[go: up one dir, main page]

JP2005071617A - Nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005071617A
JP2005071617A JP2003208257A JP2003208257A JP2005071617A JP 2005071617 A JP2005071617 A JP 2005071617A JP 2003208257 A JP2003208257 A JP 2003208257A JP 2003208257 A JP2003208257 A JP 2003208257A JP 2005071617 A JP2005071617 A JP 2005071617A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
aqueous electrolyte
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003208257A
Other languages
Japanese (ja)
Inventor
Tomohito Fukuhara
福原  智人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003208257A priority Critical patent/JP2005071617A/en
Publication of JP2005071617A publication Critical patent/JP2005071617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which can improve a cycle property by protecting a positive electrode active material from the action of a hydrofluoric acid. <P>SOLUTION: In this nonaqueous electrolyte secondary battery provided with a nonaqueous electrolyte comprising LiPF6 as electrolyte salt, the nonaqueous electrolyte contains lithium borate. By this constitution, the hydrofluoric acid generated by the decomposition of the LiPF6 reacts with the lithium borate to precipitate as a boric acid compound not giving an adverse affect to the positive electrode active material and to be removed. Thereby, the cycle property can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池およびその製造方法に関する。
【0002】
【従来の技術】
リチウムイオン二次電池においては、活物質としてリチウム化合物を用いるため、リチウムとの反応性の高い水系の溶媒を使用することができない。このため、リチウムと化学反応しない非水溶媒に電解質塩としてリチウム塩を溶解した非水電解液が用いられている。このため、この種の電池を「非水電解質二次電池」と称している。ここで、広く用いられているリチウム塩として、例えばLiPFが挙げられる。
【0003】
【特許文献1】
特開平7−122297号公報
【0004】
【発明が解決しようとする課題】
ところが、この種の電池においては、充放電の繰り返しにより放電容量が低下するという問題点があった。特に、高温状況下において、放電容量が顕著に低下した。
【0005】
この理由については、以下のように考えられる。電解質塩として使用されるLiPFは、充放電の繰り返しや、製造時又は使用中に外部から混入する水分との反応により分解し、フッ化水素酸を生成する。このフッ化水素酸が正極活物質に悪影響を及ぼすことにより、放電容量が低下すると考えられる。特に、正極活物質としてリチウムマンガン複合酸化物を使用した場合には、フッ化水素酸の作用によりリチウムマンガン複合酸化物中からマンガンイオンが溶出するため、容量低下が起こり易い。
【0006】
本発明は上記のような事情に鑑みてなされたものであり、その目的は、正極活物質をフッ化水素酸の作用から防御してサイクル特性を向上できる非水電解質二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、鋭意研究の結果、電解液にホウ酸リチウムを添加しておくと、生じたフッ化水素酸がこのホウ酸リチウムと反応して(反応式(1))、正極活物質に悪影響を与えないホウ酸化合物として沈殿し、除去されることを見出した。
【0008】
Li・10HO+12HF→LiO・4BF+16HO …(1)
【0009】
すなわち、本発明は、非水溶媒に電解質塩としてLiPFを含む非水電解液を備えた非水電解質二次電池であって、非水電解液がホウ酸リチウムを含むことを特徴とする。
また、本発明の非水電解質二次電池の製造方法は、非水溶媒に電解質塩としてLiPFを含む非水電解液を備えた非水電解質二次電池を製造する方法であって、前記非水電解液にホウ酸リチウムを濃度が0.1重量%以上となるように添加することを特徴とする。
【0010】
ここで、フッ化水素酸をホウ酸化合物として除去する目的であれば、全てのホウ酸塩を使用することが可能である。しかし、電解液中に、例えばナトリウムイオン等のリチウムイオン以外の陽イオンが存在すると、電池反応に悪影響をおよぼすおそれがある。このため、ホウ酸塩としては、ホウ酸リチウムを使用する必要がある。
ホウ酸リチウムの添加量は、非水溶媒の種類や混合比、電解質塩の濃度等によって異なり一概に限定できないが、濃度が0.1重量%以上であることが好ましい。なお、リン酸リチウムの含有量は飽和濃度以上となっても構わない。
なお、非水電解液へのホウ酸リチウムの添加量は、例えばIPC(高周波誘導結合プラズマ)発光分光分析法により測定した非水電解液中のホウ素の総量やイオンクロマトグラフにより定量したホウ酸イオンの量から換算することによって求めることができる。
【0011】
【発明の作用及び効果】
本発明によれば、非水電解質二次電池において、非水電解液にはホウ酸リチウムが添加されている。このような構成によれば、生じたフッ化水素酸がこのホウ酸リチウムと反応して、正極活物質に悪影響を与えないLiBFとして沈殿し、除去される。これにより、サイクル特性を向上させることができる。
【0012】
【実施例】
1.試験方法
<実施例1>
(1)リチウムイオン二次電池の作製
▲1▼正極の作製
マンガン酸リチウムを正極活物質とし、この正極活物質に対して結着剤としてのポリフッ化ビニリデンと、導電剤としてのアセチレンブラックとを重量比87:8:5の割合で混合し、N−メチルピロリドンを加えて正極合剤ペーストを調製した。このペーストを、厚さ20μmのアルミニウム箔からなる集電体の両面に均一に塗布し、乾燥後、プレスを行い、正極活物質層を備えた帯状の正極シートを作製した。この正極シートの一端部に、正極リードを溶接した。
【0013】
▲2▼負極の作製
グラファイトを負極活物質とし、このグラファイトに対して結着剤としてのカルボキシメチルセルロース、およびスチレンブタジエンゴムを重量比95:2:3の割合で混合し、適度な水分を加えて負極合剤ペーストを調製した。このペーストを、厚さ15μmの銅箔からなる集電体の両面に均一に塗布し、上記正極シートと同様の方法により、帯状の負極シートを作製した。この負極シートの一端部に、負極リードを溶接した。
【0014】
▲3▼電解液の調製
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比3:7の割合で混合し、非水溶媒を調製した。この非水溶媒に、電解質としてリチウム塩であるLiPFを濃度1.0mol/lとなるように加え、非水電解液を調製した。次いで、この非水電解液にホウ酸リチウムを飽和濃度(0.5重量%)となるように添加した。
【0015】
▲4▼角型電池の作製
図1に示す構成の電池1を作製した。
上記▲1▼のとおり作製した正極シート3、上記▲2▼のとおり作製した負極シート4を、セパレータ5を介して積層し、長円渦状に巻回して発電要素2を作製した。なお、セパレータ5としては、厚さ20μmのポリエチレン微多孔膜を使用した。
この発電要素2を、角型の電池ケース6に収納し、負極リード11を電池蓋7に備えられた負極端子9に接続した。また、正極リード10を電池蓋7に接続した。そして、電池蓋7を電池ケース6の開口部にレーザー溶接によって取り付けた。この電池ケース6内に、電池蓋7に備えられた注液口から、上記▲3▼で調製した電解液12を過剰にならない程度に真空注液した。このようにして、幅30mm、高さ48mm、厚み5mmの角型電池を組み立てた。なお、電池蓋7には安全弁8が設けられている。
【0016】
(2)サイクル試験
上記の方法で作製した電池について、60℃の雰囲気下、800mA(1CA)の定電流で4.1Vまで充電後、4.1Vの定電圧で、充電開始後3時間まで充電を行った。その後、この電池を800mAの定電流で2.75Vまで放電を行い、初期放電容量を測定した。これを1サイクルとして、所定サイクル繰り返し、放電容量を測定した。
【0017】
<比較例1>
ホウ酸リチウムを添加しなかった他は、実施例1と同様にして電池を作成し、試験を行った。
【0018】
2.結果と考察
実施例1および比較例1の電池における、サイクル数と容量維持率との関係を示すグラフを図2に示す。なお、図中、記号△は実施例1の電池を、記号○は比較例1の電池を表す。
なお、容量保持率(%)は、各サイクル後の放電容量を初期放電容量で除したものとした。
【0019】
ホウ酸リチウムを添加した実施例1の電池においては、50サイクル後の容量保持率は81%であり、良好なサイクル特性を示していた。一方、ホウ酸リチウムを添加しなかった比較例1の電池においては、50サイクル後の容量保持率は78%に低下した。なお、図2からは、さらにサイクル数が増えると、同じサイクル数における実施例1の電池と比較例1の電池との容量維持率の差はさらに大きくなると推定される。
【0020】
このように、非水電解液にホウ酸リチウムを添加した電池においては、添加しない電池と比較して良好なサイクル特性を示した。これは、電解質塩であるLiPFの分解により生じたフッ化水素酸をホウ酸リチウムが除去していることによると考えられる。
【図面の簡単な説明】
【図1】本実施例の電池の断面図
【図2】実施例1および比較例1の電池における、サイクル数と容量維持率との関係を示すグラフ
【符号の説明】
1…電池(非水電解質二次電池)
3…正極シート(正極)
4…負極シート(負極)
12…非水電解液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same.
[0002]
[Prior art]
In a lithium ion secondary battery, since a lithium compound is used as an active material, an aqueous solvent highly reactive with lithium cannot be used. For this reason, a nonaqueous electrolytic solution in which a lithium salt is dissolved as an electrolyte salt in a nonaqueous solvent that does not chemically react with lithium is used. For this reason, this type of battery is referred to as a “non-aqueous electrolyte secondary battery”. Here, as a lithium salt widely used, for example, LiPF 6 is cited.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-122297
[Problems to be solved by the invention]
However, this type of battery has a problem that the discharge capacity decreases due to repeated charge and discharge. In particular, the discharge capacity was significantly reduced under high temperature conditions.
[0005]
The reason for this is considered as follows. LiPF 6 used as an electrolyte salt is decomposed by reaction with moisture mixed from the outside during repetition of production or use, or during production or use, and generates hydrofluoric acid. This hydrofluoric acid is considered to have a negative effect on the positive electrode active material, thereby reducing the discharge capacity. In particular, when lithium manganese composite oxide is used as the positive electrode active material, manganese ions are eluted from the lithium manganese composite oxide by the action of hydrofluoric acid, so that the capacity is likely to decrease.
[0006]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery that can improve cycle characteristics by protecting the positive electrode active material from the action of hydrofluoric acid. It is in.
[0007]
[Means for Solving the Problems]
As a result of diligent research, the present inventor has added lithium borate to the electrolytic solution, and the resulting hydrofluoric acid reacts with this lithium borate (reaction formula (1)) to form a positive electrode active material. It was found that it precipitates and is removed as a boric acid compound that does not have an adverse effect.
[0008]
Li 2 B 4 O 7 · 10H 2 O + 12HF → Li 2 O · 4BF 3 + 16H 2 O ... (1)
[0009]
That is, the present invention is a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing LiPF 6 as an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte contains lithium borate.
The non-aqueous electrolyte secondary battery manufacturing method of the present invention is a method for manufacturing a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution containing LiPF 6 as an electrolyte salt in a non-aqueous solvent, It is characterized in that lithium borate is added to the water electrolyte so that the concentration becomes 0.1% by weight or more.
[0010]
Here, for the purpose of removing hydrofluoric acid as a boric acid compound, it is possible to use all borates. However, if a cation other than lithium ions such as sodium ions is present in the electrolyte, the battery reaction may be adversely affected. For this reason, it is necessary to use lithium borate as a borate.
The amount of lithium borate added varies depending on the type and mixing ratio of the nonaqueous solvent, the concentration of the electrolyte salt, and the like, and cannot be limited unconditionally. Note that the lithium phosphate content may be equal to or higher than the saturation concentration.
The amount of lithium borate added to the non-aqueous electrolyte is, for example, the total amount of boron in the non-aqueous electrolyte measured by IPC (High Frequency Inductively Coupled Plasma) emission spectrometry or borate ion determined by ion chromatography. It can obtain | require by converting from the quantity of.
[0011]
[Action and effect of the invention]
According to the present invention, in the non-aqueous electrolyte secondary battery, lithium borate is added to the non-aqueous electrolyte. According to such a structure, the generated hydrofluoric acid reacts with this lithium borate, precipitates and is removed as LiBF 4 that does not adversely affect the positive electrode active material. Thereby, cycle characteristics can be improved.
[0012]
【Example】
1. Test method <Example 1>
(1) Production of lithium ion secondary battery (1) Production of positive electrode Lithium manganate is used as a positive electrode active material, polyvinylidene fluoride as a binder for the positive electrode active material, and acetylene black as a conductive agent. The mixture was mixed at a weight ratio of 87: 8: 5, and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. This paste was uniformly applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried and then pressed to produce a strip-like positive electrode sheet provided with a positive electrode active material layer. A positive electrode lead was welded to one end of the positive electrode sheet.
[0013]
(2) Preparation of negative electrode Graphite is used as a negative electrode active material, carboxymethyl cellulose as a binder and styrene butadiene rubber are mixed at a weight ratio of 95: 2: 3 to this graphite, and appropriate moisture is added. A negative electrode mixture paste was prepared. This paste was uniformly applied to both surfaces of a current collector made of a copper foil having a thickness of 15 μm, and a strip-shaped negative electrode sheet was produced by the same method as that for the positive electrode sheet. A negative electrode lead was welded to one end of the negative electrode sheet.
[0014]
(3) Preparation of electrolytic solution Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 to prepare a nonaqueous solvent. To this non-aqueous solvent, LiPF 6 which is a lithium salt as an electrolyte was added to a concentration of 1.0 mol / l to prepare a non-aqueous electrolyte. Next, lithium borate was added to the non-aqueous electrolyte so as to have a saturated concentration (0.5 wt%).
[0015]
{Circle over (4)} Production of Square Battery A battery 1 having the structure shown in FIG. 1 was produced.
The power generation element 2 was produced by laminating the positive electrode sheet 3 produced as described in (1) above and the negative electrode sheet 4 produced as described above in (2) through a separator 5 and wound into an oval spiral. The separator 5 was a polyethylene microporous film having a thickness of 20 μm.
The power generation element 2 was housed in a rectangular battery case 6, and the negative electrode lead 11 was connected to the negative electrode terminal 9 provided in the battery lid 7. Further, the positive electrode lead 10 was connected to the battery lid 7. The battery lid 7 was attached to the opening of the battery case 6 by laser welding. Into the battery case 6, the electrolyte solution 12 prepared in the above (3) was vacuum injected from the injection port provided in the battery lid 7 to an extent that it does not become excessive. In this way, a square battery having a width of 30 mm, a height of 48 mm, and a thickness of 5 mm was assembled. The battery lid 7 is provided with a safety valve 8.
[0016]
(2) Cycle test The battery produced by the above method was charged to 4.1 V at a constant current of 800 mA (1 CA) in an atmosphere of 60 ° C., and charged at a constant voltage of 4.1 V for 3 hours after the start of charging. Went. Thereafter, this battery was discharged at a constant current of 800 mA to 2.75 V, and the initial discharge capacity was measured. This was defined as one cycle, and the discharge capacity was measured by repeating a predetermined cycle.
[0017]
<Comparative Example 1>
A battery was prepared and tested in the same manner as in Example 1 except that lithium borate was not added.
[0018]
2. Results and Discussion FIG. 2 shows a graph showing the relationship between the number of cycles and the capacity retention rate in the batteries of Example 1 and Comparative Example 1. In the figure, symbol Δ represents the battery of Example 1, and symbol O represents the battery of Comparative Example 1.
The capacity retention rate (%) was obtained by dividing the discharge capacity after each cycle by the initial discharge capacity.
[0019]
In the battery of Example 1 to which lithium borate was added, the capacity retention after 50 cycles was 81%, indicating good cycle characteristics. On the other hand, in the battery of Comparative Example 1 in which no lithium borate was added, the capacity retention after 50 cycles was reduced to 78%. From FIG. 2, it is estimated that when the number of cycles is further increased, the difference in capacity maintenance ratio between the battery of Example 1 and the battery of Comparative Example 1 at the same number of cycles is further increased.
[0020]
Thus, the battery in which lithium borate was added to the nonaqueous electrolytic solution showed better cycle characteristics than the battery without addition. This is presumably because lithium borate has removed hydrofluoric acid produced by the decomposition of LiPF 6 that is an electrolyte salt.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the battery of this example. FIG. 2 is a graph showing the relationship between the number of cycles and the capacity retention rate in the batteries of Example 1 and Comparative Example 1.
1 ... Battery (non-aqueous electrolyte secondary battery)
3 ... Positive electrode sheet (positive electrode)
4 ... Negative electrode sheet (negative electrode)
12 ... Non-aqueous electrolyte

Claims (3)

非水溶媒に電解質塩としてLiPFを含む非水電解液を備えた非水電解質二次電池であって、
前記非水電解液がホウ酸リチウムを含むことを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing LiPF 6 as an electrolyte salt in a non-aqueous solvent,
The non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte contains lithium borate.
前記電解液中のホウ酸リチウム濃度が0.1重量%以上であることを特徴とする請求項1に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium borate concentration in the electrolytic solution is 0.1 wt% or more. 非水溶媒に電解質塩としてLiPFを含む非水電解液を備えた非水電解質二次電池を製造する方法であって、
前記非水電解液にホウ酸リチウムを濃度が0.1重量%以上となるように添加することを特徴とする非水電解質二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing LiPF 6 as an electrolyte salt in a non-aqueous solvent,
A method for producing a non-aqueous electrolyte secondary battery, wherein lithium borate is added to the non-aqueous electrolyte so as to have a concentration of 0.1% by weight or more.
JP2003208257A 2003-08-21 2003-08-21 Nonaqueous electrolyte secondary battery and its manufacturing method Pending JP2005071617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208257A JP2005071617A (en) 2003-08-21 2003-08-21 Nonaqueous electrolyte secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208257A JP2005071617A (en) 2003-08-21 2003-08-21 Nonaqueous electrolyte secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005071617A true JP2005071617A (en) 2005-03-17

Family

ID=34401614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208257A Pending JP2005071617A (en) 2003-08-21 2003-08-21 Nonaqueous electrolyte secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005071617A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529628A (en) * 2007-06-15 2010-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Additives for lithium ion batteries
JP2015090858A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2016051600A (en) * 2014-08-29 2016-04-11 富山薬品工業株式会社 Nonaqueous electrolytic solution for power storage device
WO2019039346A1 (en) 2017-08-24 2019-02-28 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2019039345A1 (en) 2017-08-24 2019-02-28 三井化学株式会社 Lithium secondary battery and nonaqueous electrolyte solution
CN111244552A (en) * 2020-03-18 2020-06-05 广州天赐高新材料股份有限公司 Electrolyte of lithium secondary battery, preparation method of electrolyte and lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213016A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH09129228A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09180758A (en) * 1995-12-25 1997-07-11 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH1040956A (en) * 1996-05-03 1998-02-13 Moli Energy 1990 Ltd Usage of boron oxide additive in rechargeable non-aqueous lithium battery
JPH10223258A (en) * 1997-01-31 1998-08-21 Moli Energy 1990 Ltd Additive for improving charge/discharge life of rechargeable nonaqueous lithium battery
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213016A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH09129228A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09180758A (en) * 1995-12-25 1997-07-11 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH1040956A (en) * 1996-05-03 1998-02-13 Moli Energy 1990 Ltd Usage of boron oxide additive in rechargeable non-aqueous lithium battery
JPH10223258A (en) * 1997-01-31 1998-08-21 Moli Energy 1990 Ltd Additive for improving charge/discharge life of rechargeable nonaqueous lithium battery
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529628A (en) * 2007-06-15 2010-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Additives for lithium ion batteries
US9318772B2 (en) 2007-06-15 2016-04-19 Robert Bosch Gmbh Additives for lithium-ion accumulators
JP2015090858A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2016051600A (en) * 2014-08-29 2016-04-11 富山薬品工業株式会社 Nonaqueous electrolytic solution for power storage device
WO2019039346A1 (en) 2017-08-24 2019-02-28 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2019039345A1 (en) 2017-08-24 2019-02-28 三井化学株式会社 Lithium secondary battery and nonaqueous electrolyte solution
KR20200035095A (en) 2017-08-24 2020-04-01 미쓰이 가가쿠 가부시키가이샤 Lithium secondary battery and non-aqueous electrolyte
KR20200035094A (en) 2017-08-24 2020-04-01 미쓰이 가가쿠 가부시키가이샤 Non-aqueous electrolyte for battery and lithium secondary battery
US11652237B2 (en) 2017-08-24 2023-05-16 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution including boron compound additive having higher reductive decomposition potential than additional additive and lithium secondary battery including the same
CN111244552A (en) * 2020-03-18 2020-06-05 广州天赐高新材料股份有限公司 Electrolyte of lithium secondary battery, preparation method of electrolyte and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5622525B2 (en) Lithium ion secondary battery
US11094998B2 (en) Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same
JP2009105069A (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
US11870055B2 (en) Surface-fluorinated silicon-containing electrodes
JPH08236155A (en) Lithium secondary battery
JP2005071641A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JPH04284374A (en) Nonaqueous electrolytic secondary battery
JP2000021442A (en) Non-aqueous electrolyte secondary battery
JP6390915B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP4174691B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP4034940B2 (en) Lithium secondary battery using non-aqueous electrolyte
JP2005071617A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2011134547A (en) Lithium ion secondary battery
JP7125655B2 (en) negative electrode
CN112909338A (en) Lithium iron disulfide battery electrolyte additive, electrolyte and lithium iron disulfide battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP2009043535A (en) Method for producing non-aqueous electrolyte battery
CN111490290A (en) Nonaqueous electrolyte for lithium secondary battery
CN104701571B (en) A kind of lithium ion battery high-temperature-resistant high-pressure-resistant electrolyte
JP3322182B2 (en) Non-aqueous electrolyte for batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929