[go: up one dir, main page]

JP2005059211A - Gas barrier base material - Google Patents

Gas barrier base material Download PDF

Info

Publication number
JP2005059211A
JP2005059211A JP2003196058A JP2003196058A JP2005059211A JP 2005059211 A JP2005059211 A JP 2005059211A JP 2003196058 A JP2003196058 A JP 2003196058A JP 2003196058 A JP2003196058 A JP 2003196058A JP 2005059211 A JP2005059211 A JP 2005059211A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier layer
base material
inorganic
inorganic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196058A
Other languages
Japanese (ja)
Other versions
JP2005059211A5 (en
Inventor
Atsushi Sugizaki
敦 杉崎
Hironori Maruyama
宏典 丸山
Takayuki Matsumoto
孝行 松元
Junpei Morimoto
純平 森本
Toshio Nakao
俊夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003196058A priority Critical patent/JP2005059211A/en
Publication of JP2005059211A publication Critical patent/JP2005059211A/en
Publication of JP2005059211A5 publication Critical patent/JP2005059211A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas barrier base material having higher gas barrier properties than before and capable of being applied to a wide use of an optical member, an electronics member, a general packaging member, a medicine packaging member and the like. <P>SOLUTION: The gas barrier base material is constituted by laminating an inorganic gas barrier layer at least on one side of a resin base material and the ratio (T<SB>s</SB>/T<SB>m</SB>) of the temperature T<SB>s</SB>(K) of the resin base material at the time of formation of the inorganic gas barrier layer to the melting point T<SB>m</SB>(K) of the inorganic gas barrier layer is 0.25-below 1.0. The melting point of the inorganic gas barrier layer is desirably below 1,500°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材などの幅広い用途に応用が可能なガスバリア基材に関する。
【0002】
【従来の技術】
従来から、樹脂基板やフィルムの表面にアルミニウムや酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガス・水蒸気バリア性フィルムは、ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、エレクトロルミネッセンス(EL)基板等で使用されている。特に液晶表示素子、EL素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重くて割れやすく大面積化が困難なガラス基板に代わって透明樹脂等のフィルム基材が採用され始めている。また、樹脂フィルムは上記要求に応えるだけでなく、ロールトゥロール方式が可能であることからガラスよりも生産性が良くコストダウンの点でも有利である。しかしながら、透明樹脂等のフィルム基材はガラスに比べガスバリア性が劣るという問題がある。ガスバリア性が劣る基材を用いると、酸素や水蒸気が浸透し、例えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣化させてしまう。この様な問題を解決するためにフィルム基材上に金属酸化物薄膜を形成してガスバリア性フィルム基板とすることが知られている。包装材や液晶表示素子に使用されるガスバリア性フィルムとしては樹脂フィルム上に酸化珪素を蒸着したもの(例えば、特許文献1参照。)酸化アルミニウムを蒸着したもの(例えば、特許文献2参照。)が知られており、いずれも1g/m/day程度の水蒸気バリア性を有する。近年では、液晶ディスプレイの大型化、高精細ディスプレイ等の開発によりフィルム基板へのガスバリア性能について例えば水蒸気の透過性で0.1g/m/day程度まで要求が上がってきている。これに応えるためにより高いガスバリア性能が期待できる手段としてスパッタリング法やCVD法による成膜検討が行われている。
【0003】
ところが、ごく近年においてさらなるガスバリア性を要求される有機ELディスプレイや高精彩カラー液晶ディスプレイなどの開発が進み、これに使用可能な透明性を維持しつつ、さらに高いガス・水蒸気バリア性、例えば水蒸気の透過性で0.1g/m/day未満の性能をもつ基材が要求されるようになってきた。
【0004】
【特許文献1】
特開昭53−12953号公報
【特許文献2】
特開昭58−217344号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来よりも高いガスバリア性能を持つガスバリア基材を提供することにある。
【0006】
【課題を解決するための手段】
すなわち本発明は、
(1)樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)が0.25以上1.0未満であるガスバリア基材。
(2)樹脂基材上の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点が1500℃未満であるガスバリア基材。
(3)樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)が0.25〜1.0であり、かつ、無機ガスバリア層の融点が1500℃未満であるガスバリア基材。
・ (4)樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、樹脂基材のガラス転移温度Tが200℃以上である(1)〜(3)のガスバリア基材。
(5)X線回折測定で非晶であることを特徴とする(1)〜(4)のガスバリア基材。
(6)無機ガスバリア層成膜中あるいは成膜後に無機ガスバリア膜中の結晶部を非晶化する処理を行なった(5)のガスバリア基材。
(7)無機ガスバリア層の表面粗さ算術平均値(Ra)が、20μm×20μm角の領域において、Ra<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴が無く、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無い(1)〜(6)のガスバリア基材。
(8)水蒸気透過速度が0.01g/m/dayより小さくかつ、酸素透過速度が0.1cm/m/day/atmより小さい(1)〜(7)のガスバリア基材。
(9)カルシウムコロージョン評価において50℃95%RH恒温恒湿度12時間処理後の、50μm以上に成長する腐食が1mmの範囲で5個以下かつ、腐食面積率1%以下である(1)〜(8)のガスバリア基材。
(10)無機ガスバリア層の上面に有機物コート層を設けた(7)〜(9)のガスバリア基材。
(11)無機ガスバリア層が2層以上である(1)〜(10)のガスバリア基材。
(12)(1)〜(11)のガスバリア基材が透明であるガスバリア基材。
(13)(1)〜(12)のガスバリア基材を利用した表示デバイス用基板。
(14)(1)〜(12)のガスバリア基材を利用した表示デバイス。
である。
【0007】
【発明の実施の形態】
本発明のガスバリア基材は、樹脂基材上に少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、この無機ガスバリア層が、無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)の値で0.25以上1.0未満で形成されることを特徴とするガスバリア基材である。(T/T)の値が0.25未満であると、粗な構造の膜になったりして、優れたガスバリア特性を得ることが難しい。また、(T/T)の値が1.0以上であると、樹脂基材がこの温度に耐えられないことが多いため、現実的ではない。さらに好ましくは、(T/T)の値が0.35以上1.0未満である。
【0008】
本発明のガスバリア基材は、樹脂基材上の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、この無機ガスバリア層の融点が1500℃未満であることを特徴とするガスバリア基材であってもよい。樹脂基材上に無機ガスバリア層を形成する場合、この無機ガスバリア層の融点が1500℃以上であると、粗な構造の膜になり、優れたガスバリア特性を得ることが難しい。
【0009】
本発明のガスバリア基材の無機ガスバリア層の形成には、熱蒸発法、スパッタリング法、イオンプレーティング法、クラスターイオンビーム法などの物理的方法や、CVD法などの化学的方法を用いることができる。
【0010】
本発明のガスバリア基材上に積層された無機ガスバリア層の融点Tは、無機ガスバリア層の化学組成分析を行い、組成を確認した後、これと同組成の材料を混合、溶融、固化
させたあと、この材料の融点を測定するなどの方法で求めることができる。ただし、かかる組成の無機ガスバリア層に対応した材料を徐冷しても結晶性が得られない場合、融点Tの替わりにこの材料のガラス転移温度TをTとする。また、無機ガスバリア層形成時の樹脂基材温度Tは、ガスバリア基材の無機ガスバリア層形成面と反対側に温度測定用ステッカーを着けるなどの方法で測定することもできる。ただし、ガスバリア基材が無機ガスバリア層形成時よりも成膜装置中で高温にさらされる可能性のある場合、ガスバリア基材の無機ガスバリア層形成面と反対側に熱伝対を接触させて測定するなどの方法も用いることができる。また、赤外センサーのような非接触式温度計で、温度をモニタリングしても良い。
【0011】
本発明のガスバリア基材は、樹脂基材のガラス転移温度Tが200℃以上であることが好ましい。ガラス転移温度T200℃以上の樹脂基材としては、ポリエーテルサルフォン樹脂(PES)、エポキシ樹脂、ビニルエステル樹脂などを使用することができる。
【0012】
本発明のガスバリア基材は、非晶であることが好ましい。このため、無機ガスバリア層の原材料となる無機化合物は、ガラス形成能が高い金属酸化物、複合酸化物などを用いることもできる。例えば、SiO−B,SiO−ZnOなどを用いることができる。また、ガスバリア層成膜中あるいは成膜後に無機ガスバリア膜中の結晶部を非晶化してもよい。非晶であるか否かの判定はX線回折測定で、行うことができ、非晶化処理工程には、レーザーアニール法、電子線照射、イオンビーム照射などを用いることもできる。
【0013】
本発明のガスバリア基材は、無機ガスバリア層表面が、20μm×20μm角の領域において、その表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無く、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無いことが好ましい。これは表面平滑性が悪化すると、積層する無機ガスバリア膜にクラックや穴状欠陥が発生し易くなり、フィルム自体のバリア性能を低下させることも考えられる。
【0014】
本発明のガスバリア基材は、有機ELディスプレイや高精彩カラー液晶ディスプレイなどの高バリア性が要求される用途に使用するためには、このガスバリア基材において、水蒸気透過速度が0.01g/m/dayより小さくかつ、酸素透過速度が0.1cm/m/day/atmより小さいことが好ましい。また、これら高バリア性が要求される用途に使用するためには、カルシウムコロージョン評価において50℃95%RH恒温恒湿度処理後の、50μm以上に成長する腐食が1mmの範囲で5個以下かつ、腐食面積率1%以下であることが好ましい。ここでいうカルシウムコロージョン評価とは、「(1)水蒸気バリア性を評価するフィルムシートの片面に、水分と反応して腐食する金属層を真空プロセスにて形成させた後、水蒸気不透過性金属層でこの面を封止した水蒸気バリア性評価用セル、又は、(2)前記水分と反応して腐食する金属層の厚さが30nm〜500nmである請求項1記載の水蒸気バリア性評価用セル、又は、(3)前記水蒸気不透過性金属層の厚さが500nm〜20μmである(1)又は(2)記載の水蒸気バリア性評価用セル、又は、(4)前記水蒸気不透過性金属層の表面粗さが、算術平均値(Ra)でRa<20nm、最大高さ及び最大深さで最大高さ<600nm及び最大深さ<200nm、である(1)〜(3)記載の水蒸気バリア性評価用セル、又は、(5)前記水分と反応して腐食する金属層の厚さ(a)に対する水蒸気不透過性金属層の厚さ(b)の比、すなわち、(b)/(a)が2以上である(1)〜(4)記載の水蒸気バリア性評価用セル、又は、(6)前記水蒸気不透過性金属層の上層に、温度40±0.5℃、相対湿度90±2%の条件下に暴露したときにその質量変化が、暴露面積50cmで1mg/24時間以下の有機物で密閉した(1)〜(5)記載の水蒸気バリア性評価用セル、又は、(7)前記水分と反応して腐食する金属層の材質にカルシウムを含む(1)〜(6)記載の水蒸気バリア性評価用セル、又は、(8)前記水蒸気不透過性金属層の材質にアルミニウム、亜鉛、錫、インジウム、鉛、銀、銅の何れかを含む(1)〜(7)記載の水蒸気バリア性評価用セル、又は、(9)前記水蒸気不透過性金属層が異なる材質の多層構造である(1)〜(8)記載の水蒸気バリア性評価用セル、又は、(10)前記水蒸気不透過性金属層の材質が2種類以上の金属の合金である(1)〜(9)記載の水蒸気バリア性評価用セル、を用い(11)任意の条件で恒温恒湿度処理を行ったあと、水分と反応して腐食する金属の腐食状態を観察する水蒸気バリア性評価方法、及び(12)(11)記載の水蒸気バリア性評価後に、セルからフィルムシートを、非破壊に取り外し、洗浄後、水分と反応して腐食した金属の腐食中心部分に対応するフィルムシート表面を、直接観察することにより、基材の欠陥部分の状態を評価する水蒸気バリア性評価方法、及び(13)恒温恒湿度処理を行ったあと、水分と反応して腐食する金属の腐食面積と腐食金属の厚みから算出される金属腐食物の体積から、金属と反応する水分量を定量的に評価する水蒸気バリア性評価方法。」である。本発明では、ガスバリア基材をフィルムシートとしてカルシウムコロージョン評価を実施した。
【0015】
本発明のガスバリア基材は、無機ガスバリア層の上に有機物コート層を設けてもよく、有機物コート層を設けることにより、ハンドリングや工程中での無機ガスバリア層へのダメージを防ぐ効果などが期待できる。
【0016】
本発明のガスバリア基材は、樹脂基材上の片面あるいは両面に合計2層以上の無機ガスバリア層を積層してもよく、無機ガスバリア層を複数積層することにより、ガスバリア性がさらに向上することが期待できる。無機ガスバリア層を複数積層する仕方は、無機ガスバリア層を連続で複数層重ねても、間に有機層を挟んで積層してもよい。
【0017】
本発明のガスバリア基材は、透明であることが好ましい。光を透過することにより、ディスプレイ基板、透明性が要求される包装用途等にも好適に用いることができる。ここで、透明な材料とは、400nm〜700nmの任意の波長領域の光線を60%以上透過することが好ましく、さらに好ましくは70%以上の透過であり、最も好ましくは80%以上の透過である。
【0018】
本発明のガスバリア基材は、液晶、有機ELなどの表示デバイス用途に用いることができる。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこの実施例によって限定されるものではない。
(実施例1)
ポリエーテルサルホンフィルム樹脂基材(ガラス転移温度Tg=223℃)に2官能のエポキシアクリレート25wt%、ジエチレングリコール48.5wt%、酢酸エチル24wt%、シランカップリング剤1wt%、光開始剤1.5wt%からなる均一な混合溶液をスピンコーターで塗布し、80℃10分加熱乾燥後さらにUV照射で硬化させて2μmの樹脂層を形成した。つぎに、RFマグネトロンスパッタ装置を用い、この真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し、スパッタリングターゲットである無アルカリガラス上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの無機ガスバリア層の形成を開始した。無機ガスバリア層形成時の樹脂基材温度T(K)は、450(K)であった。50nmの膜が堆積したところでシャッターを閉じて成膜を終了した。真空槽内に大気を導入し無機ガスバリア層の形成されたフィルムを取り出した。この条件で成膜した無機ガスバリア層の元素濃度をX線光電子分光分析(ESCA)で測定したところそのmol%は、「SiOx 50%, CaOx 4%, AlOx 16%, NaOx 5%, MgOx 13%, BOx 10%, その他 2%」であった。また、この無機ガスバリア層はX線回折測定の結果(非晶)であることが確認された。「SiOx 50%, CaOx 4%, AlOx 16%, NaOx 5%, MgOx 13%, BOx 10%, その他 2%」の組成で、原料を混合、溶融、冷却により、無機ガスバリア層と同組成のガラスを作製し、このガラス転移温度を測定したところ、1080(K)であった。従って、この無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)は、0.42である。
【0020】
この無機ガスバリア層表面をAFM観察した結果、の表面粗さ算術平均値(Ra)が、20μm×20μm角の領域で、Ra=1.1(nm)、最大高さRy=30.9(nm)、平均線から10(nm)以上の深さの穴は認められなかった。
【0021】
このガスバリア基材の水蒸気透過度をJIS K 7129 B法にて測定した結果、水蒸気透過度は0.01g/m/dayより小さくなった。
【0022】
このガスバリア基材の酸素透過度をJIS K 7126 B法にて測定した結果、酸素透過度は0.1cm/m/day/atmより小さくなった。
【0023】
また、カルシウムコロージョン評価において50℃95%RH恒温恒湿度12時間処理後の、50μm以上に成長する腐食が1mmの範囲で0.9個(測定数20の平均)、腐食面積率0.4%であった。
【0024】
(比較例1)
ポリエーテルサルホンフィルム樹脂基材(ガラス転移温度Tg=223℃)に2官能のエポキシアクリレート(昭和高分子:VR−60−LAV)25wt%、ジエチレングリコール48.5wt%、酢酸エチル24wt%、シランカップリング剤1wt%、光開始剤1.5wt%からなる均一な混合溶液をスピンコーターで塗布し、80℃10分加熱乾燥後さらにUV照射で硬化させて2μmの樹脂層を形成した。つぎに、RFマグネトロンスパッタ装置を用い、この真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し、スパッタリングターゲットであるSiO上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの無機ガスバリア層の形成を開始した。無機ガスバリア層形成時の樹脂基材温度T(K)は、450(K)であった。50nmの膜が堆積したところでシャッターを閉じて成膜を終了した。真空槽内に大気を導入し無機ガスバリア層の形成されたフィルムを取り出した。SiOのTは2003(K)である。従って、この無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)は、0.22である。
【0025】
この無機ガスバリア層表面をAFM観察した結果、の表面粗さ算術平均値(Ra)が、20μm×20μm角の領域で、Ra=1.2(nm)、最大高さRy=19.9(nm)、平均線から10(nm)以上の深さの穴は認められなかった。
【0026】
このガスバリア基材の水蒸気透過度をJIS K 7129 B法にて測定した結果、水蒸気透過度は0.03g/m/dayであった。
【0027】
このガスバリア基材の酸素透過度をJIS K 7126 B法にて測定した結果、酸素透過度は0.1cm/m/day/atmより小さくなった。
【0028】
また、カルシウムコロージョン評価において50℃95%RH恒温恒湿度12時間処理後の、50μm以上に成長する腐食が1mmの範囲で6.1個(測定数20の平均)、腐食面積率1.2%であった。
【0029】
前記実施例と比較例でのカルシウムコロージョン評価における腐食数および腐食面積は、実施例におけるガスバリア性能が飛躍的に向上したことを示している。ガスバリア基材を表示デバイス用途としたとき、ガスバリア性能の向上すなわちカルシウムコロージョン評価における腐食数、腐食面積が少ないほど表示品質、耐久性能が向上する。
【0030】
【発明の効果】
本発明により、従来よりも高いガスバリア性能を持つガスバリア基材を提供すること。
光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材などの幅広い用途に応用が可能なガスバリア基材を提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas barrier substrate that can be applied to a wide range of uses such as an optical member, an electronic member, a general packaging member, and a chemical packaging member.
[0002]
[Prior art]
Conventionally, a gas / water vapor barrier film in which a metal oxide thin film such as aluminum, aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a resin substrate or film is used to wrap articles and foods that require gas blocking. It is widely used in packaging applications to prevent the alteration of industrial products and pharmaceuticals. Moreover, it is used with a liquid crystal display element, a solar cell, an electroluminescence (EL) substrate, etc. besides the packaging use. In particular, transparent substrates that have been applied to liquid crystal display elements, EL elements, etc. have recently been required to be lighter and larger, have long-term reliability and a high degree of freedom in shape, and can display curved surfaces. With the addition of high demands such as being, film base materials such as transparent resins have begun to be used in place of glass substrates that are heavy, fragile and difficult to increase in area. In addition, the resin film not only satisfies the above requirements, but also has a roll-to-roll method, so that it has higher productivity than glass and is advantageous in terms of cost reduction. However, a film substrate such as a transparent resin has a problem that gas barrier properties are inferior to glass. If a base material with inferior gas barrier properties is used, oxygen and water vapor will permeate, causing deterioration of the liquid crystal in the liquid crystal cell, for example, resulting in display defects and deterioration of display quality. In order to solve such problems, it is known to form a metal oxide thin film on a film substrate to form a gas barrier film substrate. As a gas barrier film used for a packaging material or a liquid crystal display element, a film obtained by vapor-depositing silicon oxide on a resin film (for example, see Patent Document 1) or a film obtained by vapor-depositing aluminum oxide (for example, see Patent Document 2). All of them have a water vapor barrier property of about 1 g / m 2 / day. In recent years, the demand for gas barrier performance to a film substrate, for example, about 0.1 g / m 2 / day in terms of water vapor permeability has increased due to the development of large-sized liquid crystal displays and high-definition displays. In order to meet this demand, film formation by sputtering or CVD has been studied as a means for expecting higher gas barrier performance.
[0003]
However, in recent years, development of organic EL displays and high-definition color liquid crystal displays that require further gas barrier properties has progressed, and while maintaining the transparency that can be used therefor, even higher gas / water vapor barrier properties such as water vapor There has been a demand for substrates that are permeable and have a performance of less than 0.1 g / m 2 / day.
[0004]
[Patent Document 1]
JP-A-53-12953 [Patent Document 2]
Japanese Patent Laid-Open No. 58-217344
[Problems to be solved by the invention]
An object of the present invention is to provide a gas barrier substrate having higher gas barrier performance than before.
[0006]
[Means for Solving the Problems]
That is, the present invention
(1) A gas barrier substrate in which an inorganic gas barrier layer is laminated on at least one surface of a resin substrate, and the resin substrate temperature T s (K) at the time of forming the inorganic gas barrier layer with respect to the melting point T m (K) of the inorganic gas barrier layer A gas barrier substrate having a ratio (T s / T m ) of 0.25 or more and less than 1.0.
(2) A gas barrier base material in which an inorganic gas barrier layer is laminated on at least one surface on a resin base material, wherein the inorganic gas barrier layer has a melting point of less than 1500 ° C.
(3) A gas barrier substrate in which an inorganic gas barrier layer is laminated on at least one surface of a resin substrate, and the resin substrate temperature T s (K) at the time of forming the inorganic gas barrier layer with respect to the melting point T m (K) of the inorganic gas barrier layer A gas barrier substrate having a ratio (T s / T m ) of 0.25 to 1.0 and an inorganic gas barrier layer having a melting point of less than 1500 ° C.
- (4) A gas barrier base material formed by laminating at least one side inorganic gas barrier layer of the resin substrate, gas barrier groups glass transition temperature T g of the resin substrate is 200 ° C. or higher (1) to (3) material .
(5) The gas barrier substrate according to (1) to (4), wherein the gas barrier substrate is amorphous by X-ray diffraction measurement.
(6) The gas barrier substrate according to (5), wherein a treatment for amorphizing a crystal portion in the inorganic gas barrier film is performed during or after the formation of the inorganic gas barrier layer.
(7) In the region where the surface roughness arithmetic average value (Ra) of the inorganic gas barrier layer is 20 μm × 20 μm square, Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and from the average line There is no hole with a depth of 10 nm or more and the aspect ratio of the hole depth to the hole diameter (hole depth / hole diameter) is larger than 0.2, and the aspect ratio (maximum height / The gas barrier base material according to any one of (1) to (6), wherein there is no local protrusion having a minimum width (greater than 0.2).
(8) A gas barrier substrate having a water vapor transmission rate lower than 0.01 g / m 2 / day and an oxygen transmission rate lower than 0.1 cm 3 / m 2 / day / atm (1) to (7).
(9) In calcium corrosion evaluation, the corrosion that grows to 50 μm or more after treatment at 50 ° C. and 95% RH constant temperature and humidity for 12 hours is 5 or less in a range of 1 mm 2 and the corrosion area ratio is 1% or less (1) to (8) Gas barrier base material.
(10) The gas barrier substrate according to (7) to (9), wherein an organic coating layer is provided on the upper surface of the inorganic gas barrier layer.
(11) The gas barrier substrate according to (1) to (10), wherein the inorganic gas barrier layer has two or more layers.
(12) A gas barrier substrate in which the gas barrier substrate of (1) to (11) is transparent.
(13) A display device substrate using the gas barrier base material of (1) to (12).
(14) A display device using the gas barrier substrate according to (1) to (12).
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The gas barrier substrate of the present invention is a gas barrier substrate in which an inorganic gas barrier layer is laminated on at least one surface on a resin substrate, and this inorganic gas barrier layer forms an inorganic gas barrier layer with respect to the melting point T m (K) of the inorganic gas barrier layer. It is a gas barrier substrate characterized by being formed at a value of the ratio (T s / T m ) of the resin substrate temperature T s (K) at the time of 0.25 or more and less than 1.0. When the value of (T s / T m ) is less than 0.25, a film having a rough structure is formed, and it is difficult to obtain excellent gas barrier characteristics. In addition, if the value of (T s / T m ) is 1.0 or more, the resin base material often cannot withstand this temperature, which is not realistic. More preferably, the value of (T s / T m ) is 0.35 or more and less than 1.0.
[0008]
The gas barrier substrate of the present invention is a gas barrier substrate in which an inorganic gas barrier layer is laminated on at least one surface on a resin substrate, and the melting point of the inorganic gas barrier layer is less than 1500 ° C. There may be. When an inorganic gas barrier layer is formed on a resin substrate, if the melting point of the inorganic gas barrier layer is 1500 ° C. or higher, a film having a rough structure is formed, and it is difficult to obtain excellent gas barrier characteristics.
[0009]
For the formation of the inorganic gas barrier layer of the gas barrier substrate of the present invention, a physical method such as a thermal evaporation method, a sputtering method, an ion plating method, a cluster ion beam method, or a chemical method such as a CVD method can be used. .
[0010]
The melting point Tm of the inorganic gas barrier layer laminated on the gas barrier substrate of the present invention was determined by conducting a chemical composition analysis of the inorganic gas barrier layer, confirming the composition, and then mixing, melting, and solidifying materials having the same composition. Then, it can be determined by a method such as measuring the melting point of this material. However, if the crystallinity is also gradually cooled materials corresponding to the inorganic gas barrier layer of such a composition can not be obtained, the glass transition temperature T g of the the material in place of the melting point T m and T m. The inorganic gas barrier layer-forming resin substrate temperature T s at the time can also be measured by a method such as wear stickers for temperature measurement on the opposite side of the inorganic gas barrier layer-forming surface of the gas barrier base. However, when there is a possibility that the gas barrier substrate is exposed to a higher temperature in the film forming apparatus than when the inorganic gas barrier layer is formed, measurement is performed by bringing a thermocouple in contact with the opposite side of the gas barrier substrate to the inorganic gas barrier layer forming surface. Such a method can also be used. Further, the temperature may be monitored with a non-contact type thermometer such as an infrared sensor.
[0011]
Gas barrier base material of the present invention preferably has a glass transition temperature T g of the resin substrate is 200 ° C. or higher. As the resin base material having a glass transition temperature Tg of 200 ° C. or higher, polyethersulfone resin (PES), epoxy resin, vinyl ester resin and the like can be used.
[0012]
The gas barrier substrate of the present invention is preferably amorphous. For this reason, a metal oxide, composite oxide, etc. with high glass formation ability can also be used for the inorganic compound used as the raw material of the inorganic gas barrier layer. For example, SiO 2 —B 2 O 3 , SiO 2 —ZnO, or the like can be used. Further, the crystal part in the inorganic gas barrier film may be amorphized during or after the gas barrier layer is formed. Whether the material is amorphous or not can be determined by X-ray diffraction measurement. Laser annealing, electron beam irradiation, ion beam irradiation, or the like can also be used for the amorphization treatment step.
[0013]
In the gas barrier substrate of the present invention, when the surface of the inorganic gas barrier layer is 20 μm × 20 μm square, the surface roughness arithmetic average value (Ra) is Ra <10 nm and the maximum height (Ry) is Ry <0.3 μm. There is no hole with an aspect ratio (hole depth / hole diameter) greater than 0.2 with a depth from the average line of 10 nm or more and a hole depth / hole diameter ratio of more than 0.2. It is preferable that there are no local protrusions having an aspect ratio (maximum height / minimum width) greater than 0.2. If surface smoothness deteriorates, cracks and hole-like defects are likely to occur in the laminated inorganic gas barrier film, and the barrier performance of the film itself may be reduced.
[0014]
The gas barrier substrate of the present invention has a water vapor transmission rate of 0.01 g / m 2 in order to be used for applications requiring high barrier properties such as organic EL displays and high-definition color liquid crystal displays. It is preferably smaller than / day and the oxygen transmission rate is smaller than 0.1 cm 3 / m 2 / day / atm. In addition, for use in applications requiring these high barrier properties, the corrosion that grows to 50 μm or more after the 50 ° C. and 95% RH constant temperature and humidity treatment in the calcium corrosion evaluation is 5 or less in the range of 1 mm 2 and The corrosion area ratio is preferably 1% or less. The calcium corrosion evaluation here refers to “(1) a metal layer that reacts with water and corrodes on one side of a film sheet for evaluating water vapor barrier properties by a vacuum process, and then a water vapor impermeable metal layer. The cell for evaluating water vapor barrier properties in which this surface is sealed, or (2) the cell for evaluating water vapor barrier properties according to claim 1, wherein the thickness of the metal layer that reacts with water and corrodes is 30 nm to 500 nm. Or (3) the cell for evaluating water vapor barrier properties according to (1) or (2), wherein the thickness of the water vapor impermeable metal layer is 500 nm to 20 μm, or (4) of the water vapor impermeable metal layer. Water vapor barrier properties according to (1) to (3), wherein the surface roughness is Ra <20 nm in arithmetic mean value (Ra), maximum height <600 nm and maximum depth <200 nm in maximum height and depth. Evaluation cell or (5) The ratio of the thickness (b) of the water vapor impermeable metal layer to the thickness (a) of the metal layer that reacts with water and corrodes, that is, (b) / (a) is 2 or more. (1)-(4) water vapor barrier evaluation cell, or (6) an upper layer of the water vapor impermeable metal layer, at a temperature of 40 ± 0.5 ° C. and a relative humidity of 90 ± 2%. When exposed, the change in mass of the water vapor barrier property evaluation cell according to (1) to (5) sealed with an organic substance of 1 mg / 24 hours or less at an exposed area of 50 cm 2 , or (7) reacts with the moisture. (1) to (6) the water vapor barrier property evaluation cell containing calcium in the material of the corroding metal layer, or (8) aluminum, zinc, tin, indium as the material of the water vapor impermeable metal layer, Water vapor barrier property evaluation according to any one of (1) to (7), including any of lead, silver, and copper A cell, or (9) a water vapor barrier evaluation cell according to (1) to (8), or (10) the water vapor impermeable metal layer, wherein the water vapor impermeable metal layer has a multilayer structure of different materials. (11) Using the water vapor barrier evaluation cell according to (1) to (9), wherein the material is an alloy of two or more kinds of metals. (11) After performing a constant temperature and humidity treatment under arbitrary conditions, it reacts with moisture. After the water vapor barrier property evaluation method for observing the corrosion state of the corroding metal and the water vapor barrier property evaluation according to (12) and (11), the film sheet is removed from the cell nondestructively, washed, and reacted with moisture. After performing the water vapor barrier property evaluation method for evaluating the state of the defective portion of the base material by directly observing the film sheet surface corresponding to the corroded center portion of the corroded metal, and (13) after performing the constant temperature and humidity treatment, Reacts with moisture From the volume of metal corrosion was calculated from the corrosion area and the thickness of the corrosion metal as corrosion, water vapor barrier property evaluation method for quantitatively evaluating the amount of water which reacts with the metal. It is. In the present invention, calcium corrosion evaluation was performed using a gas barrier substrate as a film sheet.
[0015]
The gas barrier substrate of the present invention may be provided with an organic coating layer on the inorganic gas barrier layer. By providing the organic coating layer, an effect of preventing damage to the inorganic gas barrier layer during handling or the process can be expected. .
[0016]
In the gas barrier substrate of the present invention, a total of two or more inorganic gas barrier layers may be laminated on one side or both sides of the resin substrate, and by laminating a plurality of inorganic gas barrier layers, the gas barrier property can be further improved. I can expect. As a method of laminating a plurality of inorganic gas barrier layers, a plurality of inorganic gas barrier layers may be laminated one after another, or may be laminated with an organic layer interposed therebetween.
[0017]
The gas barrier substrate of the present invention is preferably transparent. By transmitting light, it can be suitably used for display substrates and packaging applications that require transparency. Here, the transparent material preferably transmits 60% or more of light in an arbitrary wavelength region of 400 nm to 700 nm, more preferably 70% or more, and most preferably 80% or more. .
[0018]
The gas barrier substrate of the present invention can be used for display device applications such as liquid crystal and organic EL.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
(Example 1)
Polyether sulfone film resin base material (glass transition temperature Tg = 223 ° C.), bifunctional epoxy acrylate 25 wt%, diethylene glycol 48.5 wt%, ethyl acetate 24 wt%, silane coupling agent 1 wt%, photoinitiator 1.5 wt A uniform mixed solution consisting of% was applied with a spin coater, dried by heating at 80 ° C. for 10 minutes, and further cured by UV irradiation to form a 2 μm resin layer. Next, using an RF magnetron sputtering apparatus, the film on which the organic layer was formed was set in this vacuum chamber, evacuated to a level of 10 −4 Pa, and argon was introduced as a discharge gas at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the alkali-free glass as a sputtering target, and the sputtering process was started. When the process was stabilized, the shutter was opened and formation of an inorganic gas barrier layer on the film was started. The resin base material temperature T s (K) when forming the inorganic gas barrier layer was 450 (K). When the 50 nm film was deposited, the shutter was closed to complete the film formation. Air was introduced into the vacuum chamber, and the film on which the inorganic gas barrier layer was formed was taken out. When the element concentration of the inorganic gas barrier layer formed under these conditions was measured by X-ray photoelectron spectroscopy (ESCA), the mol% was “SiOx 50%, CaOx 4%, AlOx 16%, NaOx 5%, MgOx 13%. , BOx 10%, other 2% ”. Moreover, it was confirmed that this inorganic gas barrier layer was a result of the X-ray diffraction measurement (amorphous). Glass with the same composition as the inorganic gas barrier layer by mixing, melting and cooling the raw materials with the composition of “SiOx 50%, CaOx 4%, AlOx 16%, NaOx 5%, MgOx 13%, BOx 10%, and other 2%” When this glass transition temperature was measured, it was 1080 (K). Therefore, the ratio (T s / T m ) of the resin base material temperature T s (K) when forming the inorganic gas barrier layer to the melting point T m (K) of the inorganic gas barrier layer is 0.42.
[0020]
As a result of AFM observation of the surface of the inorganic gas barrier layer, Ra = 1.1 (nm) and maximum height Ry = 30.9 (nm) in a region where the surface roughness arithmetic average value (Ra) is 20 μm × 20 μm square. ) No holes having a depth of 10 nm or more from the average line were observed.
[0021]
As a result of measuring the water vapor permeability of this gas barrier substrate by the JIS K 7129 B method, the water vapor permeability was less than 0.01 g / m 2 / day.
[0022]
As a result of measuring the oxygen permeability of this gas barrier substrate by the JIS K 7126 B method, the oxygen permeability was smaller than 0.1 cm 3 / m 2 / day / atm.
[0023]
Further, in the calcium corrosion evaluation, after corrosion treatment at 50 ° C. and 95% RH constant temperature and humidity for 12 hours, 0.9 corrosion (average of 20 measurements) in the range of 1 mm 2 and corrosion area ratio of 0.4 %Met.
[0024]
(Comparative Example 1)
Polyether sulfone film resin substrate (glass transition temperature Tg = 223 ° C.), bifunctional epoxy acrylate (Showa Polymer: VR-60-LAV) 25 wt%, diethylene glycol 48.5 wt%, ethyl acetate 24 wt%, silane cup A uniform mixed solution consisting of 1 wt% ring agent and 1.5 wt% photoinitiator was applied by a spin coater, dried by heating at 80 ° C. for 10 minutes, and further cured by UV irradiation to form a 2 μm resin layer. Next, using an RF magnetron sputtering apparatus, the film on which the organic layer was formed was set in this vacuum chamber, evacuated to a level of 10 −4 Pa, and 0.5 Pa was introduced as a discharge gas at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on SiO 2 as a sputtering target, and a sputtering process was started. When the process was stabilized, the shutter was opened and formation of an inorganic gas barrier layer on the film was started. The resin base material temperature T s (K) when forming the inorganic gas barrier layer was 450 (K). When the 50 nm film was deposited, the shutter was closed to complete the film formation. Air was introduced into the vacuum chamber, and the film on which the inorganic gas barrier layer was formed was taken out. The T m of SiO 2 is 2003 (K). Therefore, the ratio (T s / T m ) of the resin base material temperature T s (K) when forming the inorganic gas barrier layer to the melting point T m (K) of the inorganic gas barrier layer is 0.22.
[0025]
As a result of AFM observation of the surface of the inorganic gas barrier layer, Ra = 1.2 (nm) and maximum height Ry = 19.9 (nm) when the surface roughness arithmetic average value (Ra) is 20 μm × 20 μm square. ) No holes having a depth of 10 nm or more from the average line were observed.
[0026]
As a result of measuring the water vapor transmission rate of this gas barrier substrate by the JIS K 7129 B method, the water vapor transmission rate was 0.03 g / m 2 / day.
[0027]
As a result of measuring the oxygen permeability of this gas barrier substrate by the JIS K 7126 B method, the oxygen permeability was smaller than 0.1 cm 3 / m 2 / day / atm.
[0028]
Further, in the calcium corrosion evaluation, after the treatment at 50 ° C. and 95% RH, constant temperature and humidity for 12 hours, 6.1 pieces of corrosion growing to 50 μm or more in the range of 1 mm 2 (average of 20 measurements), corrosion area ratio 1.2 %Met.
[0029]
The number of corrosion and the corrosion area in the calcium corrosion evaluation in the examples and comparative examples indicate that the gas barrier performance in the examples has been dramatically improved. When the gas barrier substrate is used as a display device, the display quality and durability are improved as the gas barrier performance is improved, that is, the number of corrosion and the corrosion area in the calcium corrosion evaluation are smaller.
[0030]
【The invention's effect】
According to the present invention, a gas barrier substrate having higher gas barrier performance than the conventional one is provided.
A gas barrier substrate that can be applied to a wide range of applications such as optical members, electronics members, general packaging members, and medicine packaging members can be provided.

Claims (14)

樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)が0.25以上1.0未満であるガスバリア基材。A gas barrier base material in which an inorganic gas barrier layer is laminated on at least one surface of a resin base material, wherein the ratio of the resin base material temperature T s (K) at the time of forming the inorganic gas barrier layer to the melting point T m (K) of the inorganic gas barrier layer (T s / Tm ) is a gas barrier substrate having a value of 0.25 or more and less than 1.0. 樹脂基材上の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点が1500℃未満であるガスバリア基材。A gas barrier substrate in which an inorganic gas barrier layer is laminated on at least one surface of a resin substrate, wherein the inorganic gas barrier layer has a melting point of less than 1500 ° C. 樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、無機ガスバリア層の融点T(K)に対する無機ガスバリア層形成時の樹脂基材温度T(K)の比(T/T)が0.25〜1.0であり、かつ、無機ガスバリア層の融点が1500℃未満であるガスバリア基材。A gas barrier base material in which an inorganic gas barrier layer is laminated on at least one surface of a resin base material, wherein the ratio of the resin base material temperature T s (K) at the time of forming the inorganic gas barrier layer to the melting point T m (K) of the inorganic gas barrier layer (T s / T m ) is 0.25 to 1.0, and the melting point of the inorganic gas barrier layer is less than 1500 ° C. 樹脂基材の少なくとも片面に無機ガスバリア層を積層したガスバリア基材であって、樹脂基材のガラス転移温度Tが200℃以上である請求項1〜3何れか一項記載のガスバリア基材。A gas barrier base material formed by laminating at least one side inorganic gas barrier layer of the resin substrate according to claim 1 to 3 any one gas barrier substrate according glass transition temperature T g of the resin substrate is 200 ° C. or higher. X線回折測定で非晶であることを特徴とする請求項1〜4何れか一項記載のガスバリア基材。The gas barrier substrate according to any one of claims 1 to 4, wherein the gas barrier substrate is amorphous by X-ray diffraction measurement. 無機ガスバリア層成膜中あるいは成膜後に無機ガスバリア膜中の結晶部を非晶化する処理を行なった請求項5記載のガスバリア基材。6. The gas barrier substrate according to claim 5, wherein a treatment for amorphizing a crystal part in the inorganic gas barrier film is performed during or after the formation of the inorganic gas barrier layer. 無機ガスバリア層の表面粗さ算術平均値(Ra)が、20μm×20μm角の領域において、Ra<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴が無く、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無い請求項1〜6何れか一項記載のガスバリア基材。In the region where the surface roughness arithmetic average value (Ra) of the inorganic gas barrier layer is 20 μm × 20 μm square, Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and the depth from the average line is No aspect ratio between hole depth and hole diameter (hole depth / hole diameter) greater than 0.2 at 10 nm or more, and the aspect ratio (maximum height / width minimum value) of maximum surface height and minimum width The gas barrier substrate according to any one of claims 1 to 6, wherein there is no local protrusion larger than 0.2. 水蒸気透過速度が0.01g/m/dayより小さくかつ、酸素透過速度が0.1cm/m/day/atmより小さい請求項1〜7何れか一項記載のガスバリア基材。The gas barrier substrate according to any one of claims 1 to 7, wherein the water vapor transmission rate is less than 0.01 g / m 2 / day and the oxygen transmission rate is less than 0.1 cm 3 / m 2 / day / atm. カルシウムコロージョン評価において50℃95%RH恒温恒湿度12時間処理後の、50μm以上に成長する腐食が1mmの範囲で5個以下かつ、腐食面積率1%以下である請求項1〜8何れか一項記載のガスバリア基材。Either of 1 to 8 in which corrosion that grows to 50 µm or more after treatment for 12 hours at 50 ° C and 95% RH in a calcium corrosion evaluation is 5 or less within a range of 1 mm 2 and the corrosion area ratio is 1% or less. The gas barrier substrate according to one item. 無機ガスバリア層の上面に有機物コート層を設けた請求項7〜9何れか一項記載のガスバリア基材。The gas barrier substrate according to any one of claims 7 to 9, wherein an organic coating layer is provided on the upper surface of the inorganic gas barrier layer. 無機ガスバリア層が2層以上である請求項1〜10何れか一項記載のガスバリア基材。The gas barrier substrate according to any one of claims 1 to 10, wherein the inorganic gas barrier layer has two or more layers. 請求項1〜11何れか一項記載のガスバリア基材が透明であるガスバリア基材。The gas barrier base material in which the gas barrier base material as described in any one of Claims 1-11 is transparent. 請求項1〜12何れか一項記載のガスバリア基材を利用した表示デバイス用基板。The board | substrate for display devices using the gas barrier base material as described in any one of Claims 1-12. 請求項1〜12何れか一項記載のガスバリア基材を利用した表示デバイス。A display device using the gas barrier substrate according to claim 1.
JP2003196058A 2003-06-16 2003-07-11 Gas barrier base material Pending JP2005059211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196058A JP2005059211A (en) 2003-06-16 2003-07-11 Gas barrier base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003170243 2003-06-16
JP2003196058A JP2005059211A (en) 2003-06-16 2003-07-11 Gas barrier base material

Publications (2)

Publication Number Publication Date
JP2005059211A true JP2005059211A (en) 2005-03-10
JP2005059211A5 JP2005059211A5 (en) 2007-05-17

Family

ID=34379708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196058A Pending JP2005059211A (en) 2003-06-16 2003-07-11 Gas barrier base material

Country Status (1)

Country Link
JP (1) JP2005059211A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289821A (en) * 2005-04-12 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film, substrate film and organic electroluminescence device
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film and organic electroluminescence device
JP2010286285A (en) * 2009-06-09 2010-12-24 Toyo Seikan Kaisha Ltd Unit and method for evaluating steam barrier properties
JP2020121425A (en) * 2019-01-29 2020-08-13 倉敷紡績株式会社 Barrier film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289821A (en) * 2005-04-12 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film, substrate film and organic electroluminescence device
US7815982B2 (en) 2005-04-12 2010-10-19 Fujifilm Corporation Gas barrier film, substrate film, and organic electroluminescence device
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film and organic electroluminescence device
US7838092B2 (en) 2005-07-11 2010-11-23 Fujifilm Corporation Gas barrier film, substrate film, and organic electroluminescence device
JP2010286285A (en) * 2009-06-09 2010-12-24 Toyo Seikan Kaisha Ltd Unit and method for evaluating steam barrier properties
JP2020121425A (en) * 2019-01-29 2020-08-13 倉敷紡績株式会社 Barrier film

Similar Documents

Publication Publication Date Title
TWI389367B (en) Flexible substrate with film barrier layer
CN1729310B (en) Transparent Conductive Films for Flat Panel Displays
Chen et al. High-performance transparent barrier films of SiOx∕ SiNx stacks on flexible polymer substrates
JP5879343B2 (en) Flexible electronic element manufacturing method, flexible electronic element, and flexible substrate
TWI550111B (en) Self-passivation mechanism to stabilize the airtight film
Kumar et al. Low moisture permeation measurement through polymer substrates for organic light emitting devices
JP5559542B2 (en) Nanoparticle-encapsulated barrier stack
JP6023402B2 (en) Transparent conductive film and method for producing the same
JP2008240150A (en) Hermetic sealing using tin-containing inorganic material with low sintering temperature
JP6181806B2 (en) Transparent conductive film and method for producing the same
JP3958235B2 (en) Water vapor barrier evaluation cell and water vapor barrier evaluation method
WO2017155902A1 (en) Novel multilayer stacks including a stress relief layer, methods and compositions relating thereto
JP5419868B2 (en) Composite film and manufacturing method thereof
JP2004009395A (en) Transparent water vapor barrier film and its manufacturing process
Gasonoo et al. Parylene C-AlN multilayered thin-film passivation for organic light-emitting diode using a single deposition chamber
Zhu et al. Transparent flexible ultra‐low permeability encapsulation film: Fusible glass fired on heat‐resistant polyimide membrane
JP2005059211A (en) Gas barrier base material
JP4289116B2 (en) Gas barrier substrate, display device substrate and display device
JP4106931B2 (en) Transparent gas barrier thin film coating film
JP2009226861A (en) Gas barrier film
JP2004009665A (en) Optical film sheet with barrier film and display element using the same
JP4617933B2 (en) Film coated with glass with low softening point
KR100941877B1 (en) Passivation composition, sputtering target and passivation film using same, and method for manufacturing same
JP2005036268A (en) Sputtering target
JP2009143759A (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216