【0001】
【発明の属する技術分野】
本発明は、電子機器に多用される磁芯、磁芯を用いた線輪部品、及び電源回路に関するものであり、特にスイッチング電源等に使用されるのに好適な、磁芯および電源用トランスおよび電源回路に関する。
【0002】
【従来の技術】
通常の電源回路では、非安定な入力電圧に対して安定な出力電圧を負荷に供給しているが、その際の小型化と電力変換効率の向上が近年の重要課題となっている。これに対し、電源用トランスとして、磁芯の低損失化や、巻線の損失低減を図る等の改善がとられている。また、電源回路としても、スイッチング損失を低減する対策がとられてきた。従来の低損失電源回路については、非特許文献1にて記載されている。
【0003】
【非特許文献1】
トランジスタ技術、2002年12月号、P245〜P255
【0004】
図6は、従来の低損失型の電源用トランスの説明図である。図6の従来の電源用トランスは、E型コア1の開放端部分に、I型コア2aと磁気漏洩足3aとが並設され、かつ前記E型コア1の開放端部分との間にエアギャップ6a,6bが設けられ、入力巻線LN1,出力巻線LN2,巻線L1,巻線L2が巻かれた構造である。ここで、入力巻線LN1、出力巻線LN2は、E型コア1の基台部分に巻かれ、また巻線L1は、同じくE型コア1の基台部分に巻かれ、また巻線L2は、I型コア2aに巻かれている。一方、磁気漏洩足3aには、全く巻線は巻かれていない。
【0005】
図9は、従来技術による電源トランス部品を用いた低損失電源回路( DC−DCコンバータ)の例であり、以下に、それらの骨子と動作の概要を記述する。
【0006】
まず、スイッチ素子Q1がonの期間は、スイッチ素子Q2とQ4はoff、スイッチ素子Q3はonであり、この期間には巻線L1を介して励磁電流が流れると同時に、スイッチ素子Q3と巻線L2を介し磁芯に蓄えられた磁気エネルギーは負荷側に供給される。
【0007】
また、スイッチ素子Q1がoffの期間には、スイッチ素子Q2とQ4はon、スイッチ素子Q3はoffであるため、巻線LN1を介して磁芯は逆向きに励磁され、かつ入力巻線LN1と巻線L2を介して負荷電流が供給される。
【0008】
動作概要は以上の通りであるが、スイッチ素子Q1がonの期間の巻線L1を介した励磁方向は、上記巻線L2を介した出力電流と相殺方向であるため、磁芯の小型化に寄与できる特長がある。
【0009】
【発明が解決しようとする課題】
ところが、上述した従来技術においては、下記のような問題点がある。つまり、従来技術によるDC−DCコンバータは、基本的には半波励磁であるため、図8に示すように、磁芯のB−H特性の活用範囲が小さく、その小型化が図れないという問題点があり、また、過渡的な負荷変動等に対して磁芯の安定動作領域を超えて磁気飽和に達してスイッチ素子等の永久破損が生じる可能性も高く、高い信頼性の電源回路が得られにくいという問題点があった。
【0010】
そこで、本発明の課題は、上述した従来技術の問題点を解決し、小形で高信頼性に優れた 磁芯および電源用トランスおよび電源回路を提供することである。
【0011】
【課題を解決するための手段】
即ち、本発明は、少なくとも一つ以上の磁芯で少なくとも一つ以上の閉磁路を形成し、前記閉磁路を形成する軟磁気特性を有する磁性体の少なくとも1ヶ所以上の空隙に永久磁石を配置した磁芯に対して、少なくとも2つ以上で、かつ1ターン以上の巻線が施されていることを特徴とする電源用トランスである。
【0012】
しかも、前記電源用トランスは、励磁巻線に入力電圧が印加されて流れる励磁電流によって生じる磁界の極性が、前記永久磁石によって生じる磁界の極性と互いに逆極性を有することを特徴とする電源用トランスであって、さらに前記電源用トランスの励磁巻線に入力電圧が印加されて流れる励磁電流の直流成分は、前記電源用トランスに施した他の巻線を介して流れる負荷電流成分の直流成分とが互いに逆極性となることを特徴とする電源回路である。
【0013】
即ち、本発明は、少なくとも一つ以上の磁芯で少なくとも一つ以上の閉磁路を形成し、前記閉磁路を形成する軟磁気特性を有する磁性体の少なくとも1ヶ所以上の空隙に永久磁石を配置してなることを特徴とする磁芯である。
【0014】
また、本発明は、前記磁芯は、コの字型コア、棒状ヨーク、漏洩足ヨークで形成され、前記棒状ヨークと漏洩足ヨークは、平行して前記コの字型コアの開口部に配置され、棒状ヨークとコの字型コアとの間に永久磁石が配置され、漏洩足ヨークとコの字型コアとの間には、空隙が設けられた磁芯である。
【0015】
また、本発明は、前記磁芯は、コの字型コア、棒状ヨーク、漏洩足ヨークで形成され、前記棒状ヨークと漏洩足ヨークは、平行して前記コの字型コアの開口部に配置され、棒状ヨークと漏洩足ヨークの端面と、コの字型コアとの間には永久磁石が配置された磁芯である。
【0016】
また、本発明は、前記磁芯に対し、少なくとも2つ以上で、かつ1ターン以上の巻線が施された電源用トランスである。
【0017】
また、本発明は、前記電源用トランスを用いた電源回路であって、前記電源回路は、励磁巻線に入力電圧が印加されて流れる励磁電流によって生じる磁界の極性が、前記永久磁石によって生じる磁界の極性と互いに逆極性を有する電源回路である。
【0018】
また、本発明は、前記電源回路において、前記励磁巻線に入力電圧が印加されて流れる励磁電流の直流成分と、他の巻線を介して流れる負荷電流成分の直流成分とが互いに逆極性となる電源回路である。
【0019】
【発明の実施の形態】
本発明の実施の形態による磁芯および電源用トランスおよび電源回路について、以下に説明する。
【0020】
(実施の形態1)
図1は、本発明の実施の形態1による電源用トランスの説明図である。図2は、 図1の電源用トランスを、各方向から見た図であり、図2(a)は上面図、図2(b)は、下面図、図2(c)は側面図である。
【0021】
図1の本発明の電源用トランスは、E型コア1の開放端部分に、I型コア2aと磁気漏洩足3aとが、並設され、かつ前記E型コア1の開放端部分との間にエアギャップ6および永久磁石4が設けられた構造である。
【0022】
ここで、入力巻線LN1、出力巻線LN2は、E型コア1の基台部分に巻かれ、また巻線L1は、同じくE型コア1の基台部分に巻かれ、また巻線L2は、I型コア2aに巻かれている。一方、磁気漏洩足3aには、全く巻線は巻かれていない。
【0023】
図9は、本発明による電源トランス部品を用いた低損失電源回路( DC−DCコンバータ)の例であり、以下に、それらの骨子と動作の概要を記述する。
【0024】
まず、スイッチ素子Q1がonの期間は、スイッチ素子Q2とQ4はoff、スイッチ素子Q3はonであり、この期間には巻線L1を介して励磁電流が流れると同時に、スイッチ素子Q3と巻線L2を介し磁芯に蓄えられた磁気エネルギーは負荷側に供給される。
【0025】
また、スイッチ素子Q1がoffの期間には、スイッチ素子Q2とQ4はon、スイッチ素子Q3はoffであるため、巻線LN1を介して磁芯は逆向きに励磁され、かつ入力巻線LN1と出力巻線L2を介して負荷電流が供給される。動作概要は以上の通りであるが、スイッチ素子Q1がonの期間の巻線L1を介した励磁方向は、上記巻線L2を介した出力電流と相殺方向であるため、磁芯の小型化に寄与できる特長がある。
【0026】
図3は、本発明の実施の形態1による電源用トランスでの磁芯のB−H特性を示す図である。図3(a)は、励磁範囲が約半分の場合を示し、図3(b)は、励磁範囲が100%励磁の場合を示す。
【0027】
ここで、本発明は、少なくとも一つ以上の磁芯で少なくとも一つ以上の閉磁路を形成し、前記閉磁路を形成する軟磁気特性を有する磁性体の少なくとも1ヶ所以上の空隙に永久磁石を配置した磁芯であって、前記磁芯に少なくとも2つ以上で、かつ1ターン以上の巻線が施されてた電源用トランスである。前記電源用トランスでは、励磁巻線に入力電圧が印加されて流れる励磁電流によって生じる磁界の極性と永久磁石によって生じる磁界の極性が互いに逆特性となるようにするため、半波励磁であっても、軟磁気特性を有する磁性体は励磁方向がB−H特性の第1象限方向で、予め、永久磁石によって第3象限方向にバイアスされているため、実質的に残留磁束密度Brも第3象限にシフトする。そのため、活用できる磁束密度幅ΔBも大幅に拡大できる。
【0028】
これによって、磁芯に施す巻線を大幅に低減できることが可能となり、電源用トランスの小型化と低損失化に寄与できる。しかも、本発明による磁芯、磁芯を用いた電源用トランスにおいては、上述した永久磁石によるバイアス効果によって半波励磁回路においてもB−Hループの第1象限のみならず第3象限までも幅広く活用できる。そして、スイッチング電源の高出力化を、回路構成を煩雑化することなく、簡素に、かつ小形に実現できる。
【0029】
加えて、前記電源回路、すなわちスイッチ素子がonの期間に励磁巻線に流れる電流の方向とその間に出力巻線に流れる電流とが互いに相殺するように構成する電源回路に上記マグネットバイアス構成をとることによって生じる従来技術における動作領域不足に起因する過渡的な磁気飽和も充分回避できるため、極めて高信頼性の電源にすることもできる。
【0030】
(実施の形態2)
図4は、本発明の実施の形態2による電源用トランスの説明図である。図4の本発明の電源用トランスは、E型コア1の開放端部分に、I型コア2aと磁気漏洩足3aとが並設され、かつ前記E型コア1の開放端部分との間に永久磁石4aが設けられた構造である。
【0031】
ここで、入力巻線LN1、出力巻線LN2は、E型コア1の基台部分に巻かれ、また巻線L1は、同じくE型コア1の基台部分に巻かれ、また巻線L2は、I型コア2aに巻かれている。一方、磁気漏洩足3aには、全く巻線は巻かれていない。
【0032】
図9は、本発明による電源トランス部品を用いた低損失電源回路DC−DCコンバータの例を示し、以下に、それらの骨子と動作の概要を記述する。
【0033】
まず、スイッチ素子Q1がonの期間は、スイッチ素子Q2とQ4はoff、スイッチ素子Q3はonであり、この期間には巻線L1を介して励磁電流が流れると同時に、スイッチ素子Q3と巻線L2を介し磁芯に蓄えられた磁気エネルギーは負荷側に供給される。
【0034】
また、スイッチ素子Q1がoffの期間には、スイッチ素子Q2とQ4はon、スイッチ素子Q3はoffであるため、入力巻線LN1を介して磁芯は逆向きに励磁され、かつ入力巻線LN1と巻線L2を介して負荷電流が供給される。
【0035】
動作概要は以上の通りであるが、スイッチ素子Q1がonの期間の巻線L1を介した励磁方向は、上記巻線L2を介した出力電流と相殺方向であるため、磁芯の小型化に寄与できる特長がある。
【0036】
図3は、本発明の実施の形態2による電源用トランスでの磁芯のヒステリシスカーブを示す図である。図3(a)は、励磁が約半分の場合を示し、図3(b)は、励磁が100%励磁の場合を示す。
【0037】
ここで、本発明では、少なくとも一つ以上の磁芯で少なくとも一つ以上の閉磁路を形成し、前記閉磁路を形成する軟磁気特性を有する磁性体の少なくとも1ヶ所以上の空隙に永久磁石を配置した磁芯であって、少なくとも2つ以上で、かつ1ターン以上の巻線が施された電源用トランスである。前記電源用トランスでは、励磁巻線に入力電圧が印加されて流れる励磁電流によって生じる磁界の極性と永久磁石によって生じる磁界の極性が互いに逆特性となるようにするため、半波励磁であっても、軟磁気特性を有する磁性体は励磁方向がB−H特性曲線の第1象限方向であっても、予め、永久磁石によって第3象限方向にバイアスされているため、実質的に残留磁束密度Brも第3象限にシフトするので、活用できる磁束密度幅ΔBも大幅に拡大できる。
【0038】
これによって、磁芯に施す巻線を大幅に低減できることが可能となり、電源用トランスの小型化と低損失化に寄与できる。しかも、本発明による磁芯、磁芯を用いた線輸部品においては、上述した永久磁石によるバイアス効果によって半波励磁回路においてもB−Hループの第1象限のみならず第3象限までも幅広く活用できる。そのため、スイッチング電源の高出力化を、回路構成を煩雑化することなく簡素に、かつ小形に実現できる。
【0039】
加えて、前記電源回路、すなわちスイッチ素子がonの期間に励磁巻線に流れる電流の方向とその間に出力巻線に流れる電流とが互いに相殺する様に構成する電源回路に上記マグネットバイアス構成をとることによって生じる従来技術における動作領域不足に起因する過渡的な磁気飽和も充分回避できるため、極めて高信頼性の電源にすることもできる。
【0040】
【発明の効果】
以上、記述した通り、本発明による磁芯、磁芯を用いた線輸部品、及び電源回路を用いれば、スイッチング電源などに用いられる磁芯やトランス、チョークコイル等の線輸部品の小型化・低損失化が図れるとともに、更に電源回路の簡素化、小型化、高効率化、省資源化、高信頼性に対して飛躍的に寄与することができるため、工業的に益するところ極めて大なるものである。従って、本発明によれば、小形で高信頼性に優れた磁芯および電源用トランスおよび電源回路を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による電源用トランスの説明図。
【図2】図1の電源用トランスを各方向から見た図。図2(a)は上面図、図2(b)は下面図、図2(c)は側面図。
【図3】本発明の実施の形態1および実施の形態2による電源用トランスの磁芯のB−H特性を示す図。図3(a)は、励磁が約半分の場合を示す図、図3(b)は、励磁が100%励磁の場合を示す図。
【図4】本発明の実施の形態2による電源用トランスの説明図。
【図5】図4の電源用トランスを各方向から見た図。図5(a)は上面図、図5(b)は下面図、図5(c)は側面図。
【図6】従来の電源用トランスの説明図。
【図7】図6の電源用トランスを、各方向から見た図。図7(a)は上面図、図7(b)は下面図、図7(c)は側面図。
【図8】従来の電源用トランスの磁芯のB−H特性を示す図。
【図9】本発明および従来の共通の低損失電源回路(テスラコンバータ)の回路図。
【符号の説明】
1 E型コア
2,2a I型コア
3,3a 磁気漏洩足
4,4a 永久磁石
5a,5b,5c,5d 巻線
6,6a,6b エアギャップ
L1,L2 巻線
LN1 入力巻線
LN2 出力巻線
Q1,Q2,Q3,Q4 スイッチ素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic core frequently used in electronic equipment, a wire ring component using a magnetic core, and a power supply circuit, and more particularly to a magnetic core and a power transformer suitable for use in a switching power supply and the like. It relates to a power supply circuit.
[0002]
[Prior art]
In a normal power supply circuit, a stable output voltage is supplied to a load with respect to an unstable input voltage, but downsizing and improvement of power conversion efficiency at that time are important issues in recent years. On the other hand, improvements such as reduction of magnetic core loss and reduction of winding loss have been taken as power transformers. In addition, measures have been taken to reduce switching loss in power supply circuits. A conventional low-loss power supply circuit is described in Non-Patent Document 1.
[0003]
[Non-Patent Document 1]
Transistor Technology, December 2002, P245-P255
[0004]
FIG. 6 is an explanatory diagram of a conventional low-loss power supply transformer. In the conventional power transformer of FIG. 6, an I-type core 2 a and a magnetic leakage leg 3 a are juxtaposed at the open end portion of the E-type core 1, and air is provided between the open-end portion of the E-type core 1. Gap 6a, 6b is provided, and input winding LN1, output winding LN2, winding L1, and winding L2 are wound. Here, the input winding LN1 and the output winding LN2 are wound around the base portion of the E-type core 1, and the winding L1 is also wound around the base portion of the E-type core 1, and the winding L2 is , Wound around the I-type core 2a. On the other hand, no winding is wound around the magnetic leakage leg 3a.
[0005]
FIG. 9 is an example of a low-loss power supply circuit (DC-DC converter) using a power transformer component according to the prior art, and the outline and outline of the operation will be described below.
[0006]
First, when the switch element Q1 is on, the switch elements Q2 and Q4 are off and the switch element Q3 is on. During this period, an exciting current flows through the winding L1, and at the same time, the switch element Q3 and the winding The magnetic energy stored in the magnetic core via L2 is supplied to the load side.
[0007]
Further, since the switching elements Q2 and Q4 are on and the switching element Q3 is off during the period when the switching element Q1 is off, the magnetic core is excited in the reverse direction via the winding LN1, and the input winding LN1 A load current is supplied via the winding L2.
[0008]
Although the outline of the operation is as described above, the excitation direction through the winding L1 during the period when the switch element Q1 is on is the canceling direction with the output current through the winding L2, so that the magnetic core can be downsized. There is a feature that can contribute.
[0009]
[Problems to be solved by the invention]
However, the conventional techniques described above have the following problems. That is, since the DC-DC converter according to the prior art is basically half-wave excitation, as shown in FIG. 8, the application range of the BH characteristic of the magnetic core is small and the size cannot be reduced. In addition, there is a high possibility that the switch core will be permanently damaged by exceeding the stable operating region of the magnetic core against transient load fluctuations, etc., and a highly reliable power supply circuit can be obtained. There was a problem that it was difficult to be done.
[0010]
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a magnetic core, a power transformer, and a power circuit that are small and have high reliability.
[0011]
[Means for Solving the Problems]
That is, according to the present invention, at least one closed magnetic path is formed by at least one magnetic core, and a permanent magnet is disposed in at least one gap of a magnetic material having soft magnetic characteristics that forms the closed magnetic path. A power transformer characterized in that at least two windings and one or more windings are applied to the magnetic core.
[0012]
Moreover, the power transformer is characterized in that the polarity of the magnetic field generated by the excitation current flowing when the input voltage is applied to the excitation winding is opposite to the polarity of the magnetic field generated by the permanent magnet. Further, the direct current component of the excitation current that flows when the input voltage is applied to the excitation winding of the power transformer is a direct current component of the load current component that flows through another winding applied to the power transformer. Are power supply circuits having opposite polarities.
[0013]
That is, according to the present invention, at least one closed magnetic path is formed by at least one magnetic core, and a permanent magnet is disposed in at least one gap of a magnetic material having soft magnetic characteristics that forms the closed magnetic path. It is a magnetic core characterized by being formed.
[0014]
Further, according to the present invention, the magnetic core is formed of a U-shaped core, a bar-shaped yoke, and a leakage leg yoke, and the bar-shaped yoke and the leakage leg yoke are arranged in parallel in the opening of the U-shaped core. A permanent magnet is disposed between the rod-shaped yoke and the U-shaped core, and a magnetic core is provided with a gap between the leakage leg yoke and the U-shaped core.
[0015]
Further, according to the present invention, the magnetic core is formed of a U-shaped core, a bar-shaped yoke, and a leakage leg yoke, and the bar-shaped yoke and the leakage leg yoke are arranged in parallel in the opening of the U-shaped core. In addition, a permanent magnet is disposed between the end face of the bar-shaped yoke, the leakage leg yoke, and the U-shaped core.
[0016]
Further, the present invention is a power supply transformer in which at least two and more than one turn windings are applied to the magnetic core.
[0017]
The present invention is also a power supply circuit using the power supply transformer, wherein the power supply circuit has a magnetic field generated by the permanent magnet having a polarity of a magnetic field generated by an excitation current flowing when an input voltage is applied to the excitation winding. Is a power supply circuit having opposite polarities to each other.
[0018]
Further, according to the present invention, in the power supply circuit, a direct current component of an excitation current that flows when an input voltage is applied to the excitation winding and a direct current component of a load current component that flows through another winding have opposite polarities. It is a power circuit.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic core, power transformer, and power circuit according to the embodiment of the present invention will be described below.
[0020]
(Embodiment 1)
FIG. 1 is an explanatory diagram of a power transformer according to Embodiment 1 of the present invention. 2 is a view of the power transformer of FIG. 1 as viewed from each direction. FIG. 2 (a) is a top view, FIG. 2 (b) is a bottom view, and FIG. 2 (c) is a side view. .
[0021]
The power transformer of the present invention shown in FIG. 1 has an I-type core 2a and a magnetic leakage leg 3a arranged in parallel at the open end portion of the E-type core 1, and between the open-end portion of the E-type core 1. In this structure, the air gap 6 and the permanent magnet 4 are provided.
[0022]
Here, the input winding LN1 and the output winding LN2 are wound around the base portion of the E-type core 1, and the winding L1 is also wound around the base portion of the E-type core 1, and the winding L2 is , Wound around the I-type core 2a. On the other hand, no winding is wound around the magnetic leakage leg 3a.
[0023]
FIG. 9 is an example of a low-loss power supply circuit (DC-DC converter) using the power transformer component according to the present invention, and the outline and outline of the operation will be described below.
[0024]
First, when the switch element Q1 is on, the switch elements Q2 and Q4 are off and the switch element Q3 is on. During this period, an exciting current flows through the winding L1, and at the same time, the switch element Q3 and the winding The magnetic energy stored in the magnetic core via L2 is supplied to the load side.
[0025]
Further, since the switching elements Q2 and Q4 are on and the switching element Q3 is off during the period when the switching element Q1 is off, the magnetic core is excited in the reverse direction via the winding LN1, and the input winding LN1 A load current is supplied via the output winding L2. Although the outline of the operation is as described above, the excitation direction through the winding L1 during the period when the switch element Q1 is on is the canceling direction with the output current through the winding L2, so that the magnetic core can be downsized. There is a feature that can contribute.
[0026]
FIG. 3 is a diagram showing the BH characteristic of the magnetic core in the power transformer according to the first embodiment of the present invention. FIG. 3A shows a case where the excitation range is about half, and FIG. 3B shows a case where the excitation range is 100% excitation.
[0027]
Here, in the present invention, at least one closed magnetic path is formed by at least one magnetic core, and a permanent magnet is provided in at least one gap of a magnetic material having soft magnetic characteristics that forms the closed magnetic path. It is a magnetic core arranged, and is a transformer for power supply in which at least two or more windings are applied to the magnetic core. In the power transformer, the polarity of the magnetic field generated by the excitation current flowing when the input voltage is applied to the excitation winding and the polarity of the magnetic field generated by the permanent magnet are opposite to each other. In the magnetic material having soft magnetic characteristics, the excitation direction is the first quadrant direction of the BH characteristic, and is biased in the third quadrant direction by a permanent magnet in advance, so that the residual magnetic flux density Br is substantially also in the third quadrant. Shift to. Therefore, the magnetic flux density width ΔB that can be utilized can be greatly increased.
[0028]
As a result, the number of windings applied to the magnetic core can be greatly reduced, which contributes to the reduction in size and loss of the power transformer. Moreover, in the power transformer using the magnetic core and the magnetic core according to the present invention, not only the first quadrant of the BH loop but also the third quadrant can be widely used in the half wave excitation circuit due to the bias effect of the permanent magnet described above. Can be used. Further, the high output of the switching power supply can be realized simply and in a small size without complicating the circuit configuration.
[0029]
In addition, the magnet bias configuration is adopted in the power supply circuit, that is, the power supply circuit configured such that the direction of the current flowing in the excitation winding and the current flowing in the output winding in the meantime cancel each other while the switch element is on. As a result, transient magnetic saturation caused by a shortage of the operating area in the prior art can be sufficiently avoided, so that an extremely reliable power source can be obtained.
[0030]
(Embodiment 2)
FIG. 4 is an explanatory diagram of a power transformer according to the second embodiment of the present invention. In the power transformer of the present invention shown in FIG. 4, an I-type core 2 a and a magnetic leakage leg 3 a are juxtaposed at the open end portion of the E-type core 1, and between the open-end portion of the E-type core 1. The permanent magnet 4a is provided.
[0031]
Here, the input winding LN1 and the output winding LN2 are wound around the base portion of the E-type core 1, and the winding L1 is also wound around the base portion of the E-type core 1, and the winding L2 is , Wound around the I-type core 2a. On the other hand, no winding is wound around the magnetic leakage leg 3a.
[0032]
FIG. 9 shows an example of a low-loss power supply circuit DC-DC converter using a power transformer component according to the present invention, and the outline and operation thereof will be described below.
[0033]
First, when the switch element Q1 is on, the switch elements Q2 and Q4 are off and the switch element Q3 is on. During this period, an exciting current flows through the winding L1, and at the same time, the switch element Q3 and the winding The magnetic energy stored in the magnetic core via L2 is supplied to the load side.
[0034]
Further, since the switch elements Q2 and Q4 are on and the switch element Q3 is off during the period when the switch element Q1 is off, the magnetic core is excited in the reverse direction via the input winding LN1, and the input winding LN1 And a load current is supplied via the winding L2.
[0035]
Although the outline of the operation is as described above, the excitation direction through the winding L1 during the period when the switch element Q1 is on is the canceling direction with the output current through the winding L2, so that the magnetic core can be downsized. There is a feature that can contribute.
[0036]
FIG. 3 is a diagram showing a hysteresis curve of the magnetic core in the power transformer according to the second embodiment of the present invention. FIG. 3A shows a case where the excitation is about half, and FIG. 3B shows a case where the excitation is 100% excitation.
[0037]
Here, in the present invention, at least one or more closed magnetic paths are formed by at least one magnetic core, and permanent magnets are provided in at least one gap of a magnetic material having soft magnetic characteristics that forms the closed magnetic paths. This is a power transformer having at least two or more windings, which are arranged magnetic cores. In the power transformer, the polarity of the magnetic field generated by the excitation current flowing when the input voltage is applied to the excitation winding and the polarity of the magnetic field generated by the permanent magnet are opposite to each other. The magnetic material having soft magnetic characteristics is substantially biased in the third quadrant direction by the permanent magnet in advance even if the excitation direction is the first quadrant direction of the BH characteristic curve. Is also shifted to the third quadrant, the usable magnetic flux density width ΔB can be greatly expanded.
[0038]
As a result, the number of windings applied to the magnetic core can be greatly reduced, which contributes to the reduction in size and loss of the power transformer. In addition, in the magnetic core according to the present invention and the wire transportation part using the magnetic core, not only the first quadrant of the BH loop but also the third quadrant can be widely used in the half wave excitation circuit due to the bias effect of the permanent magnet described above. Can be used. Therefore, it is possible to realize a high output of the switching power supply simply and in a small size without complicating the circuit configuration.
[0039]
In addition, the power supply circuit, that is, the power supply circuit configured so that the direction of the current flowing in the excitation winding and the current flowing in the output winding in the meantime cancel each other while the switch element is on takes the magnet bias configuration. As a result, transient magnetic saturation caused by a shortage of the operating area in the prior art can be sufficiently avoided, so that an extremely reliable power source can be obtained.
[0040]
【The invention's effect】
As described above, the use of the magnetic core according to the present invention, the wire transmission part using the magnetic core, and the power supply circuit can reduce the size and size of the wire core such as the magnetic core used for the switching power supply, the transformer, the choke coil, and the like. The loss can be reduced and the power supply circuit can be greatly contributed to simplification, miniaturization, high efficiency, resource saving, and high reliability. Is. Therefore, according to the present invention, it is possible to provide a magnetic core, a power transformer, and a power circuit that are small and excellent in reliability.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a power transformer according to a first embodiment of the present invention.
2 is a view of the power transformer of FIG. 1 as viewed from each direction. 2A is a top view, FIG. 2B is a bottom view, and FIG. 2C is a side view.
FIG. 3 is a diagram showing the BH characteristics of the magnetic core of the power transformer according to the first and second embodiments of the present invention. FIG. 3A shows a case where the excitation is about half, and FIG. 3B shows a case where the excitation is 100% excitation.
FIG. 4 is an explanatory diagram of a power transformer according to a second embodiment of the present invention.
5 is a diagram of the power transformer of FIG. 4 viewed from various directions. 5A is a top view, FIG. 5B is a bottom view, and FIG. 5C is a side view.
FIG. 6 is an explanatory diagram of a conventional power transformer.
7 is a diagram of the power transformer of FIG. 6 as viewed from each direction. 7A is a top view, FIG. 7B is a bottom view, and FIG. 7C is a side view.
FIG. 8 is a diagram showing BH characteristics of a magnetic core of a conventional power transformer.
FIG. 9 is a circuit diagram of a common low-loss power supply circuit (Tesla converter) of the present invention and a conventional one.
[Explanation of symbols]
1 E-type cores 2, 2a I-type cores 3, 3a Magnetic leakage legs 4, 4a Permanent magnets 5a, 5b, 5c, 5d Windings 6, 6a, 6b Air gaps L1, L2 Winding LN1 Input winding LN2 Output winding Q1, Q2, Q3, Q4 switch element