[go: up one dir, main page]

JP2005074262A - Heat-resistant prefilter and its production method - Google Patents

Heat-resistant prefilter and its production method Download PDF

Info

Publication number
JP2005074262A
JP2005074262A JP2003305558A JP2003305558A JP2005074262A JP 2005074262 A JP2005074262 A JP 2005074262A JP 2003305558 A JP2003305558 A JP 2003305558A JP 2003305558 A JP2003305558 A JP 2003305558A JP 2005074262 A JP2005074262 A JP 2005074262A
Authority
JP
Japan
Prior art keywords
heat
glass
long
inorganic binder
prefilter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003305558A
Other languages
Japanese (ja)
Other versions
JP4550387B2 (en
Inventor
Hiroshi Kanbayashi
洋 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2003305558A priority Critical patent/JP4550387B2/en
Publication of JP2005074262A publication Critical patent/JP2005074262A/en
Application granted granted Critical
Publication of JP4550387B2 publication Critical patent/JP4550387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant prefilter which exhibits excellent heat resistance without degrading the heat resistance of glass fiber itself, does not increase pressure loss, can extend the life of a filter, and has been improved in dust collection efficiency and dust holding capacity; and its production method. <P>SOLUTION: The heat-resistant prefilter has an inorganic binder attached to the whole of the prefilter in the three-dimensional directions so as to bond at least the intersections between glass filaments constituting the prefilter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、製薬・製紙・フィルム・食品等の一般工場の生産設備用、半導体・通信機器等の精密工場の空調用、工場における塗装用ブース用、半導体及び医療関連分野等における高温乾燥器等に使用される耐熱HEPAフィルタに用いる耐熱プレフィルタ、その他高温乾燥器等に使用される循環清浄用フィルタ等に用いる耐熱プレフィルタおよびこれらの耐熱プレフィルタの製造方法に関する。   The present invention is, for example, for production facilities in general factories such as pharmaceuticals, papermaking, films, foods, etc., for air conditioning in precision factories such as semiconductors and communication equipment, for coating booths in factories, high temperature drying in semiconductor and medical related fields, etc. The present invention relates to a heat-resistant prefilter used for a heat-resistant HEPA filter used in a vessel and the like, a heat-resistant prefilter used for a circulation cleaning filter used in a high-temperature dryer, and the like, and a method for producing these heat-resistant prefilters.

従来、耐熱HEPAフィルタ等の耐熱プレフィルタとして、紡糸された繊維径30〜100μm程度のガラス長繊維をドラムに巻き取り、巻き取った繊維層を展開してガラス長繊維が縦横に重畳した多孔質構造体であるガラスマット(日本無機(株)製CKR)が用いられている。このガラスマットは、バインダを付着しないものであれば、ガラス長繊維自体が耐熱性を有するため、450℃以上の高温においても耐熱性を有する耐熱プレフィルタとして使用することが可能である。また、前記耐熱プレフィルタの他に、耐熱性を有するフィルタとして、アルミナ繊維等の耐熱・耐アルカリ性の無機質連続繊維を曲線状に積層して堆積させた堆積物に、有機質バインダと無機質バインダとを混合した分散液をスプレー等によって吹き付けて乾燥し、前記堆積物の繊維同士の交点部分を接合した後、600℃で加熱処理して有機バインダを消失させた3次元的に連通した空隙を有するフィルタが知られている(特許文献1)。
特開平6−154530号公報
Conventionally, as a heat-resistant prefilter such as a heat-resistant HEPA filter, a porous glass fiber having a fiber diameter of about 30 to 100 μm is wound around a drum, the wound fiber layer is developed, and the glass fiber is superimposed vertically and horizontally. A glass mat (CKR manufactured by Nippon Inorganic Co., Ltd.), which is a structure, is used. If this glass mat does not adhere a binder, the long glass fiber itself has heat resistance, so that it can be used as a heat resistant prefilter having heat resistance even at a high temperature of 450 ° C. or higher. In addition to the heat-resistant prefilter, as a heat-resistant filter, an organic binder and an inorganic binder are added to a deposit obtained by laminating and stacking heat-resistant and alkali-resistant inorganic continuous fibers such as alumina fibers in a curved shape. A filter having a three-dimensionally communicated void in which the mixed dispersion is sprayed and dried to join the intersections of the fibers of the deposit and then heat-treated at 600 ° C. to eliminate the organic binder. Is known (Patent Document 1).
JP-A-6-154530

しかしながら、バインダを付着していない前記ガラスマットを用いた耐熱性プレフィルタは、耐熱性が450℃以上と優れるものの、バインダを付着していないため、ガラスマットを構成しているガラス長繊維が折れやすく、繊維が飛散しやすいため、取り扱い作業環境が劣悪になると共に、飛散したガラス繊維が塵埃として悪影響を及ぼす可能性もあるという不都合があった。
また、特許文献1のように、アルミナ繊維等の無機質連続繊維を積層して堆積物を形成し、前記堆積物を形成した後からバインダを吹き付けて前記堆積物を構成する繊維同士の交点を接合したフィルタの場合、前記堆積物に偏ってバインダが付着するという不都合があった。すなわち、前記堆積物にバインダを吹き付けた場合、通常、前記堆積物のバインダを吹き付けた面若しくは面近傍にのみ偏ってバインダが付着されることが推定される。このため前記堆積物のバインダを吹き付けた面には、前記繊維同士の交点のみならず、前記繊維同士が絡み合って形成された空隙にもバインダが付着されて、前記空隙の一部が塞がれるため、フィルタの圧力損失が上昇し、フィルタ寿命が短くなるという不都合が推定される。また、前記堆積物の面若しくは面近傍にバインダが偏って付着されるため、風圧等によってフィルタが厚さ方向に変形し、繊維同士が絡み合って形成された空隙が潰されて、圧力損失が上昇してフィルタ寿命が短くなり、粉塵捕集効率、粉塵保持容量が低下することが推定される。
また、前記堆積物にバインダを吹き付けた後の前記堆積物の設置状態及び設置時間によっても、前記堆積物に吹き付けられた液状のバインダが重力等の影響によってマイグレーションを起こし、前記堆積物に偏ってバインダが付着するという不都合も推定され、結果として、前述のような、圧力損失の上昇によるフィルタの短寿命化、粉塵捕集効率及び粉塵保持容量の低下等の不都合を生じることが推定される。
そこで、本発明は、前記叙述の不都合な点を解消し、ガラス繊維自体の耐熱性を阻害することなく、優れた耐熱性を有し、しかも、圧力損失の上昇がなく、フィルタを長寿命化することができ、粉塵捕集効率、粉塵保持容量を向上した耐熱性プレフィルタおよびその製造方法を提供することを課題とする。
However, although the heat resistant prefilter using the glass mat without the binder is excellent in heat resistance of 450 ° C. or more, the glass long fiber constituting the glass mat is broken because the binder is not adhered. Since the fibers are easy to be scattered, the handling work environment is deteriorated, and the scattered glass fibers may be adversely affected as dust.
Moreover, like patent document 1, after laminating | stacking inorganic continuous fibers, such as an alumina fiber, a deposit is formed, after forming the said deposit, a binder is sprayed and the intersection of the fibers which comprise the said deposit is joined. In the case of the above filter, there is a disadvantage that the binder adheres to the deposit. That is, when a binder is sprayed on the deposit, it is usually estimated that the binder is attached only to the surface of the deposit on which the binder is sprayed or in the vicinity of the surface. For this reason, on the surface of the deposit on which the binder is sprayed, the binder is attached not only at the intersection of the fibers but also in the gap formed by the entanglement of the fibers, and part of the gap is blocked. Therefore, it is estimated that the pressure loss of the filter increases and the filter life is shortened. Further, since the binder is biased and attached to the surface of the deposit or in the vicinity of the surface, the filter is deformed in the thickness direction by wind pressure or the like, and the gap formed by the entanglement of fibers is crushed and the pressure loss increases. Thus, it is estimated that the filter life is shortened and the dust collection efficiency and the dust holding capacity are reduced.
Further, depending on the installation state and installation time of the deposit after the binder is sprayed on the deposit, the liquid binder sprayed on the deposit causes migration due to the influence of gravity or the like, and the deposit is biased toward the deposit. The inconvenience that the binder adheres is also estimated, and as a result, the inconveniences such as the shortening of the filter life due to the increase of the pressure loss, the reduction of the dust collection efficiency and the dust holding capacity as described above are estimated.
Therefore, the present invention eliminates the disadvantages described above, has excellent heat resistance without impairing the heat resistance of the glass fiber itself, and does not increase pressure loss, extending the life of the filter. It is an object of the present invention to provide a heat-resistant prefilter that can improve the dust collection efficiency and dust holding capacity and a method for manufacturing the same.

本発明の耐熱プレフィルタは、前記課題を達成すべく、請求項1記載の通り、耐熱プレフィルタを構成するガラス長繊維同士の少なくとも交点を接合するように、前記耐熱プレフィルタの3次元方向全体に亘り無機バインダを付着したことを特徴とする。
また、請求項2記載の耐熱プレフィルタは、前記請求項1記載の耐熱プレフィルタにおいて、前記ガラス長繊維同士の交点のみを接合するように前記無機バインダを前記交点に付着したことを特徴とする。
また、請求項3記載の耐熱プレフィルタは、前記請求項1記載の耐熱プレフィルタにおいて、前記ガラス長繊維同士の交点を接合するように前記無機バインダを前記交点に付着し、前記ガラス長繊維の交点以外の部分は膜状に前記無機バインダを付着したことを特徴とする。
また、請求項4記載の耐熱プレフィルタは、前記請求項2記載の耐熱プレフィルタにおいて、前記無機バインダは、前記ガラス長繊維よりも耐熱性が低いことを特徴とする。
また、請求項5記載の耐熱プレフィルタは、前記請求項3記載の耐熱プレフィルタにおいて、前記無機バインダは、前記ガラス長繊維よりも耐熱性が高いことを特徴とする。
また、請求項6記載の耐熱プレフィルタは、前記請求項1乃至5のいずれかに記載の耐熱プレフィルタにおいて、前記無機バインダの付着量は、0.5〜50質量%であることを特徴とする。
本発明の耐熱プレフィルタの製造方法は、前記課題を達成すべく、請求項7に記載の通り、溶融ガラスをノズルから引き出してガラス長繊維を紡糸する紡糸時に、前記ノズルから引き出されて紡糸されたガラス長繊維に無機バインダを噴霧して付着し、前記無機バインダが付着されているガラス長繊維を前記ガラス長繊維同士が交点を形成するように積層したことを特徴とする。
本発明の耐熱プレフィルタは、前記課題を達成すべく、請求項8に記載の通り、前記請求項7に記載の製造方法により得られたことを特徴とする。
In order to achieve the above object, the heat-resistant prefilter of the present invention is, as described in claim 1, the entire three-dimensional direction of the heat-resistant prefilter so as to join at least the intersections of the long glass fibers constituting the heat-resistant prefilter. It is characterized in that an inorganic binder is adhered over the entire area.
The heat-resistant prefilter according to claim 2 is characterized in that, in the heat-resistant prefilter according to claim 1, the inorganic binder is attached to the intersection so as to join only the intersection of the long glass fibers. .
Moreover, the heat-resistant prefilter according to claim 3 is the heat-resistant prefilter according to claim 1, wherein the inorganic binder is attached to the intersection so as to join the intersections of the long glass fibers. The portions other than the intersections are characterized in that the inorganic binder is attached in the form of a film.
The heat-resistant prefilter according to claim 4 is characterized in that in the heat-resistant prefilter according to claim 2, the inorganic binder has lower heat resistance than the long glass fiber.
The heat-resistant prefilter according to claim 5 is characterized in that in the heat-resistant prefilter according to claim 3, the inorganic binder has higher heat resistance than the long glass fiber.
The heat-resistant prefilter according to claim 6 is characterized in that, in the heat-resistant prefilter according to any one of claims 1 to 5, the adhesion amount of the inorganic binder is 0.5 to 50% by mass. To do.
In order to achieve the above object, the method for producing a heat-resistant prefilter according to the present invention is drawn and spun from the nozzle during spinning in which the molten glass is drawn from the nozzle and the long glass fiber is spun. The glass long fibers are adhered by spraying an inorganic binder, and the glass long fibers to which the inorganic binder is adhered are laminated so that the glass long fibers form an intersection.
The heat-resistant prefilter of the present invention is obtained by the manufacturing method according to claim 7 as described in claim 8 in order to achieve the above object.

本発明の耐熱プレフィルタは、前記耐熱プレフィルタの3次元方向全体に亘り、無機バインダが付着され、ガラス長繊維同士の交点に前記無機バインダが付着されて、これらの交点が確実に接合されるため、従来の無機バインダで付着していないガラスマットのように前記耐熱プレフィルタを構成するガラス長繊維が折れて飛散することがなく、耐久性を高めることができる。また、前記耐熱プレフィルタの面方向の形態のみならず、厚さ方向の形態も安定に保持することができ、圧力損失の上昇を防止して、フィルタを長寿命化することができる。このように、前記耐熱プレフィルタの形態が安定に保持されているとガラス長繊維が絡み合って形成された空隙が潰されないため、前記空隙に粉塵を確実に捕集及び保持して、捕集効率を向上することができ、粉塵保持容量を増大することができる。
また、前記耐熱プレフィルタを構成するガラス長繊維同士の交点を接合するように無機バインダを付着すると共に、前記ガラス長繊維の交点以外の部分には、無機バインダを膜状に付着すると、前記ガラス長繊維同士の絡み合いによって生じた空隙の一部が無機バインダによって塞がれることがないため、前記耐熱プレフィルタの圧力損失が上昇しない。
前記無機バインダの耐熱性が、前記ガラス長繊維よりも低い場合は、前記耐熱プレフィルタを構成するガラス長繊維同士の交点のみに集中して前記無機バインダを付着することにより、前記ガラス長繊維が有する耐熱性をできる限り阻害しない、ガラス長繊維と同程度の耐熱性を保持することができる。
また、前記無機バインダの耐熱性が、前記ガラス長繊維よりも高い場合は、前記前記耐熱プレフィルタを構成するガラス長繊維同士の交点に前記無機バインダを付着するとともに、前記ガラス長繊維の交点以外の部分には前記無機バインダを膜状に付着することにより、前記ガラス長繊維の耐熱性に加え、無機バインダの耐熱性も付与されるため、さらに、前記耐熱プレフィルタの耐熱性が向上する。
前記耐熱プレフィルタを構成するガラス長繊維同士の少なくとも交点を、前記耐熱プレフィルタの3次元方向全体に亘り無機バインダで付着する方法としては、溶融ガラスをノズルから引き出してガラス長繊維を紡糸する紡糸時に、ノズルか引き出されて紡糸されているガラス長繊維にバインダを噴霧して付着し、該バインダが付着されているガラス長繊維同士が交点を形成するように積層すればよい。
In the heat-resistant prefilter of the present invention, an inorganic binder is attached over the entire three-dimensional direction of the heat-resistant prefilter, and the inorganic binder is attached to the intersections of the long glass fibers, and these intersections are reliably bonded. Therefore, the long glass fibers constituting the heat-resistant prefilter are not broken and scattered like a glass mat not attached with a conventional inorganic binder, and durability can be improved. Further, not only the shape in the surface direction of the heat-resistant prefilter but also the shape in the thickness direction can be stably maintained, the increase in pressure loss can be prevented, and the life of the filter can be extended. As described above, when the form of the heat-resistant prefilter is stably held, the gap formed by the intertwining of the glass long fibers is not crushed, so that dust is reliably collected and held in the gap, thereby collecting efficiency. And the dust holding capacity can be increased.
In addition, an inorganic binder is attached so as to join the intersections of the long glass fibers constituting the heat-resistant prefilter, and when the inorganic binder is attached in a film shape to portions other than the intersections of the long glass fibers, the glass Since some of the voids generated by the entanglement of the long fibers are not blocked by the inorganic binder, the pressure loss of the heat resistant prefilter does not increase.
When the heat resistance of the inorganic binder is lower than that of the glass long fiber, the glass long fiber is adhered to the inorganic binder by concentrating only on the intersection of the glass long fibers constituting the heat resistant prefilter. The same heat resistance as that of the long glass fiber, which does not hinder the heat resistance as much as possible, can be maintained.
In addition, when the heat resistance of the inorganic binder is higher than that of the long glass fiber, the inorganic binder is attached to the intersection of the long glass fibers constituting the heat resistant prefilter, and other than the intersection of the long glass fibers. In addition to the heat resistance of the long glass fibers, the heat resistance of the inorganic binder is also imparted to the portion by attaching the inorganic binder in a film shape, so that the heat resistance of the heat resistant prefilter is further improved.
As a method of adhering at least the intersections of the long glass fibers constituting the heat resistant prefilter with an inorganic binder over the entire three-dimensional direction of the heat resistant prefilter, spinning the glass long fiber by drawing molten glass from the nozzle Sometimes, the glass long fibers drawn out from the nozzle and spun may be adhered by spraying the binder, and the glass long fibers to which the binder is adhered may be laminated so as to form an intersection.

本発明の耐熱性プレフィルタは、前記耐熱プレフィルタの3次元方向全体に亘り、無機バインダが付着され、ガラス長繊維同士の交点に前記無機バインダが付着されて、これらの交点が確実に接合されるため、前記ガラス長繊維が折れにくく、ガラス長繊維の飛散を防止し、前記耐熱プレフィルタの耐久性を向上することができる。また、前記耐熱プレフィルタの面方向の形態のみならず、厚さ方向の形態も安定に保持することができ、前記ガラス長繊維が絡み合うことによって生じた空隙が安定に保持されるため、圧力損失の上昇を防止して、フィルタを長寿命化することができる。また、前記空隙に粉塵を確実に捕集及び保持することができ、捕集効率が向上し、粉塵保持容量が増大する。
前記耐熱プレフィルタを構成するガラス長繊維は、所定の孔径を有するノズルから溶融ガラスを引き出して形成する人工繊維であるため、平均繊維径が均一なものを用いることができ、天然繊維を使用した場合と比較して、品質的に安定した耐熱プレフィルタを製造することができる。なお、耐熱プレフィルタに用いる人工繊維としては、ガラス長繊維のみならず、セラミック長繊維等を用いることも可能であるが、作業性やコスト等を勘案すると、ガラス長繊維を用いることが好ましい。
前記ガラス繊維の平均繊維径は、1〜50μmが好ましく、平均繊維径が20〜40μmのものがより好ましい。なお、平均繊維径とは、単繊維直径であり、JIS R3420により規定されるものをいう。
In the heat-resistant prefilter of the present invention, an inorganic binder is attached over the entire three-dimensional direction of the heat-resistant prefilter, and the inorganic binder is attached to the intersections of the long glass fibers, and these intersections are securely joined. For this reason, the long glass fiber is not easily broken, the scattering of the long glass fiber can be prevented, and the durability of the heat resistant prefilter can be improved. Further, not only the shape in the surface direction of the heat-resistant prefilter, but also the shape in the thickness direction can be stably maintained, and the gap generated by the entanglement of the long glass fibers is stably maintained, so that the pressure loss As a result, the life of the filter can be extended. Moreover, dust can be reliably collected and held in the gap, and the collection efficiency is improved and the dust holding capacity is increased.
Since the long glass fiber constituting the heat-resistant prefilter is an artificial fiber formed by drawing molten glass from a nozzle having a predetermined hole diameter, a fiber having a uniform average fiber diameter can be used, and natural fibers are used. Compared to the case, a heat-resistant prefilter that is stable in quality can be manufactured. In addition, as an artificial fiber used for a heat-resistant prefilter, it is possible to use not only a glass long fiber but also a ceramic long fiber or the like, but it is preferable to use a glass long fiber in consideration of workability and cost.
The glass fiber has an average fiber diameter of preferably 1 to 50 μm, more preferably an average fiber diameter of 20 to 40 μm. The average fiber diameter is a single fiber diameter and is defined by JIS R3420.

また、前記ガラス長繊維同士の交点以外は、前記ガラス長繊維に膜状に無機バインダが付着されていることが好ましい。
このように、耐熱プレフィルタを構成するガラス長繊維の交点以外の部分に膜状に無機バインダが付着されていると、ガラス長繊維が絡み合って形成された空隙の一部が無機バインダで塞がれないため、圧力損失の上昇を防止することができ、フィルタ寿命を長くすることができる。
Moreover, it is preferable that an inorganic binder is attached to the glass long fiber in a film form except for the intersection of the glass long fibers.
As described above, when the inorganic binder is attached to the portion other than the intersection of the long glass fibers constituting the heat resistant prefilter, a part of the void formed by the entanglement of the long glass fibers is blocked with the inorganic binder. Therefore, an increase in pressure loss can be prevented, and the filter life can be extended.

前記無機バインダが、前記ガラス長繊維よりも耐熱性の低いものの場合は、前記耐熱プレフィルタを構成するガラス長繊維同士の交点のみが前記無機バインダで付着されていることが好ましい。このように、前記耐熱プレフィルタの3次元方向全体に亘りガラス長繊維同士の交点のみを、前記ガラス長繊維よりも耐熱性の低い無機バインダで接合することにより、前記ガラス長繊維が有する耐熱性をできる限り阻害しない、ガラス長繊維と同程度の耐熱性を保持することができる。
前記ガラス長繊維よりも耐熱性の低い無機バインダとしては、はんだガラスを含む封着用ガラスを使用することが可能である。
When the inorganic binder is lower in heat resistance than the long glass fibers, it is preferable that only the intersections of the long glass fibers constituting the heat resistant prefilter are attached by the inorganic binder. Thus, only the intersection of the long glass fibers over the entire three-dimensional direction of the heat resistant pre-filter is bonded with an inorganic binder having a lower heat resistance than the long glass fibers, whereby the long glass fibers have heat resistance. It is possible to maintain the same degree of heat resistance as that of the long glass fiber, which does not inhibit as much as possible.
As the inorganic binder having lower heat resistance than the long glass fiber, sealing glass containing solder glass can be used.

また、前記無機バインダが、前記ガラス長繊維よりも耐熱性の高いものの場合は、前記耐熱プレフィルタを構成するガラス長繊維同士の交点が前記無機バインダで付着されているとともに、前記ガラス長繊維の前記交点以外の部分には、膜状に前記無機バインダが付着されていることが好ましい。このように、前記耐熱プレフィルタのガラス長繊維同士の交点に無機バインダが付着され、さらに前記ガラス長繊維の前記交点以外の部分に膜状に無機バインダが付着されていると、前記ガラス長繊維自体の耐熱性に加えて、さらに無機バインダの耐熱性をも付与され、高い耐熱性を有する耐熱性プレフィルタを提供することができる。
前記ガラス長繊維よりも耐熱性の高い無機バインダとしては、シリカ、アルミナ等のセラミックパウダーを使用することが可能である。
Further, when the inorganic binder is higher in heat resistance than the long glass fiber, the cross points of the long glass fibers constituting the heat resistant prefilter are attached by the inorganic binder, and the long glass fiber It is preferable that the inorganic binder is attached in a film shape to a portion other than the intersection. Thus, when the inorganic binder is attached to the intersection of the glass long fibers of the heat-resistant prefilter, and when the inorganic binder is attached to the portion other than the intersection of the glass long fiber, the glass long fiber In addition to the heat resistance of itself, the heat resistance of the inorganic binder is further imparted, and a heat-resistant prefilter having high heat resistance can be provided.
As the inorganic binder having higher heat resistance than the long glass fiber, ceramic powder such as silica and alumina can be used.

前記無機バインダの付着量は、0.5〜50質量%であることが好ましい。耐熱プレフィルタ中の無機バインダの付着量が50質量%を超えると、前記耐熱プレフィルタを構成するガラス長繊維同士の交点や前記ガラス長繊維の表面のみならず、ガラス長繊維同士が絡み合って形成された空隙にも無機バインダが保持されて、前記空隙の一部が塞がれ、圧力損失が上昇するとともに、前記耐熱プレフィルタの柔軟性が損なわれるからである。また、無機バインダの付着量が0.5質量%未満であると、前記耐熱プレフィルタを構成するガラス長繊維同士の交点のうち、前記耐熱プレフィルタの3次元方向の一部しか無機バインダが付着せず、前記耐熱プレフィルタが厚さ方向に変形し、ガラス長繊維の絡み合いによって形成された空隙が潰されて、圧力損失が上昇し、捕集効率及び粉塵保持容量が低くなるという不都合があるからである。
前記無機バインダの耐熱性が前記ガラス長繊維よりも低いものの場合は、前記無機バインダの付着量が0.5〜20質量%であることが好ましい。前記ガラス長繊維よりも耐熱性の低い無機バインダの付着量が20質量%を超えると、無機バインダの付着量が多くなって、前記耐熱プレフィルタの耐熱性が低下するからである。
前記無機バインダの耐熱性が前記ガラス長繊維よりも高いものの場合は、前記無機バインダの付着量が20〜50質量%であることが好ましい。前記ガラス長繊維よりも耐熱性の高い無機バインダの付着量が20質量%未満であると、前記耐熱プレフィルタを構成するガラス長繊維の交点以外の部分に膜状に無機バインダが付着せず、前記耐熱プレフィルタの耐熱性を向上することができないからである。
The adhesion amount of the inorganic binder is preferably 0.5 to 50% by mass. When the adhesion amount of the inorganic binder in the heat resistant prefilter exceeds 50% by mass, not only the intersection of the glass long fibers constituting the heat resistant prefilter and the surface of the glass long fibers but also the long glass fibers are entangled with each other. This is because the inorganic binder is also held in the formed gap, part of the gap is blocked, the pressure loss increases, and the flexibility of the heat-resistant prefilter is impaired. Further, when the adhesion amount of the inorganic binder is less than 0.5% by mass, the inorganic binder is attached to only a part of the three-dimensional direction of the heat resistant prefilter among the intersection points of the glass long fibers constituting the heat resistant prefilter. The heat-resistant prefilter does not wear and deforms in the thickness direction, the gap formed by the entanglement of the long glass fibers is crushed, the pressure loss increases, and the collection efficiency and the dust holding capacity are lowered. Because.
In the case where the heat resistance of the inorganic binder is lower than that of the long glass fiber, the adhesion amount of the inorganic binder is preferably 0.5 to 20% by mass. This is because if the amount of the inorganic binder having a heat resistance lower than that of the long glass fiber exceeds 20% by mass, the amount of the inorganic binder increases and the heat resistance of the heat-resistant prefilter decreases.
In the case where the heat resistance of the inorganic binder is higher than that of the long glass fiber, the adhesion amount of the inorganic binder is preferably 20 to 50% by mass. When the adhesion amount of the inorganic binder having a higher heat resistance than the long glass fiber is less than 20% by mass, the inorganic binder does not adhere to the film other than the intersection of the long glass fiber constituting the heat resistant prefilter, This is because the heat resistance of the heat resistant prefilter cannot be improved.

次に、耐熱プレフィルタを構成するガラス長繊維同士の少なくとも交点に、前記耐熱プレフィルタの3次元方向全体に亘って、無機バインダを付着させた耐熱プレフィルタの製造方法について説明する。なお、本発明の耐熱プレフィルタは、以下の製造方法によって製造されたものに限定されるものではない。
先ず、ノズルを多数有するポットで作られた溶融ガラスを前記ノズルから引き出してガラス長繊維を紡糸し、このガラス長繊維紡糸時に、ノズルから引き出したガラス長繊維全体に無機バインダを吹き付けて付着させ、前記無機バインダを付着させたガラス長繊維が綾角を有した交点を形成するように積層させてドラムに巻き取る。次いで、積層されたガラス長繊維をドラムから切り出し、ドラムに巻き付けたガラス長繊維を円周方向に対して垂直方向に引っ張り、積層したガラス長繊維同士を伸張することで、繊維がほぐれ、ガラス長繊維がカール状に積層したガラス長繊維が絡み合って空隙が形成された多孔質構造体が形成され、この多孔質構造体を耐熱プレフィルタとする。
本発明の耐熱プレフィルタの製造方法によれば、ガラス長繊維紡糸時に、無機バインダをガラス長繊維に吹き付けて、紡糸されたガラス長繊維全体に無機バインダを付着しているため、このガラス長繊維同士が交点を形成するように積層すると、必ずガラス長繊維同士の交点には、無機バインダが付着されていることになり、耐熱プレフィルタの3次元方向全体に亘って、前記耐熱プレフィルタを構成する前記ガラス長繊維同士の交点は、前記無機バインダで確実に接合されることになる。
また、前記耐熱プレフィルタを構成する前記ガラス長繊維の交点にのみ集中して無機バインダを付着するには、バインダの噴霧量および吹き付けるバインダの粘度を交点のみに集中して付着するように最適化すれば良い。
Next, a method for manufacturing a heat resistant prefilter in which an inorganic binder is adhered to at least the intersection of long glass fibers constituting the heat resistant prefilter over the entire three-dimensional direction of the heat resistant prefilter will be described. In addition, the heat-resistant prefilter of this invention is not limited to what was manufactured with the following manufacturing methods.
First, molten glass made from a pot having a large number of nozzles is pulled out from the nozzles to spin glass long fibers, and at the time of spinning the glass long fibers, an inorganic binder is sprayed and adhered to the entire long glass fibers pulled out from the nozzles, The glass long fibers to which the inorganic binder is adhered are laminated so as to form an intersection having a twill angle and wound on a drum. Next, the laminated glass long fibers are cut out from the drum, the glass long fibers wound around the drum are pulled in a direction perpendicular to the circumferential direction, and the laminated glass long fibers are stretched to loosen the fibers. A porous structure in which voids are formed by entanglement of long glass fibers laminated in a curled shape is formed, and this porous structure is used as a heat-resistant prefilter.
According to the method for producing a heat-resistant prefilter of the present invention, when spinning a long glass fiber, an inorganic binder is sprayed onto the long glass fiber so that the inorganic binder is adhered to the entire spun glass fiber. When laminated so as to form intersections, an inorganic binder is always attached to the intersections of the long glass fibers, and the heat-resistant prefilter is configured over the entire three-dimensional direction of the heat-resistant prefilter. The intersection of the long glass fibers to be surely bonded with the inorganic binder.
In addition, in order to concentrate the inorganic binder only on the intersections of the long glass fibers constituting the heat-resistant prefilter, the binder spray amount and the viscosity of the binder to be sprayed are optimized so as to concentrate only on the intersections. Just do it.

さらに、前記製造方法によって、前記耐熱プレフィルタを構成するガラス長繊維同士の交点のみならず、前記ガラス長繊維同士の絡み合いによって形成された空隙に比較的大量の無機バインダが保持された場合であっても、前記耐熱プレフィルタを焼結することにより、前記ガラス長繊維の交点以外の部分に膜状に無機バインダを付着させることができる。
焼結する方法としては、予め耐熱プレフィルタを焼結して製品化することも可能であり、また、仮焼きにとどめた耐熱プレフィルタを製品化し、使用時に高温空気の通過によって前記耐熱プレフィルタを焼結させるようにすることも可能である。
なお、焼結とは、固体粉末の集合体を融点以下、または一部液相を生じる温度まで加熱することによって、前記固体粉末が焼き固まって、より緻密で密度の大きい多結晶体になる過程や現象のことをいい、焼結温度としては、無機バインダ及びガラス長繊維の融点、軟化点を考慮して適宜選択することができる。
Furthermore, a relatively large amount of an inorganic binder is held not only at the intersection of the long glass fibers constituting the heat resistant prefilter but also in the void formed by the entanglement of the long glass fibers by the manufacturing method. However, by sintering the heat-resistant prefilter, an inorganic binder can be attached in a film shape to a portion other than the intersection of the glass long fibers.
As a method of sintering, it is also possible to sinter a heat-resistant prefilter in advance to produce a product. Also, a heat-resistant prefilter that has been limited to calcination is commercialized, and the heat-resistant prefilter is passed through high-temperature air during use. It is also possible to sinter.
Sintering is a process in which the solid powder is heated to a temperature below the melting point or to a temperature at which a part of the liquid phase is formed, whereby the solid powder is baked and solidified to become a denser and denser polycrystalline body. The sintering temperature can be appropriately selected in consideration of the melting point and softening point of the inorganic binder and the long glass fiber.

その他、本発明の耐熱プレフィルタの製造方法として以下のような方法が挙げられる。先ず、溶融ガラスをノズルから引き出してガラス長繊維を紡糸し、紡糸したガラス長繊維をドラムに巻き取り、ドラムに巻き取られて積層されたガラス長繊維をドラムから切り出し、ドラムに巻き付けたガラス長繊維を展開して、ガラス長繊維をシート状に積層した構造体を形成する。
次いで、このシート状の構造体をバインダ液に含浸し、サクション(吸引脱水)によって過剰のバインダを除去して、ガラス長繊維の絡み合う交点に無機バインダを付着した後、乾燥により前記無機バインダを固化して耐熱プレフィルタが製造される。また、シート状の構造体をバインダ液に含浸する時間、サクションの量等を調整することにより、ガラス長繊維が絡み合って形成されたガラス長繊維同士の交点、前記交点以外のガラス長繊維に付着する無機バインダの量を調整することができ、前記耐熱プレフィルタの3次元方向全体に亘りガラス長繊維同士が絡み合う交点および前記交点以外のガラス長繊維に膜状の無機バインダを付着させることができる。
なお、シート状の構造体をバインダ液に含浸し、サクションによってバインダを除去した耐熱プレフィルタの製造方法は、繊維の束を覆うようにバインダが付着するため、バインダの歩留まりが悪いが、ガラス長繊維紡糸時に、無機バインダをガラス長繊維に吹き付けて耐熱プレフィルタを製造する方法は、ガラス長繊維の1本1本に均一にバインダを付着することができ、バインダの歩留まりに優れるため、ガラス長繊維紡糸時に無機バインダを吹き付けて製造する方がより好ましい。
In addition, the following method is mentioned as a manufacturing method of the heat-resistant prefilter of this invention. First, the molten glass is pulled out from the nozzle, the long glass fiber is spun, the spun glass fiber is wound around a drum, the laminated glass long fiber is cut out from the drum, and the glass length is wound around the drum. The fiber is developed to form a structure in which long glass fibers are laminated in a sheet shape.
Next, this sheet-like structure is impregnated into a binder solution, excess binder is removed by suction (suction dehydration), an inorganic binder is attached to the intersection of long glass fibers, and the inorganic binder is solidified by drying. Thus, a heat-resistant prefilter is manufactured. Also, by adjusting the time for impregnating the sheet-like structure into the binder liquid, the amount of suction, etc., the glass long fibers are intertwined with each other and adhered to the glass long fibers other than the intersections. The amount of the inorganic binder to be adjusted can be adjusted, and the film-like inorganic binder can be attached to the intersection where the long glass fibers are intertwined over the entire three-dimensional direction of the heat-resistant prefilter and to the long glass fibers other than the intersection. .
Note that the heat-resistant prefilter manufacturing method in which a sheet-like structure is impregnated in a binder solution and the binder is removed by suction is attached to the fiber bundle so as to cover the bundle of fibers. The method of producing a heat-resistant prefilter by spraying an inorganic binder onto long glass fibers at the time of fiber spinning can uniformly adhere the binder to each one of the long glass fibers and is excellent in the yield of the binder. It is more preferable to produce by spraying an inorganic binder during fiber spinning.

(実施例1)
以下に本発明の実施例について従来例と共に詳細に説明するが、本発明は実施例に限定されるものではない。
実施例1の耐熱プレフィルタの製造方法は、次の通りである。すなわち、先ず、ガラス長繊維の巻き取りドラムの幅範囲で、溶融ガラスを引き出すためのノズルを多数有するポットを左右に微動させながら、ドラムにガラス長繊維を巻き付けることにより、コンデンスマットを得た。なお、溶融ガラスをノズルから引き出して紡糸したガラス長繊維には、紡糸時に、無機バインダとして水ガラスを吹き付けてある。前記水ガラスの付着量は、前記多孔質構造体中5質量%とした。なお、水ガラスの耐熱性は、550℃であり、ガラス長繊維の耐熱性(600℃)よりも低いものを用いた。
次に、こうして得られたコンデンスマットをドラムから切り出し、ドラムに巻き付けた円周方向に対して垂直方向に引っ張り、ガラス長繊維同士を展開することでガラス長繊維がほぐれ、前記ガラス長繊維がカール形状に積層した多孔質構造体を得た。この多孔質構造体は、平均繊維径20〜30μmのガラス長繊維がカール形状に積層した厚さ50mm、縦寸法500mm・横寸法500mm、目付250g/m2であった。前記多孔質構造体を100℃で乾燥して水ガラスを固化し、実施例1の耐熱プレフィルタとした。図1に示すように、実施例1の耐熱プレフィルタは、ガラス長繊維同士1,1の交点4のみに、集中的に無機バインダである水ガラス2Aが付着している。また、ガラス長繊維1が絡み合って、空隙3が形成されている。
(Example 1)
Hereinafter, examples of the present invention will be described in detail together with conventional examples, but the present invention is not limited to the examples.
The manufacturing method of the heat-resistant prefilter of Example 1 is as follows. Specifically, a condensation mat was obtained by winding a long glass fiber around a drum while slightly moving a pot having a large number of nozzles for drawing molten glass left and right within the width range of the glass long fiber winding drum. In addition, water glass is sprayed as an inorganic binder at the time of spinning to the long glass fiber spun out of the molten glass drawn from the nozzle. The adhesion amount of the water glass was 5% by mass in the porous structure. In addition, the heat resistance of water glass is 550 degreeC, and the thing lower than the heat resistance (600 degreeC) of a glass long fiber was used.
Next, the condensation mat obtained in this way is cut out from the drum, pulled in a direction perpendicular to the circumferential direction wound around the drum, and the long glass fibers are unfolded by unfolding the long glass fibers, and the long glass fibers are curled. A porous structure laminated in a shape was obtained. This porous structure had a thickness of 50 mm in which long glass fibers having an average fiber diameter of 20 to 30 μm were laminated in a curled shape, a vertical dimension of 500 mm, a horizontal dimension of 500 mm, and a basis weight of 250 g / m 2 . The porous structure was dried at 100 ° C. to solidify the water glass to obtain a heat resistant prefilter of Example 1. As shown in FIG. 1, in the heat resistant prefilter of Example 1, water glass 2 </ b> A that is an inorganic binder is intensively attached only to the intersection 4 between the long glass fibers 1 and 1. Further, the long glass fiber 1 is entangled to form a gap 3.

(実施例2)
無機バインダとしての水ガラスの付着量を、前記多孔質構造体中30質量%としたこと以外は、実施例1と同様にして、前記実施例1と同様の厚さ、同様の縦寸法及び横寸法の、目付250g/m2の多孔質構造体を得、これを実施例1と同様に水がラスを固化して、実施例2の耐熱プレフィルタとした。図2に示すように、実施例2の耐熱プレフィルタは、ガラス長繊維同士1,1の交点4に、集中的に無機バインダである水ガラス2Aが付着し、さらに、前記ガラス長繊維1の交点4以外の部分には、膜状の水ガラス2Bが付着していた。
(Example 2)
Except that the amount of water glass as an inorganic binder is 30% by mass in the porous structure, the same thickness, the same vertical dimension and the same horizontal dimension as in Example 1 are the same as in Example 1. A porous structure with a basis weight of 250 g / m 2 was obtained, and water was solidified in the same manner as in Example 1 to obtain a heat-resistant prefilter of Example 2. As shown in FIG. 2, in the heat-resistant prefilter of Example 2, water glass 2 </ b> A that is an inorganic binder is intensively attached to the intersection 4 of the long glass fibers 1 and 1, and further, A film-like water glass 2B was adhered to a portion other than the intersection 4.

(実施例3)
無機バインダとしての水ガラスの付着量を、前記多孔質構造体中50質量%としたこと以外は、実施例1と同様にして、前記実施例1と同様の厚さ、同様の縦寸法及び横寸法の、目付250g/m2の多孔質構造体を得、これを実施例1と同様に水ガラスを固化して、実施例3の耐熱プレフィルタとした。図3に示すように、実施例3の耐熱プレフィルタは、ガラス長繊維同士1,1の交点4だけではなく、ガラス長繊維1が絡み合って形成された空隙3の一部を塞ぐように、水ガラス2が付着し、空隙3が少なくなっていた。
(Example 3)
Except that the amount of water glass as an inorganic binder was 50% by mass in the porous structure, the same thickness, the same vertical dimensions and horizontal dimensions as in Example 1 were obtained in the same manner as in Example 1. A porous structure having a size of 250 g / m 2 was obtained, and water glass was solidified in the same manner as in Example 1 to obtain a heat-resistant prefilter of Example 3. As shown in FIG. 3, the heat-resistant prefilter of Example 3 is not only the intersection 4 of the long glass fibers 1, 1 but also a part of the gap 3 formed by the intertwining of the long glass fibers 1, Water glass 2 adhered and voids 3 were reduced.

(実施例4)
無機バインダとしてアルミナセラミックパウダーを用いて、前記無機バインダとしてのアルミナセラミックパウダーの付着量を、前記多孔質構造体中30質量%としたこと以外は、前記実施例1と同様にして、前記実施例1と同様の厚さ、同様の縦寸法及び横寸法の、目付250g/m2の多孔質構造体を得、実施例1と同様にアルミナセラミックパウダーからなる前記無機バインダを100℃で乾燥して固化し、耐熱プレフィルタとした。前記アルミナセラミックパウダーは、紡糸時に、適度な粘度をもったスラリーとしてガラス長繊維にスプレー塗布している。なお、無機バインダとしてアルミナセラミックパウダーの耐熱性は、1,200℃であり、ガラス長繊維の耐熱性(600℃)よりも高いものを用いた。前記耐熱プレフィルタは、図2に示す実施例2と同様に、ガラス長繊維同士1,1の交点4に、集中的に無機バインダである水ガラス2Aが付着し、さらに、前記ガラス長繊維の交点4以外の部分には、膜状の水ガラス2Bが付着していた。
Example 4
In the same manner as in Example 1, except that alumina ceramic powder was used as the inorganic binder and the amount of the alumina ceramic powder as the inorganic binder was set to 30% by mass in the porous structure. A porous structure having a thickness of 250 g / m 2 having the same thickness and the same vertical and horizontal dimensions as those of No. 1 was obtained, and the inorganic binder made of alumina ceramic powder was dried at 100 ° C. as in Example 1. Solidified to obtain a heat resistant prefilter. The alumina ceramic powder is spray-coated on long glass fibers as a slurry having an appropriate viscosity at the time of spinning. In addition, the heat resistance of the alumina ceramic powder as an inorganic binder is 1,200 ° C., which is higher than the heat resistance (600 ° C.) of the long glass fiber. As in Example 2 shown in FIG. 2, the heat-resistant prefilter has water glass 2 </ b> A that is an inorganic binder intensively attached to the intersection 4 of the long glass fibers 1 and 1, and further, A film-like water glass 2B was adhered to a portion other than the intersection 4.

(従来例1)
バインダを用いず、また、垂直に引っ張ってガラス長繊維同士を展開していないこと以外は、実施例1と同様にして、実施例1と同様の厚さ、同様の縦寸法及び横寸法の、目付250g/m2のシート状の多孔質の構造体を得、これを従来例1の耐熱プレフィルタとした。
(Conventional example 1)
A binder is not used, and the same length as in Example 1 except that the long glass fibers are not expanded by being pulled vertically, and the same vertical and horizontal dimensions as in Example 1, A sheet-like porous structure having a basis weight of 250 g / m 2 was obtained and used as a heat-resistant prefilter of Conventional Example 1.

(従来例2)
バインダとして、有機バインダであるメラミン樹脂を用い、前記メラミン樹脂の付着量を前記多孔質構造体中30質量%としたこと以外は、前記実施例1と同様にして、前記実施例1と同様の厚さ、同様の縦寸法及び横寸法の、目付250g/m2の多孔質構造体を得、前記メラミン樹脂を250℃で固化して、従来例2の耐熱プレフィルタとした。前記耐熱プレフィルタは、図2に示す実施例2と同様に、ガラス長繊維同士の交点に、集中的に有機バインダであるメラミン樹脂が付着し、さらに、前記ガラス長繊維の交点以外の部分には、膜状のメラミン樹脂が付着していた。
(Conventional example 2)
Similar to Example 1 except that melamine resin, which is an organic binder, was used as the binder, and the adhesion amount of the melamine resin was 30% by mass in the porous structure. A porous structure having a thickness, similar vertical dimensions and horizontal dimensions and a basis weight of 250 g / m 2 was obtained, and the melamine resin was solidified at 250 ° C. to obtain a heat-resistant prefilter of Conventional Example 2. As in Example 2 shown in FIG. 2, the heat-resistant prefilter has a melamine resin as an organic binder intensively attached to the intersections of the long glass fibers, and further to portions other than the intersections of the long glass fibers. Had a membranous melamine resin attached.

次に実施例1〜4及び従来1、2の耐熱プレフィルタについて、「耐熱性」、「繊維飛散」、「フィルタ圧力損失」、「フィルタ寿命」を測定した。結果を表1に示す。
「耐熱性」、「繊維飛散」、「フィルタ圧力損失」、「フィルタ寿命」の測定方法は以下の通りである。
[耐熱性]
一般的な加熱装置を使用して、それぞれの耐熱プレフィルタを450℃で、1時間加熱し、目視検査により外観の形状変化を観察した。ガラス長繊維の耐熱性は600℃であり、ガラス長繊維と比較して、600℃以上でも形状が変化しないものを耐熱性が優れているものとして◎とし、ガラス長繊維の耐熱性をできる限り阻害しない温度(400〜450℃)で形状が変化しないものをガラス長繊維と同等の耐熱性を有するものとして○とし、400℃以下で形状が変化したものをガラス長繊維よりも完全に耐熱性が劣るものとして×と評価した。
[繊維飛散]
JIS Z8813に準拠した粉塵発生量測定装置を使用して、ガラス長繊維の飛散の有無を確認した。ガラス長繊維が飛散しないものは○とし、ガラス長繊維が飛散するものは・と評価した。
[圧力損失]
JIS B9908に準拠した測定装置を使用して、有機バインダを付着した従来例2を100として、圧力損失の上昇及び低下を測定した。
前記従来例2を100とした場合に、圧力損失が90を下回るものは◎とし、前記従来例2を100とした場合に、圧力損失が95〜105と同程度となるものは○とし、前記従来例2を100とした場合に、圧力損失が105〜115と圧力損失が若干劣るものは△とし、前記従来例2を100とした場合に、圧力損失が115を超えて完全に劣るものは・と評価した。
[フィルタ寿命]
JIS B9908に準拠した測定装置を使用して、有機バインダを付着した従来例2を基準として、フィルタ寿命を測定した。前記従来例2よりもフィルタ寿命が長いものは◎とし、前記従来例2と同等のフィルタ寿命のものは○とし、前記従来例2よりもフィルタ寿命が若干短いものは△とし、前記従来例2よりもフィルタ寿命が完全に短いものは・と評価した。
Next, “heat resistance”, “fiber scattering”, “filter pressure loss”, and “filter life” were measured for the heat-resistant prefilters of Examples 1 to 4 and Conventional Examples 1 and 2. The results are shown in Table 1.
The measurement methods of “heat resistance”, “fiber scattering”, “filter pressure loss”, and “filter life” are as follows.
[Heat-resistant]
Using a general heating apparatus, each heat-resistant prefilter was heated at 450 ° C. for 1 hour, and a change in shape of the appearance was observed by visual inspection. The heat resistance of the long glass fiber is 600 ° C., and the heat resistance of the long glass fiber is as long as possible with the heat resistance of the glass long fiber being as excellent as heat resistance when the shape does not change even at 600 ° C. or higher. Those whose shape does not change at an uninhibited temperature (400 to 450 ° C.) are marked as ○ having heat resistance equivalent to that of long glass fibers, and those whose shape changes at 400 ° C. or lower are more completely heat resistant than glass long fibers. Was evaluated as x as inferior.
[Fiber scattering]
Using a dust generation amount measuring device based on JIS Z8813, the presence or absence of scattering of glass long fibers was confirmed. The case where the long glass fiber was not scattered was evaluated as “Good”, and the case where the long glass fiber was scattered was evaluated as “・”.
[Pressure loss]
Using a measuring device based on JIS B9908, the increase and decrease in pressure loss were measured with the conventional example 2 with an organic binder attached as 100.
When the conventional example 2 is set to 100, the pressure loss is less than 90, and when the conventional example 2 is set to 100, the pressure loss is about 95 to 105, and When the conventional example 2 is set to 100, the pressure loss is 105 to 115 and the pressure loss is slightly inferior, and when the conventional example 2 is set to 100, the pressure loss exceeds 115 and the pressure loss is completely inferior.・ Evaluated.
[Filter life]
Using a measuring device based on JIS B9908, the filter life was measured based on Conventional Example 2 with an organic binder attached. A filter having a filter life longer than that of Conventional Example 2 is indicated by ◎, a filter having the same filter life as that of Conventional Example 2 is indicated by ○, and a filter having a filter life slightly shorter than that of Conventional Example 2 is indicated by △. It was evaluated that the filter life was completely shorter than that.

Figure 2005074262
Figure 2005074262

表1より、本発明の実施例1〜4の耐熱プレフィルタは、繊維飛散がなく、耐熱性が良好であることが確認できた。但し、実施例1の耐熱プレフィルタは、無機バインダの付着量が少ないため、風圧等によって前記耐熱プレフィルタが厚さ方向に変形し、フィルタ圧力損失及びフィルタ寿命が若干劣っていることが確認できた。
また、実施例2の耐熱プレフィルタは、前記耐熱プレフィルタの3次元方向全体に亘って、前記ガラス長繊維同士の交点に水ガラスが付着するとともに、前記ガラス長繊維の前記交点以外の部分には、膜状に水ガラスが付着しているため、前記耐熱プレフィルタが風圧等によって変形せず、フィルタ圧力損失及びフィルタ寿命が優れていることが確認できた。
さらに、実施例3の耐熱プレフィルタは、水ガラスの付着量が多いため、ガラス長繊維が絡み合って形成された空隙の一部を塞がれ、フィルタ圧力損失及びフィルタ寿命が劣っていた。
実施例4の耐熱プレフィルタは、ガラス長繊維の耐熱性よりも耐熱性の高い、アルミナセラミックパウダーが、耐熱プレフィルタの3次元方向全体に亘り、ガラス長繊維同士の交点に付着するとともに、前記ガラス長繊維の前記交点以外の部分には膜状に付着しているため、より優れた耐熱性(800℃)を有していることが確認できた。
従来例1の耐熱プレフィルタは、バインダを用いていないため、耐熱性(500℃)が優れるものの、繊維が飛散するという問題があり、また、耐熱プレフィルタの形態が保持されず、風圧等によって前記耐熱プレフィルタが厚さ方向に変形するため、フィルタ圧力損失及びフィルタ寿命が、実施例3よりもさらに劣っていた。
また、従来例2の耐熱プレフィルタは、有機バインダを使用しているため、耐熱性(80℃)が極端に劣っていた。
From Table 1, it has confirmed that the heat-resistant prefilter of Examples 1-4 of this invention had no fiber scattering, and its heat resistance was favorable. However, since the heat-resistant prefilter of Example 1 has a small amount of inorganic binder attached, it can be confirmed that the heat-resistant prefilter is deformed in the thickness direction due to wind pressure or the like, and that the filter pressure loss and the filter life are slightly inferior. It was.
Further, in the heat resistant prefilter of Example 2, water glass adheres to the intersections of the glass long fibers over the entire three-dimensional direction of the heat resistant prefilter, and the glass long fibers other than the intersections. It was confirmed that the heat-resistant prefilter was not deformed by wind pressure and the like, and the filter pressure loss and the filter life were excellent because water glass adhered to the film.
Furthermore, since the heat resistant prefilter of Example 3 has a large amount of water glass attached, a part of the gap formed by the entanglement of long glass fibers was blocked, and the filter pressure loss and the filter life were inferior.
In the heat-resistant prefilter of Example 4, the alumina ceramic powder having higher heat resistance than the heat resistance of the long glass fibers adheres to the intersections of the long glass fibers over the entire three-dimensional direction of the heat resistant prefilter, and Since it adhered to the part other than the said intersection of glass long fiber like a film | membrane, it has confirmed that it had the more excellent heat resistance (800 degreeC).
Since the heat-resistant prefilter of Conventional Example 1 does not use a binder, although it has excellent heat resistance (500 ° C.), there is a problem that fibers are scattered, and the form of the heat-resistant prefilter is not maintained, and depending on wind pressure, etc. Since the heat-resistant prefilter was deformed in the thickness direction, the filter pressure loss and the filter life were further inferior to those of Example 3.
Moreover, since the heat resistant prefilter of Conventional Example 2 uses an organic binder, the heat resistance (80 ° C.) was extremely inferior.

本発明の耐熱プレフィルタのバインダの付着状態を示す部分拡大図(実施例1)Partial enlarged view showing the adhesion state of the binder of the heat-resistant prefilter of the present invention (Example 1) 本発明の耐熱プレフィルタのバインダの付着状態を示す部分拡大図(実施例2,4)Partial enlarged view showing the adhesion state of the binder of the heat-resistant prefilter of the present invention (Examples 2 and 4) 本発明の耐熱プレフィルタのバインダの付着状態を示す部分拡大図(実施例3)Partial enlarged view showing the adhesion state of the binder of the heat-resistant prefilter of the present invention (Example 3)

符号の説明Explanation of symbols

1 ガラス長繊維
2 バインダ
2A ガラス長繊維交点部分に付着したバインダ
2B ガラス長繊維の交点部分以外に膜状に付着したバインダ
3 空隙
4 交点
DESCRIPTION OF SYMBOLS 1 Glass long fiber 2 Binder 2A Binder adhering to glass long fiber intersection part 2B Binder adhering to film | membrane form other than the intersection part of glass long fiber 3 Cavity 4 Intersection point

Claims (8)

耐熱プレフィルタを構成するガラス長繊維同士の少なくとも交点を接合するように、前記耐熱プレフィルタの3次元方向全体に亘り無機バインダを付着したことを特徴とする耐熱プレフィルタ。   A heat-resistant prefilter, wherein an inorganic binder is adhered over the entire three-dimensional direction of the heat-resistant prefilter so as to join at least intersections of the long glass fibers constituting the heat-resistant prefilter. 前記ガラス長繊維同士の交点のみを接合するように前記無機バインダを前記交点に付着したことを特徴とする耐熱プレフィルタ。   The heat-resistant prefilter, wherein the inorganic binder is attached to the intersection so as to join only the intersection of the long glass fibers. 前記ガラス長繊維同士の交点を接合するように前記無機バインダを前記交点に付着し、前記ガラス長繊維の交点以外の部分は膜状に前記無機バインダを付着したことを特徴とする請求項1記載の耐熱プレフィルタ。   2. The inorganic binder is attached to the intersection so as to join the intersections of the long glass fibers, and the inorganic binder is attached in a film shape at portions other than the intersections of the glass long fibers. Heat resistant prefilter. 前記無機バインダは、前記ガラス長繊維よりも耐熱性が低いことを特徴とする請求項2記載の耐熱プレフィルタ。   The heat-resistant prefilter according to claim 2, wherein the inorganic binder has lower heat resistance than the long glass fiber. 前記無機バインダは、前記ガラス長繊維よりも耐熱性が高いことを特徴とする請求項3記載の耐熱プレフィルタ。   The heat resistant prefilter according to claim 3, wherein the inorganic binder has higher heat resistance than the long glass fiber. 前記無機バインダの付着量は、0.5〜50質量%であることを特徴とする請求項1乃至5のいずれかに記載の耐熱プレフィルタ。   The heat-resistant prefilter according to any one of claims 1 to 5, wherein an adhesion amount of the inorganic binder is 0.5 to 50% by mass. 溶融ガラスをノズルから引き出してガラス長繊維を紡糸する紡糸時に、前記ノズルから引き出されて紡糸されたガラス長繊維に無機バインダを噴霧して付着し、前記無機バインダが付着されているガラス長繊維を前記ガラス長繊維同士が交点を形成するように積層したことを特徴とする耐熱プレフィルタの製造方法。   At the time of spinning to draw the molten glass from the nozzle and spin the glass long fiber, the inorganic glass is sprayed and attached to the glass long fiber drawn from the nozzle and spun, and the glass long fiber to which the inorganic binder is attached is attached. The method for producing a heat-resistant prefilter, wherein the glass long fibers are laminated so as to form an intersection. 前記請求項7に記載の製造方法により得られたことを特徴とする耐熱プレフィルタ。   A heat-resistant prefilter obtained by the production method according to claim 7.
JP2003305558A 2003-08-28 2003-08-28 Heat resistant prefilter and method for producing the same Expired - Fee Related JP4550387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305558A JP4550387B2 (en) 2003-08-28 2003-08-28 Heat resistant prefilter and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305558A JP4550387B2 (en) 2003-08-28 2003-08-28 Heat resistant prefilter and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005074262A true JP2005074262A (en) 2005-03-24
JP4550387B2 JP4550387B2 (en) 2010-09-22

Family

ID=34408879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305558A Expired - Fee Related JP4550387B2 (en) 2003-08-28 2003-08-28 Heat resistant prefilter and method for producing the same

Country Status (1)

Country Link
JP (1) JP4550387B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221177A (en) * 2009-03-25 2010-10-07 Duskin Co Ltd Glass fiber filter
JP2011092842A (en) * 2009-10-28 2011-05-12 Nippon Muki Co Ltd Method for manufacturing glass fiber filter
CZ303964B6 (en) * 2012-03-19 2013-07-17 Vysoká skola chemicko - technologická v Praze Certified inorganic binding agent for inorganic heat-insulating fibers and inorganic heat-insulating fibers with such an inorganic binding agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336178U (en) * 1976-09-02 1978-03-30
JPH0564712A (en) * 1991-09-09 1993-03-19 Hokuetsu Paper Mills Ltd Glass fiber-based filter paper for heat-resistant air filter and its manufacture
JPH06154530A (en) * 1992-11-20 1994-06-03 Kobe Steel Ltd Filter and manufacturer thereof
JPH08144200A (en) * 1994-11-17 1996-06-04 Nippon Glass Fiber Co Ltd Filter paper for high-performance air filter and its production
JPH08266838A (en) * 1995-03-29 1996-10-15 Nippon Muki Co Ltd Heat resistant prefilter
JPH09220414A (en) * 1996-02-16 1997-08-26 Hokuetsu Paper Mills Ltd Filter media for air filter and air filter
JPH105513A (en) * 1996-06-25 1998-01-13 Nisshin Steel Co Ltd Oil collecting filter having oil decomposing power and its production
JP2003080031A (en) * 2001-08-30 2003-03-18 Three M Innovative Properties Co Filter element and filter for purification of exhaust gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336178U (en) * 1976-09-02 1978-03-30
JPH0564712A (en) * 1991-09-09 1993-03-19 Hokuetsu Paper Mills Ltd Glass fiber-based filter paper for heat-resistant air filter and its manufacture
JPH06154530A (en) * 1992-11-20 1994-06-03 Kobe Steel Ltd Filter and manufacturer thereof
JPH08144200A (en) * 1994-11-17 1996-06-04 Nippon Glass Fiber Co Ltd Filter paper for high-performance air filter and its production
JPH08266838A (en) * 1995-03-29 1996-10-15 Nippon Muki Co Ltd Heat resistant prefilter
JPH09220414A (en) * 1996-02-16 1997-08-26 Hokuetsu Paper Mills Ltd Filter media for air filter and air filter
JPH105513A (en) * 1996-06-25 1998-01-13 Nisshin Steel Co Ltd Oil collecting filter having oil decomposing power and its production
JP2003080031A (en) * 2001-08-30 2003-03-18 Three M Innovative Properties Co Filter element and filter for purification of exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221177A (en) * 2009-03-25 2010-10-07 Duskin Co Ltd Glass fiber filter
JP2011092842A (en) * 2009-10-28 2011-05-12 Nippon Muki Co Ltd Method for manufacturing glass fiber filter
CZ303964B6 (en) * 2012-03-19 2013-07-17 Vysoká skola chemicko - technologická v Praze Certified inorganic binding agent for inorganic heat-insulating fibers and inorganic heat-insulating fibers with such an inorganic binding agent

Also Published As

Publication number Publication date
JP4550387B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US8337974B2 (en) Ceramic membrane based on a substrate containing polymer or natural fibres, method for the production and use thereof
JP4076503B2 (en) CERAMIC MEMBRANE BASED ON SUPPORT WITH POLYMER FIBERS, PROCESS FOR PRODUCTION AND USE
JP5122048B2 (en) Low boron content micro glass fiber filtration media
JP4657782B2 (en) A filter that combines high collection efficiency and low pressure loss
US10814586B2 (en) Direct deposition of nanofiber on a textile substrate
KR20110004424A (en) Air filtration media with improved dust loading capacity and improved resistance to high humidity
JP2018038983A (en) Production method of filtering medium for air filter
CN104524868A (en) Gradient filter material of nanofiber membrane composite non-woven base material
JP2013504409A5 (en)
JP4550387B2 (en) Heat resistant prefilter and method for producing the same
JP6087207B2 (en) Filter material for air filter and method for producing the same
JP2010115570A (en) Electrified nonwoven fabric for air filter, and air filter
JP2002018216A (en) Filter
JP2005169167A (en) Air filter filtering medium
KR100900818B1 (en) A/C pre-filter with micro-pores
JP6376167B2 (en) Sound absorbing material
JP5586408B2 (en) Non-woven filter medium for filter, method for producing the same, and air filter
JP2012161790A (en) Surface layer filtration bag filter
TW200303234A (en) Composite membrane, its production and use
CN212309081U (en) Nanofiber membrane composite filter material with double-hydrophobic function and hydrophobic and oleophobic mask
KR20050071352A (en) Ceramic filter with supporting body and method of preparing thereof
KR102039704B1 (en) Apparatus and method for manufacturing a filter of visible light transmitting multilayer structure for blocking fine dusts
KR102621800B1 (en) Nanofiber filter and preparation method thereof
JP6964033B2 (en) Filter material for air filter
JPH0326902Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees