[go: up one dir, main page]

JP2005051263A - 回路形成基板の製造方法と回路形成基板の製造用材料 - Google Patents

回路形成基板の製造方法と回路形成基板の製造用材料 Download PDF

Info

Publication number
JP2005051263A
JP2005051263A JP2004269599A JP2004269599A JP2005051263A JP 2005051263 A JP2005051263 A JP 2005051263A JP 2004269599 A JP2004269599 A JP 2004269599A JP 2004269599 A JP2004269599 A JP 2004269599A JP 2005051263 A JP2005051263 A JP 2005051263A
Authority
JP
Japan
Prior art keywords
substrate
substrate material
circuit
forming
stage state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004269599A
Other languages
English (en)
Other versions
JP4003769B2 (ja
Inventor
Toshihiro Nishii
利浩 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004269599A priority Critical patent/JP4003769B2/ja
Publication of JP2005051263A publication Critical patent/JP2005051263A/ja
Application granted granted Critical
Publication of JP4003769B2 publication Critical patent/JP4003769B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】回路形成基板において層間接続の高信頼化を図る。
【解決手段】熱プレス工程での樹脂流動を制限する、あるいは補強繊維同士を融着もしくは接着する、あるいは充填工程の後に基板材料の厚みを減少させる、あるいは基板材料中に混在するフィラーで低流動層を形成する構成としたものであり、以上の結果として、導電性ペースト等の層間接続部を用いた層間の電気的接続の信頼性が向上し、高品質の高密度回路形成基板を提供できる。
【選択図】図1

Description

本発明は、各種電子機器に利用される回路形成基板の製造方法および回路形成基板の製造用材料に関する。
近年の電子機器の小型化・高密度化に伴って、電子部品を搭載する回路形成基板も従来の片面基板から両面、多層基板の採用が進み、より多くの回路および部品を基板上に集積可能な高密度基板が開発されている(たとえば、日刊工業新聞社発行の「表面実装技術」1997年1月号、高木清著;“目覚ましいビルドアップ多層PWBの開発動向”)。
図6(A)〜図6(G)を用いて従来技術を説明する。
図6(A)に示す基板材料61は回路形成基板に用いられるガラス繊維織布に熱硬化性のエポキシ樹脂等を含浸し乾燥等の方法によりBステージ状態としたプリプレグである。基板材料61には熱ロール等を用いたラミネート法によりフィルム62を両面に貼り付ける。
次に、図6(B)に示すようにレーザ等の加工法により基板材料61にビア穴63を形成する。そして図6(C)に示すように銅粉等の導電性粒子と熱硬化性樹脂、硬化剤、溶剤などを混練しペースト状にした導電性ペースト64をビア穴63に充填する。その後にフィルム62を剥離すると図6(D)に示すような導電性ペースト64が突出した形状になる。その両側に銅箔65を配置して熱プレス装置(図示せず)によって加熱加圧すると図6(E)に示すように基板材料61は熱硬化し、導電性ペースト64は圧縮されて表裏の銅箔65が電気的に接続される。その際に、基板材料61に含浸したエポキシ樹脂は流動し外側に流出し、流れ出し部66を形成する。その後に端部の余分な部分を切り落として図6(F)のような形状とし、さらにエッチングなどの方法で銅箔65を所望のパターンに加工して回路67とし、図6(G)に示すような両面の回路形成基板を得る。
高木清、"目覚ましいビルドアップ多層PWBの開発動向"「表面実装技術」1月号、日刊工業新聞社、1997年
しかしながら、上記のような製造法では、回路形成基板の表と裏で電気的接続は不十分なものになる場合がある。また多層回路形成基板を上記のような製造法で形成した場合には表層と内層の回路について同様の不良が発生することがある。
その主な原因は図6(E)に示すような導電性ペースト64中の導電性粒子がビア穴63の外部に流れ出す流出粒子610が発生することである。理想的な電気的接続の実現には、導電性ペースト64は図6(E)の上下方向に圧縮され、効率的に導電性ペースト中の導電性粒子同士が強固に接触し、銅箔65とも強固に接触する必要がある。しかしながら、図6(D)から図6(E)に至る工程中で流れ出し部66が形成されることからも解るように、基板材料61中の熱硬化性樹脂は外側に向かって流動する。その際に、導電性ペースト64中の導電性粒子が図6(E)の横方向に押し流され、結果として効率的な導電性ペースト64の圧縮が実現出来ず、導電性ペースト64による電気的接続は不安定になる。以上の説明では、ガラス織布と熱硬化性樹脂を用いて基板材料の場合を述べたが、ガラス以外の無機繊維やアラミド等の有機繊維、織布以外の不織布の補強材を用いた場合でも同様である。
しかし、織布を用いた場合には特に織布中の流動抵抗が小さいため、上述した熱硬化性樹脂の流動は顕著になり、導電性ペーストによる電気的接続は困難である。さらに、織布を構成する繊維がずれる現象が悪影響を及ぼしている。図7(A)〜図7(C)を用いてその現象を説明する。図7(A)に示すようにガラス繊維織布68を用いた基板材料61にレーザを用いてビア穴63を形成する。その部分は上方より見ると図7(B)に示すようにガラス繊維織布68を切断してビア穴63が加工される。その後に図6(C)〜図6(E)を用いて説明したような工程を実施する。その後の回路形成基板のビア穴63部分を観察すると、図7(C)に示すように熱プレス時の加圧力や含浸樹脂の流動等によって導電性ペースト64が周囲に広がりガラス繊維織布68も当初の規則正しい配列からビア穴63の外側方向に動かされている。このような現象が発生すると導電性ペースト64の圧縮が非効率になる。こうした現象は電気的接続の抵抗値ばらつきや信頼性の点で、このような回路形成基板の製造における課題である。
近年、回路形成基板として薄いものが要望されているので、ガラス繊維織布にも薄い材料が多用される。しかしそのような材料ではガラス繊維の充填度が低く、繊維間の隙間が比較的大きいので上記のような問題が顕著になる。特にガラス繊維織布の厚みが100μm以下の場合に上記した現象が重大な問題となる。
また、導電性ペースト64の圧縮量を決める主要因は、図6(D)から図6(E)における熱プレス工程で基板材料61が厚み方向に圧縮される量と、図6(D)で基板材料61から導電性ペースト64が突出している量である。高密度回路形成基板ではビア穴63を通じて層間の接続を行う箇所が膨大な点数であるため、上記した2つの主要因を制御する以外に導電性ペースト64に圧縮作用を与える要素が必要である。
本発明の回路形成基板の製造方法においては、熱プレス工程での樹脂流動を制限する。これにより、導電性ペースト等の層間接続部による電気的接続を効率的に行う。
また、本発明の回路形成基板の製造用材料においては、熱プレス工程での流動を制御した樹脂を用いる。これにより、導電性ペースト等の層間接続部による電気的接続を効率的に行う。
以上の結果として、導電性ペースト等を用いた層間の電気的接続の信頼性が大幅に向上し、高密度で品質の優れた回路形成基板を提供できる。
本発明の回路形成基板の製造方法においては、以下のいずれかの構成とする。A)熱プレス工程での樹脂流動を制限する。B)補強繊維同士を融着もしくは接着する。C)充填工程の後に基板材料の厚みを減少させる。D)基板材料中に混在するフィラーで低流動層を形成する。また、本発明の回路形成基板の製造用材料においては、熱プレス工程での樹脂流動が制御される物性値を付与する、あるいは充填工程の後に基板材料の厚みが効率的に減少できるよう揮発成分を含む構成とする。この本発明によれば、導電性ペースト等の層間接続部による電気的接続の発現が効率的に行える。
特に、基板材料の補強材に織布を用いた場合には、織布の持つ寸法安定性などの利点を生かしながら、層間の接続を安定化できるという格別の効果を発揮する。これは流動性の制御あるいは層間接続を行う部分に対して繊維の動きを局所的に防止する処理を穴加工と同時に施す、あるいは基板材料の厚みを減少させる等の処理による。
以上の結果として、導電性ペースト等の層間接続部を用いた層間の電気的接続の信頼性が向上し、高品質の高密度回路形成基板を提供できる。
以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の構成をなすものには同じ符号を付け、詳細な説明は省略する。
(実施の形態1)
図1(A)〜図1(G)は本発明の第1の実施の形態における回路形成基板の製造方法および回路形成基板の製造用材料を示す工程断面図である。
図1(A)に示すようにまず、ガラス繊維織布を補強材とし、熱硬化性のエポキシ樹脂を含浸した厚み100μmのプリプレグからなる基板材料11の両面に厚み20μmのフィルム12を貼り合わせる。フィルム12にはポリエチレンテレフタレート(PET)を用いる。必要に応じてフィルム12にはエポキシ樹脂等の熱硬化性樹脂をコーティングしてもよい。
その後に、図1(B)に示すように炭酸ガスレーザを用いて直径約200μmのビア穴13を加工する。
その後に、図1(C)に示すように導電性ペースト14をスクリーン印刷等の方法でビア穴13に充填する。導電性ペースト14は約5μm径の銅粉と熱硬化性樹脂と硬化剤とを混練したものである。粘度調整等の目的で導電性ペースト14には溶剤などを添加してもよい。
次に、図1(D)に示すように基板材料11の両面のフィルム12を剥離すると、基板材料11からフィルム12の厚み程度に導電性ペースト14が突出する。その両面に銅箔15を配置する。
次に、図中上下方向に加熱加圧する熱プレス工程を実施すると図1(E)に示すような形状になる。その際に基板材料11中の熱硬化性樹脂は流動し流れ出し部16を形成する。
次に、図1(F)に示すように基板材料11の周辺部を所望のサイズに切断する。銅箔15をエッチング等の方法でパターン形成して回路17を形成し、図1(G)に示すような両面回路形成基板を得る。
以上のような工程にて熱プレス前の基板材料11の質量に対して熱プレス工程で流動し基板材料11の周辺に流れ出した樹脂の質量、すなわち図1(E)の流れ出し部16の質量の割合を樹脂流れ量とする。背景技術で述べた、導電性ペースト14による電気的接続が不十分となる課題を解決するためには、樹脂流れ量が少なくとも20%以下でなければならない。
表1に樹脂流れ量について発明者が検討した実験結果の例を示す。表1には以下の測定結果をまとめている。
1)熱プレス工程前後の基板材料厚み
2)熱プレス工程で周辺部に発生した流れ出し部の重量と熱プレス工程前の基板材料重量より算出した樹脂流れ量
3)500個のビア穴が基板表裏の銅箔により直列回路になるようなテストパターン回路の電気抵抗値より求めた1ヵ所あたりのビア接続抵抗値(平均値)
実験番号1のサンプルでは、樹脂流れ量が22.8%となり、ビアの接続抵抗は数Ωから数百Ωにばらつき、電気的接続の無いビアも存在する。
また、実験番号1のサンプルについてビア部の断面を観察すると導電性ペースト14中の導電粒子が流出している。
しかし、樹脂流れ量を小さくするように熱プレスの条件等を検討した実験番号2から7のサンプルではビア接続抵抗値は低下し、20%以下の樹脂流れ量に制御することで実用的なビア接続抵抗値が得られる。
また、サンプルを高温高湿中等に長期間保存してビア接続抵抗の経時変化を測定する等の信頼性評価でも20%以下の樹脂流れ量の場合は良好な特性を示す。
また、表1の結果から明らかなように10%以下の樹脂流れ量が初期のビア接続抵抗値が得られる。この場合、信頼性についてもより良好な結果が得られる。
電気的接続をより良好にするには樹脂流れ量をより低く抑えることが有効である一方、実験番号7の結果からもわかるように、熱プレス工程で基板材料11を良好に成型するには1%以上の樹脂流れ量が必要である。表1において埋まり性不良と記載しているのは、以下のような現象である。熱プレス工程後の実験番号7の基板には白く見える部分があり、拡大すると気泡や基板材料表面が凹凸状になっている箇所が観察される。これは樹脂の流動が少ないために、内層回路の凹凸を埋められずに気泡や凹凸が生じるもので、プリント配線板等の製造における白化現象と呼ばれる不良モードである。白化が発生した場合、銅箔の引き剥がし強度や半田耐熱性等の特性が低下する。
Figure 2005051263
上記した樹脂流れ量20%以下を達成する手段として、熱プレス工程での温度プロファイルにおいて、昇温速度を毎分3℃以下に制御することが有効である。
しかし、熱プレス工程の所要時間が非常に長時間になる、あるいは昇温速度を下げすぎて樹脂の成型性に悪影響を及ぼすことも考慮して、昇温速度は毎分0.5℃以上にすることが好ましい。
また、基板材料11に含まれる樹脂等の加温時における粘度変化を考慮して、熱プレス工程中で流動性が高まる範囲の時間帯のみ昇温速度を毎分3℃以下に制御し他の時間帯はそれより速い速度で昇温してもよい。
また、基板材料11の特性を制御して上記の効果を得ることも可能である。そのためには、未硬化のエポキシ樹脂を加熱乾燥し、揮発成分、残留溶剤量、熱硬化の進行度を加熱温度、時間によってコントロールし、硬化時間を変化させる。このような方法により、熱プレス時の基板材料の溶融や硬化の特性を表す硬化時間を110秒以下とする。このような樹脂材料を含む基板材料を用いることにより樹脂流れ量を20%以下とし、導電性ペーストによる層間の電気的接続を良好なものとできる。
なお前述した埋まり性不良の発生を避けるため、硬化時間は10秒以上とすることが好ましい。さらに図1(E)における銅箔15と基板材料11との接着性、あるいは樹脂量のバラツキを吸収する等の観点から、50秒以上とすることがより好ましい。
(実施の形態2)
実施の形態1は両面回路形成基板の例であったが、図2(A)〜図2(E)に示すように多層回路形成基板を製造する際にも本発明を適用すると好適である。
まず、図2(A)に示すような両面回路形成基板を用意する。次に図2(B)に示すように導電性ペースト14を充填した基板材料11と銅箔15を両面回路形成基板の表裏に位置合わせして配置し、熱プレス装置等で加熱加圧する。これにより図2(C)のように基板材料11を成型、硬化させる。その際、流動した基板材料11の成分が流れ出し部26を形成する。
このような工程において、実施の形態1で説明したような手法により、2枚の基板材料11の重量に対して流れ出し部26の重量(樹脂流れ量)が20%以下になるようにする。
次に、周辺の余分な部分を切断して図2(D)のような形状を得た後に、銅箔15をエッチング等の方法でパターン形成して回路27を形成し、図2(E)に示すような4層回路形成基板を得る。
このような多層回路形成基板の製造においても、本発明の回路形成基板の製造方法および製造用材料を適用することで、層間の電気的接続が良好に形成できる。
なお、多層回路形成基板を製造する際の内層回路形成基板の回路凹凸を埋め込むためには1%以上の樹脂流れ量が必要である。また基板材料11に含まれる樹脂の硬化時間の制御により樹脂流れ量を20%以下とする場合には、内層回路の埋め込み性を考慮すると、硬化時間は50秒以上110秒以下とすることが好ましい。
なお、本実施の形態で用いた両面回路形成基板は実施の形態1で説明したものでも、通常のめっき法等で層間の接続を形成した基板でもよい。また図2(B)に示す工程で両面回路形成基板に基板材料11が仮圧着されたような構成にしてもよい。
(実施の形態3)
本発明の第3の実施の形態について図3(A)〜図3(C)を用いて以下に説明する。
図3(A)に示すようにガラス繊維織布38を用いたプリプレグ状態の基板材料11にレーザを用いてビア穴13を形成する。
その部分は上方より見ると図3(B)に示すようにガラス繊維織布38を切断してビア穴13が加工される。この際、特定の加工法により図3(B)に示すような溶着部39が形成される。
溶着部39が形成された後にビア穴13に導電性ペースト14を充填し、熱プレス工程を実施する場合は、図3(C)に示すように導電性ペースト14のビア穴13周囲への広がりは防止されている。したがって導電性ペースト14による電気的層間接続は良好である。
溶着部39の形成はビア穴13をドリル加工で形成する場合に加工時の摩擦熱等で基板材料11中の樹脂成分等を変質させて固形化し、ガラス繊維織布38をビア穴13の周辺で固定することでも実現可能である。このように溶着部39はガラス繊維等の補強材のみで構成される必要は無く、基板材料11中の樹脂成分等が加工時の熱等により硬化あるいは変質して、後の熱プレス工程での流動性が無くなれば同様の効果が得られる。しかしレーザを用いてビア穴13を形成する際にガラス繊維織布38を溶融あるいは変質させてガラス繊維織布38を主体とする溶着部39を形成することが好ましい。
表2に発明者の検討結果の例を示す。
3種類のレーザ発振機を用いて種々の条件でビア穴13の加工を行い両面回路形成基板を作製して、実施の形態1で説明した内容と同じくビア接続抵抗値を比較した結果をまとめている。
この結果からもわかるようにビア接続抵抗値はレーザの波長に関連している。ビア穴13を加工した基板材料を詳細に観察すると10.6μmの発振波長では溶着部の形成が確認されるが、9.4μmの発振波長を用いた場合には溶着部は確認されない。
Figure 2005051263
エキシマレーザ、YAG高調波、炭酸ガスレーザ等の各種のレーザを用いる場合、加工条件によっては溶着部の形成が可能であるが、エキシマレーザ等の加熱を伴わないアブレーション加工よりも炭酸ガスレーザの加熱加工が溶着部の形成に好ましい。
さらに、上記したように10μm以上の波長を持つレーザを用いることが溶着部39の形成に効率的である。実用的にも炭酸ガスレーザの使用が加工スピード、コストの面から有利である。またA)加工効率、発振効率、B)発生したレーザビームに複数の発振波長が含まれること、C)微細加工への適用つまり光学系による集光性等の観点から10〜11μmの範囲のレーザを主体とする加工法がより好ましい。
(実施の形態4)
図4(A)〜図4(H)を参照しながら実施の形態4を説明する。
図4(A)に示すように基板材料41はガラス繊維織布を補強材として両面にポリエチレンテレフタレート(PET)からなる厚み20μmのフィルム12を貼り合わせた厚み100μmのプリプレグである。必要に応じてフィルム12にはエポキシ樹脂等の熱硬化性樹脂をコーティングしても良い。この基板材料41は実施の形態1における基板材料11と異なり、プリプレグを製造する際に残留する揮発成分を多く残している。160℃1時間の乾燥前後の重量変化から、揮発分は3%である。
その後に続く、図4(B)〜図4(D)に示す工程は実施の形態1と同様である。
次に、真空乾燥装置(図示せず)に基板材料41を導入し、133Pa程度の真空中で1時間乾燥させる。乾燥中は基板材料41の温度低下を防止するために50℃の温風を真空乾燥装置内に導入し再度減圧する工程を3回実施する。この工程で図4(E)に示すように基板材料41は厚みが減少し、その減少量は約2μmである。その結果として乾燥前には約20μmの基板材料41からの導電性ペースト14の突出部の高さは基板材料の表裏で各々1μm程度増加し、22μm程度となる。
次に図4(F)に示すように基板材料41の両面に銅箔15を配置し、図中上下方向に加熱加圧する熱プレス工程を実施し、周辺部を切断すると図4(G)に示すような形状になる。
さらに銅箔15をエッチング等の方法でパターン形成して回路17を形成し、図1(H)に示すような両面回路形成基板を得る。
以上のような工程にて回路形成基板を製造した場合に、わずか2μmであるが熱プレス前に導電性ペースト14の突出部高さを増加させておくことが、導電性ペーストによる層間の電気的接続を良好にする。
通常の熱プレス工程は真空プレスを用いるので基板材料中の揮発分の多くは熱プレス工程中に取り除かれると考えられる。そのような製造法では熱プレス工程中に基板材料の成分が流動する量が比較的大きく、導電性ペーストを基板厚み方向に圧縮して電気的接続を発現させるには不利となる。
本実施の形態では熱プレス工程前に基板材料41中の揮発成分を真空乾燥により取り除き、熱プレス時の流動を制御する。また揮発成分の除去により導電性ペースト14の基板材料41からの突出高さを増加させ、実効的な圧縮量を増加させている。これらにより、導電性ペースト14の熱プレス工程での圧縮が極めて効率的となり、回路形成基板表裏の回路17の電気的接続が十分なものとなる。
以上述べた手法は、実施の形態2で説明したような多層回路形成基板を製造する際の基板材料11に適用しても好適である。
本実施の形態の効果は実験の結果から、基板材料41の揮発分が0.5%以上で有効性が顕著であるが、揮発分が多すぎると基板材料41の保存性が低下する場合もあり、5%以下にとどめることが好ましい。
また、揮発分としてはBCA(ブチルカルビトールアセテート)等の高沸点の溶剤を基板材料41の製作過程で含有させておくことが好ましい。
なお、基板材料41の厚みを減少させる工程は真空乾燥法を用いて説明したが、基板材料41の物性に問題が発生しない条件での、加熱を伴う通常の乾燥法で行ってもよい。
また、基板材料の厚みを減少させる工程において、プラズマやエキシマレーザを用いた乾式あるいは湿式のエッチング法により選択的に基板材料をエッチングする方法を用いても層間接続部が基板材料より突出する量を確保できる。またこの場合、基板材料の厚み減少量が安定する等の効果もある。
(実施の形態5)
本発明の第5の実施の形態について図5(A)〜図5(C)を用いて以下に説明する。
図5(A)に示すようにガラス繊維織布38を用いたプリプレグ状態の基板材料51にレーザを用いてビア穴13を形成する。基板材料51には固形分としてのフィラー510が含まれている。
通常の基板材料はガラス繊維織布38に熱硬化性樹脂を溶剤等で希釈したワニスと呼ばれる液状材料を含浸した後に乾燥工程にて溶剤等の揮発分を揮発させ熱硬化性樹脂の硬化度を調整する方法で製造される。このワニス中にフィラーを分散させておくことで本実施の形態で使用するような基板材料51を製造する。本実施の形態では直径約1〜2μmのシリカ(SiO2)を用いたシリカ系フィラーを用いる。
図5(A)に示すように、ビア穴13の周囲には低流動層511が形成されている。この低流動層511はレーザ加工時に加工エネルギーがフィラー510に吸収され熱に変換され周囲の熱硬化性樹脂が変性する現象と、変性した熱硬化性樹脂が固形分としてのフィラー510を核として層となる現象等により形成される。フィラー510が無い場合よりもその形成効率ははるかに高い。また低流動層511にはガラス繊維織布38が成分として含まれることも当然あり得る。
低流動層511が形成された後、ビア穴13に導電性ペースト14を充填し、熱プレス工程を実施する場合は、図5(C)に示すように導電性ペースト14のビア穴13周囲への広がりは防止されている。したがって導電性ペースト14による電気的層間接続は良好である。
低流動層511の形成はドリル加工でビア穴13を形成する場合の摩擦熱等で基板材料51中の樹脂成分等を変質させてフィラー510とともに固形化することでも実現可能である。しかしレーザを用いてビア穴13を形成する際にフィラー510にエネルギーを吸収させて熱変換し低流動層511を形成することが好ましい。
なお、この工程で用いるレーザの波長に関して、炭酸ガスレーザによって9μm以上の発振波長を用いた場合に低流動層511の形成が効率的である。また、フィラー510の材質としてシリカ以外の材料を用いてもよく、タルク、石膏粉等あるいは金属の水酸化物等(水酸化アルミ等)でも同様の効果が得られる。
以上述べた全ての実施の形態で基板材料は、ガラス繊維織布に熱硬化性樹脂を含浸しBステージ化したものとして説明したが、ガラス繊維織布の代わりに不織布を用いてもよい。ガラス繊維の代わりにアラミド等の有機繊維を用いてもよい。
また発明の形態1,2,4では基板材料にプリプレグに代えてBステージフィルムを用いてもよい。
また、織布と不織布を混成した材料、たとえば2枚のガラス繊維の間にガラス繊維不織布を挟み込んだような材料を補強材として用いてもよい。
また、本発明の全ての実施の形態における熱硬化性樹脂はエポキシ系樹脂として説明したが、以下のようなものを用いてもよい。エポキシ・メラミン系樹脂、不飽和ポリエステル系樹脂、フェノール系樹脂、ポリイミド系樹脂、シアネート系樹脂、シアン酸エステル系樹脂、ナフタレン系樹脂、ユリア系樹脂、アミノ系樹脂、アルキド系樹脂、ケイ素系樹脂、フラン系樹脂、ポリウレタン系樹脂、アミノアルキド系樹脂、アクリル系樹脂、フッ素系樹脂、ポリフェニレンエーテル系樹脂、シアネートエステル系樹脂等の単独、あるいは2種以上混合した熱硬化性樹脂組成物あるいは熱可塑性樹脂で変性された熱硬化性樹脂組成物、必要に応じて難燃剤や無機充填剤の添加も可能である。
また、銅箔の代わりに支持体に仮止めされた金属箔等からなる回路を用いることもできる。
また、層間接続部として銅粉等の導電性粒子と硬化剤と熱硬化性樹脂とを混練した導電性ペーストを用いて説明した。代わりに熱プレス時に基板材料中に排出されてしまうような適当な粘度の高分子材料と導電性粒子を混練したもの、あるいは溶剤等を添加したものなど多種の組成が利用可能である。さらに、導電性ペースト以外にめっき等により形成したポスト状の導電性突起や、ペースト化していない比較的大きな粒径の導電性粒子を単独で層間接続部として用いることも可能である。
(A)〜(G)は本発明の第1の実施の形態の回路形成基板の製造方法を示す工程断面図 (A)〜(E)は本発明の第2の実施の形態の回路形成基板の製造方法を示す工程断面図 (A)は本発明の第3の実施の形態の回路形成基板の製造方法におけるビア形成工程の断面模式図、(B)は本発明の第3の実施の形態の回路形成基板の製造方法における導電性ペースト充填前のビア部上面図、(C)は本発明の第3の実施の形態の回路形成基板の製造方法における導電性ペースト充填後のビア部上面図 (A)〜(H)は本発明の第4の実施の形態の回路形成基板の製造方法を示す工程断面図 (A)は本発明の第5の実施の形態の回路形成基板の製造方法におけるビア形成工程の断面模式図、(B)は本発明の第5の実施の形態の回路形成基板の製造方法における導電性ペースト充填前のビア部上面図、(C)は本発明の第5の実施の形態の回路形成基板の製造方法における導電性ペースト充填後のビア部上面図 (A)〜(G)は従来技術における回路形成基板の製造方法を示す工程断面図 (A)は従来技術の回路形成基板の製造方法におけるビア形成工程の断面模式図、(B)は従来技術の回路形成基板の製造方法における導電性ペースト充填前のビア部上面図、(C)は従来技術の回路形成基板の製造方法における導電性ペースト充填後のビア部上面図
符号の説明
11 基板材料
12 フィルム
13 ビア穴
14 導電性ペースト
15 銅箔
16,26 流れ出し部
17,27 回路
38 ガラス繊維織布
39 溶着部
41 基板材料
51 基板材料
510 フィラー
511 低流動層
61 基板材料
62 フィルム
63 ビア穴
64 導電性ペースト
65 銅箔
66 流れ出し部
67 回路
68 ガラス繊維織布
610 流出粒子

Claims (7)

  1. (1)金属箔、もしくは支持体に張り付けられた金属箔、もしくは支持体に張り付けられ回路パターンを形成された金属箔
    (2)層間接続部を備えたBステージ状態基板材料
    (3)回路もしくは金属箔と層間接続手段を備えたBステージ状態基板材料
    (4)回路もしくは金属箔を備えたCステージ状態基板材料
    のうち、
    少なくとも1つをBステージ状態基板材料とともに積層する積層工程と、
    前記積層工程に加熱および加圧を伴う熱プレス工程と
    を備え、
    前記層間接続部の形成は、前記Bステージ状態基板材料にビア穴をレーザー加工により施す穴形成工程と前記ビアの穴に導電性物質を充填する充填工程を含み、
    前記Bステージ状態基板材料はガラス繊維織布に樹脂が含浸されたものであって、
    前記穴形成工程においてレーザ波長が10〜11μmの炭酸ガスレーザにより前記Bステージ状態基板材料中のガラス繊維織布を溶融あるいは変質させてガラス繊維織布を主体とする溶着部を形成することを特徴とする回路形成基板の製造方法。
  2. (1)金属箔、もしくは支持体に張り付けられた金属箔、もしくは支持体に張り付けられ回路パターンを形成された金属箔
    (2)層間接続手段を設けたBステージ状態基板材料
    (3)回路もしくは金属箔と層間接続手段を備えたBステージ状態基板材料
    (4)回路もしくは金属箔を備えたCステージ状態基板材料
    のうち、
    少なくとも1つをBステージ状態基板材料とともに積層する積層工程と、
    前記積層工程に加熱および加圧を伴う熱プレス工程と
    を備え、
    前記Bステージ状態基板材料はガラス繊維織布と熱硬化性樹脂と固形分としてのフィラーからなり、
    前記層間接続部の形成は、前記Bステージ状態基板材料にビア穴を特定の波長を有するレーザ加工により施す穴形成工程と前記ビアの穴に導電性物質を充填する充填工程を含み、
    前記穴形成工程においてレーザの加工エネルギーが前記フィラーに吸収され熱に変換されることにより熱硬化性樹脂が変性し、
    変性した熱硬化性樹脂と前記フィラーで構成される低流動層をビア穴周辺に形成することを特徴とする回路形成基板の製造方法。
  3. レーザ加工は、9μm以上の発振波長を有する炭酸ガスレーザで行うことを特徴とする請求項2に記載の回路形成基板の製造方法。
  4. レーザー加工によるビア穴の形成が可能な基板材料であって、ガラス繊維織布と熱硬化性樹脂と固形分からなり、前記固形分はレーザー加工時の加工エネルギーを吸収し熱に変換しうるものであることを特徴とする回路形成基板の製造用材料。
  5. 金属箔または内層回路形成基板とともに積層し熱プレスすることにより回路形成基板を製造するための熱硬化性樹脂を含むBステージ状態の基板材料であって、前記基板は前記熱プレスの際に基板材料中の熱硬化性樹脂が流動し流れ出し部を形成する性質のものであり、
    前記Bステージ状態基板材料質量に対する前記流れ出し部質量の割合で示される樹脂流れ量が1%〜20%の範囲であることを特徴とする回路形成基板の製造用材料。
  6. 金属箔または内層回路形成基板とともに積層し熱プレスすることにより回路形成基板を製造するための熱硬化性樹脂を含むBステージ状態の基板材料であって、熱プレス時の溶融や効果の特性を表す硬化時間が10〜110秒の範囲であることを特徴とする回路形成基板の製造用材料。
  7. 金属箔または内層回路形成基板とともに積層し熱プレスすることにより回路形成基板を製造するための熱硬化性樹脂を含むBステージ状態の基板材料であって、揮発分としてのブチルカルビナートアセテートを0.5〜5%の範囲で含むことを特徴とする回路形成基板の製造用材料。
JP2004269599A 2001-07-18 2004-09-16 回路形成基板の製造方法と回路形成基板の製造用材料 Expired - Fee Related JP4003769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269599A JP4003769B2 (ja) 2001-07-18 2004-09-16 回路形成基板の製造方法と回路形成基板の製造用材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001217774 2001-07-18
JP2004269599A JP4003769B2 (ja) 2001-07-18 2004-09-16 回路形成基板の製造方法と回路形成基板の製造用材料

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003514862A Division JPWO2003009660A1 (ja) 2001-07-18 2002-07-17 回路形成基板の製造方法と回路形成基板の製造用材料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007101538A Division JP2007214586A (ja) 2001-07-18 2007-04-09 回路形成基板の製造方法と回路形成基板の製造用材料

Publications (2)

Publication Number Publication Date
JP2005051263A true JP2005051263A (ja) 2005-02-24
JP4003769B2 JP4003769B2 (ja) 2007-11-07

Family

ID=34277018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269599A Expired - Fee Related JP4003769B2 (ja) 2001-07-18 2004-09-16 回路形成基板の製造方法と回路形成基板の製造用材料

Country Status (1)

Country Link
JP (1) JP4003769B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152312A1 (ja) * 2010-06-04 2011-12-08 イビデン株式会社 配線板の製造方法
JP2011258838A (ja) * 2010-06-10 2011-12-22 Fujitsu Ltd 積層回路基板、接着シート、積層回路基板の製造方法および接着シートの製造方法
WO2016084375A1 (ja) * 2014-11-28 2016-06-02 日本ゼオン株式会社 多層プリント配線板の製造方法
JP2018089702A (ja) * 2018-02-28 2018-06-14 三星ダイヤモンド工業株式会社 レーザ加工装置及びレーザ加工方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152312A1 (ja) * 2010-06-04 2011-12-08 イビデン株式会社 配線板の製造方法
JPWO2011152312A1 (ja) * 2010-06-04 2013-08-01 イビデン株式会社 配線板の製造方法
JP2011258838A (ja) * 2010-06-10 2011-12-22 Fujitsu Ltd 積層回路基板、接着シート、積層回路基板の製造方法および接着シートの製造方法
WO2016084375A1 (ja) * 2014-11-28 2016-06-02 日本ゼオン株式会社 多層プリント配線板の製造方法
US10568212B2 (en) 2014-11-28 2020-02-18 Intel Corporation Manufacturing method for multi-layer printed circuit board
JP2018089702A (ja) * 2018-02-28 2018-06-14 三星ダイヤモンド工業株式会社 レーザ加工装置及びレーザ加工方法

Also Published As

Publication number Publication date
JP4003769B2 (ja) 2007-11-07

Similar Documents

Publication Publication Date Title
US6866892B2 (en) Resin board, manufacturing process for resin board, connection medium body, circuit board and manufacturing process for circuit board
US6799369B2 (en) Printed circuit board and method for producing the same
US10765003B2 (en) Method for making a multi-layer circuit board using conductive paste with interposer layer
US6774316B1 (en) Wiring board and production method thereof
JPH1168275A (ja) 回路形成基板および回路形成基板の製造方法およびその製造装置
EP1408726B1 (en) Method of manufacturing a printed wiring board
JP4003769B2 (ja) 回路形成基板の製造方法と回路形成基板の製造用材料
JP3760771B2 (ja) 回路形成基板および回路形成基板の製造方法
JP4436714B2 (ja) リジッドフレキシブル金属張積層板の製造方法及びリジッドフレキシブルプリント配線板の製造方法
JP2007214586A (ja) 回路形成基板の製造方法と回路形成基板の製造用材料
JP2005093556A (ja) プリント配線基板とその製造方法
JP4089671B2 (ja) 回路形成基板の製造方法および回路形成基板
JP2005197574A (ja) 多層配線板用基材およびその製造方法、多層配線板の製作方法
KR20130115022A (ko) 회로기판의 제조방법 및 이에 사용되는 회로기판 제조용 절연 코어
JP2001266643A (ja) 導電性ペースト
JP4254343B2 (ja) 回路形成基板の製造方法
JP2004221236A (ja) 回路基板の製造方法
JP4069935B2 (ja) 回路形成基板および回路形成基板の製造方法
JP4774606B2 (ja) 回路形成基板の製造方法
JP2008300391A (ja) 回路形成基板の製造方法
JP2002176268A (ja) 樹脂基板、樹脂基板の製造方法、接続中間体、回路基板、および回路基板の製造方法
JP2006086544A (ja) 回路形成基板および回路形成基板の製造方法
JP2004172646A (ja) 回路形成基板の製造方法
JP2004195807A (ja) 絶縁フィルムおよびこれを用いた多層配線基板
JP2004235265A (ja) 絶縁フィルムおよびこれを用いた多層配線基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees