[go: up one dir, main page]

JP2005069052A - Piezoelectric pump - Google Patents

Piezoelectric pump Download PDF

Info

Publication number
JP2005069052A
JP2005069052A JP2003297136A JP2003297136A JP2005069052A JP 2005069052 A JP2005069052 A JP 2005069052A JP 2003297136 A JP2003297136 A JP 2003297136A JP 2003297136 A JP2003297136 A JP 2003297136A JP 2005069052 A JP2005069052 A JP 2005069052A
Authority
JP
Japan
Prior art keywords
piezoelectric
liquid
piezoelectric vibrator
longitudinal direction
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297136A
Other languages
Japanese (ja)
Other versions
JP3859627B2 (en
Inventor
Hideto Tanaka
秀登 田中
Toshiyuki Nakamura
敏幸 中村
Nobuhiko Henmi
信彦 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Co Ltd
Original Assignee
Suzuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Co Ltd filed Critical Suzuki Co Ltd
Priority to JP2003297136A priority Critical patent/JP3859627B2/en
Publication of JP2005069052A publication Critical patent/JP2005069052A/en
Application granted granted Critical
Publication of JP3859627B2 publication Critical patent/JP3859627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric pump miniaturized and lightened by simplification of a pump structure and capable of accurately sending liquid without pulsation. <P>SOLUTION: A piezoelectric vibrator 1 having piezoelectric elements 3 provided on plural part in a longitudinal direction of a deformable shim material 3 is supported by and stored in a part of a pipe wall part 4 of a pump chamber 10. Progressive wave transmitting from one end to another end in a longitudinal direction of the piezoelectric vibrator 1 is generated by displacement generated by applying drive voltage provided with phase difference to each piezoelectric elements 3. Liquid in the pump chamber 10 is sent while being stirred between the piezoelectric vibrator 1 and the pipe wall part 4 by transmission of the progressive wave. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、振動子として圧電素子を利用した圧電ポンプに関する。   The present invention relates to a piezoelectric pump using a piezoelectric element as a vibrator.

従来、圧電素子を駆動源としたポンプは小型軽量化が可能で、しかも低騒音で電磁ノイズが無いなどのメリットがあるため、液体を送液する小型ポンプの開発が行われている。圧電素子を駆動源としたポンプの一例について説明する。ポンプ室と流路とを接続する逆止弁とポンプ室内に設けられた圧電素子の変位による体積変化を利用して一方向へ送液するもの(特許文献1参照)、圧電素子の伸縮運動により発生した振動により回転駆動される超音波モータを駆動源として絞りローラを備えた移動体を回転させて絞りローラによりチューブを絞って送液するもの(特許文献2参照)、積層型電歪素子を流路に外接させてチューブを変形させて送液するもの(特許文献3参照)等が提案されている。
特開2000−265964号 特開2001−115972号 特開平5−202857号
Conventionally, a pump using a piezoelectric element as a drive source can be reduced in size and weight, and has advantages such as low noise and no electromagnetic noise. Therefore, a small pump for feeding a liquid has been developed. An example of a pump using a piezoelectric element as a drive source will be described. A check valve that connects the pump chamber and the flow path, and one that feeds liquid in one direction using the volume change caused by the displacement of the piezoelectric element provided in the pump chamber (see Patent Document 1). An ultrasonic motor that is rotationally driven by the generated vibration is used as a drive source to rotate a moving body provided with a squeezing roller and squeeze the tube with the squeezing roller to feed the liquid (see Patent Document 2). There has been proposed one that deforms a tube by circumscribing a flow path and feeds liquid (see Patent Document 3).
JP 2000-265964 A JP 2001-115972 A JP-A-5-202857

特許文献1に示すポンプは、逆止弁の開閉に伴う送液量のばらつきが発生し易い。また、液体の流路に逆止弁が設けられるため、流路抵抗のばらつきが大きくなり送液に脈動が発生し易くポンプ効率が低下する。また。逆止弁の移動が停止するまで送液量に誤差が生じ易く、逆止弁による封止効果の持続が経時変化と共に難しくなる。
また、特許文献2は、絞りローラとチューブとの接触部が摩耗し易く、定期的なメンテナンスが必要になる。また、移動体が1回転する間に絞りローラによるチューブを絞り出す角度範囲が決まっているため、移動体の回転数変化によってのみ送液量を変化させることができため送液する速度が遅く、モータ負荷が変化するため送液量を変化させ難い。また、絞りローラでチューブを潰しながら送液するため脈動が発生し易く、更にはチューブの経時変化に伴う摩耗や変形を考慮すると材質の選定が難しい。また更に、部品点数が多くポンプの小型化が難しい。
更に、特許文献3のポンプは、チューブの経時変化に伴う摩耗や変形が生じ易いうえに、チューブに外接して積層型電歪素子を設ける必要があるので、小型化が図り難く、チューブの変形によって送液量の誤差が生じ易くなる。
The pump shown in Patent Document 1 is likely to cause variations in the amount of liquid that is delivered when the check valve is opened and closed. In addition, since a check valve is provided in the liquid flow path, variation in flow path resistance is increased, and pulsation is likely to occur in liquid feeding, resulting in a decrease in pump efficiency. Also. An error is likely to occur in the amount of liquid fed until the check valve stops moving, and it becomes difficult to maintain the sealing effect of the check valve with time.
In Patent Document 2, the contact portion between the squeezing roller and the tube is easily worn, and regular maintenance is required. In addition, since the angle range for squeezing the tube by the squeezing roller is determined during one rotation of the moving body, the liquid feeding amount can be changed only by changing the rotational speed of the moving body, so the liquid feeding speed is slow, and the motor It is difficult to change the amount of liquid delivered because the load changes. In addition, since the liquid is fed while the tube is crushed by the squeezing roller, pulsation is likely to occur, and further, it is difficult to select a material in consideration of wear and deformation associated with the aging of the tube. Furthermore, there are many parts and it is difficult to reduce the size of the pump.
Furthermore, the pump of Patent Document 3 is likely to be worn and deformed with the aging of the tube, and it is necessary to provide a laminated electrostrictive element that circumscribes the tube. Therefore, an error in the amount of liquid to be fed easily occurs.

本発明の目的は、上記従来技術の課題を解決し、ポンプ構造の簡略化による小型軽量化を図り、脈動することなく精度良く送液でき、送液する方向や送液量の制御がし易く、長期使用に耐え得る圧電ポンプを提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the size and weight by simplifying the pump structure, to deliver liquid accurately without pulsation, and to easily control the direction and amount of liquid feeding. Another object of the present invention is to provide a piezoelectric pump that can withstand long-term use.

本発明は上記目的を達成するため、次の構成を備える。
変形可能な基材の長手方向に圧電素子が複数箇所に設けられた圧電振動子がポンプ室の管壁部の一部に支持されて収容されており、各圧電素子へ位相差を設けた駆動電圧の印加により生じた変位により圧電振動子の長手方向の一端から他端へ伝播する進行波を生成し、該進行波の伝播により圧電振動子と管壁部との間でポンプ室の液体を煽りながら送液することを特徴とする。
各圧電素子への駆動電圧を印加する方向を切り換えることで、進行波の伝播方向を変えて送液方向が切り換えられることを特徴とする。
各圧電素子の振動周波数を変化させて液体の流速を変化させることを特徴とする。
圧電振動子は基材の短手方向の一辺側が管壁部に固定されており、ポンプ室を流れる液体の送液方向と直交する管壁部の断面形状は固定端から自由端に向かって空間部が拡大するような傾斜壁面に形成されていることを特徴とする。
或いは圧電振動子の短手方向中央部が管壁部より管路側に突設された固定部材に固定されており、圧電素子が設けられた基材の近傍には、短手方向にスリットが各々形成されていることを特徴とする。この場合、基材の長手方向一端側の圧電素子に駆動電圧を印加すると共に長手方向他端側の圧電素子に位相差90度で駆動電圧を印加して圧電振動子の短手方向に山が連なった進行波を形成することを特徴とする。
In order to achieve the above object, the present invention comprises the following arrangement.
A piezoelectric vibrator in which a plurality of piezoelectric elements are provided in the longitudinal direction of the deformable base material is supported and accommodated by a part of the tube wall of the pump chamber, and a drive in which a phase difference is provided to each piezoelectric element A traveling wave propagating from one end of the longitudinal direction of the piezoelectric vibrator to the other end is generated by the displacement caused by the application of the voltage, and the liquid in the pump chamber is caused to flow between the piezoelectric vibrator and the tube wall portion by the propagation of the traveling wave. It is characterized in that the liquid is fed while being beaten.
By switching the direction in which the driving voltage is applied to each piezoelectric element, the liquid-feeding direction can be switched by changing the traveling direction of the traveling wave.
It is characterized in that the liquid flow velocity is changed by changing the vibration frequency of each piezoelectric element.
In the piezoelectric vibrator, one side of the substrate in the short direction is fixed to the tube wall, and the cross-sectional shape of the tube wall perpendicular to the liquid feeding direction of the liquid flowing through the pump chamber is a space from the fixed end toward the free end. It is formed in the inclined wall surface which a part expands, It is characterized by the above-mentioned.
Alternatively, the central portion in the short direction of the piezoelectric vibrator is fixed to a fixing member protruding from the tube wall to the pipe side, and there are slits in the short direction in the vicinity of the base material on which the piezoelectric element is provided. It is formed. In this case, a driving voltage is applied to the piezoelectric element on one end in the longitudinal direction of the base material, and a driving voltage is applied to the piezoelectric element on the other end in the longitudinal direction with a phase difference of 90 degrees. It is characterized by forming a continuous traveling wave.

上述した圧電ポンプを用いれば、基材の長手方向に圧電素子が複数箇所に設けられた圧電振動子がポンプ室の管壁部の一部に支持されて収容されており、各圧電素子へ位相差を設けた駆動電圧の印加により生じた変位により圧電振動子の長手方向の一端から他端へ伝播する進行波を生成し、該進行波の伝播により圧電振動子と管壁部との間でポンプ室の液体を煽りながら送液するので、液体の流路内に駆動源を設けることができポンプの小型化軽量化が図れる。また、逆止弁が存在しないので流路抵抗が少なくしかも管路の変形を伴わずに送液が行えるので、脈動なく精度良く送液でき、ポンプ効率を向上できる。また、チューブのように流路の絞り(変形)を行わずに送液できるので、長期使用に耐え得る圧電ポンプを提供することができる。
また、圧電振動子の振動による進行波の伝播方向を変えることにより送液方向が切り換えられ、圧電素子の振動周波数を変化させて液体の流速を変化させることができるので、送液する方向や送液量の制御がし易く、調整範囲の広い制御が行える。
When the above-described piezoelectric pump is used, a piezoelectric vibrator having piezoelectric elements provided at a plurality of locations in the longitudinal direction of the base material is supported and accommodated by a part of the tube wall portion of the pump chamber. A traveling wave propagating from one end to the other end in the longitudinal direction of the piezoelectric vibrator is generated by the displacement caused by the application of the driving voltage provided with a phase difference, and the propagation of the traveling wave causes a propagation wave between the piezoelectric vibrator and the tube wall. Since the liquid in the pump chamber is pumped while being pumped, a drive source can be provided in the liquid flow path, and the pump can be reduced in size and weight. Further, since there is no check valve, liquid flow can be carried out with little flow resistance and without deformation of the pipe line, so that liquid can be fed with high accuracy without pulsation and pump efficiency can be improved. In addition, since the liquid can be fed without reducing (deforming) the flow path like a tube, a piezoelectric pump that can withstand long-term use can be provided.
In addition, the liquid feeding direction is switched by changing the propagation direction of the traveling wave due to the vibration of the piezoelectric vibrator, and the liquid flow velocity can be changed by changing the vibration frequency of the piezoelectric element. It is easy to control the amount of liquid and can perform control with a wide adjustment range.

以下、本発明に係る圧電ポンプの最良の実施形態について添付図面とともに詳細に説明する。本実施形態の圧電ポンプは変形可能な基材の長手方向に圧電素子が複数箇所に設けられた圧電振動子がポンプ室の管壁部の一部に支持されて収容されており、各圧電素子へ位相差を設けた駆動電圧の印加により生じた変位により圧電振動子の長手方向の一端から他端へ伝播する進行波を生成し、該進行波の伝播により圧電振動子と管壁部との間でポンプ室の液体を煽りながら送液するポンプに広く適用可能である。   Hereinafter, the best embodiment of a piezoelectric pump according to the present invention will be described in detail with reference to the accompanying drawings. In the piezoelectric pump of this embodiment, a piezoelectric vibrator in which a plurality of piezoelectric elements are provided in a longitudinal direction of a deformable base material is supported and accommodated in a part of a tube wall portion of the pump chamber. A traveling wave propagating from one end of the longitudinal direction of the piezoelectric vibrator to the other end is generated by the displacement caused by the application of the driving voltage with a phase difference to the piezoelectric vibrator. The present invention can be widely applied to pumps that feed liquid while pumping liquid in the pump chamber.

図1乃至図3において、圧電振動子の代表的な構成について説明する。図1において、圧電振動子1は、変形可能な基材(シム材)2の長手方向に圧電素子3が複数箇所に設けられている。シム材2としては、例えばリン青銅、ステンレススチール等の金属板材、或いはCFRP(カーボン強化プラスチック)などの樹脂フィルム材が用いられる。シム材2は、圧電素子3に電圧を印加する電極として用いられ、かつ振動子としての強度を持たせるために用いられる。圧電素子3は、シム材2の両面に設けられるバイモルフタイプ、シム材2の片面に設けられるユニモルフタイプの何れであっても良い。圧電素子2は、接着剤による貼付け、シム材2への圧電材料の蒸着、溶射等によって形成することも可能である。また、本実施例では圧電素子3どうしの間隔は均一であるが、必ずしも間隔は均一でなくても良く、駆動電圧(印加電圧)に位相差を設けることで均一な進行波を形成するようにしても良い。また、シム材2の長手方向に設けられる圧電素子3の数も偶数、奇数を問わずに様々に設計できる。   A typical configuration of the piezoelectric vibrator will be described with reference to FIGS. In FIG. 1, a piezoelectric vibrator 1 is provided with a plurality of piezoelectric elements 3 in a longitudinal direction of a deformable base material (shim material) 2. As the shim material 2, for example, a metal plate material such as phosphor bronze or stainless steel, or a resin film material such as CFRP (carbon reinforced plastic) is used. The shim material 2 is used as an electrode for applying a voltage to the piezoelectric element 3 and is used for giving strength as a vibrator. The piezoelectric element 3 may be either a bimorph type provided on both sides of the shim material 2 or a unimorph type provided on one side of the shim material 2. The piezoelectric element 2 can also be formed by sticking with an adhesive, vapor deposition of a piezoelectric material on the shim material 2, thermal spraying, or the like. In this embodiment, the intervals between the piezoelectric elements 3 are uniform, but the intervals are not necessarily uniform, and a uniform traveling wave is formed by providing a phase difference in the drive voltage (applied voltage). May be. Further, the number of piezoelectric elements 3 provided in the longitudinal direction of the shim material 2 can be variously designed regardless of whether it is an even number or an odd number.

圧電振動子1は液体の流路内で一部が固定されている。本実施例では、短手方向(幅方向)の一辺側が管壁部(固定部)4に固定されている。各圧電素子3への通電により圧電振動子1の自由端5を振動させて進行波を生成するように構成されている。具体的には、各圧電素子3へ位相差を設けた駆動電圧の印加により生じた変位により圧電振動子1の長手方向の一端(本実施例では左端)から他端(本実施例では右端)へ伝播する進行波を生成し、該進行波の伝播により圧電振動子1と管壁部4との間でポンプ室の液体7を煽りながら送液する。   A part of the piezoelectric vibrator 1 is fixed in the liquid flow path. In this embodiment, one side of the short direction (width direction) is fixed to the tube wall portion (fixed portion) 4. It is configured to generate a traveling wave by vibrating the free end 5 of the piezoelectric vibrator 1 by energizing each piezoelectric element 3. Specifically, due to the displacement caused by the application of a driving voltage having a phase difference to each piezoelectric element 3, the longitudinal direction of the piezoelectric vibrator 1 (left end in this embodiment) to the other end (right end in this embodiment). A traveling wave propagating to the inside is generated, and the liquid 7 in the pump chamber is fed between the piezoelectric vibrator 1 and the tube wall portion 4 by the propagation of the traveling wave.

図2に送液管6内で圧電振動子1の振動により作り出される進行波の一例について説明する。図2(a)〜(d)は、進行波が左側から右側へ伝播する状態を示す。圧電振動子1は図面に垂直方向奥側で管壁部4に固定されているものとする。圧電素子3には左端側の圧電素子3aから右側の圧電素子3bへと順次位相差を設けた電圧が印加される。このとき、圧電振動子1の変位により管壁部4との間で液体7が煽られることにより送液管6内を矢印F方向へ送液される。図2(a)〜(d)の状態を立体的に示したのが、図3(a)〜(d)である。図3(a)〜(d)において、圧電振動子1の自由端5側が大きく波打って進行波が形成され、矢印F方向へ送液される。図2(d)の状態から図2(a)の状態へ移行する動作を繰り返し行って送液管6内を矢印F方向へ送液が行われる。   An example of a traveling wave created by the vibration of the piezoelectric vibrator 1 in the liquid feeding pipe 6 will be described with reference to FIG. 2A to 2D show a state in which traveling waves propagate from the left side to the right side. It is assumed that the piezoelectric vibrator 1 is fixed to the tube wall portion 4 on the back side in the vertical direction in the drawing. A voltage having a phase difference is sequentially applied to the piezoelectric element 3 from the leftmost piezoelectric element 3a to the right piezoelectric element 3b. At this time, the liquid 7 is squeezed between the tube wall portion 4 due to the displacement of the piezoelectric vibrator 1, so that the liquid is fed in the direction of arrow F through the liquid feeding tube 6. FIGS. 3A to 3D show the states of FIGS. 2A to 2D in a three-dimensional manner. 3A to 3D, the free end 5 side of the piezoelectric vibrator 1 is greatly waved to form a traveling wave, which is fed in the direction of arrow F. The operation of shifting from the state shown in FIG. 2D to the state shown in FIG. 2A is repeated, and the liquid is supplied in the direction of arrow F through the liquid supply pipe 6.

尚、送液方向を矢印F方向と逆方向にする場合には、図2(d)から図2(a)の順に位相差を設けて各圧電素子3a〜3dに駆動電圧を印加することで液体7の送液方向を切り換えることができる。また、各圧電素子3a〜3dの振動周波数を変化させることで液体7の流速を変化させることができる。   When the liquid feeding direction is opposite to the arrow F direction, a phase difference is provided in the order from FIG. 2D to FIG. 2A, and a driving voltage is applied to each of the piezoelectric elements 3a to 3d. The liquid feeding direction of the liquid 7 can be switched. Moreover, the flow velocity of the liquid 7 can be changed by changing the vibration frequency of each piezoelectric element 3a-3d.

次に圧電振動子の他の構成について図4及び図5を参照して説明する。上述した実施例では圧電振動子1の短手方向(幅方向)の一辺側が管壁部4に固定されていた。本実施例では、図4において、圧電振動子1の短手方向(幅方向)の一部、例えば中央部が管壁部4より管内に突設された固定部材8に挟持固定されている。この固定部材8は、圧電素子3へ駆動電圧を印加する電極部として利用される。また、圧電素子3は、シム材2の長手方向両端で両面側に設けられている。圧電素子3が設けられたシム材2の近傍には、短手方向(幅方向)にスリット9が各々形成されている。よって、圧電素子3への駆動電圧の印加によって発生する変位が、シム材2の短手方向(幅方向)両側に設けられた連結部2aを通じて長手方向へ伝播する。即ち、圧電振動子1には、進行波の山がシム材2の幅方向に連なった波が長手方向へ伝播する。このように、シム材2にスリット9を設けたのは、仮にスリット9を設けない場合には、圧電素子3の変位が進行波として長手方向に平行に伝播されずに、シム材2自体の変形により吸収されてしまうのを防ぐためである。尚、スリット9の長さや数は任意に変更できるものとする。また、シム材2の形状が短冊状であればスリット9を省略することも可能である。   Next, another configuration of the piezoelectric vibrator will be described with reference to FIGS. In the embodiment described above, one side of the piezoelectric vibrator 1 in the short direction (width direction) is fixed to the tube wall 4. In this embodiment, in FIG. 4, a part of the piezoelectric vibrator 1 in the short side direction (width direction), for example, the central part is sandwiched and fixed by a fixing member 8 protruding from the pipe wall part 4 into the pipe. The fixing member 8 is used as an electrode portion that applies a driving voltage to the piezoelectric element 3. The piezoelectric elements 3 are provided on both sides at both ends in the longitudinal direction of the shim material 2. In the vicinity of the shim material 2 on which the piezoelectric element 3 is provided, slits 9 are formed in the lateral direction (width direction). Therefore, the displacement generated by the application of the driving voltage to the piezoelectric element 3 propagates in the longitudinal direction through the connecting portions 2a provided on both sides of the shim material 2 in the short direction (width direction). That is, in the piezoelectric vibrator 1, a wave in which a mountain of traveling waves continues in the width direction of the shim 2 propagates in the longitudinal direction. As described above, the slit 9 is provided in the shim material 2. If the slit 9 is not provided, the displacement of the piezoelectric element 3 is not propagated in parallel in the longitudinal direction as a traveling wave, and the shim material 2 itself This is to prevent absorption by deformation. Note that the length and number of the slits 9 can be arbitrarily changed. Further, if the shape of the shim material 2 is a strip shape, the slit 9 can be omitted.

上述した圧電振動子1の振動により作り出される進行波の一例について、図5(a)〜(d)を参照して説明する。図5(a)において、シム材2の長手方向(矢印F方向)に進行波を形成する場合について説明する。シム材2の長手方向左側端部の圧電素子3に駆動電圧を印加して瞬間的に上に凸となるように変位させ、長手方向右側端部の圧電素子3に位相差90度で駆動電圧を印加して瞬間的に上に凸となるように変位させると、図5(b)〜(d)に示すようにシム材2の両側の連結部2aを介して長手方向(矢印F方向)へ進行波が伝播する。この進行波の伝播により圧電振動子1と管壁部4との間で液体を煽りながら矢印F方向へ送液する。   An example of the traveling wave generated by the vibration of the piezoelectric vibrator 1 described above will be described with reference to FIGS. The case where a traveling wave is formed in the longitudinal direction of the shim material 2 (arrow F direction) in FIG. A driving voltage is applied to the piezoelectric element 3 at the left end portion in the longitudinal direction of the shim material 2 to momentarily displace it so as to protrude upward, and the driving voltage is applied to the piezoelectric element 3 at the right end portion in the longitudinal direction with a phase difference of 90 degrees. Is applied and momentarily displaced so as to be convex upward, as shown in FIGS. 5 (b) to 5 (d), the longitudinal direction (the direction of arrow F) via the connecting portions 2 a on both sides of the shim material 2. A traveling wave propagates to With the propagation of the traveling wave, the liquid is fed between the piezoelectric vibrator 1 and the tube wall part 4 in the direction of arrow F while being sprinkled.

次に、前述した圧電振動子1を用いた圧電ポンプの一例について図6(a)(b)及び図7(a)(b)を参照して説明する。図6(a)(b)は、図1乃至図3に示す圧電振動子1を用いた4連式の圧電ポンプである。ポンプ室10の両側に配管接続部11を有し、ポンプ室10内には圧電振動子1が内蔵されている。圧電振動子1は短手方向(幅方向)の一辺側がポンプ室10を形成する管壁部4に挟持されて固定されている。シム材2からは各圧電素子3に駆動電圧を印加するための電極部12が設けられる。ポンプ室10の断面形状は、圧電振動子1の幅方向(送液方向と直交する方向)に固定端から自由端に向かって空間部が拡大するような傾斜壁面13が上下に形成されている。これは、圧電振動子1の固定端から自由端にむかうに従って、進行波の変位量(振幅)が大きくなることに対応したもので、圧電振動子1の振動により生成される進行波により管壁部4との間で液体7を確実に追い込んで一方向へ送液できるようにするためである。   Next, an example of a piezoelectric pump using the above-described piezoelectric vibrator 1 will be described with reference to FIGS. 6 (a) and 6 (b) and FIGS. 7 (a) and 7 (b). FIGS. 6A and 6B are quadruple piezoelectric pumps using the piezoelectric vibrator 1 shown in FIGS. Piping connection portions 11 are provided on both sides of the pump chamber 10, and the piezoelectric vibrator 1 is built in the pump chamber 10. One side of the piezoelectric vibrator 1 in the short side direction (width direction) is sandwiched and fixed by a tube wall part 4 forming the pump chamber 10. An electrode portion 12 for applying a driving voltage to each piezoelectric element 3 is provided from the shim material 2. The sectional shape of the pump chamber 10 is such that an inclined wall surface 13 is formed vertically so that the space portion expands from the fixed end to the free end in the width direction of the piezoelectric vibrator 1 (direction orthogonal to the liquid feeding direction). . This corresponds to the amount of displacement (amplitude) of the traveling wave increasing from the fixed end of the piezoelectric vibrator 1 to the free end. The tube wall is generated by the traveling wave generated by the vibration of the piezoelectric vibrator 1. This is to ensure that the liquid 7 is driven into and out of the part 4 and fed in one direction.

図7(a)(b)は、図4及び図5に示す圧電振動子1を用いた振動伝達式の圧電ポンプである。ポンプ室10の両側に配管接続部11を有し、ポンプ室10が断面矩形状に形成されている(或いは断面円形状でもよい)。ポンプ室10には圧電振動子1が長手方向両端側の一部が固定されて内蔵されている。圧電振動子1の短手方向(幅方向)の中央部が管壁部4より管路側に突設された固定部材8に固定されている。この固定部材8は、圧電素子3へ電圧印加する電極部として利用される。シム材2の長手方向一端側(左端側)の圧電素子3に駆動電圧を印加すると共に長手方向他端側(右端側)の圧電素子3に位相差90度で駆動電圧を印加してシム材2の幅方向に山が連なった進行波が形成される。この進行波により管壁部4との間で液体7を追い込んで一方向へ送液される。   7A and 7B show a vibration transmission type piezoelectric pump using the piezoelectric vibrator 1 shown in FIGS. Piping connection portions 11 are provided on both sides of the pump chamber 10, and the pump chamber 10 is formed in a rectangular cross section (or may be circular in cross section). In the pump chamber 10, the piezoelectric vibrator 1 is built in with a part fixed at both ends in the longitudinal direction. A central portion of the piezoelectric vibrator 1 in the short direction (width direction) is fixed to a fixing member 8 protruding from the tube wall 4 toward the pipe line. The fixing member 8 is used as an electrode portion for applying a voltage to the piezoelectric element 3. A driving voltage is applied to the piezoelectric element 3 on one end side (left end side) in the longitudinal direction of the shim material 2 and a driving voltage is applied to the piezoelectric element 3 on the other end side (right end side) in the longitudinal direction with a phase difference of 90 degrees. A traveling wave in which mountains are continuous in the width direction of 2 is formed. With this traveling wave, the liquid 7 is driven between the tube wall 4 and fed in one direction.

上述した圧電ポンプとしては、電子機器の冷却やインスリンの投入用など幅広い利用が見込まれ、液体としては、水の他に不凍液、薬液など様々なものが用いられる。   The above-described piezoelectric pump is expected to be widely used for cooling electronic devices and supplying insulin, and various liquids such as antifreeze and chemicals are used in addition to water.

圧電振動子の平面図及び正面図である。It is the top view and front view of a piezoelectric vibrator. 図1の圧電振動子による送液動作の状態説明図である。FIG. 2 is a state explanatory diagram of a liquid feeding operation by the piezoelectric vibrator of FIG. 1. 図1の圧電振動子の振動動作の斜視説明図である。FIG. 2 is a perspective explanatory view of a vibration operation of the piezoelectric vibrator of FIG. 1. 他例に係る圧電振動子の平面図及び正面図である。It is the top view and front view of the piezoelectric vibrator which concern on another example. 図4の圧電振動子の振動動作の斜視説明図である。FIG. 5 is a perspective explanatory view of the vibration operation of the piezoelectric vibrator of FIG. 4. 図1の圧電振動子を用いた圧電ポンプの断面図である。It is sectional drawing of the piezoelectric pump using the piezoelectric vibrator of FIG. 図4の圧電振動子を用いた圧電ポンプの断面図である。It is sectional drawing of the piezoelectric pump using the piezoelectric vibrator of FIG.

符号の説明Explanation of symbols

1 圧電振動子
2 シム材
2a 連結部
3 圧電素子
4 管壁部
5 自由端
6 送液管
7 液体
8 固定部材
9 スリット
10 ポンプ室
11 配管接続部
12 電極部
13 傾斜壁面
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrator 2 Shim material 2a Connection part 3 Piezoelectric element 4 Tube wall part 5 Free end 6 Liquid supply pipe 7 Liquid 8 Fixing member 9 Slit 10 Pump chamber 11 Pipe connection part 12 Electrode part 13 Inclined wall surface

Claims (6)

変形可能な基材の長手方向に圧電素子が複数箇所に設けられた圧電振動子がポンプ室の管壁部の一部に支持されて収容されており、各圧電素子へ位相差を設けた駆動電圧の印加により生じた変位により圧電振動子の長手方向の一端から他端へ伝播する進行波を生成し、該進行波の伝播により圧電振動子と管壁部との間でポンプ室の液体を煽りながら送液することを特徴とする圧電ポンプ。   A piezoelectric vibrator in which a plurality of piezoelectric elements are provided in the longitudinal direction of the deformable base material is supported and accommodated by a part of the tube wall of the pump chamber, and a drive in which a phase difference is provided to each piezoelectric element A traveling wave propagating from one end of the longitudinal direction of the piezoelectric vibrator to the other end is generated by the displacement caused by the application of the voltage, and the liquid in the pump chamber is caused to flow between the piezoelectric vibrator and the tube wall portion by the propagation of the traveling wave. A piezoelectric pump characterized in that the liquid is fed while being swirled. 各圧電素子への駆動電圧を印加する方向を切り換えることで、進行波の伝播方向を変えて送液方向が切り換えられることを特徴とする請求項1記載の圧電ポンプ。   2. The piezoelectric pump according to claim 1, wherein the liquid feeding direction is switched by changing the propagation direction of the traveling wave by switching the direction in which the driving voltage is applied to each piezoelectric element. 各圧電素子の振動周波数を変化させて液体の流速を変化させることを特徴とする請求項1記載の圧電ポンプ。   2. The piezoelectric pump according to claim 1, wherein the flow velocity of the liquid is changed by changing the vibration frequency of each piezoelectric element. 圧電振動子は基材の短手方向の一辺側が管壁部に固定されており、ポンプ室を流れる液体の送液方向と直交する管壁部の断面形状は固定端から自由端に向かって空間部が拡大するような傾斜壁面に形成されていることを特徴とする請求項1記載の圧電ポンプ。   In the piezoelectric vibrator, one side of the substrate in the short direction is fixed to the tube wall, and the cross-sectional shape of the tube wall perpendicular to the liquid feeding direction of the liquid flowing through the pump chamber is a space from the fixed end toward the free end. 2. The piezoelectric pump according to claim 1, wherein the piezoelectric pump is formed on an inclined wall surface such that the portion expands. 圧電振動子は基材の短手方向中央部が管壁部より管路側に突設された固定部材に挟持固定されており、基材の長手方向両端側に設けられた圧電素子の近傍には、短手方向にスリットが各々形成されていることを特徴とする請求項1記載の圧電ポンプ。   The piezoelectric vibrator is sandwiched and fixed by a fixing member that protrudes from the tube wall to the pipe side at the center in the short direction of the base, and in the vicinity of the piezoelectric elements provided at both ends of the base in the longitudinal direction. 2. The piezoelectric pump according to claim 1, wherein slits are respectively formed in the short direction. 基材の長手方向一端側の圧電素子に駆動電圧を印加すると共に長手方向他端側の圧電素子に位相差90度で駆動電圧を印加して圧電振動子の短手方向に山が連なった進行波を形成することを特徴とする請求項5記載の圧電ポンプ。   The drive voltage is applied to the piezoelectric element on one end in the longitudinal direction of the substrate and the drive voltage is applied to the piezoelectric element on the other end in the longitudinal direction with a phase difference of 90 degrees, so that the peaks are continuous in the short direction of the piezoelectric vibrator. 6. The piezoelectric pump according to claim 5, wherein a wave is formed.
JP2003297136A 2003-08-21 2003-08-21 Piezoelectric pump Expired - Fee Related JP3859627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297136A JP3859627B2 (en) 2003-08-21 2003-08-21 Piezoelectric pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297136A JP3859627B2 (en) 2003-08-21 2003-08-21 Piezoelectric pump

Publications (2)

Publication Number Publication Date
JP2005069052A true JP2005069052A (en) 2005-03-17
JP3859627B2 JP3859627B2 (en) 2006-12-20

Family

ID=34403078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297136A Expired - Fee Related JP3859627B2 (en) 2003-08-21 2003-08-21 Piezoelectric pump

Country Status (1)

Country Link
JP (1) JP3859627B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338362C (en) * 2005-10-14 2007-09-19 北京工业大学 Built-in corrugated channel valveless piezoelectric pump
CN100338363C (en) * 2005-10-21 2007-09-19 北京工业大学 Rotary abaculus valveless piezoelectric pump
CN100410534C (en) * 2006-11-14 2008-08-13 北京工业大学 Built-in rotatable multi-block valveless piezoelectric pump
WO2012046604A1 (en) * 2010-10-06 2012-04-12 学校法人慶應義塾 Pump device and endoscope device using same
CN108757407A (en) * 2018-06-06 2018-11-06 南京航空航天大学 A kind of double oscillator Valveless piezoelectric pumps of standing wave type and its working method
CN110594138A (en) * 2019-10-28 2019-12-20 南京航空航天大学 A sandwich valveless piezoelectric pump and its working method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338362C (en) * 2005-10-14 2007-09-19 北京工业大学 Built-in corrugated channel valveless piezoelectric pump
CN100338363C (en) * 2005-10-21 2007-09-19 北京工业大学 Rotary abaculus valveless piezoelectric pump
CN100410534C (en) * 2006-11-14 2008-08-13 北京工业大学 Built-in rotatable multi-block valveless piezoelectric pump
WO2012046604A1 (en) * 2010-10-06 2012-04-12 学校法人慶應義塾 Pump device and endoscope device using same
JP2012082690A (en) * 2010-10-06 2012-04-26 Keio Gijuku Pump device and endoscope device using the same
US9445710B2 (en) 2010-10-06 2016-09-20 Olympus Corporation Pump unit and endoscope apparatus using the same
CN108757407A (en) * 2018-06-06 2018-11-06 南京航空航天大学 A kind of double oscillator Valveless piezoelectric pumps of standing wave type and its working method
CN110594138A (en) * 2019-10-28 2019-12-20 南京航空航天大学 A sandwich valveless piezoelectric pump and its working method

Also Published As

Publication number Publication date
JP3859627B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
US7094040B2 (en) Fluid transferring system and micropump suitable therefor
EP3080460B1 (en) Acoustic-resonance fluid pump
JP5012889B2 (en) Piezoelectric micro blower
US8297947B2 (en) Fluid disc pump
WO2010035862A1 (en) Piezoelectric pump
JP2001322099A (en) Micro-pump
JP3859627B2 (en) Piezoelectric pump
CN107614875B (en) Pump
US20130039787A1 (en) Energy transfer fluid diaphragm and device
JP2010005582A (en) Blocking prevention device of micro-channel and blocking prevention method
JP3767605B2 (en) Fluid transportation system
JP2003286940A (en) Fluid transport system
JP2004308554A (en) Fluid pump
KR100990170B1 (en) Piezoelectric pump
US20150322932A1 (en) Micropump
WO2012046604A1 (en) Pump device and endoscope device using same
CN110206717B (en) Bidirectional piezoelectric pump
JP2006200524A (en) Diaphragm pump liquid discharge control apparatus
JP3896141B2 (en) Micropump and micropump system
JP4359789B2 (en) Liquid flow equipment
JPH02206369A (en) Pumping apparatus using ultrasonic vibration
CN120312565A (en) Cantilever type fluid generator
EP4177467A1 (en) Fluid control device
Hasegawa et al. Improvement in the flow rate of a miniature ultrasonic suction pump
KR101005645B1 (en) Micro pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060712

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees