JP2005055387A - Method for making sample - Google Patents
Method for making sample Download PDFInfo
- Publication number
- JP2005055387A JP2005055387A JP2003288643A JP2003288643A JP2005055387A JP 2005055387 A JP2005055387 A JP 2005055387A JP 2003288643 A JP2003288643 A JP 2003288643A JP 2003288643 A JP2003288643 A JP 2003288643A JP 2005055387 A JP2005055387 A JP 2005055387A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- transmission electron
- observation
- etching
- electron microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000005530 etching Methods 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000005498 polishing Methods 0.000 claims abstract description 12
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 8
- 238000003801 milling Methods 0.000 claims description 2
- 238000000992 sputter etching Methods 0.000 abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 238000005464 sample preparation method Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、透過型電子顕微鏡観察用の試料作製方法に関する。 The present invention relates to a sample preparation method for observation with a transmission electron microscope.
従来のイオンミリング法による、シリコン基板から透過型電子顕微鏡観察用試料を作製する代表的な方法を図2を参照して説明する。 A typical method for producing a transmission electron microscope observation sample from a silicon substrate by a conventional ion milling method will be described with reference to FIG.
まず、ダイシングソー等を用いてシリコン基板の試料を10mm角程度に切り出す。次に透過型電子顕微鏡の試料ホルダーに合わせる為に打ち抜き機で3mmφの試料片に加工したのが図2(a)の状態であり、2が試料片を示す。次に、観察しようとする表面の反対側から平面研磨機等を用いて厚さを100μm程度に薄片化した状態が図2(b)であり、1は観察面を示す。さらに図2(c)に示すような断面形状になるよう、ボウル研磨機あるいはディンプル機で試料片の中央部分を10〜20μmの厚さにまで加工する。最後にイオンミリング装置で観察部を数百〜数十nm以下にし、透過型電子顕微鏡用試料としたのが図2(d)であり、5が観察部を示す。 First, using a dicing saw or the like, a sample of a silicon substrate is cut out to about 10 mm square. Next, in order to match with the sample holder of the transmission electron microscope, a 3 mmφ sample piece was processed by a punching machine in the state of FIG. 2A, and 2 represents the sample piece. Next, FIG. 2B shows a state in which the thickness is reduced to about 100 μm from the opposite side of the surface to be observed using a flat polishing machine or the like, and 1 indicates an observation surface. Further, the central portion of the sample piece is processed to a thickness of 10 to 20 μm with a bowl polishing machine or a dimple machine so as to have a cross-sectional shape as shown in FIG. Finally, the observation part is set to several hundreds to several tens of nanometers or less by an ion milling apparatus, and a transmission electron microscope sample is shown in FIG. 2D, and 5 denotes the observation part.
また、他の従来例として、FIB(Focused Ion Beam)法があり、これはGaイオン等で試料の特定箇所を精度よく薄片化する方法である。この方法によっても前記のような試料を作製することが可能である。このFIB法による透過型電子顕微鏡観察用の試料作製装置の一例は、次の特許文献1に開示されている。 As another conventional example, there is a FIB (Focused Ion Beam) method, which is a method of thinning a specific portion of a sample with Ga ions or the like with high accuracy. The sample as described above can also be prepared by this method. An example of a sample preparation apparatus for transmission electron microscope observation by the FIB method is disclosed in Patent Document 1 below.
しかしながら、イオンミリング法による試料作製方法では、ディンプルグラインダーや、ボウル研磨機といった装置を準備する必要があり、これらの装置は高価で、かつ他の試料作製や工程では使用しない装置で、透過型電子顕微鏡試料作製の為に専用の装置を準備する必要がある。仮に、これらのディンプリング装置を持たない場合は、その工程を省いて、イオンミリングを行わなければならず、その場合は、通常5時間程度でイオンミリング処理が済むところを20〜100時間必要とし、非常に効率が悪い。 However, in the sample preparation method based on the ion milling method, it is necessary to prepare devices such as a dimple grinder and a bowl grinder. These devices are expensive and are not used in other sample preparation or processes, and transmission electron It is necessary to prepare a dedicated device for microscopic sample preparation. If these dipping devices are not provided, the process must be omitted and ion milling must be performed. In such a case, a place where ion milling is usually completed in about 5 hours is required for 20 to 100 hours. Very inefficient.
また、この従来法では、イオンミリング時間及びディンプリング処理の限界から、試料厚みを100μmまでは、平面研磨機等で研磨を行い薄片化する必要があった。この点についても試料端部が欠けやすくなる等の問題がある。 Further, in this conventional method, due to the limitations of the ion milling time and the dimple process, it was necessary to polish the sample thickness to 100 μm by polishing with a flat polishing machine or the like. In this respect as well, there is a problem that the end portion of the sample is easily chipped.
もう一つの従来法におけるFIBを用いた試料作製方法では、特定箇所を薄片化する為にイオン半径の大きいGaイオンを用いるので、観察面の表面にアモルファス層が通常、数nm〜数十nm生じ、透過型電子顕微鏡において高倍率観察する際の妨げとなる。 In another sample preparation method using FIB in the conventional method, Ga ions having a large ion radius are used to thin a specific portion, and therefore an amorphous layer usually occurs on the surface of the observation surface from several nm to several tens of nm. This hinders high-magnification observation in a transmission electron microscope.
この状況にあって、本発明の課題は、上記の従来法の問題点を解決し、従来法に比べ簡便でかつ専用の装置を必要としない、透過型電子顕微鏡観察用の試料作製方法を提供することである。 In this situation, the object of the present invention is to solve the above-mentioned problems of the conventional method, and provide a sample preparation method for observation with a transmission electron microscope that is simpler than the conventional method and does not require a dedicated device. It is to be.
本発明の試料作製方法は、透過型電子顕微鏡観察用の試料作製方法であって、試料となる基板上にフォトレジストでパターン形成を行い、所定の箇所のみにエッチング処理を行う工程と、前記エッチング処理が施された箇所にイオンミリング装置による研磨を行う工程とを含むことを特徴とする。 The sample preparation method of the present invention is a sample preparation method for observation with a transmission electron microscope, wherein a pattern is formed with a photoresist on a substrate to be a sample, and an etching process is performed only on a predetermined portion; And a step of performing polishing by an ion milling device at a place where the treatment has been performed.
補足すると、本発明は、従来技術の様な専用機械を必要とせず、シリコン等の材料を扱う工程には不可欠なフォトレジスト工程とエッチング工程の装置を用いることで、試料にパターニングを施し、所定の箇所を化学反応的なエッチングにて薄膜化する工程を用いることで電子顕微鏡観察用の試料を短時間で作製できる方法を提供するものである。 Supplementally, the present invention does not require a dedicated machine as in the prior art and uses a photoresist process and an etching process apparatus that are indispensable for a process of handling a material such as silicon, thereby patterning a sample to obtain a predetermined pattern. Thus, a method for producing a sample for observing an electron microscope in a short time is provided by using a step of thinning the portion by chemical reactive etching.
本発明によれば、透過型電子顕微鏡観察用の試料作製方法において、イオンミリング処理を行う前にディンプリング処理を行わずとも試料の一部を簡単に薄膜化することが可能である。しかも試料へのダメージという点では従来のディンプリング処理の機械的な加工方法による80〜90μmのくぼみに対し、本発明では化学反応的なエッチングによる加工方法なので、試料に転位及び欠陥の発生を生じる可能性が従来法に比べ極端に少ないことは明白である。 According to the present invention, in a sample preparation method for observation with a transmission electron microscope, it is possible to easily thin a part of a sample without performing dimple processing before performing ion milling. Moreover, in terms of damage to the sample, in contrast to the 80-90 μm depression by the conventional mechanical processing method of dimple processing, since the processing method by chemical reaction etching in the present invention, dislocations and defects are generated in the sample. It is clear that the possibility is extremely small compared to the conventional method.
さらには、本発明を用いれば、新規に高価なディンプリング装置を購入することもなく試料作製時間が短縮できることも大きい効果といえる。 Furthermore, if the present invention is used, it can be said that the sample preparation time can be shortened without purchasing a new expensive dimple device.
また、本発明によると、200μmを越えてエッチング処理が出来るので、試料の平面研磨機による加工時の厚みを200μm程度と従来よりも厚くできる。すなわち、最終試料の縁部の厚みが従来と比較して格段に厚く、縁部の欠けといった心配も無くなるので、試料取り扱いの利便性も従来法に比べ格段に優れている。 Further, according to the present invention, since the etching process can be performed exceeding 200 μm, the thickness of the sample when processed by the flat surface polishing machine can be increased to about 200 μm as compared with the conventional case. That is, the thickness of the edge of the final sample is much thicker than that of the conventional sample, and there is no fear of the lack of the edge, so that the convenience of sample handling is significantly superior to the conventional method.
以下に本発明を実施するための最良の形態について詳細に説明する。 The best mode for carrying out the present invention will be described in detail below.
図1(a)〜図1(f)は、本発明の試料作製方法を示す為の試料の状態を示す図である。まず、図1(a)に示すように、従来法と同様にダイシングソーで10mm角程度にシリコン基板の試料を切断し、次に透過型電子顕微鏡の試料ホルダーに合わせた円板状の試料片2を得る。更に観察する表面の反対側から平面研磨機で研磨を行い約200μm厚にして、図1(b)の様な試料を得る。1は観察面を示す。 Fig.1 (a)-FIG.1 (f) are figures which show the state of the sample for showing the sample preparation method of this invention. First, as shown in FIG. 1A, a sample of a silicon substrate is cut into a 10 mm square with a dicing saw in the same manner as in the conventional method, and then a disk-shaped sample piece that is aligned with a sample holder of a transmission electron microscope. Get 2. Further, polishing is performed from the opposite side of the surface to be observed with a flat polishing machine to a thickness of about 200 μm, and a sample as shown in FIG. 1B is obtained. Reference numeral 1 denotes an observation surface.
次に図1(c)に断面図で示すようにフォトレジスト工程を用いて試料の観察側表面に選択開孔パターンを形成する。3がフォトレジストを示す。
Next, as shown in the cross-sectional view of FIG. 1C, a selective hole pattern is formed on the observation side surface of the sample using a photoresist process.
次に選択開孔部を弗酸と硝酸の混合液からなるシリコンエッチング液を用いて選択エッチングによりシリコンエッチングを行った状態を図1(d)に示す。4がエッチング部である。この例では180μmのエッチングを行った。 Next, FIG. 1D shows a state where the selective opening portion is subjected to silicon etching by selective etching using a silicon etching solution made of a mixture of hydrofluoric acid and nitric acid. 4 is an etching part. In this example, 180 μm etching was performed.
次に、フォトレジスト工程のフォトレジストを除去した状態は、図1(e)の様である。 Next, the state where the photoresist in the photoresist process is removed is as shown in FIG.
最後に図1(f)に示すように、イオンミリング装置で観察側表面からミリングを行い厚さを数百〜数十nm以下にすれば透過型電子顕微鏡で観察できる試料が得られる。 Finally, as shown in FIG. 1 (f), a sample that can be observed with a transmission electron microscope can be obtained by milling from the observation side surface with an ion milling device to a thickness of several hundred to several tens of nm or less.
尚、この場合の試料片のエッチング用として弗硝酸系のシリコンエッチング液を挙げたが、CF4等のガスを用いるドライエッチング法でも同様の効果が得られることは、明白である。 In this case, a fluoronitric silicon etching solution is used for etching the sample piece. However, it is obvious that the same effect can be obtained by a dry etching method using a gas such as CF 4 .
また、上記の本発明を実施するための最良の形態では、シリコン基板を試料とする場合を例に挙げたが、他の材料においても同様のフォトレジスト工程及びエッチング工程を行うことで、同様の試料作製が可能であることは明白である。 Moreover, in the best mode for carrying out the present invention, the case where a silicon substrate is used as a sample has been described as an example. However, the same photoresist process and etching process can be performed on other materials. It is clear that sample preparation is possible.
1 観察面
2 試料片
3 フォトレジスト
4 エッチング部
5 観察部
DESCRIPTION OF SYMBOLS 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003288643A JP2005055387A (en) | 2003-08-07 | 2003-08-07 | Method for making sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003288643A JP2005055387A (en) | 2003-08-07 | 2003-08-07 | Method for making sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005055387A true JP2005055387A (en) | 2005-03-03 |
Family
ID=34367239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003288643A Pending JP2005055387A (en) | 2003-08-07 | 2003-08-07 | Method for making sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005055387A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016504599A (en) * | 2013-01-11 | 2016-02-12 | エフ・イ−・アイ・カンパニー | Ion implantation to change etch rate |
-
2003
- 2003-08-07 JP JP2003288643A patent/JP2005055387A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016504599A (en) * | 2013-01-11 | 2016-02-12 | エフ・イ−・アイ・カンパニー | Ion implantation to change etch rate |
US10325754B2 (en) | 2013-01-11 | 2019-06-18 | Fei Company | Ion implantation to alter etch rate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI328838B (en) | Semiconductor chip and fabrication method thereof | |
JP2014502061A5 (en) | ||
JP2010038921A (en) | Method of machining work piece with focused ion beam | |
US7345289B2 (en) | Sample support prepared by semiconductor silicon process technique | |
JP3923733B2 (en) | Sample preparation method for transmission electron microscope | |
JP3768197B2 (en) | Preparation method of transmission electron microscope specimen | |
JP3735614B2 (en) | Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus | |
JP2005055387A (en) | Method for making sample | |
US6927174B2 (en) | Site-specific method for large area uniform thickness plan view transmission electron microscopy sample preparation | |
US6867143B1 (en) | Method for etching a semiconductor substrate using germanium hard mask | |
JP4937896B2 (en) | Method for manufacturing micro sample table assembly, method for manufacturing micro sample table, and method for manufacturing sample holder | |
JP5101563B2 (en) | Manufacturing method of micro sample stage | |
US6251782B1 (en) | Specimen preparation by focused ion beam technique | |
JP4489652B2 (en) | Small sample table assembly | |
JP2003248293A (en) | Method of forming mask | |
US4311546A (en) | Method of manufacturing semiconductor device | |
US20140322918A1 (en) | Micro-posts having improved uniformity and a method of manufacture thereof | |
JP2004271393A (en) | Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method | |
JP2912755B2 (en) | Preparation method for transmission electron microscope sample | |
JP5666791B2 (en) | Micro sample table and method for manufacturing micro sample table | |
JP4037023B2 (en) | Incision processing method and preparation method of transmission electron microscope sample | |
JPH06180277A (en) | Preparation of sample for transmission electron microscope | |
KR20050033699A (en) | Method for forming sample using analysis by tem | |
KR20040004931A (en) | Method for forming sample using analysis by TEM | |
JP5298230B2 (en) | Micro sample table, substrate for preparing micro sample table, and analysis method using micro sample table |