す。ここで90度回転させることは、図4の(A)の例であって、微細穴の軸と積層面の関係から、実際にはいろんな角度の場合がある。   And it is the modeling method of this invention to make the upper and lower surfaces of the area | region 12 to harden | cure match with the slice data division | segmentation surface 13. FIG. Thereafter, as shown in the prior art, the processing in steps 53 to 56 in FIG. 5 is performed, and the shaped product P is taken out in step 57. Here, the rotation by 90 degrees is an example of FIG. 4A, and there are actually various angles depending on the relationship between the axis of the fine hole and the laminated surface.

図4は、ある任意の断面について示しているが、図4の(A)の矢印Sから見た平面図は図3の(A)のようになる。微細穴の断面積は1mm以下の場合もある(前記のような問題は、微細穴の断面積が1mm以下の場合に発生し易い)。 FIG. 4 shows an arbitrary cross section, but the plan view seen from the arrow S in FIG. 4A is as shown in FIG. In some cases, the cross-sectional area of the fine hole is 1 mm 2 or less (the above problem is likely to occur when the cross-sectional area of the fine hole is 1 mm 2 or less).

したがって、ここでは、微細穴の間隔も1mm以下のメッシュ状に穴を有する造形品を対象にして説明する。図4の(B)に示したように穴の軸を積層面に平行に配置変換されたデータに基づいて(例えば、図5の53に示したように)、その等高線データにより造形素材を硬化させるビームの軌跡データに座標変換する。 Therefore, here, a description will be given for a shaped product having holes in a mesh shape in which the interval between the fine holes is 1 mm 2 or less. As shown in FIG. 4 (B), the molding material is cured by the contour data based on the data in which the axis of the hole is arranged and converted parallel to the laminated surface (for example, as shown in 53 of FIG. 5). The coordinates are converted to the trajectory data of the beam to be generated.

それは、例えば、図4の(A)において、3次元CADデータがX,Y,Z,のデータとして作成され、X軸方向がスライス方向で、Z軸が積層方向であれば、これを図4の(B)のようにZ´方向をスライス方向とするデータX´,Y´,Z´のデータに変換し、造形を行う(この場合積層方向はX´方向である)。   For example, in FIG. 4A, if the three-dimensional CAD data is created as X, Y, Z data, and the X-axis direction is the slice direction and the Z-axis is the stacking direction, this is shown in FIG. As in (B), the data is converted into data X ′, Y ′, Z ′ having the Z ′ direction as the slice direction, and modeling is performed (in this case, the stacking direction is the X ′ direction).

その後、等高線データの厚さ分の(通常0.15mm)造形粉末素材を図5の54(54d)のように薄膜散布し、図5の55(55e)のようにビーム照射による素材硬化を行う。これを等高線データの枚数分繰り返し(図5の54〜56、あたかも埋まった製品を取り出すことになる(図5の57)。その結果、微細穴は収縮率分小さくなるが、3次元モデルと同ほぼ様の造形品が生成される。   Thereafter, a thin powder is sprayed as shown by 54 (54d) in FIG. 5 for the thickness of the contour line data (usually 0.15 mm), and the material is cured by beam irradiation as shown by 55 (55e) in FIG. . This is repeated for the number of the contour line data (54 to 56 in FIG. 5, as if the buried product is taken out (57 in FIG. 5). As a result, the fine hole is reduced by the shrinkage rate, but the same as the three-dimensional model. An almost similar shaped product is generated.

このようにステップ53以降は従来技術と同じであるが、ステップ51、52において、図4に示したように、微細穴は全て直線状で断面が長方形の穴であること、その直線状の穴は硬化領域高さ(図1の11)を積層高さ(図1の10)の倍数とし、硬化したい領域(図1の12)の上下面をスライスデータ分割面(図1の13)と一致させることにより、諸望の硬化結果(図1の14)を得ることに特徴がある。   As described above, the steps after step 53 are the same as the prior art. However, in steps 51 and 52, as shown in FIG. 4, all the fine holes are straight and the cross section is a rectangular hole. 1 is a multiple of the stacking height (10 in FIG. 1), and the upper and lower surfaces of the region to be cured (12 in FIG. 1) coincide with the slice data dividing plane (13 in FIG. 1). This is characterized in that a desired curing result (14 in FIG. 1) is obtained.

図4の(A)で、矢印方向Sから見た場合を図3の(A)に示す。図4の(A)の微細穴(41〜44)が図4の(A)に対応した微細穴を示している。図4の(A)は一断面の場合の説明図であるが、面で見ると図3の(A)のようにメッシュ状に穴があけられる場合を示している。   FIG. 4A shows the case of viewing from the arrow direction S in FIG. The fine holes (41 to 44) in FIG. 4A show the fine holes corresponding to FIG. FIG. 4A is an explanatory diagram in the case of one cross section, but shows a case where holes are formed in a mesh shape as shown in FIG.

この微細穴の断面積は前記のように1mm以下である。また微細穴の間隔も1mm以下である。その微細穴は図3の(B)に示したように平面、曲面に係わらず等間隔にあけることが要求される。本発明によれば、その場合にも対応できる。 The cross-sectional area of the fine hole is 1 mm 2 or less as described above. Moreover, the space | interval of a fine hole is also 1 mm < 2 > or less. As shown in FIG. 3B, the fine holes are required to be equidistant regardless of whether they are flat or curved. According to the present invention, such a case can be dealt with.

ここで、微細穴が諸望の形状より小さくなる、あるいは、微細穴が消滅する原因を説明する。微細穴を有する3次元CADデータを等高線データに変換する際、図3の(A)に示すように、hi−1の微細穴がスライス面30〜33間にある場合、スライスデータ生成の際、hi−1の微細穴形状において30/31間の層は硬化、31/32間は硬化せず、32/33間は硬化、と判断され、図3の(A)に示すように、hi−1の微細穴形状は、の図3の(B)に示すように、hi−1のような上下がつぶれたような形状になる。これは、スライス面30/31間にhi−1の微細穴の不硬化領域(hi−1の上面と、スライス面31との間)と、硬化領域(hi−1の上面と、スライス面30との間)が存在するが、層の硬化はビーム照射のON/OFFのみで、層間に硬化領域と不硬化領域が同じX,Y座標内に存在する場合、そこは硬化領域と判断されるためである。スライス面32/33間も同様である。また、図3の(A)のhiの微細穴においては、hiの上面とスライス面34、hiの下面とスライス面36に隙間があり、層34.35間、および層35.36間のスライス面hiのXY座標内は硬化領域と判断され、結果的には図3の(B)のhiのように微細穴は消滅する。これが、微細穴が諸望の形状より小さくなる、あるいは、微細穴が消滅する要因となっている。   Here, the reason why the fine hole becomes smaller than the desired shape or the fine hole disappears will be described. When converting three-dimensional CAD data having a minute hole into contour data, as shown in FIG. 3A, when a minute hole of hi-1 is between slice planes 30 to 33, when generating slice data, In the fine hole shape of hi-1, it is determined that the layer between 30/31 is cured, the layer between 31/32 is not cured, and the layer between 32/33 is cured, and as shown in FIG. As shown in FIG. 3B, the shape of the fine hole 1 is such that the top and bottom are crushed like hi-1. This is because the non-hardened region (between the upper surface of hi-1 and the sliced surface 31) of the fine holes of hi-1 between the sliced surfaces 30/31 and the hardened region (upper surface of hi-1 and the sliced surface 30). However, the hardening of the layer is only ON / OFF of the beam irradiation, and if the hardened area and the non-hardened area exist in the same X and Y coordinates between the layers, it is determined as the hardened area. Because. The same applies to the slice surfaces 32/33. 3A, there is a gap between the upper surface of the hi and the slice surface 34, and the lower surface of the hi and the slice surface 36, and the slice between the layers 34.35 and 35.36. In the XY coordinates of the surface hi, it is determined that it is a hardened region, and as a result, the fine hole disappears as shown by hi in FIG. This is a factor that the fine hole becomes smaller than the desired shape or that the fine hole disappears.

これに対して、本発明の場合は、硬化領域高さ11を積層高さ10の倍数とし、硬化したい領域12の上下面をスライスデータ分割面13と一致させることにより、微細穴が諸望の形状より小さくなる、あるいは、微細穴が消滅することを防いでいる。収縮率をかける場合は、微細穴が収縮率分多少小さくなるが、微細穴が消滅することはない。これは重要なことである。   On the other hand, in the case of the present invention, by setting the hardened region height 11 to be a multiple of the stacking height 10, and by matching the upper and lower surfaces of the region 12 to be hardened with the slice data dividing surface 13, the fine holes are desired. It is smaller than the shape or prevents the fine holes from disappearing. When the shrinkage rate is applied, the microholes are slightly reduced by the shrinkage rate, but the microholes do not disappear. This is important.

また、製品への応用例として、パルプモールドの抄造型を3次元CADで設計製造する場合も前記と同様である。3次元CAD上で直線的な微細穴を有し、さらに微細穴の軸同士を全て平行な場合を対象にする(図1の(A))。そして、3次元CADデータをスライスし、等高線データに変換(図1の(B))する際、積層面に対し微細穴の軸が平行になるように3次元CADデータを回転変換し配置する(図1の(B))ようにする。   Further, as an example of application to a product, the same applies to the case where a pulp mold papermaking mold is designed and manufactured by three-dimensional CAD. The case where there is a linear microhole on a three-dimensional CAD and the axes of the microholes are all parallel to each other is targeted ((A) of FIG. 1). When the three-dimensional CAD data is sliced and converted into contour line data ((B) in FIG. 1), the three-dimensional CAD data is rotationally converted and arranged so that the axis of the fine hole is parallel to the laminated surface ( As shown in FIG.

また他の製品への応用として、通気口メッシュ部品、流路フィルタ、照明用ルーバなどに使用する微細穴を有する造形品を生成する場合にも、本発明を適用することによって品質がよい成形品を得ることができる。また、前記微細穴造形品はパルプモールドの抄造形型である。   In addition, as an application to other products, a molded product with good quality can be obtained by applying the present invention even when generating a shaped product having fine holes used for vent mesh parts, flow path filters, lighting louvers, etc. Can be obtained. Moreover, the said fine hole molded article is a papermaking type | mold of a pulp mold.

本発明によれば、ラピッドプロタイピングの微細穴の造形を行う際、3次元CADデータをスライス面に対して微細穴の軸が平行なデータに変換し、硬化したい領域の上下面をスライスデータ分割面と一致させた上で造形をおこなうことによって、目標とする断面積をもつ微細穴を有する造形品を容易に得ることができる。   According to the present invention, when modeling a fine hole for rapid prototyping, the three-dimensional CAD data is converted into data in which the axis of the fine hole is parallel to the slice surface, and the upper and lower surfaces of the region to be hardened are divided into slice data. By performing modeling after matching with the surface, it is possible to easily obtain a modeled product having a fine hole having a target cross-sectional area.

本発明の理解を得るための説明図である。It is explanatory drawing for obtaining an understanding of this invention. 本発明と従来例とを比較して示した説明図である。It is explanatory drawing which compared and showed this invention and the prior art example. 微細穴が小さく出来たり、消滅してしま原因の説明図である。It is explanatory drawing of the cause which a microhole can be made small or disappears. 3次元CADによる積層造形のデータ変換を説明する図である。It is a figure explaining the data conversion of the layered modeling by three-dimensional CAD. ラピッドプロトタイピングによる造形方法の説明図である。It is explanatory drawing of the modeling method by rapid prototyping.

符号の説明Explanation of symbols

1…微細孔、
41〜44…微細穴、
3…造形粉末素材。
1 ... micropores,
41-44 ... fine holes,
3 ... Modeling powder material.

Claims (6)

粉末状の造形素材を敷き、
敷き詰められた造形素材には、固めたい個所に光ビームを含む粒子線を造形素材の敷き厚さ方向に照射して熱硬化させ、
その上に積み重ねるように造形素材を前回と同じ厚さに敷き、かつその積層された造形素材に粒子線を同様に照射して熱硬化させ、
この造形素材の積層および粒子線の照射を繰り返して造形品を形成する過程で造形品に貫通する微細穴をも一緒に形成するラビッドプロトタイピング造形方法において、
前記微細穴の丈は、各積層の厚さ分の倍数の高さを有し、かつ微細穴の上下面が各積層間の境界面に来ることを特徴とするラビッドプロトタイピング造形方法。
Spread the powdered molding material,
For the molding material that has been laid down, the particle beam containing the light beam is irradiated in the thickness direction of the molding material to harden the part that you want to harden,
Lay the modeling material to the same thickness as the previous time so that it is stacked on it, and the laminated modeling material is irradiated with particle beams in the same way and thermally cured,
In the rapid prototyping modeling method of forming micro holes penetrating into the modeled product in the process of forming the modeled product by repeating the lamination of this modeling material and irradiation of particle beam,
The height of the fine hole has a height that is a multiple of the thickness of each laminate, and the top and bottom surfaces of the fine hole come to the boundary surface between the laminates.
請求項1記載のラビッドプロトタイピング造形方法を用いて作られる造形物おいて、
前記微細穴の上下面は境界面に沿って延在することを特徴とする造形物。
In the modeling thing made using the rapid prototyping modeling method according to claim 1,
A modeled object in which the upper and lower surfaces of the fine hole extend along a boundary surface.
請求項1記載のラビッドプロトタイピング造形方法を用いて作られる造形物おいて、
前記微細穴は、大きさが1mm2以下で、かつ網目状に配置されていることを特徴とする造形物。
In the modeling thing made using the rapid prototyping modeling method according to claim 1,
The fine hole has a size of 1 mm 2 or less and is arranged in a mesh shape.
請求項1記載のラビッドプロトタイピング造形方法において、
前記造形品の形状を3次元CADで作成し、
前記3次元CADのデータより、前記境界面に沿ってスライスする等高線データを作成し、
前記等高線データをもとに前記粒子線の照射軌跡を描くことを特徴とするラビッドプロトタイピング造形方法。
The rapid prototyping modeling method according to claim 1,
Create the shape of the shaped product with 3D CAD,
Contour data that slices along the boundary surface is created from the data of the three-dimensional CAD,
A rapid prototyping modeling method, wherein an irradiation locus of the particle beam is drawn based on the contour line data.
請求項4記載のラビッドプロトタイピング造形方法において、
前記3次元CADのデータに造形に伴う造形の収縮率をかけてから前記微細穴を加えたデータを作成し、
この微細穴を加味したデータをもとに前記等高線データを作成することを特徴とするラビッドプロトタイピング造形方法。
The rapid prototyping modeling method according to claim 4,
Create data by adding the fine holes after applying the shrinkage of modeling with modeling to the data of the three-dimensional CAD,
A rapid prototyping modeling method, characterized in that the contour line data is created based on data including the fine holes.
請求項5記載のラビッドプロトタイピング造形方法を用いて作られる造形物おいて、
前記造形品はパルプモールドの抄造形型であることを特徴とするラピッドプロトタイピング微細穴の高精度造形品。
In the modeling thing made using the rapid prototyping modeling method according to claim 5,
A rapid prototyping fine hole shaped high-precision shaped product characterized in that the shaped product is a papermaking model of a pulp mold.
JP2003310994A 2003-09-03 2003-09-03 Rapid prototyping modeling method and model Pending JP2005074931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310994A JP2005074931A (en) 2003-09-03 2003-09-03 Rapid prototyping modeling method and model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310994A JP2005074931A (en) 2003-09-03 2003-09-03 Rapid prototyping modeling method and model

Publications (1)

Publication Number Publication Date
JP2005074931A true JP2005074931A (en) 2005-03-24

Family

ID=34412673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310994A Pending JP2005074931A (en) 2003-09-03 2003-09-03 Rapid prototyping modeling method and model

Country Status (1)

Country Link
JP (1) JP2005074931A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027438A (en) * 2006-07-19 2008-02-07 Envisiontec Gmbh Method and device for producing three-dimensional object, and computer and data carrier useful thereof
CN100402196C (en) * 2005-12-21 2008-07-16 北京工业大学 Metal powder laser micro-molding gas protection device
WO2016194472A1 (en) * 2015-06-03 2016-12-08 ソニー株式会社 Solid shape information generation system, solid shape forming apparatus, solid shape information generation method, and program
CN109277566A (en) * 2017-07-21 2019-01-29 Cl产权管理有限公司 Equipment for additively manufacturing 3D objects
CN118504425A (en) * 2024-07-17 2024-08-16 南通理工学院 Fiber path real-time optimization method in additive manufacturing of metal-based fiber composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402196C (en) * 2005-12-21 2008-07-16 北京工业大学 Metal powder laser micro-molding gas protection device
JP2008027438A (en) * 2006-07-19 2008-02-07 Envisiontec Gmbh Method and device for producing three-dimensional object, and computer and data carrier useful thereof
WO2016194472A1 (en) * 2015-06-03 2016-12-08 ソニー株式会社 Solid shape information generation system, solid shape forming apparatus, solid shape information generation method, and program
CN107614248A (en) * 2015-06-03 2018-01-19 索尼公司 Three-dimensional shape information generating system, three-dimensional shape form equipment, three-dimensional shape information generating method and program
JPWO2016194472A1 (en) * 2015-06-03 2018-03-22 ソニー株式会社 3D shape information generation system, 3D shape forming apparatus, 3D shape information generation method, and program
CN107614248B (en) * 2015-06-03 2020-04-28 索尼公司 Stereoscopic shape information generation system, apparatus, method, and storage medium
US10915091B2 (en) 2015-06-03 2021-02-09 Sony Corporation Three-dimensional shape information generating system, three-dimensional shape forming apparatus, three-dimensional shape information generating method, and program
CN109277566A (en) * 2017-07-21 2019-01-29 Cl产权管理有限公司 Equipment for additively manufacturing 3D objects
US11065813B2 (en) 2017-07-21 2021-07-20 Concept Laser Gmbh Apparatus for additively manufacturing three-dimensional objects
US11731360B2 (en) 2017-07-21 2023-08-22 Concept Laser Gmbh Apparatus for additively manufacturing three-dimensional objects
CN118504425A (en) * 2024-07-17 2024-08-16 南通理工学院 Fiber path real-time optimization method in additive manufacturing of metal-based fiber composite material

Similar Documents

Publication Publication Date Title
TWI606915B (en) 3D printing device with reciprocating spray forming mechanism
US6627030B2 (en) Variable lamination manufacturing (VLM) process and apparatus
US20050015173A1 (en) Rapid prototyping method and device using v-cad data
JP2004284346A (en) Method for producing molded article by using powder stereolithographic process or sintering process
JP7062726B2 (en) How to operate a device that additionally manufactures a three-dimensional object
JP2010228332A (en) Manufacturing method of shaped objects
JP6643631B2 (en) Manufacturing method of three-dimensional shaped object
JP6597084B2 (en) Nozzle and additive manufacturing apparatus, nozzle operation method and additive manufacturing method
JP2017160485A5 (en)
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
US12325208B2 (en) Corrugated three dimensional (3D) additive manufacturing
Zhao et al. Research on curved layer fused deposition modeling with a variable extruded filament
WO2019088064A1 (en) Method for producing metal member
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
JP2019127029A (en) Method for additionally producing at least one three-dimentional object
Bernard et al. Evolutions of rapid product development with rapid manufacturing: concepts and applications
GB2520576A (en) Method for manufacturing control valve components
JP2005074931A (en) Rapid prototyping modeling method and model
JP6659660B2 (en) Additional three-dimensional object manufacturing method and apparatus
JP4337216B2 (en) Modeling method by stereolithography and stereolithography by stereolithography
WO2017150289A1 (en) Resin-bonded product and manufacturing method therefor
JP2010052318A (en) Light shaping method
TWI585558B (en) Three dimensional printing method
JP3772762B2 (en) Rapid prototyping method
KR102147808B1 (en) Manufacturing method for plate type specimens for physical properties evaluation using powder bed fusion