【0001】
【発明の属する技術分野】
本発明は洗浄水をヒータで加熱して水温の上昇率を検知して食器の量を判定する食器洗い機に関する。
【0002】
【従来の技術】
特許文献1には、洗浄水をヒータで加熱してその水温の上昇率をみて食器の量を判定することは記載されている。しかしながら、ヒータのバラツキ、電源電圧の変動、外気温度の変化等による影響が大きく、これらを考慮して食器の量を判定するには外部要因が多すぎて閾値のプログラムを作成するのに大変時間を要するため外部要因を低減し検出感度を上げる必要がある。
【0003】
【特許文献1】
特許第2523752号
【0004】
【発明が解決しようとする課題】
本発明は洗浄水をヒータで加熱してその水温の上昇率により食器の量を判定する食器洗い機において外部要因の低減と検出感度を上げた食器洗い機を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は外部要因を低減するためにヒータに流れる電流と電圧を検知して入力が一定になるようにトライアックでヒータを通電制御することによりヒータの発熱量を一定にして、ヒータ自身のバラツキ及び電源電圧の変動要因を無くしている。また、検出感度を上げるため検知時の洗浄水の量を少なくすることにより水温の上昇率を増加させている。
【0006】
【発明の実施の形態】
図1に本発明の一実施例である食器洗い機の正面図を示す。前面にはドア開閉用のアーム1があり、このアーム1を押すことによりドアロックが解除され、取っ手2が付いた上扉3と下扉4がほぼ同時に開く。また下部には操作表示部5がありスタートボタン6を押すことにより運転を開始する。操作表示部5の裏側にはコントローラ7が内蔵されている。
【0007】
図2は、本発明の一実施例による食器洗い機の縦断面図を示す。洗浄槽8の下部には、洗浄槽8内に貯溜した洗浄水を吸込み加圧して吐出す洗浄ポンプ9と、加圧された洗浄水を上カゴ10と下カゴ11に向けて洗浄水を噴射する洗浄ノズルが具備されている。洗浄ノズルは上カゴ10の上部と下カゴ11の下部または横部に取付け、位置及び個数については自由であるが、本発明の一実施例による食器洗い機においては、下カゴ11の下部方向に2個の回転ノズル12、その2個の中央近傍に配置した固定ノズル1個と上カゴ10の上部方向に複数の噴射孔を持つ8個の固定ノズル13が設置されている。本図には示されてはいないが、水流切替え装置により下側の回転ノズル12と固定ノズル13そして上側の固定ノズル13に独立して水流を切替えることが出来る。また、洗浄水位についても洗浄最低水位と通常水位の二ヶ所設定出来るようになっている。洗浄ポンプ9により加圧された洗浄水を洗浄ノズルより食器に噴射することにより食器に付着している汚れを洗浄することにより残菜が洗浄水の中に溶解又は混合し、前記洗浄槽8の底部及び前記洗浄ポンプ9の吸込側途中に設置されている残菜フィルター14により、洗浄した残菜をこし取る方式としている。このように食器洗い機は、洗浄槽8内に貯溜されている洗浄水を洗浄ポンプ9により循環しながら、上カゴ10と下カゴ11に収納されている食器15を洗浄するものであるが、前記残菜フィルター14の下部には洗浄水を加熱するための加熱用のヒータ16がある。洗浄、すすぎが終了すると食器15を乾燥させるための送風を行う乾燥用ファン17と、乾燥用ファン17から送風された風を加熱するための温風用ヒータ18を動作させて食器15を乾燥する。洗浄槽内には洗浄水の水温を検知するためのサーミスタ19がついている。サーミスタ19の固定は、従来は洗浄槽8を成形する時に樹脂で一体成形していたが、温度の検知感度が熱伝導の悪い樹脂層により時間遅れが大きくなるため検出誤差が大きくなるので直接槽内に突き出している構造としている。このため耐食性及び熱伝導が良い材料としてステンレスやセラミックなどで外郭を構成したものを用いている。
【0008】
図3は、本発明の一実施例を示す回路の部分簡略図を示す。電源20に直列に電源スイッチ21が接続されている。ヒータ22には電源の通電率を制御するためのトライアック23と電流検出装置24が接続されている。また、ヒータ22の両端には電圧検知装置25が入っている。これらの情報をマイコン26に取り込んでトライアック23を設定された入力値になるように通電率をマイコン26で制御して一定入力としている。本発明では検知時間内で電力量が同じになればよいのでON―OFFにより電力量を同じに制御しても良い。
【0009】
図4に運転開始から食器量判定までのフローチャートを示す。食器量の検知は、開始後排水動作を実行する。次に給水を行うが最初に洗浄水を洗浄最低水位まで供給した後、給水と槽内の温度差がある場合があるので給水完了後数分間ヒータを入れないでならし運転を行う。ならし運転終了後、洗浄水の温度を測定し、ヒータ加熱を開始する。この時、ヒータには電圧検知装置と電流検知装置により電圧と電流の値をマイコンで取り込み演算処理を行い入力値があらかじめ設定された値と同じになるようにトライアックの通電率を制御する。設定された時間が経過したらサーミスタにより温度情報をマイコンに取り込み温度上昇率を計算して食器量の判定を行う。
【0010】
図5はヒータ22に印加される電圧によって水温上昇率がどの様に変化しているのかを示しており、食器量が少ないとA側になり、食器量が多いとB側になる。これをみると電源の電圧が電圧の許容値の90〜110Vまで変化すると1.5〜2.3(℃/分)変化する。これは、図6に示す食器量に対する水温上昇率のグラフでみると電圧の変化だけでレンジがオーバし電圧補正をしないと食器量の検知が出来ないことを示している。
【0011】
図6は、本発明の一実施例を示すヒータ入力を一定に制御した時の食器量と水温上昇率の関係を示している。これをみると食器量の少ないほうが温度上昇率が大きくなっている。また、洗浄水量が多い場合はDのようになり水温上昇率が低下するが洗浄水量が少ない時はCの様になり水温上昇率が増加する。
【0012】
図7に食器量判定後の各工程を示している。食器量1〜2人前の時は最低洗浄水位のまま洗浄を実行し同時に洗浄時間も短縮する。また、すすぎ工程もすすぎ2は無くし、乾燥時間も短縮している。3〜4人前の時は、洗浄水は最低水位のままで追加はしないで洗浄を行い洗浄時間は標準中とし、すすぎも2回と加熱すすぎを入れて3回とし乾燥時間も標準としている。5〜6人前については、洗浄水の追加を行い洗浄の最高水位とし、すすぎについても加熱すすぎを含め3回とし、乾燥時間については標準より長く設定している。これにより、各工程における最適化を図っている。また、本実施例によると洗いの洗浄水を洗浄最低水位に設定した状態で食器量の判定を行うので、判定時間の短縮と食器の量が少ない時の洗浄水の使用量が低減できる効果がある。
【0013】
【発明の効果】
本発明によれば、ヒータに通電する電圧と電流の積すなわち入力を一定に制御しているので、ヒータのバラツキと電圧のバラツキがなくなり食器の量を決める水温の上昇率の閾値は、洗浄槽内の温度のみがパラメータとなり閾値の設定が容易となる効果がある。また、洗浄水を洗浄最低水位に設定した状態で食器量の判定を行うので水温の上昇率が大きくなり、温度検知の温度範囲が大きくなってサーミスタによる温度検出感度が良くなる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例である食器洗い機の正面図を示す。
【図2】本発明の一実施例による食器洗い機の縦断面図を示す。
【図3】本発明の一実施例である回路図の部分簡略図を示す。
【図4】本発明の一実施例である食器量を決めるフローチャートを示す。
【図5】本発明の一実施例である電源電圧と水温上昇率の関係を示す。
【図6】本発明の一実施例である食器量と水温上昇率の関係を示す。
【図7】本発明の一実施例である食器量を決めた後の食器量に対する各工程のフローチャートを示す。
【符号の説明】
1…アーム、2…取っ手、3…上扉、4…下扉、5…操作表示部、6…スタートボタン、7…コントローラ、8…洗浄槽、9…洗浄ポンプ、10…上カゴ、11…下カゴ、12…回転ノズル、13…固定ノズル、14…残菜フィルター、15…食器、16、22…ヒータ、17…乾燥用ファン、18…温風用ヒータ、19…サーミスタ、20…電源、21…電源スイッチ、23…トライアック、24…電流検出装置、25…電圧検知装置、26…マイコン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dishwasher that determines the amount of dish by detecting the rate of increase in water temperature by heating washing water with a heater.
[0002]
[Prior art]
Patent Document 1 describes that the amount of tableware is determined by heating cleaning water with a heater and checking the rate of increase in the water temperature. However, it is greatly affected by variations in heaters, fluctuations in power supply voltage, changes in outside air temperature, etc., and it takes a very long time to create a threshold program because there are too many external factors to determine the amount of dishes taking these into account. Therefore, it is necessary to reduce external factors and increase detection sensitivity.
[0003]
[Patent Document 1]
Japanese Patent No. 2523752 [0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a dishwasher in which washing water is heated with a heater and the amount of dishes is determined by the rate of increase in the temperature of the dishwasher with reduced external factors and increased detection sensitivity.
[0005]
[Means for Solving the Problems]
In order to reduce external factors, the present invention detects the current and voltage flowing through the heater and controls the energization of the heater with a triac so that the input is constant, thereby making the heating value of the heater constant, The fluctuation factor of the power supply voltage is eliminated. Further, the rate of increase in water temperature is increased by reducing the amount of washing water at the time of detection in order to increase detection sensitivity.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a front view of a dishwasher according to an embodiment of the present invention. There is an arm 1 for opening and closing the door on the front, and when the arm 1 is pushed, the door lock is released, and the upper door 3 and the lower door 4 with the handle 2 are opened almost simultaneously. In addition, an operation display unit 5 is provided at the bottom, and the operation is started by pressing a start button 6. A controller 7 is built in the back side of the operation display unit 5.
[0007]
FIG. 2 is a longitudinal sectional view of a dishwasher according to an embodiment of the present invention. In the lower part of the cleaning tank 8, a cleaning pump 9 that sucks, pressurizes and discharges the cleaning water stored in the cleaning tank 8, and injects the cleaning water toward the upper basket 10 and the lower basket 11 with the pressurized cleaning water. A cleaning nozzle is provided. The washing nozzle is attached to the upper part of the upper basket 10 and the lower part or the lateral part of the lower basket 11, and the position and the number of the washing nozzles are arbitrary. However, in the dishwasher according to the embodiment of the present invention, there are two in the lower direction of the lower basket 11. One rotating nozzle 12, one fixed nozzle arranged near the center of the two, and eight fixed nozzles 13 having a plurality of injection holes in the upper direction of the upper cage 10 are installed. Although not shown in the figure, the water flow can be switched independently to the lower rotary nozzle 12, the fixed nozzle 13 and the upper fixed nozzle 13 by the water flow switching device. Also, the cleaning water level can be set at two locations, the minimum cleaning water level and the normal water level. The washing water pressurized by the washing pump 9 is sprayed onto the tableware from the washing nozzle to wash the dirt adhering to the tableware, so that the leftovers are dissolved or mixed in the washing water. The system is configured to scrape the washed leftovers with the leftover filter 14 installed at the bottom and on the suction side of the washing pump 9. In this way, the dishwasher is for washing the tableware 15 stored in the upper basket 10 and the lower basket 11 while circulating the washing water stored in the washing tank 8 by the washing pump 9. Below the leftover filter 14 is a heater 16 for heating the cleaning water. When washing and rinsing are completed, the drying fan 17 for blowing air for drying the tableware 15 and the warm air heater 18 for heating the air blown from the drying fan 17 are operated to dry the tableware 15. . A thermistor 19 for detecting the temperature of the washing water is provided in the washing tank. Conventionally, the thermistor 19 is integrally molded with resin when the washing tank 8 is molded. However, since the time sensitivity is increased due to the resin layer having poor thermal conductivity, the detection error is increased, so that the thermistor 19 is directly formed. It has a structure protruding inside. For this reason, a material having an outer shell made of stainless steel or ceramic is used as a material having good corrosion resistance and heat conduction.
[0008]
FIG. 3 shows a partial simplified diagram of a circuit illustrating one embodiment of the present invention. A power switch 21 is connected in series with the power source 20. The heater 22 is connected to a triac 23 and a current detector 24 for controlling the power supply rate of the power source. In addition, voltage detectors 25 are placed at both ends of the heater 22. These pieces of information are taken into the microcomputer 26, and the energization rate is controlled by the microcomputer 26 so that the TRIAC 23 becomes a set input value, and a constant input is made. In the present invention, since it is sufficient that the amount of power is the same within the detection time, the amount of power may be controlled to be the same by ON-OFF.
[0009]
FIG. 4 shows a flowchart from the start of operation to the determination of the amount of tableware. The detection of the amount of tableware is performed after the start. Next, water is supplied, but after supplying the cleaning water to the lowest cleaning level first, there may be a temperature difference between the water supply and the tank, so the heater is turned off for several minutes after the water supply is completed. After the break-in operation, the temperature of the washing water is measured and heater heating is started. At this time, the voltage and current values are taken into the heater by the microcomputer using the voltage detection device and the current detection device, and calculation processing is performed. The energization rate of the triac is controlled so that the input value becomes the same as the preset value. When the set time has passed, the temperature information is taken into the microcomputer by the thermistor and the rate of temperature rise is calculated to determine the amount of tableware.
[0010]
FIG. 5 shows how the rate of increase in water temperature varies depending on the voltage applied to the heater 22, and the side becomes A when the amount of tableware is small, and the side B when the amount of tableware is large. In view of this, when the voltage of the power supply changes from 90 to 110 V, which is the allowable value of the voltage, it changes by 1.5 to 2.3 (° C./min). This shows that the amount of tableware cannot be detected unless the voltage is corrected only by changing the voltage in the graph of the rate of increase in water temperature against the amount of tableware shown in FIG.
[0011]
FIG. 6 shows the relationship between the amount of tableware and the rate of water temperature rise when the heater input is controlled to be constant according to one embodiment of the present invention. Looking at this, the rate of temperature rise is greater when the amount of tableware is smaller. Further, when the amount of washing water is large, it becomes D and the water temperature increase rate decreases, but when the amount of washing water is small, it becomes C and the water temperature increase rate increases.
[0012]
FIG. 7 shows each step after determining the amount of tableware. When the amount of tableware is 1 to 2 servings, the cleaning is performed with the minimum cleaning water level and at the same time the cleaning time is reduced. In addition, the rinsing process does not have the rinsing 2 and the drying time is shortened. In the case of 3 to 4 servings, the washing water is kept at the lowest water level and is not added, and the washing time is set to the standard, the rinsing is performed twice and the heating rinse is performed three times, and the drying time is also standard. For 5 to 6 servings, washing water is added to obtain the highest washing level, and rinsing is performed three times including heating and rinsing, and the drying time is set longer than the standard. Thereby, the optimization in each process is aimed at. In addition, according to the present embodiment, the amount of tableware is determined in the state where the washing water for washing is set to the lowest washing level, so that the determination time can be shortened and the amount of washing water used when the amount of tableware is small can be reduced. is there.
[0013]
【The invention's effect】
According to the present invention, since the product of the voltage and current applied to the heater, that is, the input is controlled to be constant, the threshold value of the rate of increase in the water temperature that determines the amount of tableware without the variation in the heater and the voltage variation is Only the temperature inside is a parameter and the threshold value can be easily set. Moreover, since the amount of tableware is determined in a state where the washing water is set to the lowest washing water level, the rate of increase in the water temperature is increased, and the temperature range of temperature detection is increased, and the temperature detection sensitivity by the thermistor is improved.
[Brief description of the drawings]
FIG. 1 shows a front view of a dishwasher according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a dishwasher according to an embodiment of the present invention.
FIG. 3 shows a partial simplified diagram of a circuit diagram according to an embodiment of the present invention.
FIG. 4 is a flowchart for determining the amount of tableware according to an embodiment of the present invention.
FIG. 5 shows a relationship between a power supply voltage and a water temperature increase rate according to an embodiment of the present invention.
FIG. 6 shows the relationship between the amount of tableware and the rate of increase in water temperature according to one embodiment of the present invention.
FIG. 7 is a flowchart of each process for the amount of tableware after determining the amount of tableware according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Arm, 2 ... Handle, 3 ... Upper door, 4 ... Lower door, 5 ... Operation display part, 6 ... Start button, 7 ... Controller, 8 ... Cleaning tank, 9 ... Cleaning pump, 10 ... Upper basket, 11 ... Lower basket, 12 ... Rotating nozzle, 13 ... Fixed nozzle, 14 ... Residue filter, 15 ... Tableware, 16, 22 ... Heater, 17 ... Drying fan, 18 ... Hot air heater, 19 ... Thermistor, 20 ... Power supply, DESCRIPTION OF SYMBOLS 21 ... Power switch, 23 ... Triac, 24 ... Current detection apparatus, 25 ... Voltage detection apparatus, 26 ... Microcomputer.