[go: up one dir, main page]

JP2005060871A - Method for producing flame-proofed fiber and method for producing carbon fiber - Google Patents

Method for producing flame-proofed fiber and method for producing carbon fiber Download PDF

Info

Publication number
JP2005060871A
JP2005060871A JP2003291307A JP2003291307A JP2005060871A JP 2005060871 A JP2005060871 A JP 2005060871A JP 2003291307 A JP2003291307 A JP 2003291307A JP 2003291307 A JP2003291307 A JP 2003291307A JP 2005060871 A JP2005060871 A JP 2005060871A
Authority
JP
Japan
Prior art keywords
flame
fiber
resistant
treatment
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291307A
Other languages
Japanese (ja)
Inventor
Takahiko Kunisawa
考彦 國澤
Katsuhiko Ikeda
勝彦 池田
Atsushi Kawamura
篤志 川村
Tomoyuki Kotani
知之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003291307A priority Critical patent/JP2005060871A/en
Publication of JP2005060871A publication Critical patent/JP2005060871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing flame-proofed fiber and a method for producing carbon fiber therefrom, with quality and productivity compatible with each other through solving problems involved in the conventional technology despite being in the form a large tow. <P>SOLUTION: The method for producing the flame-proofed fiber comprises carrying out a flameproofing treatment of an acrylic filament yarn substantially as a straight tow with a single filament fineness of 0.7-1.3 dTex, a filament count of ≥30,000 and the number of crimps of ≤5/25 mm in an oxidative atmosphere for the flameproofing treatment time t(min) meeting the relationship:39A-7≤t≤67A( wherein, A is the single filament fineness of the acrylic filament yarn ). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐炎化繊維の製造方法および炭素繊維の製造方法に関する。   The present invention relates to a method for producing flame-resistant fibers and a method for producing carbon fibers.

アクリル繊維糸条を200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1,000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって炭素繊維にするのが一般的である。このようにして得られた炭素繊維は、その優れた力学的性質により、航空宇宙用途を始め、スポーツ・レジャー用途等の高性能複合材料の補強繊維素材として広く利用されている。   After making an acrylic fiber yarn into a flame-resistant fiber by a flameproofing process in which heat treatment is performed in an oxidizing atmosphere at 200 to 300 ° C., carbon is subsequently formed in a carbonization process in which heat treatment is performed in an inert atmosphere at 1,000 ° C. or higher. It is common to use fibers. The carbon fiber thus obtained is widely used as a reinforcing fiber material for high-performance composite materials for aerospace use, sports / leisure use, etc. due to its excellent mechanical properties.

又、近年では自動車・船舶、建材用途等、一般産業分野への用途要求が増加しているが、従来のいわゆるスモールトウ(総繊度21,000dTex未満)の炭素繊維は物性、品質的には優れてはいるものの、製造コストが高く、コストを重視する産業分野では多用されない傾向があり、品質と生産性が両立する炭素繊維が要求されている。   In recent years, there has been an increasing demand for applications in general industrial fields such as automobiles, ships, and building materials. Conventional so-called small tow (total fineness less than 21,000 dTex) carbon fiber is excellent in physical properties and quality. However, the manufacturing cost is high, and there is a tendency that it is not frequently used in the industrial field in which cost is important. Carbon fibers that satisfy both quality and productivity are required.

ところで、炭素繊維の製造コストに占める割合が大きいのは、製造工程中の処理時間の最も長い耐炎化工程であり、低コスト化のためにはその生産性の向上が必要である。しかし、耐炎化工程において、アクリル繊維糸条は、酸化反応による激しい発熱を伴うので、アクリル繊維糸条内部に畜熱し、アクリル繊維糸条内部の温度が処理温度に対し極端に高くなり発煙等が発生しやすくなる。そのため、耐炎化処理温度を下げて生産を行わなければならず、十分に耐炎化の進行した耐炎化繊維を得るには、長時間を要するという問題があった。このため、前記問題を解決するために、スモールトウでは過去に膨大な検討がされてきた。例えば、特許文献1には熱風循環炉で少なくとも4つ以上の温度コントロール可能なゾーンを用いて耐炎化する際に、各温度コントロール可能なゾーンの温度を規定する方法が開示されているが、得られるCF性能は低く高性能とはいい難く、生産性も不十分なものであった。   By the way, the ratio of carbon fiber to the manufacturing cost is large in the flameproofing process having the longest processing time in the manufacturing process, and it is necessary to improve the productivity in order to reduce the cost. However, in the flameproofing process, the acrylic fiber yarn is accompanied by intense heat generation due to the oxidation reaction, so the internal temperature of the acrylic fiber yarn is extremely high, the temperature inside the acrylic fiber yarn becomes extremely higher than the processing temperature, and smoke is generated. It tends to occur. For this reason, production must be carried out at a reduced flameproofing temperature, and there is a problem that it takes a long time to obtain flameproofed fibers that have been sufficiently flameproofed. For this reason, in order to solve the above problem, a small amount of research has been conducted in the small tow. For example, Patent Document 1 discloses a method of defining the temperature of each temperature-controllable zone when flame resistance is achieved using at least four or more temperature-controllable zones in a hot air circulating furnace. The CF performance is low and it is difficult to say that the performance is high, and the productivity is insufficient.

一方、一層の低コスト化が期待されるラージトウでは、その断面積が増加する分スモールトウよりも畜熱が多くなるのでスモールトウの場合の耐炎化処理温度より下げて生産を行わなければならず、生産性向上はスモールトウより困難が伴うものであった。ラージトウにおけるこのような問題点を解決すべく、特許文献2には、耐炎化処理時におけるアクリル繊維糸条の断面形状を、糸幅/糸厚み比で規定される平均扁平率を略矩形に保つ方法が開示されているが、得られるCF性能は低く高性能とはいい難い。
特開平2−139425号公報 特開平10−266024号公報
On the other hand, large tow, which is expected to further reduce the cost, has more livestock heat than small tow because of its increased cross-sectional area, so it must be produced at a temperature lower than the flameproofing temperature for small tow. The productivity improvement was more difficult than the small tow. In order to solve such a problem in large tow, Patent Document 2 describes that the cross-sectional shape of the acrylic fiber yarn at the time of flameproofing is maintained at an average flatness defined by the yarn width / yarn thickness ratio in a substantially rectangular shape. Although a method is disclosed, the CF performance obtained is low and it is difficult to say that it is high performance.
Japanese Patent Laid-Open No. 2-139425 Japanese Patent Laid-Open No. 10-266024

本発明は、ラージトウでありながらも、従来技術における問題点を解決し、品質と生産性の両立する耐炎化繊維の製造方法および炭素繊維の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a flame-resistant fiber and a method for producing a carbon fiber that solves the problems in the prior art and is compatible with both quality and productivity while being a large tow.

本発明は、単糸繊度0.7〜1.3dTex、フィラメント数30,000本以上、捲縮5山/25mm以下の実質的にストレートトウからなるアクリル繊維糸条を酸化性雰囲気で下記式を満足する耐炎化処理時間t(分)で耐炎化処理する耐炎化繊維の製造方法を要旨とする。   In the present invention, an acrylic fiber yarn consisting essentially of straight tow having a single yarn fineness of 0.7 to 1.3 dTex, a filament number of 30,000 or more and a crimp of 5 threads / 25 mm or less is expressed in the following formula in an oxidizing atmosphere. The gist of the present invention is a method for producing a flame-resistant fiber that is flame-resistant for a flame-resistant treatment time t (minutes) that satisfies the requirements.

39A−7≦t≦67A
Aはアクリル繊維糸条の単糸繊度(dTex)
39A-7 ≦ t ≦ 67A
A is the single yarn fineness of acrylic fiber yarn (dTex)

本発明によれば、高性能、高品位な炭素繊維を低コストで安定して供給することができる。   According to the present invention, high-performance and high-quality carbon fibers can be stably supplied at a low cost.

『アクリル繊維糸条』
本発明に用いるアクリル繊維糸条は、アクリロニトリル系(共)重合体として、アクリロニトリル単位90重量%以上を含有する重合体を使用する。アクリロニトリル単位は、95重量%以上であることがより好ましい。このアクリロニトリルの単独重合体又は共重合体あるいはこれらの重合体の混合したものを使用し得る。
"Acrylic fiber yarn"
The acrylic fiber yarn used in the present invention uses a polymer containing 90% by weight or more of acrylonitrile units as an acrylonitrile-based (co) polymer. The acrylonitrile unit is more preferably 95% by weight or more. A homopolymer or copolymer of acrylonitrile or a mixture of these polymers can be used.

アクリロニトリル系共重合体は、アクリロニトリルと共重合しうる単量体とアクリロニトリルとの共重合生成物であり、アクリロニトリルと共重合しうる単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の重合性の二重結合を有する酸類およびそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、更にはスチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられるが、これらに限定されるものではない。   The acrylonitrile copolymer is a copolymerized product of a monomer that can be copolymerized with acrylonitrile and acrylonitrile. Examples of the monomer that can be copolymerized with acrylonitrile include methyl (meth) acrylate and ethyl (meth) acrylate. , (Meth) acrylic acid esters such as propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, (meth) acrylic acid, Acids having a polymerizable double bond such as itaconic acid and crotonic acid and salts thereof, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, and further sodium styrene sulfonate, Allyl sulfonic acid soda, β-styrene sulfonic acid Polymerizable unsaturated monomers containing a sulfone group such as soda and methallyl sulfonic acid soda, polymerizable unsaturated monomers containing a pyridine group such as 2-vinylpyridine and 2-methyl-5-vinylpyridine, etc. However, it is not limited to these.

アクリロニトリル系(共)重合体の重合方法としては、例えば水溶液におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合等が挙げられるが、これらに限定されるものではない。   Examples of the polymerization method of the acrylonitrile-based (co) polymer include, but are not limited to, redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, and emulsion polymerization using a dispersant.

アクリロニトリル系(共)重合体溶液は、湿式紡糸、乾湿式紡糸等の公知のアクリル繊維糸条の紡糸方法により紡糸される。例えば、通常の湿式紡糸においては紡糸、延伸、水洗、油剤処理、乾燥緻密化の後で、必要に応じて乾熱延伸、スチーム延伸等の後延伸を施す。又、アクリル繊維糸条は不純物、内部ボイド、クレーズやクラック等の表面欠陥を含まないことが好ましい。   The acrylonitrile-based (co) polymer solution is spun by a known acrylic fiber yarn spinning method such as wet spinning or dry wet spinning. For example, in normal wet spinning, after spinning, stretching, washing with water, oil agent treatment, and drying densification, post-stretching such as dry heat stretching and steam stretching is performed as necessary. The acrylic fiber yarn preferably does not contain surface defects such as impurities, internal voids, crazes and cracks.

本発明に用いるアクリル繊維糸条は、その単糸繊度が0.7〜1.3dTexであることが必要である。単糸繊度が0.7dTex未満であると、アクリル繊維糸条を安定して紡糸することが難しくなる。逆に単糸繊度が1.3dTexを超えると後述する断面二重構造が顕著となり、高性能な炭素繊維が得られにくい。   The acrylic fiber yarn used in the present invention is required to have a single yarn fineness of 0.7 to 1.3 dTex. When the single yarn fineness is less than 0.7 dTex, it becomes difficult to stably spin the acrylic fiber yarn. On the contrary, if the single yarn fineness exceeds 1.3 dTex, the cross-sectional double structure described later becomes remarkable and it is difficult to obtain a high-performance carbon fiber.

アクリル繊維糸条のフィラメント数は、30,000本以上であることが必要であり、これにより生産性が向上でき、本発明の方法により性能が向上でき、両者が両立することとなる。   The number of filaments of the acrylic fiber yarn is required to be 30,000 or more, which can improve the productivity, improve the performance by the method of the present invention, and make both compatible.

本発明で用いるアクリル繊維糸条は、その捲縮が5山/25mm以下の実質的にストレートトウであることが必要である。5山/25mmを超えるとクリンプと称される座屈変形が付与される。この座屈変形は本質的にアクリル繊維糸条へ機械的ダメージを与える。これにより炭素繊維製造工程において単糸切れによる毛羽の発生を誘発し、ロールへの巻き付き等のトラブルや得られる炭素繊維の品位、性能の低下を招く。   The acrylic fiber yarn used in the present invention needs to be a substantially straight tow with a crimp of 5 threads / 25 mm or less. If it exceeds 5 ridges / 25 mm, a buckling deformation called a crimp is imparted. This buckling deformation inherently causes mechanical damage to the acrylic fiber yarn. This induces generation of fluff due to single yarn breakage in the carbon fiber production process, leading to troubles such as winding around the roll, and deterioration of the quality and performance of the obtained carbon fiber.

一般に耐炎化繊維や炭素繊維製造用のアクリル繊維糸条を製造する工程の速度と、アクリル繊維糸条を焼成して耐炎化繊維や炭素繊維にする焼成工程の速度とは、大幅に異なるために、アクリル繊維糸条は一旦ボビンに巻き上げられた状態、又は、箱の中に折りたたみ積層されて収容された状態(ケンス収容という。)で、焼成工程に供給される。   In general, the speed of the process for producing acrylic fiber yarns for the production of flame-resistant fibers and carbon fibers is significantly different from the speed of the firing process for firing acrylic fiber yarns into flame-resistant fibers and carbon fibers. The acrylic fiber yarn is supplied to the firing step in a state once wound up on a bobbin, or in a state of being folded and laminated in a box (referred to as cans accommodation).

本発明で用いるアクリル繊維糸条は、ケンスへの収容される場合には、ケンス収容時は1本のトウの形態を保っており、ケンスから引き出して使用するときには、複数本の小トウに分割可能な幅方向における分割能を有するアクリル繊維糸条であっても良い。   When the acrylic fiber yarn used in the present invention is accommodated in a can, the shape of one tow is maintained when the can is accommodated, and when it is pulled out and used, it is divided into a plurality of small tows. It may be an acrylic fiber yarn having a splitting ability in the possible width direction.

『耐炎化処理』
アクリル繊維糸条は、酸化性雰囲気中で耐炎化処理に供される。得られる耐炎化繊維の品質、さらに炭素化処理を経て得られる炭素繊維の品質(強度や弾性率)を最高に高めるためには、最適な耐炎化処理時間で耐炎化処理することが必要である。
"Fireproofing"
The acrylic fiber yarn is subjected to a flameproofing treatment in an oxidizing atmosphere. In order to maximize the quality of the obtained flame-resistant fiber and the quality (strength and elastic modulus) of the carbon fiber obtained through the carbonization treatment, it is necessary to perform the flame-resistant treatment with an optimum flame-resistant treatment time. .

最適な耐炎化処理時間によって強度・弾性率が最大を示す現象は、耐炎化中の耐炎化繊維単糸中への酸素の拡散状態と密接な関係がある。つまり最適耐炎化処理時間は、耐炎化繊維糸条の単糸中の断面構造に依存する。   The phenomenon in which the strength and elastic modulus are maximized by the optimum flameproofing treatment time is closely related to the diffusion state of oxygen into the flameproofed fiber single yarn being flameproofed. That is, the optimum flameproofing treatment time depends on the cross-sectional structure in the single yarn of the flameproofed fiber yarn.

図1は、耐炎化中の繊維の単糸中の断面構造に及ぼす、耐炎化処理時間とアクリル繊維の単糸繊度との関係を示すものである。耐炎化に供する繊維の密度が同等の時、耐炎化処理時間が短くなるほど耐炎化中の繊維の単糸断面には構造の斑、即ち断面二重構造が形成される。図1に見られる黒化層は酸化層に相当し、酸素はこの領域に存在している。同じ耐炎化処理時間では、黒化層の厚みは、単糸繊度が小さいほど厚くなり、逆に酸化反応の進んでいない部分は小さくなる。   FIG. 1 shows the relationship between the flameproofing treatment time and the single yarn fineness of the acrylic fiber, which affects the cross-sectional structure in the single yarn of the fiber being flameproofed. When the density of fibers subjected to flame resistance is the same, the shorter the flame resistance treatment time, the more uneven the structure of the single yarn cross section of the fiber being flame resistant, that is, a double section structure. The blackened layer seen in FIG. 1 corresponds to an oxide layer, and oxygen is present in this region. In the same flameproofing treatment time, the thickness of the blackened layer increases as the single yarn fineness decreases, and conversely, the portion where the oxidation reaction has not progressed decreases.

そこで本発明者らは、数多くの実験を通して、上述のアクリル繊維を用いた場合に、その単糸繊度がA(dTex)であるとき、耐炎化処理時間t(分)を39A−7〜67A(分)の範囲にすると適正に酸化反応が進行した耐炎化繊維が得られることを見出した。   Therefore, the inventors of the present invention have conducted a flameproofing treatment time t (min) of 39A-7 to 67A (when the above-mentioned acrylic fiber is used and the single yarn fineness is A (dTex) through numerous experiments. It was found that a flame-resistant fiber in which the oxidation reaction appropriately proceeded can be obtained when it is in the range of (min).

耐炎化処理時間が、39A−7(分)未満であると高温で耐炎化処理することが必要となり環化反応速度は著しく大きくなるが、耐炎化中の繊維の単糸中への酸素の拡散が追いつかず耐炎化工程において断面二重構造が発現し、酸化反応の進んでいない部分は、後の炭素化工程において高配向構造に転換されず得られる炭素繊維の強度及び弾性率が低下する。   If the flameproofing treatment time is less than 39A-7 (minutes), it is necessary to flameproofing at a high temperature and the cyclization reaction rate is significantly increased, but oxygen diffusion into the single yarn of the fiber being flameproofed However, the strength and elastic modulus of the carbon fiber obtained in the portion where the cross-sectional double structure is developed in the flameproofing process and the oxidation reaction has not progressed are not converted into the highly oriented structure in the subsequent carbonization process are lowered.

逆に耐炎化処理時間tが67A(分)を超えると低温で耐炎化処理することが必要となり、上述の断面二重構造は発現しないが、耐炎化中の繊維の単糸中に酸素が過剰に導入されることにより、後の炭素化工程において炭素化処理中の繊維から酸素が一酸化炭素として放出されてボイドが発生し、そこが欠陥点となり得られる炭素繊維の強度が低下する。   Conversely, if the flameproofing treatment time t exceeds 67A (minutes), it is necessary to flameproofing at a low temperature, and the above-described double structure of the cross section is not exhibited, but oxygen is excessive in the single yarn of the flameproofing fiber. As a result, oxygen is released as carbon monoxide from the fiber being carbonized in the subsequent carbonization step, generating voids, and the strength of the carbon fiber that can be a defect point is reduced.

耐炎化処理時間t(分)を39A+3〜67A−10とすれば、断面二重構造の発現がなく、酸素の耐炎化繊維糸条内への過剰導入がないため、得られる炭素繊維の強度発現性が良いためより好ましい。   If the flameproofing treatment time t (min) is 39A + 3 to 67A-10, there is no expression of a double cross section, and there is no excessive introduction of oxygen into the flameproofing fiber yarn. It is more preferable because of its good properties.

本発明では、耐炎化処理が、炭素繊維の製造工程中で最も処理時間が長いため、炭素繊維製造の低コスト化には、耐炎化処理を短時間で行い、さらにその処理に投入する繊維幅あたりの繊度(本明細書において投入密度という)を高くし、生産性を向上することを考えた。   In the present invention, since the flameproofing treatment takes the longest treatment time in the production process of carbon fiber, the reduction in the cost of carbon fiber production is achieved by performing the flameproofing treatment in a short time and further adding the fiber width to the treatment. We considered increasing the fineness (referred to as input density in the present specification) and improving productivity.

耐炎化処理では耐炎化中の繊維糸条はそれ自体が発熱することにより、その繊維内部が急激に熱が蓄熱される。そこで、耐炎化中の繊維がこれによって切断しないように、耐炎化中の繊維にあてる熱風の温度は、耐炎化中の繊維糸条の畜熱切断温度より低い温度にコントロールしなければならない。畜熱切断温度は、耐炎化中の繊維の耐炎化の度合いが高くなる(耐炎化中の先にの密度も高くなる)にしたがって高くなる。さらに、耐炎化中の繊維の畜熱切断温度は、投入密度にも依存し、投入密度が高いほど畜熱切断温度は低下する。一般的に、耐炎化の反応速度は温度が高いほど大きく、投入密度が高いほど大きいので、耐炎化反応を促進して耐炎化時間を短縮するには、耐炎化中の繊維の畜熱切断温度より低いが、なるべく高い温度で、投入密度を高くして耐炎化中の繊維を耐炎化処理すべきである。   In the flameproofing treatment, the fiber yarn being flameproofed itself generates heat, and heat is rapidly accumulated in the inside of the fiber. Therefore, the temperature of the hot air applied to the fiber being flame-resistant must be controlled to be lower than the animal heat cutting temperature of the fiber yarn being flame-resistant so that the flame-resistant fiber is not cut by this. The livestock heat cutting temperature becomes higher as the degree of flame resistance of the fiber being flame-resistant increases (the density of the tip during the flame resistance also increases). Furthermore, the livestock heat cutting temperature of the fiber during flame resistance also depends on the input density, and the higher the input density, the lower the livestock heat cutting temperature. In general, the higher the temperature, the higher the reaction rate of flame resistance, and the higher the input density, the greater the rate of heat-cutting of the fiber during flame resistance in order to accelerate the flame resistance reaction and shorten the flame resistance time. Although lower, at a temperature as high as possible, the input density should be increased and the fiber being flameproofed should be flameproofed.

そこで、耐炎化中の繊維の畜熱切断温度が上昇していくのに併せて、その温度よりも低いが、なるべく高い温度にコントロールすることが望まれる。このようなコントロールを可能とする方法の一つとして、個別に温調可能な可能なゾーンに分けた耐炎化炉を用いる方法が従来から公知である。   Accordingly, it is desired to control the temperature to be as high as possible, although it is lower than the temperature as the livestock cutting temperature of the fiber being flame-resistant increases. As a method for enabling such control, a method using a flameproof furnace divided into zones that can be individually controlled in temperature has been conventionally known.

温度コントロール可能なゾーンの数が増えれば増えるほど耐炎化時間が短縮できるし、又ゾーンの数の多い時は少ない時と比べて、耐炎化中の繊維の畜熱切断温度に対し余裕を持った低い温度で耐炎化でき、同じ耐炎化時間でより不具合の生じない運転が可能である。   The more the number of zones that can be controlled with temperature, the shorter the flameproofing time, and when there are many zones, there is room for the heat-cutting temperature of the fiber being flameproofed compared to when there are few. Flame resistance can be achieved at a low temperature, and operation with less trouble is possible with the same flame resistance time.

しかし、ゾーン数を増やすと、これに伴って耐炎化炉の価格は高額となり、生産性の向上の効果は小さくなっていく。生産性向上の効果を害することなく、細かな温度制御を可能とする観点から、ゾーン数は3〜8とするのが好ましく、3〜5とするのが更に好ましい。   However, as the number of zones increases, the price of the flameproofing furnace increases accordingly, and the effect of improving productivity decreases. From the viewpoint of enabling fine temperature control without impairing the effect of improving productivity, the number of zones is preferably 3 to 8, and more preferably 3 to 5.

耐炎化処理に投入する繊維の投入密度は、2,500〜6,500dTex/mmであることが好ましい。2,500dTex/mm未満であると、糸幅が増大し耐炎化炉機幅に対する繊維の糸条数が減少し、設備生産性が低下する。逆に6,500dTex/mmを超えると、断面二重構造が顕著となり高性能である炭素繊維が得られにくくなるばかりか、耐炎化工程中で繊維に撚りが入りやすくなり、撚りの部分が畜熱し暴走反応により、糸切れ、スモーク等が起こりやすく、又、得られた炭素繊維をプリプレグに加工する際に開繊性不良が生じやすくなる。   It is preferable that the input density of the fibers input to the flameproofing treatment is 2,500 to 6,500 dTex / mm. If it is less than 2,500 dTex / mm, the yarn width increases, the number of yarns of the fiber with respect to the flameproof furnace width decreases, and the equipment productivity decreases. On the other hand, if it exceeds 6,500 dTex / mm, the cross-sectional double structure becomes conspicuous and it becomes difficult to obtain high-performance carbon fibers. Due to heat and runaway reaction, yarn breakage, smoke, etc. are likely to occur, and when the obtained carbon fiber is processed into a prepreg, the openability is likely to occur.

耐炎化炉への繊維の投入密度を制御する方法としては、耐炎化炉外に溝付ロールを設置する方法、コームとフラットロールを設置する方法があるがいずれでも構わない。溝付ロールは、耐炎化中の繊維の毛羽の原因となる。又、隣接する耐炎化中の繊維同士が干渉により、1つの溝に2錘が入り合糸が生じたりすることが稀にあり、合糸が生じるとその部分での投入密度が高くなるばかりでなく、溝の側壁によりその繊維に撚りが生じるため、除熱不良による糸切れ、スモーク等が起こりやすくなるので注意が必要である。   As a method for controlling the density of the fibers fed into the flameproofing furnace, there are a method of installing a grooved roll outside the flameproofing furnace and a method of installing a comb and a flat roll. Grooved rolls cause fiber fluff during flame resistance. Also, there are rare cases where two fibers enter into one groove due to interference between adjacent fibers that are flameproofed, and a combined yarn is generated. However, since the fiber is twisted by the side wall of the groove, it is easy to cause yarn breakage, smoke, etc. due to heat removal failure.

一方、フラットロールを用いた場合は、溝飛びによる合糸、撚りの発生がなく工程安定性の点で好ましい。フラットロールの場合は公知の技術によりアクリル繊維に交絡処理を施し制御することが好ましい。交絡処理条件はアクリル繊維糸条の総繊度により適宜決定される。   On the other hand, the use of a flat roll is preferable in terms of process stability because there is no occurrence of twisting and twisting due to groove jumping. In the case of a flat roll, it is preferable to control the acrylic fiber by performing an entanglement process by a known technique. The entanglement treatment condition is appropriately determined depending on the total fineness of the acrylic fiber yarn.

耐炎化炉内の風向きは、多錘の途中耐炎化繊維糸条が形成する面に対して平行であり、かつ途中耐炎化繊維糸条に対して平行である平行流、垂直である直行流、多錘の途中耐炎化繊維糸条が形成する面に対して垂直であり、かつ途中耐炎化繊維糸条に対して垂直である垂直流等が挙げられるが、これらに限定されるものではない。風速は、0.3〜5m/sccが好ましい。0.3m/sec未満であると、耐炎化炉内の風による除熱作用が得られにくくなり、除熱不良によるスモークが発生しやすくなる。5m/secを超えると、耐炎化炉内の風による途中耐炎化繊維糸条のバタツキが大きくなり、途中耐炎化繊維糸条の接触による単糸切れが生じやすくなる。   The wind direction in the flameproofing furnace is parallel to the plane formed by the flame resistant fiber yarns in the middle of the multiple spindles, and is parallel to the flameproofing fiber yarns in the middle, perpendicular to the perpendicular flow, Examples include, but are not limited to, a vertical flow that is perpendicular to the surface formed by the flame resistant fiber yarn in the middle of the spindle and perpendicular to the flame resistant fiber yarn in the middle. The wind speed is preferably 0.3 to 5 m / scc. If it is less than 0.3 m / sec, it becomes difficult to obtain a heat removal action by the wind in the flameproofing furnace, and smoke due to poor heat removal tends to occur. If it exceeds 5 m / sec, the fluttering of the flame-resistant fiber yarn due to the wind in the flame-proofing furnace becomes large, and single yarn breakage due to the contact of the flame-resistant fiber yarn tends to occur.

耐炎化処理終了後の耐炎化繊維糸条の密度は、1.33〜1.40g/cm、好ましくは1.34〜1.37g/cmが好ましい。1.33g/cm未満であると後の炭素化工程で耐炎化糸条が融着し、毛羽立ちが発生する為、高性能、高品位である炭素繊維が得られにくくなる。1.40g/cmを超えると、酸素の耐炎化繊維糸条内への過剰導入により強度が低下しやすくなる。 The density of the flameproof fiber yarn after completion of the flameproofing treatment is preferably 1.33 to 1.40 g / cm 3 , and preferably 1.34 to 1.37 g / cm 3 . If it is less than 1.33 g / cm 3 , the flame-resistant yarns are fused in the subsequent carbonization step and fluffing occurs, so that it is difficult to obtain high-performance and high-quality carbon fibers. If it exceeds 1.40 g / cm 3 , the strength tends to decrease due to excessive introduction of oxygen into the flame-resistant fiber yarn.

上記の方法によって得られた耐炎化繊維糸条は1,000℃以上の不活性雰囲気中で炭素化することが好ましい。1,000℃未満であると高性能である炭素繊維が得られにくくなる。   The flame resistant fiber yarn obtained by the above method is preferably carbonized in an inert atmosphere at 1,000 ° C. or higher. When the temperature is lower than 1,000 ° C., it is difficult to obtain high-performance carbon fibers.

上記の方法によって得られた耐炎化繊維糸条は、耐炎化処理と炭素化処理の間に、300℃〜1,000℃の不活性雰囲気中で0.5分以上熱処理することが好ましい。0.5分未満であると毛羽立ちが発生する傾向がでてくるため、糸切れに至る懸念がある上に、製品品位が悪く、高性能な炭素繊維が得られにくくなる。   The flame-resistant fiber yarn obtained by the above method is preferably heat-treated in an inert atmosphere at 300 ° C. to 1,000 ° C. for 0.5 minutes or more between the flame resistance treatment and the carbonization treatment. If the time is less than 0.5 minutes, fluffing tends to occur, which may lead to yarn breakage, and the product quality is poor, making it difficult to obtain high-performance carbon fibers.

このようにして得られた炭素繊維は、必要に応じて更に従来公知の技術により表面処理、サイジング付与等を行うことができる。   The carbon fiber thus obtained can be further subjected to surface treatment, sizing application, and the like by a conventionally known technique as necessary.

以下、本発明の耐炎化繊維の製造方法の具体的な構成を、実施例に基づいて説明する。ストランド強度、ストランド弾性率はJISR7601の方法により測定した。表1中では、ストランド強度及びストランド弾性率をそれぞれCF強度及びCF弾性率と表した。   Hereinafter, the specific structure of the manufacturing method of the flameproof fiber of this invention is demonstrated based on an Example. Strand strength and strand elastic modulus were measured by the method of JIS R7601. In Table 1, the strand strength and the strand elastic modulus were expressed as CF strength and CF elastic modulus, respectively.

又、表1のCF性能は、ストランド強度(CF強度)が、
5.0(GPa)以上の場合 → ◎
4.7〜4.9(GPa)の場合→ ○
4.5〜4.6(GPa)の場合→ △
4.4(GPa)以下の場合 → ×
でそれぞれ表した。
Also, the CF performance in Table 1 shows that the strand strength (CF strength) is
In case of 5.0 (GPa) or more → ◎
In the case of 4.7 to 4.9 (GPa) → ○
For 4.5 to 4.6 (GPa) → △
4.4 (GPa) or less → ×
Respectively.

生産性は、投入密度(dTex/mm)を耐炎化処理時間(分)で除して表した数値が、
100以上の場合 → ◎
60〜99の場合 → ○
45〜59の場合 → △
44以下の場合 → ×
でそれぞれ表した。
Productivity is a numerical value expressed by dividing the input density (dTex / mm) by the flameproofing treatment time (minutes).
If 100 or more → ◎
For 60-99 → ○
In case of 45-59 → △
44 or less → ×
Respectively.

更に総合的にCF性能と生産性より、
どちらか片方が×の場合→×
両方が◎の場合 →◎
それ以外の場合 →○
でそれぞれ表した。
More comprehensively than CF performance and productivity,
If either one is × → ×
If both are ◎ → ◎
Otherwise → ○
Respectively.

湿式紡糸法により、単糸繊度1.2dTex、フィラメント数50,000、総繊度60,000dTex、捲縮1山/25mmのアクリル繊維糸条を得た。このアクリル繊維糸条を投入密度6,000dTex/mmで、耐炎化処理温度226℃,229℃,234℃,239℃,244℃で各々12分、計60分連続的に耐炎化処理を行い、密度1.36g/cmの耐炎化繊維糸条を得た。耐炎化処理時の工程張力は136×10−3cN/dTexにして、処理中の糸条の収縮を制限しながら行なった。 An acrylic fiber yarn having a single yarn fineness of 1.2 dTex, a filament number of 50,000, a total fineness of 60,000 dTex, and a crimped crest / 25 mm was obtained by a wet spinning method. The acrylic fiber yarn was subjected to flameproofing treatment continuously for 60 minutes in total at an input density of 6,000 dTex / mm and flameproofing treatment temperatures of 226 ° C, 229 ° C, 234 ° C, 239 ° C, and 244 ° C for 12 minutes each. A flame-resistant fiber yarn having a density of 1.36 g / cm 3 was obtained. The process tension during the flameproofing treatment was 136 × 10 −3 cN / dTex, and the shrinkage of the yarn during the treatment was restricted.

続いて300〜700℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、68×10−3cN/dTexの張力を付し、耐炎化繊維糸条の収縮を制限しながら、1.5分間の前炭素化処理を付し、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気の炭素化炉中にて、68×10−3cN/dTexの張力を付し、前炭素化繊維糸条の収縮を制限しながら、1.5分間の炭素化処理を付すことにより、炭素繊維を製造した。その性能を表1に示した。 Subsequently, while applying a tension of 68 × 10 −3 cN / dTex in a carbonization furnace composed of a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., the shrinkage of the flameproof fiber yarn is limited. A pre-carbonization treatment is applied for 5 minutes, followed by a tension of 68 × 10 −3 cN / dTex in a nitrogen atmosphere carbonization furnace having a temperature distribution of 1,000 to 1,300 ° C. Carbon fibers were produced by subjecting the pre-carbonized fiber yarns to a carbonization treatment for 1.5 minutes while limiting the shrinkage of the pre-carbonized fiber yarns. The performance is shown in Table 1.

実施例1において、アクリル繊維糸条の投入密度3,000dTex/mmで、耐炎化処理温度240℃,246℃,251℃,255℃,262℃で各々9分、計45分連続的に耐炎化処理を行い密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。 In Example 1, the input density of the acrylic fiber yarn was 3,000 dTex / mm, and the flameproofing treatment temperatures were 240 ° C., 246 ° C., 251 ° C., 255 ° C., and 262 ° C. for 9 minutes each for 45 minutes in total. The treatment was performed to obtain a flame-resistant fiber yarn having a density of 1.35 g / cm 3 . All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

実施例1において、アクリル繊維糸条の投入密度6,000dTex/mmで、耐炎化処理温度222℃,227℃,232℃,237℃,242℃で各々15分、計75分連続的に耐炎化処理を行い密度1.36g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。 In Example 1, with an input density of acrylic fiber yarns of 6,000 dTex / mm, flame resistance was continuously made for 75 minutes for a total of 75 minutes at a flame resistance treatment temperature of 222 ° C., 227 ° C., 232 ° C., 237 ° C., and 242 ° C., respectively. The treatment was performed to obtain a flame-resistant fiber yarn having a density of 1.36 g / cm 3 . All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例1>
実施例1においてアクリル繊維糸条の投入密度6,000dTex/mmで耐炎化処理温度232℃,238℃,243℃,248℃,253℃で各々7分、計35分連続的に耐炎化処理を行ったところ糸切れが発生してしまい炭素繊維の製造を行えなかった。
<Comparative Example 1>
In Example 1, flame resistance treatment was continuously performed for 35 minutes in total for 7 minutes each at 232 ° C., 238 ° C., 243 ° C., 248 ° C., and 253 ° C. at a flame resistance treatment temperature of 6,000 dTex / mm of acrylic fiber yarns. As a result, thread breakage occurred and carbon fiber could not be produced.

<比較例2>
実施例1においてアクリル繊維糸条の投入密度6,000dTex/mmで耐炎化処理温度222℃,226℃,230℃,234℃,238℃で各々18分、計90分連続的に耐炎化処理を行い密度1.36g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative example 2>
In Example 1, flame resistance treatment was continuously performed for 90 minutes in total at an injection density of 6,000 dTex / mm of acrylic fiber yarns at a flame resistance treatment temperature of 222 ° C., 226 ° C., 230 ° C., 234 ° C., and 238 ° C. for 18 minutes each. A flame resistant fiber yarn having a density of 1.36 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例3>
湿式紡糸法により、単糸繊度1.2dTex、フィラメント数12,000、総繊度14,400dTex、捲縮1山/25mmのアクリル繊維糸条を得た。このアクリル繊維糸条の投入密度1,800dTex/mmで、耐炎化処理温度225℃,234℃,244℃,249℃,260℃で各々10分、計50分連続的に耐炎化処理を行い、密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 3>
An acrylic fiber yarn having a single yarn fineness of 1.2 dTex, a filament number of 12,000, a total fineness of 14,400 dTex, and a crimped crest / 25 mm was obtained by a wet spinning method. With this acrylic fiber yarn input density of 1,800 dTex / mm, flameproofing treatment is performed continuously for 50 minutes in total for 10 minutes each at a flameproofing treatment temperature of 225 ° C, 234 ° C, 244 ° C, 249 ° C, 260 ° C, A flame-resistant fiber yarn having a density of 1.35 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例4>
比較例3においてアクリル繊維糸条の投入密度1,800dTex/mmで耐炎化処理温度235℃,245℃,250℃,255℃,265℃で各々7分、計35分連続的に耐炎化処理を行い、密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative example 4>
In Comparative Example 3, the flame resistance treatment was continuously performed for 35 minutes in total for 7 minutes each at 235 ° C., 245 ° C., 250 ° C., 255 ° C., and 265 ° C. at an injection density of 1,800 dTex / mm of acrylic fiber yarn. And a flame resistant fiber yarn having a density of 1.35 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例5>
比較例3においてアクリル繊維糸条の投入密度1,800dTex/mmで耐炎化処理温度224℃,229℃,234℃,237℃,242℃で各々18分、計90分連続的に耐炎化処理を行い密度1.36g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 5>
In Comparative Example 3, the flame resistance treatment was continuously applied for 90 minutes in total, with an acrylic fiber yarn input density of 1,800 dTex / mm and flame resistance treatment temperatures of 224 ° C., 229 ° C., 234 ° C., 237 ° C., and 242 ° C. for 18 minutes each. A flame resistant fiber yarn having a density of 1.36 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

湿式紡糸法により、単糸繊度0.8dTex、フィラメント数50,000、総繊度40,000dTex、捲縮1山/25mmのアクリル繊維糸条を得た。このアクリル繊維糸条の投入密度4,000dTex/mmで、耐炎化処理温度237℃,241℃,246℃,251℃,256℃で各々8分、計40分連続的に耐炎化処理を行い、密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。 An acrylic fiber yarn having a single yarn fineness of 0.8 dTex, a filament number of 50,000, a total fineness of 40,000 dTex, and a crimped crest / 25 mm was obtained by a wet spinning method. With this acrylic fiber yarn input density of 4,000 dTex / mm, the flameproofing treatment temperature is continuously 237 ° C, 241 ° C, 246 ° C, 251 ° C, 256 ° C for 8 minutes each, for a total of 40 minutes, A flame-resistant fiber yarn having a density of 1.35 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例6>
実施例4においてアクリル繊維糸条の投入密度4,000dTex/mmで耐炎化処理温度235℃,245℃,255℃,265℃,275℃で各々4分、計20分連続的に耐炎化処理を行ったところ糸切れが発生してしまい炭素繊維の製造を行えなかった。
<Comparative Example 6>
In Example 4, flame resistance treatment was continuously performed for 20 minutes in total at a density of 4,000 dTex / mm of acrylic fiber yarns and at flame treatment temperatures of 235 ° C., 245 ° C., 255 ° C., 265 ° C., and 275 ° C. for 4 minutes each. As a result, thread breakage occurred and carbon fiber could not be produced.

<比較例7>
実施例4においてアクリル繊維糸条の投入密度4,000dTex/mmで耐炎化処理温度225℃,229℃,233℃,237℃,241℃で各々18分、計90分連続的に耐炎化処理を行い密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 7>
In Example 4, the flame resistance treatment was continuously applied for 90 minutes in total at an injection density of 4,000 dTex / mm at an acrylic fiber yarn temperature of 225 ° C, 229 ° C, 233 ° C, 237 ° C, and 241 ° C for 18 minutes each. A flame resistant fiber yarn having a density of 1.35 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例8>
湿式紡糸法により、単糸繊度0.8dTex、フィラメント数12,000、総繊度9,600dTex、捲縮1山/25mmのアクリル繊維糸条を得た。このアクリル繊維糸条の投入密度1,600dTex/mmで、耐炎化処理温度226℃,236℃,246℃,256℃,266℃で各々8分、計40分連続的に耐炎化処理を行い、密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 8>
An acrylic fiber yarn having a single yarn fineness of 0.8 dTex, a filament count of 12,000, a total fineness of 9,600 dTex, and a crimped crest / 25 mm was obtained by a wet spinning method. With this acrylic fiber yarn input density of 1,600 dTex / mm, flameproofing treatment was continuously performed for 40 minutes in total for 8 minutes each at a flameproofing treatment temperature of 226 ° C, 236 ° C, 246 ° C, 256 ° C, 266 ° C, A flame-resistant fiber yarn having a density of 1.35 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例9>
実施例1において、捲縮10山/25mmのアクリル繊維糸条を実施例1と同様の耐炎化処理を行い密度1.35g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 9>
In Example 1, the acrylic fiber yarn having 10 crimps / 25 mm crimp was subjected to the same flameproofing treatment as in Example 1 to obtain a flameproof fiber yarn having a density of 1.35 g / cm 3 . All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

<比較例10>
実施例1においてアクリル繊維糸条の投入密度7,500dTex/mmで耐炎化処理温度222℃,225℃,229℃,233℃,236℃で各々18分、計90分連続的に耐炎化処理を行い密度1.36g/cmの耐炎化繊維糸条を得た。その他の条件は全て実施例1と同様で炭素繊維を製造した。その性能を表1に示した。
<Comparative Example 10>
In Example 1, the flame-proofing treatment was carried out continuously for 90 minutes in total at an injection density of 7,500 dTex / mm and a flame-proofing temperature of 222 ° C., 225 ° C., 229 ° C., 233 ° C. and 236 ° C. for 18 minutes each. A flame resistant fiber yarn having a density of 1.36 g / cm 3 was obtained. All other conditions were the same as in Example 1 to produce a carbon fiber. The performance is shown in Table 1.

実施例1においてアクリル繊維糸条の投入密度6,000dTex/mmで同様の耐炎化処理を行い密度1.36g/cmの耐炎化繊維糸条を得た。耐炎化処理時の工程張力は136×10−3cN/dTexにして、処理中の糸条の収縮を制限しながら行なった。 In Example 1, the same flameproofing treatment was performed at an input density of 6,000 dTex / mm of the acrylic fiber yarn to obtain a flameproofed fiber yarn having a density of 1.36 g / cm 3 . The process tension during the flameproofing treatment was 136 × 10 −3 cN / dTex, and the shrinkage of the yarn during the treatment was restricted.

続いて300〜700℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、68×10−3cN/dTexの張力を付し、耐炎化繊維糸条の収縮を制限しながら、0.8分間の前炭素化処理を付し、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、68×10−3cN/dTexの張力を付し、前炭素化繊維糸条の収縮を制限しながら、0.8分間の炭素化処理を付すことにより、炭素繊維を製造した。その性能を表1に示した。

Figure 2005060871
Subsequently, in a carbonization furnace composed of a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., a tension of 68 × 10 −3 cN / dTex is applied, and the shrinkage of the flameproof fiber yarn is limited. A pre-carbonization treatment is applied for 8 minutes, followed by a tension of 68 × 10 −3 cN / dTex in a carbonization furnace composed of a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C. The carbon fiber was produced by subjecting it to a carbonization treatment for 0.8 minutes while restricting the shrinkage of the pre-carbonized fiber yarn. The performance is shown in Table 1.
Figure 2005060871

本発明によれば、ラージトウでありながらも、従来技術における問題点を解決し、品質と生産性の両立する耐炎化繊維の製造方法および炭素繊維の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, although it is large tow, the problem in a prior art can be solved and the manufacturing method of the flame resistant fiber and the manufacturing method of carbon fiber which can make quality and productivity compatible can be provided.

耐炎化繊維糸条の単糸中の断面構造へ及ぼす耐炎化処理時間とアクリル繊維糸条の単糸繊度の相関図である。It is a correlation diagram of the flameproofing process time which affects the cross-sectional structure in the single yarn of a flameproof fiber yarn, and the single yarn fineness of an acrylic fiber yarn.

符号の説明Explanation of symbols

A…黒化層
B…酸化反応のすすんでいない部分
A ... Blackening layer B ... Unpromoted part of oxidation reaction

Claims (6)

単糸繊度0.7〜1.3dTex、フィラメント数30,000本以上、捲縮5山/25mm以下の実質的にストレートトウからなるアクリル繊維糸条を酸化性雰囲気で下記式を満足する耐炎化処理時間t(分)で耐炎化処理する耐炎化繊維の製造方法。
39A−7≦t≦67A
Aはアクリル繊維糸条の単糸繊度(dTex)
Flame resistance of acrylic fiber yarns consisting essentially of straight tows with a single yarn fineness of 0.7-1.3dTex, 30,000 filaments, and 5 crimps / 25mm or less satisfying the following formula in an oxidizing atmosphere A method for producing a flame-resistant fiber, which is flame-resistant for a treatment time t (minutes).
39A-7 ≦ t ≦ 67A
A is the single yarn fineness of acrylic fiber yarn (dTex)
単糸繊度0.7〜1.3dTex、フィラメント数30,000本以上、捲縮5山/25mm以下の実質的にストレートトウからなるアクリル繊維糸条を酸化性雰囲気で下記式を満足する耐炎化処理時間t(分)で耐炎化処理する耐炎化繊維の製造方法。
39A+3≦t≦67A−10
Aはアクリル繊維糸条の単糸繊度(dTex)
Flame resistance of acrylic fiber yarns consisting essentially of straight tows with a single yarn fineness of 0.7-1.3dTex, 30,000 filaments, and 5 crimps / 25mm or less satisfying the following formula in an oxidizing atmosphere A method for producing a flame-resistant fiber, which is flame-resistant for a treatment time t (minutes).
39A + 3 ≦ t ≦ 67A-10
A is the single yarn fineness of acrylic fiber yarn (dTex)
アクリル繊維糸条を酸化性雰囲気で耐炎化処理する際、アクリル繊維糸条の投入密度を2,500〜6,500dTex/mmとする請求項1又は2記載の耐炎化繊維の製造方法。   The method for producing flame-resistant fibers according to claim 1 or 2, wherein when the acrylic fiber yarns are flame-resistant in an oxidizing atmosphere, the input density of the acrylic fiber yarns is 2,500 to 6,500 dTex / mm. 耐炎化処理に用いる耐炎化炉として、その両側に設置されたロールがフラットロールである耐炎化炉を用いる、請求項1〜3いずれか一項記載の耐炎化繊維の製造方法。   The method for producing flame-resistant fibers according to any one of claims 1 to 3, wherein a flame-resistant furnace in which the rolls installed on both sides thereof are flat rolls is used as the flame-resistant furnace used for the flame resistance treatment. 請求項1〜4のいずれか一項記載方法で得られた耐炎化繊維を1,000℃以上の不活性雰囲気中で炭素化する炭素繊維の製造方法。   The manufacturing method of the carbon fiber which carbonizes the flameproof fiber obtained by the method of any one of Claims 1-4 in an inert atmosphere of 1,000 degreeC or more. 請求項5記載の炭素繊維の製造方法において、耐炎化処理と炭素化処理との間に、300℃〜1,000℃の不活性雰囲気中で0.5分以上熱処理する炭素繊維の製造方法。   6. The method for producing carbon fiber according to claim 5, wherein the heat treatment is performed in an inert atmosphere at 300 ° C. to 1,000 ° C. for 0.5 minutes or more between the flameproofing treatment and the carbonizing treatment.
JP2003291307A 2003-08-11 2003-08-11 Method for producing flame-proofed fiber and method for producing carbon fiber Pending JP2005060871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291307A JP2005060871A (en) 2003-08-11 2003-08-11 Method for producing flame-proofed fiber and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291307A JP2005060871A (en) 2003-08-11 2003-08-11 Method for producing flame-proofed fiber and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2005060871A true JP2005060871A (en) 2005-03-10

Family

ID=34369026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291307A Pending JP2005060871A (en) 2003-08-11 2003-08-11 Method for producing flame-proofed fiber and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2005060871A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274518A (en) * 2005-03-30 2006-10-12 Toho Tenax Co Ltd Method for producing flame resistant fiber and carbon fiber
JP2008019526A (en) * 2006-07-12 2008-01-31 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
WO2017204026A1 (en) 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
WO2019087766A1 (en) 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same
CN111118671A (en) * 2019-12-26 2020-05-08 长春工业大学 Preparation method of 25k large-tow carbon fiber
CN114481367A (en) * 2021-12-30 2022-05-13 吉林宝旌炭材料有限公司 35k large-tow carbon fiber and preparation method thereof
WO2023090310A1 (en) * 2021-11-19 2023-05-25 東レ株式会社 Carbon fiber bundle and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274518A (en) * 2005-03-30 2006-10-12 Toho Tenax Co Ltd Method for producing flame resistant fiber and carbon fiber
JP2008019526A (en) * 2006-07-12 2008-01-31 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
WO2017204026A1 (en) 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
US11313054B2 (en) 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
WO2019087766A1 (en) 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same
CN111118671A (en) * 2019-12-26 2020-05-08 长春工业大学 Preparation method of 25k large-tow carbon fiber
WO2023090310A1 (en) * 2021-11-19 2023-05-25 東レ株式会社 Carbon fiber bundle and production method therefor
CN114481367A (en) * 2021-12-30 2022-05-13 吉林宝旌炭材料有限公司 35k large-tow carbon fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4630193B2 (en) Method and apparatus for producing carbon fiber precursor fiber bundle
WO2013157613A1 (en) Carbon fiber bundle and method of producing carbon fiber bundle
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
JPH10121325A (en) Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP2012188781A (en) Carbon fiber and method for manufacturing the same
JP5081409B2 (en) Carbon fiber manufacturing method
JP3607676B2 (en) Thick carbon fiber precursor acrylic yarn and method for producing the same
JP4801621B2 (en) Method for producing carbon fiber precursor tow
JPS62257422A (en) Production of carbon fiber
JP4775928B2 (en) Method for producing carbon fiber and acrylonitrile-based precursor fiber
JP2007314901A (en) Method for producing carbon fiber
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
WO1987002391A1 (en) Process for producing carbon fibers
JP2001073232A (en) Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP3562115B2 (en) Carbon fiber precursor acrylic yarn package and method for winding carbon fiber precursor acrylic yarn
JPS6088129A (en) Preparation of carbon yarn having high strength and high elasticity
JP4459398B2 (en) Method for producing wound body of carbon fiber precursor fiber bundle
JP2002003081A (en) Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method
JPS62215018A (en) Production of carbon fiber
JP2530786B2 (en) Method for drawing thick acrylic yarn in the bath
JP4709625B2 (en) Method for producing carbon fiber precursor fiber bundle
JPH10266024A (en) Production of carbon fiber and production apparatus
JP4446817B2 (en) Method for producing acrylic carbon fiber precursor fiber bundle
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same