JP2005032352A - 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 - Google Patents
粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 Download PDFInfo
- Publication number
- JP2005032352A JP2005032352A JP2003196559A JP2003196559A JP2005032352A JP 2005032352 A JP2005032352 A JP 2005032352A JP 2003196559 A JP2003196559 A JP 2003196559A JP 2003196559 A JP2003196559 A JP 2003196559A JP 2005032352 A JP2005032352 A JP 2005032352A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic recording
- layer
- underlayer
- magnetic
- nonmagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 229
- 239000002245 particle Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000006185 dispersion Substances 0.000 title abstract description 5
- 238000000034 method Methods 0.000 title description 6
- 239000000463 material Substances 0.000 claims abstract description 88
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 14
- 150000004706 metal oxides Chemical group 0.000 claims description 14
- 229910000531 Co alloy Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 29
- 239000010410 layer Substances 0.000 description 190
- 229910045601 alloy Inorganic materials 0.000 description 57
- 239000000956 alloy Substances 0.000 description 57
- 239000011521 glass Substances 0.000 description 15
- 230000005381 magnetic domain Effects 0.000 description 14
- 241000849798 Nita Species 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 7
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 229910000929 Ru alloy Inorganic materials 0.000 description 5
- 239000006249 magnetic particle Substances 0.000 description 5
- 229910019222 CoCrPt Inorganic materials 0.000 description 4
- 229910003266 NiCo Inorganic materials 0.000 description 4
- 229910005805 NiNb Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910018979 CoPt Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910005435 FeTaN Inorganic materials 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7377—Physical structure of underlayer, e.g. texture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/658—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7369—Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
- G11B5/737—Physical structure of underlayer, e.g. texture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7379—Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
【課題】磁気記録層において、結晶粒子を微細化でき、かつ配向性を高めることができる磁気記録媒体を提供する
【解決手段】非磁性基板1上に、軟磁性層3、シード層4、下地層5、磁気記録層7が順次設けられ、シード層4はNiを含む材料からなり、下地層5は、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる。この構成によって、下地層5において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善され、その上に形成される磁気記録層7においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。よって、媒体ノイズおよび保磁力を改善し、高密度記録化を図ることができる。
【選択図】 図1
【解決手段】非磁性基板1上に、軟磁性層3、シード層4、下地層5、磁気記録層7が順次設けられ、シード層4はNiを含む材料からなり、下地層5は、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる。この構成によって、下地層5において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善され、その上に形成される磁気記録層7においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。よって、媒体ノイズおよび保磁力を改善し、高密度記録化を図ることができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、磁気記録技術を用いたハードディスク装置等に用いられる磁気記録媒体、その製造方法、および磁気記録再生装置に関する。
【0002】
【従来の技術】
磁気記録媒体において、記録密度を高くするためには、磁気記録層の異方性を低下させずに結晶粒子を微細化し、媒体ノイズを低減することが重要である。
従来より、磁気記録層の結晶粒子を微細化するために、種々の下地層およびシード層が使用されている。例えば、TiやTaからなるシード層上に、六方最密構造(hcp)あるいは面心立方構造(fcc)を有する結晶粒子が酸化物や窒化物によって分離された構造を有する下地層を設け、その上に中間層、磁気記録層を積層した磁気記録媒体が用いられている。
この磁気記録媒体では、磁気記録層を構成する結晶粒子が微細化されるとともに、互いに分離される(例えば、特許文献1参照)。
また、酸化物あるいは炭化物により結晶粒子が分離される構造を有する非磁性中間層を設け、その上に磁性層を積層することによって、高保磁力、低ノイズ化させることが提案されている(例えば、特許文献2参照)。
これらの従来技術によれば、酸化物等により結晶粒子を微細化するとともに互いに分離させた構造の下地層(または中間層)を設けることによって、磁気記録層に含まれる結晶粒子をも微細化および分離させ、この種の構造をもたない下地層を用いた従来品よりも記録再生特性を向上させることができる。
【0003】
また、下地層の下にシード層を設けることにより、下地層の配向性を改善することで、磁性層の配向性をも改善し、媒体の記録再生特性を向上させることが提案されている。
しかしながら、この従来技術では、下地層において結晶粒子を微細化させることと、配向性を高めることを両立させるのは難しいという問題があった。
【0004】
また、基板と磁気記録層との間に、軟磁性材料からなる軟磁性層を設けることにより、磁気ヘッドと磁気記録媒体との間の磁束の出入りの効率を向上させることが提案されている。軟磁性層は、磁気ヘッドと媒体との間の磁路の一部を担う。
シード層を設ける場合には、軟磁性層とヘッドとの距離が大きくなるため、十分な記録分解能を得ることが難しくなるという問題があった。
【0005】
また、酸化物、窒化物、炭化物、炭素より選ばれる1種とRu合金とからなるグラニュラ構造下地層、またはRu合金からなる下地層を用いることによって、磁性層の配向性および保磁力を高めるとともに、粒子を微細化し低ノイズ化させることが提案されている(例えば特許文献3を参照)。
しかしながら、上記Ru合金を含む下地層を設けた磁気記録媒体では、下地層の配向性が不十分となり、保磁力およびノイズの点で十分な結果は得られていない。
【0006】
【特許文献1】
特開2003−36525号公報
【特許文献2】
特開2002−133645号公報
【特許文献3】
特開2001−291230号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたもので、その第1の目的は、磁気記録層において、結晶粒子を微細化でき、かつ配向性を高めることができる磁気記録媒体、その製造方法、および磁気記録再生装置を提供することにある。
本発明の第2の目的は、結晶粒子を微細化でき、かつ配向性を高めることができ、記録分解能にも優れた磁気記録媒体、その製造方法、および磁気記録再生装置を提供することにある。
【0008】
【課題を解決するための手段】
(1)上記課題を解決するための第1の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられ、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる磁気記録媒体である。
(2)上記課題を解決するための第2の発明は、前記粒子がPt、Pd、Ru、Rhより選ばれる少なくとも一つを含む非磁性材料からなる(1)に記載の磁気記録媒体である。
(3)上記課題を解決するための第3の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられ、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる磁気記録媒体である。
(4)上記課題を解決するための第4の発明は、前記非磁性母材がSiO2、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを含む材料からなる(3)に記載の磁気記録媒体である。
(5)上記課題を解決するための第5の発明は、前記下地層と磁気記録層との間に、Ruを含む材料からなる第2の下地層を設ける、(1)〜(4)のうちいずれか1つに記載の磁気記録媒体である。
(6)上記課題を解決するための第6の発明は、前記シード層が、Fe、Co、Cr、V、Mo、Nb、Zr、W、Ta、B、Cより選ばれる少なくとも一つを含む、(1)〜(5)のうちいずれか1つに記載の磁気記録媒体である。
(7)上記課題を解決するための第7の発明は、前記シード層が、飽和磁束密度Bsが0.2T以上、保磁力Hcが100(Oe)以下である、(1)〜(6)のうちいずれか1つに記載の磁気記録媒体である。
(8)上記課題を解決するための第8の発明は、前記磁気記録層が、金属酸化物または半導体酸化物を含むCo合金からなる、(1)〜(7)のうちいずれか1つに記載の磁気記録媒体である。
(9)上記課題を解決するための第9の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる磁気記録媒体の製造方法である。
(10)上記課題を解決するための第10の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる磁気記録媒体の製造方法である。
(11)上記課題を解決するための第11の発明は、(1)〜(8)のうちいずれか1つに記載の磁気記録媒体と、磁気ヘッドとを備えた磁気記録再生装置である。
なお、本明細書においては、1(Oe)≒79.58A/mである。また、1emu/cc≒12.57*10−4Wb/m2である。
【0009】
【発明の実施の形態】
本発明の磁気記録媒体は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられて構成されている。
非磁性基板としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。
ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミックとしては、酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、その繊維強化物などが使用可能である。
【0010】
軟磁性層は、軟磁性材料からなるもので、この材料としては、飽和磁束密度が高く、かつ軟磁気特性が良好なもの、例えばCoZrNb合金、FeCoB合金、FeCoN合金、FeTaC合金、FeTaN合金、FeNi合金、FeAlSi合金が好適である。
軟磁性層の保磁力Hcは50(Oe)以下(好ましくは10(Oe)以下)とするのが好ましい。軟磁性層の飽和磁束密度Bsは、0.6T以上(好ましくは1T以上)とするのが好ましい。軟磁性層の飽和磁束密度Bsと厚さtとの積Bs・tは、40T・nm以上(好ましくは60T・nm以上)であることが好ましい。
【0011】
基板と軟磁性層の間には、バイアス付与層を設けることができる。
バイアス付与層は、軟磁性層における磁区形成を抑制する磁区制御層とすることができる。磁区制御層は、硬磁性材料からなり、面内方向に磁気異方性をもつ。バイアス付与層は、反強磁性材料からなる反強磁性層であってもよい。
バイアス付与層の材料としては、CoCrPt合金、CoCrPtB合金、CoCrPtTa合金、CoSm合金、CoPt合金、CoPtO合金、CoPtCrO合金、CoPt−SiO2合金、CoCrPt−SiO2合金、CoCrPtO−SiO2合金を挙げることができる。
バイアス付与層は2層構造とすることができる。例えば、Vからなる第1層上にCo合金からなる第2層を形成した構成とすることができる。
このバイアス付与層を形成すると、この層からのバイアス磁界によって、軟磁性層における磁壁形成を防ぎ、磁区に起因するスパイク状ノイズを防止することができる。
【0012】
シード層は、下地層の結晶配向性を改善するためのものであり、Niを含む材料からなる。
シード層には、Fe、Co、Cr、V、Mo、Nb、Zr、W、Ta、B、Cより選ばれる少なくとも一つを含むNi合金を用いることができる。
この材料としては、NiTa合金、NiNb合金、NiTaC合金、NiTaB合金、CoNiTa合金、NiFe合金、NiFeMo合金、NiFeCr合金、NiFeV合金、NiCo合金が好ましい。
【0013】
シード層は、微細な結晶粒子を有する微結晶構造、または面心立方構造とするのが好ましい。
結晶構造は、Ni以外の成分の種類および量を選択することによって適宜設定できる。
例えば、NiTa合金、NiNb合金、NiTaC合金、NiTaB合金、またはCoNiTa合金を用いる場合には、微結晶構造が得られやすい。NiFe合金、NiFeMo合金、NiFeCr合金、NiFeV合金、またはNiCo合金を用いる場合には、面心立方構造が得られやすい。
【0014】
シード層が微結晶構造をとる場合には、下地層において粒子が均一かつ微細になりやすい。特に、下地層の非磁性母材がY2O3からなり、粒子が最密構造をとる貴金属材料(Pt、Auなど)からなる場合には、下地層において粒子が均一かつ微細になりやすい。また、シード層が面心立方構造をとる場合には、下地層において高い結晶性が得られる。
このように、上記磁気記録媒体では、シード層を設けることによって、軟磁性層上に直接下地層を形成した場合に比べて、下地層の結晶性が改善される。
【0015】
シード層には、軟磁性材料を用いることもできる。例えば飽和磁束密度Bsを0.2T以上とし、保磁力Hcを100(Oe)以下とすることができる。
シード層に軟磁気材料を用いれば、軟磁気特性を有する層(シード層および軟磁性層)と磁気ヘッドとの距離が小さくなるため、スペーシングロスが小さくなり、記録分解能を改善する効果が得られる。
【0016】
下地層は、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造、すなわちグラニュラ構造を有する。なお、以下、この下地層を第1の下地層と呼ぶことがある。
下地層は、非磁性母材がY2O3を含む材料からなることが好ましい。粒子は、Pt、Pd、Ru、Rhより選ばれる少なくとも一つを含む非磁性材料からなることが好ましい。
上記構成の下地層では、粒子が均一かつ微細になり、しかも明瞭に母材から分離される。また配向性も向上する。このため、この下地層の上に形成される磁気記録層は、粒子の均一性、明瞭性、粒径の小ささ、配向性が良好となる。
なかでも、非磁性母材がY2O3を含む材料からなり、かつ粒子がPtを含む材料からなる場合には、粒子の均一性、明瞭性、粒径の小ささ、配向性がいっそう良好となる。
【0017】
下地層は、非磁性母材が金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子がAu、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる構成とすることもできる。
金属としては、Cr、Al、Ta、Zr、Mg、Yを挙げることができ、半導体としては、Si、Bを挙げることができる。
非磁性母材の材料としては、SiO2、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを含む材料が好ましい。
【0018】
上記構成の下地層では、Au等からなる粒子が非磁性母材の影響を受けにくいため、均一性、明瞭性、粒径の小ささの点で優れた粒子が得られ、配向性も向上する。
特に、非磁性母材がSiO2を含む材料からなり、かつ粒子がAuを含む材料からなる場合には、粒子の均一性、明瞭性、粒径の小ささ、配向性がいっそう良好となる。
【0019】
下地層と磁気記録層との間には、Ruを含む材料からなる第2の下地層を設けることができる。この材料としては、RuまたはRu合金を挙げることができる。Ru合金としては、RuCr合金、RuCo合金、RuPt合金を挙げることができる。
第2下地層を設けることによって、磁気記録層において配向性が高くなり、分解能、SNRを向上させることができる。
【0020】
磁気記録層には、Co合金を用いることができる。特に、金属酸化物または半導体酸化物を含むCo合金が好ましい。磁気記録層は、粒子分散型構造(グラニュラ構造)とすることができる。
Co合金としては、CoCr合金、CoPt合金、CoCrPt合金、CoCrPtTa合金、CoCrPtO合金、CoCrPtTaB合金を挙げることができる。
金属としては、Cr、Al、Ta、Zr、Mg、Yを挙げることができ、半導体としては、Si、Bを挙げることができる。
金属酸化物としては、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを挙げることができる。半導体酸化物としては、SiO2、B2O3を挙げることができる。
磁気記録層がグラニュラ構造をとる場合には、磁気記録層は、上記Co合金からなる磁性粒子が、上記金属酸化物、半導体酸化物などからなる母材に分散した構成とすることができる。
【0021】
上記下地層が、粒子の均一性、明瞭性、粒径の小ささ、配向性の点で良好であるので、この下地層の影響下でエピタキシャル成長する磁気記録層は、粒子(磁性粒子)の均一性、明瞭性、粒径の小ささ、配向性が良好となる。
特に、金属酸化物または半導体酸化物を含むCo合金からなる磁気記録層は、粒子の均一性、明瞭性、粒径の小ささ、配向性が良好となる。このため、優れた分解能およびノイズ特性が得られる。
【0022】
磁気記録層に、金属酸化物または半導体酸化物を含むCo合金を用いる場合には、磁気記録層は、非加熱条件(例えば基板温度100℃未満の温度条件)で形成するのが好ましい。この温度が高すぎると、粒子径が大きくなり、粒子と母材の分離が不充分となりやすい。
磁気記録層に、金属酸化物または半導体酸化物を含まないCo合金を用いる場合には、磁気記録層は、加熱条件(例えば基板温度100℃以上の温度条件)で形成するのが好ましい。この温度が低すぎると、磁気記録層において偏析が不充分となりやすい。
【0023】
磁気記録層に、金属酸化物または半導体酸化物を含まないCo合金を用いる場合には、磁気記録層の直下に、このCo合金よりもCo濃度が低いCo合金(CoCr合金、CoPt合金、CoCrPt合金、CoCrPtTa合金、CoCrPtO合金、CoCrPtTaB合金など)からなる弱磁性下地層を設けることができる。なお、弱磁性下地層は非磁性であってもよい。
この弱磁性下地層は、飽和磁化が300emu/cc以下(好ましくは10〜100emu/cc)であり、保磁力が0.5〜100(Oe)であることが好ましい。飽和磁化または保磁力が上記範囲を越えると、媒体ノイズが増大する傾向がある。
【0024】
磁気記録層は、磁化容易軸が基板に対して主に垂直方向に向いた垂直磁気記録層とすることができる。
【0025】
磁気記録層上には、C、SiO2、ZrO2などからなる保護層を設けることができる。
保護層上には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などからなる潤滑層を設けることができる。
【0026】
上記各層は、基板の片面に形成してもよいし、両面に形成してもよい。上記各層は、汎用のスパッタ法によって形成することができる。
【0027】
以下、具体例を示して本発明をより詳細に説明する。
図1に示す磁気記録媒体は、基板1上に、磁区制御層2と、軟磁性層3と、シード層4と、第1の下地層5と、第2の下地層6と、磁気記録層7と、保護層8とが順に積層された構成を有する。
シード層4にはNiTa合金を用いることができる。
第1の下地層5は、Ptからなる粒子がY2O3からなる母材中に分散したグラニュラ構造とすることができる。第2の下地層6にはRuを用いることができる。
磁気記録層7は、CoCrPt合金からなる磁性粒子が、SiO2からなる母材中に分散するグラニュラ構造を有する構成とすることができる。磁気記録層7は、非加熱条件(例えば基板温度100℃未満の温度条件)で形成されることが好ましい。これは、加熱により磁性粒子が粗大化したり、母材と磁性粒子が明瞭に分離しなくなることを防ぐためである。
【0028】
図2に示す磁気記録媒体は、基板11上に、軟磁性層12と、シード層13と、第1の下地層14と、第2の下地層15と、弱磁性下地層16と、磁気記録層17と、保護層18とが順に積層された構成を有する。
シード層13には、NiTa合金を用いることができる。
第1の下地層14は、Auからなる粒子がSiO2からなる母材中に分散したグラニュラ構造とすることができる。第2の下地層15にはRuCr合金を用いることができる。
弱磁性下地層16と磁気記録層17は、いずれもCoCrPtB合金からなり、磁気記録層17は、弱磁性下地層16に比べてCoの組成比が高くなっている。
磁気記録層17は、基板11を加熱することによって、加熱条件(例えば基板温度100℃以上の条件)で形成されることが好ましい。これは、加熱により磁気記録層17においてCr偏析が促進されるためである。
【0029】
本発明の磁気記録媒体では、Niを含む材料からなるシード層と、粒子分散型構造を有する第1の下地層とを備えているので、第1の下地層において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
このため、その上に形成される第2の下地層、磁気記録層においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
よって、媒体ノイズを低減することができ、ノイズ特性を向上させることができる。また、保磁力を高め、十分な記録再生特性を得ることができる。従って、高密度記録が可能となる。
これに対し、Ru等からなるグラニュラ構造の下地層を有し、かつシード層をもたない従来品では、下地層において配向性が劣化するため、ノイズ、保磁力などが不充分となる。
また、本発明では、シード層に軟磁性材料を用いることによって、記録分解能を改善することができる。
【0030】
本発明の磁気記録媒体は、磁気記録層が垂直磁気異方性を有する場合に特に良好な特性を示す。
この場合には、この磁気記録媒体は、透磁率が高い軟磁性層と、垂直磁気記録層とを有する、いわゆる垂直二層媒体となる。この垂直二層媒体において、軟磁性層は、磁気ヘッド(特に単磁極ヘッド)からの記録磁界を、水平方向に向け、磁気ヘッド側へ還流させるという機能の一部を担っている。このため、急峻かつ充分な垂直磁界を磁気記録層に与え、記録再生効率を向上させることができる。
【0031】
本発明の磁気記録再生装置は、上記磁気記録媒体と、磁気ヘッドとを備えている。磁気ヘッドとしては、記録ヘッド、再生ヘッド、記録・再生複合型ヘッドを挙げることができる。
垂直磁気記録方式を採用する場合には、記録ヘッドとして単磁極ヘッドを使用することができる。面内磁気記録方式を採用する場合には、記録ヘッドとしてリングヘッドを使用することができる。
【0032】
図7は、本発明の磁気記録再生装置の一例を示す一部分解斜視図である。
ここに示す磁気記録再生装置は、上面側が開口した矩形箱状の筐体61と、筐体61の開口を塞ぐトップカバーを有する。
筐体61内には、上述の構成を有する磁気記録媒体である垂直磁気記録媒体62、この垂直磁気記録媒体62を支持および回転させる駆動手段としてのスピンドルモータ63、垂直磁気記録媒体62に対して磁気信号の記録および再生を行う磁気ヘッド64、磁気ヘッド64を先端に搭載したサスペンションを有しかつ磁気ヘッド64を垂直磁気記録媒体62に対して移動自在に支持するヘッドアクチュエータ65、ヘッドアクチュエータ65を回転自在に支持する回転軸66、回転軸66を介してヘッドアクチュエータ65を回転および位置決めするボイスコイルモータ67、ヘッドアンプ回路68が収納されている。
【0033】
【実施例】
以下、本発明の磁気記録媒体の具体例を示す。
(実施例1)
図1に示す磁気記録媒体を作製した。
以下に示す製造方法において、スパッタ法では、真空度を3×10−5Pa以下としたチャンバーを用い、スパッタガスとしてArガスを使用した。
非磁性ガラス基板1上に、スパッタ法により磁区制御層2を形成した。
磁区制御層2は、Vからなる第1層(厚さ40nm)上に、Co−18at%Pt−8at%Crからなる第2層(厚さ20nm)を有する構成とした。第1層を形成する際には、チャンバー内圧を0.6Paとし、第2層を形成する際にはチャンバー内圧を0.5Paとした。
次いで、磁区制御層2上に、Co−6at%Zr−10at%Nbからなる軟磁性層3(厚さ200nm)を形成した(チャンバー内圧:0.6Pa)。
次いで、軟磁性層3上に、Ni−30at%Taからなるシード層4(厚さ7nm)を形成した(チャンバー内圧:0.7Pa)。
上記各層を形成する際には、ターゲットに供給する電力をDC500Wとした。
【0034】
次いで、シード層4上に、Pt−Y2O3からなる第1の下地層5(厚さ10nm)を形成した。第1の下地層5は、Ptからなる粒子がY2O3からなる母材中に分散したグラニュラ構造となった。第1の下地層5を形成する際には、Pt粒子とY2O3粒子をモル比Pt:Y2O3=8:2になるように混合して焼結して得られたPt−Y2O3ターゲットを用いた(チャンバー内圧:5.0Pa、供給電力:RF300W)。
次いで、第1の下地層5上に、Ruからなる第2の下地層6(厚さ5nm)を形成した(チャンバー内圧:3.0Pa、供給電力:DC250W)。
【0035】
次いで、第2の下地層6上に、CoPtCr−SiO2からなる磁気記録層7(厚さ10nm)を形成した。磁気記録層7を形成する際には、Co−16at%Pt−12atCrからなる粒子とSiO2粒子をモル比CoPtCr:SiO2=11:1になるように混合して焼結して得られたCoPtCr−SiO2ターゲットを用いた(チャンバー内圧:6.0Pa、供給電力:RF200W)。
次いで、磁気記録層7上に、Cからなる保護層8(厚さ7nm)を形成した(チャンバー内圧:0.5Pa、供給電力:DC1000W)。
次いで、保護層8上に、ディップ法により、PFPE(Perfluoro Polyether)からなる潤滑剤を塗布し、潤滑層(厚さ1.5nm)を形成して、磁気記録媒体Aを得た。
【0036】
磁気記録媒体Aについて、Kerr効果磁気測定装置を用い、最大磁界を20kOeとして、静磁気特性を測定した。保磁力Hc、角型比RS、および核生成磁界Hnを表1に示す。
また、媒体Aの結晶配向性を調べるため、XRDを用いてロッキングカーブを測定することにより得られたΔθ50も併せて示す。
また、この媒体Aについて、単磁極ヘッドを用いて信号を書き込み、GMRヘッドを用いて信号を読み取る方法により、R/Wテストを行った。得られたSNRm、オーバーライト特性(OW特性)、およびdPW50を表1に示す。測定は、半径20mmの位置で行い、媒体Aの回転数は4200rpmとした。
S/N比であるSNRmについては、Sは119kFCIの孤立波形の1磁化反転におけるピーク値、すなわち最高値と最小値との差を1/2にした値である。Nmは、716kFCIでのrms値(root mean square−inches)である。
OW特性は、8kFCIで記録信号書き込み後、358kFCIで信号を書き込んだ際の上書き前の信号出力と、上書き後の消え残り信号出力との比を示す。磁化反転部の半値幅dPW50は、分解能特性を示すもので、再生波形を微分して得られた孤立波のピーク値の50%における幅(nm)である。
【0037】
次に示す3つのサンプルを作製した。
実施例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4を形成した(サンプル1)。
実施例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成した(サンプル2)。
実施例1に準じて、非磁性ガラス基板1上に、シード層4のみを形成した(サンプル3)。
【0038】
サンプル1について、XRD(X−Ray Diffraction)パターンを観察したところ、2θ=40度付近に、磁区制御層に相当すると思われる微弱なピークが観察された以外は特に目立ったピークはなく、2θ=40〜50度付近にブロードなパターンが見られた。
TEM(透過型電子顕微鏡)を用いて、シード層4の平面構造を観察したところ、シード層4は、粒径2nm以下の微粒子を有する微結晶構造であることが分かった。
サンプル2について、TEMを用いて第1の下地層5の平面構造を観察した。
図8は、この平面構造(倍率100万倍)を示すものである。図中、符号71はPt粒子を示し、符号72はY2O3からなる母材を示す。
この図より、平均粒径が約6nmであるPt粒子71が母材72中に分散されている構成、すなわち母材72がPt粒子71を取り囲む構成が確認できる。Pt粒子71どうしの平均間隔は約2nmであった。
Pt粒子71の最大粒径は約9nmであったが、大部分のPt粒子71については、粒径はおよそ±1nm程度の範囲に収まっていた。
サンプル3を、1cm角の大きさに裁断し、VSM(Vibrating Sample Magnetometer)を用いて最大100(Oe)の外部磁界をかけて静磁気特性を測定したところ、Bsが0.2Tとなり軟磁気特性を示したことが確認された。
【0039】
(比較例1)
図3に示すように、シード層4の材料としてTaを用いたこと以外は実施例1と同様にして磁気記録媒体Bを得た。
静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表1に示す。
【0040】
比較例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル4を作製した。
サンプル4について、TEMを用いて第1の下地層5の平面構造を観察した。その結果、粒子と母材との境界が不明瞭であり、粒子の分離が不充分であることが確認された。また、粒子の平均粒径は約6nmであったが、最大粒径は約10nmであった。粒径のばらつきはおよそ±2nmであり、媒体Aに比べ、粒子の均一性の点で劣ることが確認された。
【0041】
【表1】
【0042】
表1より、保磁力Hcに関しては、実施例1(媒体A)と比較例1(媒体B)との間に大きな差はなかったが、角型比RSに関しては、媒体Aの方が大きな値を示した。また、結晶配向を示すΔθ50は、媒体Aの方が小さく、配向性に優れていることがわかった。
また、媒体Aと媒体Bは、OW値に関しては同等であったが、媒体AではSNRm値、dPW50値が優れていることがわかった。
このことから、媒体Bでも磁気記録層の粒子は微細化されたものの、媒体Aでは、粒径のばらつきが小さく、しかも配向性が高くなったと考えられる。また、媒体Aで良好な結果が得られたのは、シード層4が軟磁性を示すためスペーシングロスが小さくなったことも原因として考えられる。
以上より、媒体Aでは、角型比が大きく、静磁気特性に優れた結果が得られたことがわかる。また、R/W特性に関しては、分解能が優れ、S/N比を大きくすることができたことがわかる。
【0043】
媒体Aの第1の下地層5に用いられるPtに代えて、Pd、Ru、またはRhを用いた場合には、RSが約0.9となった。またSNRmは媒体Aよりも0.2〜0.3dB減という結果が得られた。この結果は、媒体Aに比較して、ほぼ同等の結果であるということができる。
また、シード層4に用いられるNiTaに代えて、NiNb、NiTaC、NiTaB、またはCoNiTaを用いたところ、上記各特性に関して、媒体Aとほぼ同等の結果が得られた。
また、シード層4に用いられるNiTaに代えて、NiFe、NiFeMo、NiFeCr、NiFeV、またはNiCoを用いた場合には、XRDにおける回折パターンより、シード層4は結晶質であることがわかった。このように、シード層4が結晶質である場合でも、媒体Bに比べ、SNRの改善が見られた。
また、シード層4に用いられるNiTaに代えて、NiFe、NiFeMo、NiFeCr、またはNiFeVを用いた場合には、いずれもBsが約0.8Tとなった。このため、スペーシングロスを小さくする効果がより顕著となり、dPW50が改善された。
【0044】
(実施例2)
図2に示す磁気記録媒体を作製した。
非磁性ガラス基板11上に、Fe−10at%Ta−10at%Cからなる軟磁性層12(厚さ200nm)を形成した。
次いで、Ni−15at%Ta−15at%Cからなるシード層13(厚さ8nm)を形成した(チャンバー内圧:0.8Pa)。
次いで、同一平面内に並べて配置したAuターゲットとSiO2ターゲットを用い、基板11を2つのターゲットの一方に対向する位置から、他方に対向する位置に移動させる操作を繰り返すことによって、AuとSiO2とを交互にスパッタし、Au−SiO2からなる第1の下地層14(厚さ5nm)を形成した(Auターゲット供給電力:DC500W、SiO2ターゲット供給電力:RF1400W)。
次いで、基板11を8秒間加熱し、その温度を250℃とした。
次いで、第1の下地層14上に、Ru−30at%Crからなる第2の下地層15(厚さ5nm)を形成した(チャンバー内圧3Pa、供給電力:DC250W)。
次いで、Co−26at%Cr−12at%Pt−4at%Bからなる弱磁性下地層16(厚さ10nm)を形成した(チャンバー内圧0.5Pa、供給電力:DC100W)。
次いで、Co−18at%Cr−15at%Pt−1at%Bからなる磁気記録層17(厚さ12nm)を形成した(チャンバー内圧:0.6Pa、供給電力:DC250W)。
次いで、磁気記録層17上に、Cからなる保護層18(厚さ7nm)を形成した(チャンバー内圧:0.5Pa、供給電力:DC1000W)。
次いで、保護層18上に、ディップ法により、PFPEからなる潤滑剤を塗布し、潤滑層(厚さ1.3nm)を形成して、磁気記録媒体Cを得た。
磁気記録媒体Cについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表2に示す。
【0045】
実施例2に準じて、非磁性ガラス基板11上に、シード層13のみを形成したサンプル5を作製した。
実施例2に準じて、非磁性ガラス基板11上に、軟磁性層12、シード層13、第1の下地層14を形成したサンプル6を作製した。
サンプル5について、XRDパターンを観察したところ、2θ=40〜50度付近にブロードなパターンが見られたが、鋭いピークは現れなかった。また、シード層13の平面構造をTEMを用いて観察したところ、粒径2nm以下の微粒子を有する微結晶構造であることがわかった。
サンプル6について、第1の下地層14の平面構造をTEMを用いて倍率100万倍で観察したところ、平均粒径が約7nmのAu粒子が、SiO2からなる母材に囲まれたグラニュラ構造になっていることが確認された。Au粒子どうしの平均間隔は約2nmであった。
また、サンプル5を1cm角の大きさに裁断し、VSMにより静磁気特性を測定したところ、外部磁界を1500kA/mまで加えても磁化を示さず、非磁性であることがわかった。
【0046】
(比較例2)
図4に示すように、シード層13を形成しないこと以外は実施例2と同様にして、磁気記録媒体Dを作製した。
媒体Dについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した結果を表2に示す。
【0047】
【表2】
【0048】
表2より、実施例2(媒体C)は、比較例2(媒体D)と比較して、静磁気特性、結晶配向性、およびR/W特性(SNRm)が優れていたことがわかる。
【0049】
媒体Cの第1の下地層14に用いられるAuに代えて、AgまたはCuを用いた場合には、上記各特性について、媒体Cに比較してほぼ同等と見なせる結果が得られた。
また、第1の下地層14に、SiO2に代えて、Y2O3、Cr2O3、Al2O3、Ta2O5、MgO、TaC、TaN、またはZrNを用いた場合には、RSが約0.9となった。またSNRmは媒体Cよりも0.1〜0.3dB減という結果が得られた。この結果は、媒体Cに比較してほぼ同等の結果であるということができる。
また、シード層13に、NiTaに代えて、NiNb、NiTaC、NiTaB、またはCoNiTaを用いたところ、上記各特性に関して、媒体Cとほぼ同等の結果が得られた。
また、シード層13に、NiTaに代えて、NiFe、NiFeMo、NiFeCr、NiFeV、またはNiCoを用いた場合には、XRDにおける回折パターンより、シード層13は結晶質であることがわかった。このように、シード層13が結晶質である場合でも、媒体Dに比べ、SNRの改善が見られた。
また、シード層13に、NiTaに代えて、NiFe、NiFeMo、NiFeCr、またはNiFeVを用いた場合には、いずれもBsは約0.8Tとなった。このため、スペーシングロスを小さくする効果がより顕著となり、dPW50が改善された。
【0050】
(実施例3)
図5に示すように、第1の下地層5に、Ptに代えてRhを用いたこと以外は実施例1と同様にして磁気記録媒体Eを作製した。
媒体Eについて、静磁気特性、結晶配向性、R/W特性を実施例1と同様にして測定した結果を表1に示す。
また、実施例3に準じて、基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル7を作製した。
サンプル7について、第1の下地層5の平面構造をTEMを用いて観察したところ、平均粒径が約6mmのRh粒子がSiO2からなる母材に囲まれたグラニュラ構造になっていることが確認された。最大粒径および最小粒径は、それぞれ約9nm、約3nmであったことから、媒体Aに比べ粒径のばらつきが大きいことがわかった。
【0051】
表1に示すように、実施例3(媒体E)では、比較例1(媒体B)と比べて、SNRmで優れた値が得られたが、実施例1(媒体A)に比べdPW50で劣る結果が得られた。
媒体Eでは、第1の下地層5の粒子にRhを用いたため優れた結晶性が得られたが、粒径のばらつきが若干大きくなり、分解能がやや低くなった。
実施例1と実施例3の結果より、下地層の母材にY2O3を用いることにより、粒子が均一かつ明瞭となるため、より高密度記録が可能な媒体が得られる。さらに、下地層の粒子にPtを用いることにより、磁気記録層の配向性が高められるため、分解能を高めることができる。
【0052】
(実施例4)
図6に示すように、第2の下地層6を形成しないこと以外は実施例1と同様にして、磁気記録媒体Fを作製した。
媒体Fについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表1に示す。
また、実施例4に準じて、基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル8を作製した。
第1の下地層5の平面構造をTEMを用いて観察したところ、平均粒径が約6mmのPt粒子がY2O3からなる母材に囲まれたグラニュラ構造になっていることが確認された。この粒子は、媒体Aに比べ母材との境界が不明瞭となったことが確認できた。
【0053】
表1に示すように、実施例4(媒体F)では、比較例1(媒体B)に比べて、SNRmで優れた値が得られたが、実施例1(媒体A)に比べ、Δθ50、dPW50では劣る結果となった。
媒体Fでは、第2の下地層6を形成しないため磁気記録層7の配向性がやや劣るが、第1の下地層5にPt−Y2O3を用いたため、優れたSNRmが得られたと考えられる。
このことから、下地層にPt−Y2O3を用いることにより、高密度記録が可能な媒体が得られることがわかる。
【0054】
【発明の効果】
本発明の磁気記録媒体では、Niを含む材料からなるシード層と、粒子分散型構造を有する下地層とを備えているので、下地層において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
このため、その上に形成される磁気記録層においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
よって、媒体ノイズを低減することができ、ノイズ特性を向上させることができる。また、保磁力を高め、十分な記録再生特性を得ることができる。従って、高密度記録が可能となる。
また、本発明では、シード層に軟磁性材料を用いることによって、記録分解能を改善することができる。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体の一例を表す概略断面図
【図2】本発明の磁気記録媒体の他の例を表す概略断面図
【図3】比較例の磁気記録媒体を表す概略断面図
【図4】比較例の磁気記録媒体を表す概略断面図
【図5】本発明の磁気記録媒体の他の例を表す概略断面図
【図6】本発明の磁気記録媒体の他の例を表す概略断面図
【図7】本発明の磁気記録再生装置の一例を示す一部分解斜視図
【図8】下地層の平面構造を示す写真
【符号の説明】
1、11…基板、4、13…シード層、5、14・・・下地層、6、15・・・第2の下地層、7、17…磁気記録層、61…筐体、62…磁気ディスク、63…スピンドルモータ、64…磁気ヘッド、65…ヘッドアクチュエータ、66…回転軸、67…ボイスコイルモータ、68…ヘッドアンプ回路、71…粒子、72…非磁性母材
【発明の属する技術分野】
本発明は、磁気記録技術を用いたハードディスク装置等に用いられる磁気記録媒体、その製造方法、および磁気記録再生装置に関する。
【0002】
【従来の技術】
磁気記録媒体において、記録密度を高くするためには、磁気記録層の異方性を低下させずに結晶粒子を微細化し、媒体ノイズを低減することが重要である。
従来より、磁気記録層の結晶粒子を微細化するために、種々の下地層およびシード層が使用されている。例えば、TiやTaからなるシード層上に、六方最密構造(hcp)あるいは面心立方構造(fcc)を有する結晶粒子が酸化物や窒化物によって分離された構造を有する下地層を設け、その上に中間層、磁気記録層を積層した磁気記録媒体が用いられている。
この磁気記録媒体では、磁気記録層を構成する結晶粒子が微細化されるとともに、互いに分離される(例えば、特許文献1参照)。
また、酸化物あるいは炭化物により結晶粒子が分離される構造を有する非磁性中間層を設け、その上に磁性層を積層することによって、高保磁力、低ノイズ化させることが提案されている(例えば、特許文献2参照)。
これらの従来技術によれば、酸化物等により結晶粒子を微細化するとともに互いに分離させた構造の下地層(または中間層)を設けることによって、磁気記録層に含まれる結晶粒子をも微細化および分離させ、この種の構造をもたない下地層を用いた従来品よりも記録再生特性を向上させることができる。
【0003】
また、下地層の下にシード層を設けることにより、下地層の配向性を改善することで、磁性層の配向性をも改善し、媒体の記録再生特性を向上させることが提案されている。
しかしながら、この従来技術では、下地層において結晶粒子を微細化させることと、配向性を高めることを両立させるのは難しいという問題があった。
【0004】
また、基板と磁気記録層との間に、軟磁性材料からなる軟磁性層を設けることにより、磁気ヘッドと磁気記録媒体との間の磁束の出入りの効率を向上させることが提案されている。軟磁性層は、磁気ヘッドと媒体との間の磁路の一部を担う。
シード層を設ける場合には、軟磁性層とヘッドとの距離が大きくなるため、十分な記録分解能を得ることが難しくなるという問題があった。
【0005】
また、酸化物、窒化物、炭化物、炭素より選ばれる1種とRu合金とからなるグラニュラ構造下地層、またはRu合金からなる下地層を用いることによって、磁性層の配向性および保磁力を高めるとともに、粒子を微細化し低ノイズ化させることが提案されている(例えば特許文献3を参照)。
しかしながら、上記Ru合金を含む下地層を設けた磁気記録媒体では、下地層の配向性が不十分となり、保磁力およびノイズの点で十分な結果は得られていない。
【0006】
【特許文献1】
特開2003−36525号公報
【特許文献2】
特開2002−133645号公報
【特許文献3】
特開2001−291230号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたもので、その第1の目的は、磁気記録層において、結晶粒子を微細化でき、かつ配向性を高めることができる磁気記録媒体、その製造方法、および磁気記録再生装置を提供することにある。
本発明の第2の目的は、結晶粒子を微細化でき、かつ配向性を高めることができ、記録分解能にも優れた磁気記録媒体、その製造方法、および磁気記録再生装置を提供することにある。
【0008】
【課題を解決するための手段】
(1)上記課題を解決するための第1の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられ、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる磁気記録媒体である。
(2)上記課題を解決するための第2の発明は、前記粒子がPt、Pd、Ru、Rhより選ばれる少なくとも一つを含む非磁性材料からなる(1)に記載の磁気記録媒体である。
(3)上記課題を解決するための第3の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられ、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる磁気記録媒体である。
(4)上記課題を解決するための第4の発明は、前記非磁性母材がSiO2、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを含む材料からなる(3)に記載の磁気記録媒体である。
(5)上記課題を解決するための第5の発明は、前記下地層と磁気記録層との間に、Ruを含む材料からなる第2の下地層を設ける、(1)〜(4)のうちいずれか1つに記載の磁気記録媒体である。
(6)上記課題を解決するための第6の発明は、前記シード層が、Fe、Co、Cr、V、Mo、Nb、Zr、W、Ta、B、Cより選ばれる少なくとも一つを含む、(1)〜(5)のうちいずれか1つに記載の磁気記録媒体である。
(7)上記課題を解決するための第7の発明は、前記シード層が、飽和磁束密度Bsが0.2T以上、保磁力Hcが100(Oe)以下である、(1)〜(6)のうちいずれか1つに記載の磁気記録媒体である。
(8)上記課題を解決するための第8の発明は、前記磁気記録層が、金属酸化物または半導体酸化物を含むCo合金からなる、(1)〜(7)のうちいずれか1つに記載の磁気記録媒体である。
(9)上記課題を解決するための第9の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなる磁気記録媒体の製造方法である。
(10)上記課題を解決するための第10の発明は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、シード層が、Niを含む材料からなり、下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる磁気記録媒体の製造方法である。
(11)上記課題を解決するための第11の発明は、(1)〜(8)のうちいずれか1つに記載の磁気記録媒体と、磁気ヘッドとを備えた磁気記録再生装置である。
なお、本明細書においては、1(Oe)≒79.58A/mである。また、1emu/cc≒12.57*10−4Wb/m2である。
【0009】
【発明の実施の形態】
本発明の磁気記録媒体は、非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられて構成されている。
非磁性基板としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。
ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミックとしては、酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、その繊維強化物などが使用可能である。
【0010】
軟磁性層は、軟磁性材料からなるもので、この材料としては、飽和磁束密度が高く、かつ軟磁気特性が良好なもの、例えばCoZrNb合金、FeCoB合金、FeCoN合金、FeTaC合金、FeTaN合金、FeNi合金、FeAlSi合金が好適である。
軟磁性層の保磁力Hcは50(Oe)以下(好ましくは10(Oe)以下)とするのが好ましい。軟磁性層の飽和磁束密度Bsは、0.6T以上(好ましくは1T以上)とするのが好ましい。軟磁性層の飽和磁束密度Bsと厚さtとの積Bs・tは、40T・nm以上(好ましくは60T・nm以上)であることが好ましい。
【0011】
基板と軟磁性層の間には、バイアス付与層を設けることができる。
バイアス付与層は、軟磁性層における磁区形成を抑制する磁区制御層とすることができる。磁区制御層は、硬磁性材料からなり、面内方向に磁気異方性をもつ。バイアス付与層は、反強磁性材料からなる反強磁性層であってもよい。
バイアス付与層の材料としては、CoCrPt合金、CoCrPtB合金、CoCrPtTa合金、CoSm合金、CoPt合金、CoPtO合金、CoPtCrO合金、CoPt−SiO2合金、CoCrPt−SiO2合金、CoCrPtO−SiO2合金を挙げることができる。
バイアス付与層は2層構造とすることができる。例えば、Vからなる第1層上にCo合金からなる第2層を形成した構成とすることができる。
このバイアス付与層を形成すると、この層からのバイアス磁界によって、軟磁性層における磁壁形成を防ぎ、磁区に起因するスパイク状ノイズを防止することができる。
【0012】
シード層は、下地層の結晶配向性を改善するためのものであり、Niを含む材料からなる。
シード層には、Fe、Co、Cr、V、Mo、Nb、Zr、W、Ta、B、Cより選ばれる少なくとも一つを含むNi合金を用いることができる。
この材料としては、NiTa合金、NiNb合金、NiTaC合金、NiTaB合金、CoNiTa合金、NiFe合金、NiFeMo合金、NiFeCr合金、NiFeV合金、NiCo合金が好ましい。
【0013】
シード層は、微細な結晶粒子を有する微結晶構造、または面心立方構造とするのが好ましい。
結晶構造は、Ni以外の成分の種類および量を選択することによって適宜設定できる。
例えば、NiTa合金、NiNb合金、NiTaC合金、NiTaB合金、またはCoNiTa合金を用いる場合には、微結晶構造が得られやすい。NiFe合金、NiFeMo合金、NiFeCr合金、NiFeV合金、またはNiCo合金を用いる場合には、面心立方構造が得られやすい。
【0014】
シード層が微結晶構造をとる場合には、下地層において粒子が均一かつ微細になりやすい。特に、下地層の非磁性母材がY2O3からなり、粒子が最密構造をとる貴金属材料(Pt、Auなど)からなる場合には、下地層において粒子が均一かつ微細になりやすい。また、シード層が面心立方構造をとる場合には、下地層において高い結晶性が得られる。
このように、上記磁気記録媒体では、シード層を設けることによって、軟磁性層上に直接下地層を形成した場合に比べて、下地層の結晶性が改善される。
【0015】
シード層には、軟磁性材料を用いることもできる。例えば飽和磁束密度Bsを0.2T以上とし、保磁力Hcを100(Oe)以下とすることができる。
シード層に軟磁気材料を用いれば、軟磁気特性を有する層(シード層および軟磁性層)と磁気ヘッドとの距離が小さくなるため、スペーシングロスが小さくなり、記録分解能を改善する効果が得られる。
【0016】
下地層は、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造、すなわちグラニュラ構造を有する。なお、以下、この下地層を第1の下地層と呼ぶことがある。
下地層は、非磁性母材がY2O3を含む材料からなることが好ましい。粒子は、Pt、Pd、Ru、Rhより選ばれる少なくとも一つを含む非磁性材料からなることが好ましい。
上記構成の下地層では、粒子が均一かつ微細になり、しかも明瞭に母材から分離される。また配向性も向上する。このため、この下地層の上に形成される磁気記録層は、粒子の均一性、明瞭性、粒径の小ささ、配向性が良好となる。
なかでも、非磁性母材がY2O3を含む材料からなり、かつ粒子がPtを含む材料からなる場合には、粒子の均一性、明瞭性、粒径の小ささ、配向性がいっそう良好となる。
【0017】
下地層は、非磁性母材が金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子がAu、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなる構成とすることもできる。
金属としては、Cr、Al、Ta、Zr、Mg、Yを挙げることができ、半導体としては、Si、Bを挙げることができる。
非磁性母材の材料としては、SiO2、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを含む材料が好ましい。
【0018】
上記構成の下地層では、Au等からなる粒子が非磁性母材の影響を受けにくいため、均一性、明瞭性、粒径の小ささの点で優れた粒子が得られ、配向性も向上する。
特に、非磁性母材がSiO2を含む材料からなり、かつ粒子がAuを含む材料からなる場合には、粒子の均一性、明瞭性、粒径の小ささ、配向性がいっそう良好となる。
【0019】
下地層と磁気記録層との間には、Ruを含む材料からなる第2の下地層を設けることができる。この材料としては、RuまたはRu合金を挙げることができる。Ru合金としては、RuCr合金、RuCo合金、RuPt合金を挙げることができる。
第2下地層を設けることによって、磁気記録層において配向性が高くなり、分解能、SNRを向上させることができる。
【0020】
磁気記録層には、Co合金を用いることができる。特に、金属酸化物または半導体酸化物を含むCo合金が好ましい。磁気記録層は、粒子分散型構造(グラニュラ構造)とすることができる。
Co合金としては、CoCr合金、CoPt合金、CoCrPt合金、CoCrPtTa合金、CoCrPtO合金、CoCrPtTaB合金を挙げることができる。
金属としては、Cr、Al、Ta、Zr、Mg、Yを挙げることができ、半導体としては、Si、Bを挙げることができる。
金属酸化物としては、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを挙げることができる。半導体酸化物としては、SiO2、B2O3を挙げることができる。
磁気記録層がグラニュラ構造をとる場合には、磁気記録層は、上記Co合金からなる磁性粒子が、上記金属酸化物、半導体酸化物などからなる母材に分散した構成とすることができる。
【0021】
上記下地層が、粒子の均一性、明瞭性、粒径の小ささ、配向性の点で良好であるので、この下地層の影響下でエピタキシャル成長する磁気記録層は、粒子(磁性粒子)の均一性、明瞭性、粒径の小ささ、配向性が良好となる。
特に、金属酸化物または半導体酸化物を含むCo合金からなる磁気記録層は、粒子の均一性、明瞭性、粒径の小ささ、配向性が良好となる。このため、優れた分解能およびノイズ特性が得られる。
【0022】
磁気記録層に、金属酸化物または半導体酸化物を含むCo合金を用いる場合には、磁気記録層は、非加熱条件(例えば基板温度100℃未満の温度条件)で形成するのが好ましい。この温度が高すぎると、粒子径が大きくなり、粒子と母材の分離が不充分となりやすい。
磁気記録層に、金属酸化物または半導体酸化物を含まないCo合金を用いる場合には、磁気記録層は、加熱条件(例えば基板温度100℃以上の温度条件)で形成するのが好ましい。この温度が低すぎると、磁気記録層において偏析が不充分となりやすい。
【0023】
磁気記録層に、金属酸化物または半導体酸化物を含まないCo合金を用いる場合には、磁気記録層の直下に、このCo合金よりもCo濃度が低いCo合金(CoCr合金、CoPt合金、CoCrPt合金、CoCrPtTa合金、CoCrPtO合金、CoCrPtTaB合金など)からなる弱磁性下地層を設けることができる。なお、弱磁性下地層は非磁性であってもよい。
この弱磁性下地層は、飽和磁化が300emu/cc以下(好ましくは10〜100emu/cc)であり、保磁力が0.5〜100(Oe)であることが好ましい。飽和磁化または保磁力が上記範囲を越えると、媒体ノイズが増大する傾向がある。
【0024】
磁気記録層は、磁化容易軸が基板に対して主に垂直方向に向いた垂直磁気記録層とすることができる。
【0025】
磁気記録層上には、C、SiO2、ZrO2などからなる保護層を設けることができる。
保護層上には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などからなる潤滑層を設けることができる。
【0026】
上記各層は、基板の片面に形成してもよいし、両面に形成してもよい。上記各層は、汎用のスパッタ法によって形成することができる。
【0027】
以下、具体例を示して本発明をより詳細に説明する。
図1に示す磁気記録媒体は、基板1上に、磁区制御層2と、軟磁性層3と、シード層4と、第1の下地層5と、第2の下地層6と、磁気記録層7と、保護層8とが順に積層された構成を有する。
シード層4にはNiTa合金を用いることができる。
第1の下地層5は、Ptからなる粒子がY2O3からなる母材中に分散したグラニュラ構造とすることができる。第2の下地層6にはRuを用いることができる。
磁気記録層7は、CoCrPt合金からなる磁性粒子が、SiO2からなる母材中に分散するグラニュラ構造を有する構成とすることができる。磁気記録層7は、非加熱条件(例えば基板温度100℃未満の温度条件)で形成されることが好ましい。これは、加熱により磁性粒子が粗大化したり、母材と磁性粒子が明瞭に分離しなくなることを防ぐためである。
【0028】
図2に示す磁気記録媒体は、基板11上に、軟磁性層12と、シード層13と、第1の下地層14と、第2の下地層15と、弱磁性下地層16と、磁気記録層17と、保護層18とが順に積層された構成を有する。
シード層13には、NiTa合金を用いることができる。
第1の下地層14は、Auからなる粒子がSiO2からなる母材中に分散したグラニュラ構造とすることができる。第2の下地層15にはRuCr合金を用いることができる。
弱磁性下地層16と磁気記録層17は、いずれもCoCrPtB合金からなり、磁気記録層17は、弱磁性下地層16に比べてCoの組成比が高くなっている。
磁気記録層17は、基板11を加熱することによって、加熱条件(例えば基板温度100℃以上の条件)で形成されることが好ましい。これは、加熱により磁気記録層17においてCr偏析が促進されるためである。
【0029】
本発明の磁気記録媒体では、Niを含む材料からなるシード層と、粒子分散型構造を有する第1の下地層とを備えているので、第1の下地層において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
このため、その上に形成される第2の下地層、磁気記録層においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
よって、媒体ノイズを低減することができ、ノイズ特性を向上させることができる。また、保磁力を高め、十分な記録再生特性を得ることができる。従って、高密度記録が可能となる。
これに対し、Ru等からなるグラニュラ構造の下地層を有し、かつシード層をもたない従来品では、下地層において配向性が劣化するため、ノイズ、保磁力などが不充分となる。
また、本発明では、シード層に軟磁性材料を用いることによって、記録分解能を改善することができる。
【0030】
本発明の磁気記録媒体は、磁気記録層が垂直磁気異方性を有する場合に特に良好な特性を示す。
この場合には、この磁気記録媒体は、透磁率が高い軟磁性層と、垂直磁気記録層とを有する、いわゆる垂直二層媒体となる。この垂直二層媒体において、軟磁性層は、磁気ヘッド(特に単磁極ヘッド)からの記録磁界を、水平方向に向け、磁気ヘッド側へ還流させるという機能の一部を担っている。このため、急峻かつ充分な垂直磁界を磁気記録層に与え、記録再生効率を向上させることができる。
【0031】
本発明の磁気記録再生装置は、上記磁気記録媒体と、磁気ヘッドとを備えている。磁気ヘッドとしては、記録ヘッド、再生ヘッド、記録・再生複合型ヘッドを挙げることができる。
垂直磁気記録方式を採用する場合には、記録ヘッドとして単磁極ヘッドを使用することができる。面内磁気記録方式を採用する場合には、記録ヘッドとしてリングヘッドを使用することができる。
【0032】
図7は、本発明の磁気記録再生装置の一例を示す一部分解斜視図である。
ここに示す磁気記録再生装置は、上面側が開口した矩形箱状の筐体61と、筐体61の開口を塞ぐトップカバーを有する。
筐体61内には、上述の構成を有する磁気記録媒体である垂直磁気記録媒体62、この垂直磁気記録媒体62を支持および回転させる駆動手段としてのスピンドルモータ63、垂直磁気記録媒体62に対して磁気信号の記録および再生を行う磁気ヘッド64、磁気ヘッド64を先端に搭載したサスペンションを有しかつ磁気ヘッド64を垂直磁気記録媒体62に対して移動自在に支持するヘッドアクチュエータ65、ヘッドアクチュエータ65を回転自在に支持する回転軸66、回転軸66を介してヘッドアクチュエータ65を回転および位置決めするボイスコイルモータ67、ヘッドアンプ回路68が収納されている。
【0033】
【実施例】
以下、本発明の磁気記録媒体の具体例を示す。
(実施例1)
図1に示す磁気記録媒体を作製した。
以下に示す製造方法において、スパッタ法では、真空度を3×10−5Pa以下としたチャンバーを用い、スパッタガスとしてArガスを使用した。
非磁性ガラス基板1上に、スパッタ法により磁区制御層2を形成した。
磁区制御層2は、Vからなる第1層(厚さ40nm)上に、Co−18at%Pt−8at%Crからなる第2層(厚さ20nm)を有する構成とした。第1層を形成する際には、チャンバー内圧を0.6Paとし、第2層を形成する際にはチャンバー内圧を0.5Paとした。
次いで、磁区制御層2上に、Co−6at%Zr−10at%Nbからなる軟磁性層3(厚さ200nm)を形成した(チャンバー内圧:0.6Pa)。
次いで、軟磁性層3上に、Ni−30at%Taからなるシード層4(厚さ7nm)を形成した(チャンバー内圧:0.7Pa)。
上記各層を形成する際には、ターゲットに供給する電力をDC500Wとした。
【0034】
次いで、シード層4上に、Pt−Y2O3からなる第1の下地層5(厚さ10nm)を形成した。第1の下地層5は、Ptからなる粒子がY2O3からなる母材中に分散したグラニュラ構造となった。第1の下地層5を形成する際には、Pt粒子とY2O3粒子をモル比Pt:Y2O3=8:2になるように混合して焼結して得られたPt−Y2O3ターゲットを用いた(チャンバー内圧:5.0Pa、供給電力:RF300W)。
次いで、第1の下地層5上に、Ruからなる第2の下地層6(厚さ5nm)を形成した(チャンバー内圧:3.0Pa、供給電力:DC250W)。
【0035】
次いで、第2の下地層6上に、CoPtCr−SiO2からなる磁気記録層7(厚さ10nm)を形成した。磁気記録層7を形成する際には、Co−16at%Pt−12atCrからなる粒子とSiO2粒子をモル比CoPtCr:SiO2=11:1になるように混合して焼結して得られたCoPtCr−SiO2ターゲットを用いた(チャンバー内圧:6.0Pa、供給電力:RF200W)。
次いで、磁気記録層7上に、Cからなる保護層8(厚さ7nm)を形成した(チャンバー内圧:0.5Pa、供給電力:DC1000W)。
次いで、保護層8上に、ディップ法により、PFPE(Perfluoro Polyether)からなる潤滑剤を塗布し、潤滑層(厚さ1.5nm)を形成して、磁気記録媒体Aを得た。
【0036】
磁気記録媒体Aについて、Kerr効果磁気測定装置を用い、最大磁界を20kOeとして、静磁気特性を測定した。保磁力Hc、角型比RS、および核生成磁界Hnを表1に示す。
また、媒体Aの結晶配向性を調べるため、XRDを用いてロッキングカーブを測定することにより得られたΔθ50も併せて示す。
また、この媒体Aについて、単磁極ヘッドを用いて信号を書き込み、GMRヘッドを用いて信号を読み取る方法により、R/Wテストを行った。得られたSNRm、オーバーライト特性(OW特性)、およびdPW50を表1に示す。測定は、半径20mmの位置で行い、媒体Aの回転数は4200rpmとした。
S/N比であるSNRmについては、Sは119kFCIの孤立波形の1磁化反転におけるピーク値、すなわち最高値と最小値との差を1/2にした値である。Nmは、716kFCIでのrms値(root mean square−inches)である。
OW特性は、8kFCIで記録信号書き込み後、358kFCIで信号を書き込んだ際の上書き前の信号出力と、上書き後の消え残り信号出力との比を示す。磁化反転部の半値幅dPW50は、分解能特性を示すもので、再生波形を微分して得られた孤立波のピーク値の50%における幅(nm)である。
【0037】
次に示す3つのサンプルを作製した。
実施例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4を形成した(サンプル1)。
実施例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成した(サンプル2)。
実施例1に準じて、非磁性ガラス基板1上に、シード層4のみを形成した(サンプル3)。
【0038】
サンプル1について、XRD(X−Ray Diffraction)パターンを観察したところ、2θ=40度付近に、磁区制御層に相当すると思われる微弱なピークが観察された以外は特に目立ったピークはなく、2θ=40〜50度付近にブロードなパターンが見られた。
TEM(透過型電子顕微鏡)を用いて、シード層4の平面構造を観察したところ、シード層4は、粒径2nm以下の微粒子を有する微結晶構造であることが分かった。
サンプル2について、TEMを用いて第1の下地層5の平面構造を観察した。
図8は、この平面構造(倍率100万倍)を示すものである。図中、符号71はPt粒子を示し、符号72はY2O3からなる母材を示す。
この図より、平均粒径が約6nmであるPt粒子71が母材72中に分散されている構成、すなわち母材72がPt粒子71を取り囲む構成が確認できる。Pt粒子71どうしの平均間隔は約2nmであった。
Pt粒子71の最大粒径は約9nmであったが、大部分のPt粒子71については、粒径はおよそ±1nm程度の範囲に収まっていた。
サンプル3を、1cm角の大きさに裁断し、VSM(Vibrating Sample Magnetometer)を用いて最大100(Oe)の外部磁界をかけて静磁気特性を測定したところ、Bsが0.2Tとなり軟磁気特性を示したことが確認された。
【0039】
(比較例1)
図3に示すように、シード層4の材料としてTaを用いたこと以外は実施例1と同様にして磁気記録媒体Bを得た。
静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表1に示す。
【0040】
比較例1に準じて、非磁性ガラス基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル4を作製した。
サンプル4について、TEMを用いて第1の下地層5の平面構造を観察した。その結果、粒子と母材との境界が不明瞭であり、粒子の分離が不充分であることが確認された。また、粒子の平均粒径は約6nmであったが、最大粒径は約10nmであった。粒径のばらつきはおよそ±2nmであり、媒体Aに比べ、粒子の均一性の点で劣ることが確認された。
【0041】
【表1】
【0042】
表1より、保磁力Hcに関しては、実施例1(媒体A)と比較例1(媒体B)との間に大きな差はなかったが、角型比RSに関しては、媒体Aの方が大きな値を示した。また、結晶配向を示すΔθ50は、媒体Aの方が小さく、配向性に優れていることがわかった。
また、媒体Aと媒体Bは、OW値に関しては同等であったが、媒体AではSNRm値、dPW50値が優れていることがわかった。
このことから、媒体Bでも磁気記録層の粒子は微細化されたものの、媒体Aでは、粒径のばらつきが小さく、しかも配向性が高くなったと考えられる。また、媒体Aで良好な結果が得られたのは、シード層4が軟磁性を示すためスペーシングロスが小さくなったことも原因として考えられる。
以上より、媒体Aでは、角型比が大きく、静磁気特性に優れた結果が得られたことがわかる。また、R/W特性に関しては、分解能が優れ、S/N比を大きくすることができたことがわかる。
【0043】
媒体Aの第1の下地層5に用いられるPtに代えて、Pd、Ru、またはRhを用いた場合には、RSが約0.9となった。またSNRmは媒体Aよりも0.2〜0.3dB減という結果が得られた。この結果は、媒体Aに比較して、ほぼ同等の結果であるということができる。
また、シード層4に用いられるNiTaに代えて、NiNb、NiTaC、NiTaB、またはCoNiTaを用いたところ、上記各特性に関して、媒体Aとほぼ同等の結果が得られた。
また、シード層4に用いられるNiTaに代えて、NiFe、NiFeMo、NiFeCr、NiFeV、またはNiCoを用いた場合には、XRDにおける回折パターンより、シード層4は結晶質であることがわかった。このように、シード層4が結晶質である場合でも、媒体Bに比べ、SNRの改善が見られた。
また、シード層4に用いられるNiTaに代えて、NiFe、NiFeMo、NiFeCr、またはNiFeVを用いた場合には、いずれもBsが約0.8Tとなった。このため、スペーシングロスを小さくする効果がより顕著となり、dPW50が改善された。
【0044】
(実施例2)
図2に示す磁気記録媒体を作製した。
非磁性ガラス基板11上に、Fe−10at%Ta−10at%Cからなる軟磁性層12(厚さ200nm)を形成した。
次いで、Ni−15at%Ta−15at%Cからなるシード層13(厚さ8nm)を形成した(チャンバー内圧:0.8Pa)。
次いで、同一平面内に並べて配置したAuターゲットとSiO2ターゲットを用い、基板11を2つのターゲットの一方に対向する位置から、他方に対向する位置に移動させる操作を繰り返すことによって、AuとSiO2とを交互にスパッタし、Au−SiO2からなる第1の下地層14(厚さ5nm)を形成した(Auターゲット供給電力:DC500W、SiO2ターゲット供給電力:RF1400W)。
次いで、基板11を8秒間加熱し、その温度を250℃とした。
次いで、第1の下地層14上に、Ru−30at%Crからなる第2の下地層15(厚さ5nm)を形成した(チャンバー内圧3Pa、供給電力:DC250W)。
次いで、Co−26at%Cr−12at%Pt−4at%Bからなる弱磁性下地層16(厚さ10nm)を形成した(チャンバー内圧0.5Pa、供給電力:DC100W)。
次いで、Co−18at%Cr−15at%Pt−1at%Bからなる磁気記録層17(厚さ12nm)を形成した(チャンバー内圧:0.6Pa、供給電力:DC250W)。
次いで、磁気記録層17上に、Cからなる保護層18(厚さ7nm)を形成した(チャンバー内圧:0.5Pa、供給電力:DC1000W)。
次いで、保護層18上に、ディップ法により、PFPEからなる潤滑剤を塗布し、潤滑層(厚さ1.3nm)を形成して、磁気記録媒体Cを得た。
磁気記録媒体Cについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表2に示す。
【0045】
実施例2に準じて、非磁性ガラス基板11上に、シード層13のみを形成したサンプル5を作製した。
実施例2に準じて、非磁性ガラス基板11上に、軟磁性層12、シード層13、第1の下地層14を形成したサンプル6を作製した。
サンプル5について、XRDパターンを観察したところ、2θ=40〜50度付近にブロードなパターンが見られたが、鋭いピークは現れなかった。また、シード層13の平面構造をTEMを用いて観察したところ、粒径2nm以下の微粒子を有する微結晶構造であることがわかった。
サンプル6について、第1の下地層14の平面構造をTEMを用いて倍率100万倍で観察したところ、平均粒径が約7nmのAu粒子が、SiO2からなる母材に囲まれたグラニュラ構造になっていることが確認された。Au粒子どうしの平均間隔は約2nmであった。
また、サンプル5を1cm角の大きさに裁断し、VSMにより静磁気特性を測定したところ、外部磁界を1500kA/mまで加えても磁化を示さず、非磁性であることがわかった。
【0046】
(比較例2)
図4に示すように、シード層13を形成しないこと以外は実施例2と同様にして、磁気記録媒体Dを作製した。
媒体Dについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した結果を表2に示す。
【0047】
【表2】
【0048】
表2より、実施例2(媒体C)は、比較例2(媒体D)と比較して、静磁気特性、結晶配向性、およびR/W特性(SNRm)が優れていたことがわかる。
【0049】
媒体Cの第1の下地層14に用いられるAuに代えて、AgまたはCuを用いた場合には、上記各特性について、媒体Cに比較してほぼ同等と見なせる結果が得られた。
また、第1の下地層14に、SiO2に代えて、Y2O3、Cr2O3、Al2O3、Ta2O5、MgO、TaC、TaN、またはZrNを用いた場合には、RSが約0.9となった。またSNRmは媒体Cよりも0.1〜0.3dB減という結果が得られた。この結果は、媒体Cに比較してほぼ同等の結果であるということができる。
また、シード層13に、NiTaに代えて、NiNb、NiTaC、NiTaB、またはCoNiTaを用いたところ、上記各特性に関して、媒体Cとほぼ同等の結果が得られた。
また、シード層13に、NiTaに代えて、NiFe、NiFeMo、NiFeCr、NiFeV、またはNiCoを用いた場合には、XRDにおける回折パターンより、シード層13は結晶質であることがわかった。このように、シード層13が結晶質である場合でも、媒体Dに比べ、SNRの改善が見られた。
また、シード層13に、NiTaに代えて、NiFe、NiFeMo、NiFeCr、またはNiFeVを用いた場合には、いずれもBsは約0.8Tとなった。このため、スペーシングロスを小さくする効果がより顕著となり、dPW50が改善された。
【0050】
(実施例3)
図5に示すように、第1の下地層5に、Ptに代えてRhを用いたこと以外は実施例1と同様にして磁気記録媒体Eを作製した。
媒体Eについて、静磁気特性、結晶配向性、R/W特性を実施例1と同様にして測定した結果を表1に示す。
また、実施例3に準じて、基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル7を作製した。
サンプル7について、第1の下地層5の平面構造をTEMを用いて観察したところ、平均粒径が約6mmのRh粒子がSiO2からなる母材に囲まれたグラニュラ構造になっていることが確認された。最大粒径および最小粒径は、それぞれ約9nm、約3nmであったことから、媒体Aに比べ粒径のばらつきが大きいことがわかった。
【0051】
表1に示すように、実施例3(媒体E)では、比較例1(媒体B)と比べて、SNRmで優れた値が得られたが、実施例1(媒体A)に比べdPW50で劣る結果が得られた。
媒体Eでは、第1の下地層5の粒子にRhを用いたため優れた結晶性が得られたが、粒径のばらつきが若干大きくなり、分解能がやや低くなった。
実施例1と実施例3の結果より、下地層の母材にY2O3を用いることにより、粒子が均一かつ明瞭となるため、より高密度記録が可能な媒体が得られる。さらに、下地層の粒子にPtを用いることにより、磁気記録層の配向性が高められるため、分解能を高めることができる。
【0052】
(実施例4)
図6に示すように、第2の下地層6を形成しないこと以外は実施例1と同様にして、磁気記録媒体Fを作製した。
媒体Fについて、静磁気特性、結晶配向性、およびR/W特性を実施例1と同様にして測定した。結果を表1に示す。
また、実施例4に準じて、基板1上に、磁区制御層2、軟磁性層3、シード層4、第1の下地層5を形成したサンプル8を作製した。
第1の下地層5の平面構造をTEMを用いて観察したところ、平均粒径が約6mmのPt粒子がY2O3からなる母材に囲まれたグラニュラ構造になっていることが確認された。この粒子は、媒体Aに比べ母材との境界が不明瞭となったことが確認できた。
【0053】
表1に示すように、実施例4(媒体F)では、比較例1(媒体B)に比べて、SNRmで優れた値が得られたが、実施例1(媒体A)に比べ、Δθ50、dPW50では劣る結果となった。
媒体Fでは、第2の下地層6を形成しないため磁気記録層7の配向性がやや劣るが、第1の下地層5にPt−Y2O3を用いたため、優れたSNRmが得られたと考えられる。
このことから、下地層にPt−Y2O3を用いることにより、高密度記録が可能な媒体が得られることがわかる。
【0054】
【発明の効果】
本発明の磁気記録媒体では、Niを含む材料からなるシード層と、粒子分散型構造を有する下地層とを備えているので、下地層において、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
このため、その上に形成される磁気記録層においても、粒子の均一性、明瞭性、粒径の小ささ、結晶配向性が改善される。
よって、媒体ノイズを低減することができ、ノイズ特性を向上させることができる。また、保磁力を高め、十分な記録再生特性を得ることができる。従って、高密度記録が可能となる。
また、本発明では、シード層に軟磁性材料を用いることによって、記録分解能を改善することができる。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体の一例を表す概略断面図
【図2】本発明の磁気記録媒体の他の例を表す概略断面図
【図3】比較例の磁気記録媒体を表す概略断面図
【図4】比較例の磁気記録媒体を表す概略断面図
【図5】本発明の磁気記録媒体の他の例を表す概略断面図
【図6】本発明の磁気記録媒体の他の例を表す概略断面図
【図7】本発明の磁気記録再生装置の一例を示す一部分解斜視図
【図8】下地層の平面構造を示す写真
【符号の説明】
1、11…基板、4、13…シード層、5、14・・・下地層、6、15・・・第2の下地層、7、17…磁気記録層、61…筐体、62…磁気ディスク、63…スピンドルモータ、64…磁気ヘッド、65…ヘッドアクチュエータ、66…回転軸、67…ボイスコイルモータ、68…ヘッドアンプ回路、71…粒子、72…非磁性母材
Claims (11)
- 非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられた磁気記録媒体であって、
シード層が、Niを含む材料からなり、
下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなることを特徴とする磁気記録媒体。 - 前記粒子は、Pt、Pd、Ru、Rhより選ばれる少なくとも一つを含む非磁性材料からなることを特徴とする請求項1に記載の磁気記録媒体。
- 非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層が順次設けられた磁気記録媒体であって、
シード層が、Niを含む材料からなり、
下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなることを特徴とする磁気記録媒体。 - 前記非磁性母材は、SiO2、Y2O3、Cr2O3、Al2O3、Ta2O5より選ばれる少なくとも一つを含む材料からなることを特徴とする請求項3に記載の磁気記録媒体。
- 前記下地層と磁気記録層との間に、Ruを含む材料からなる第2の下地層を設けることを特徴とする請求項1〜4のうちいずれか1項に記載の磁気記録媒体。
- 前記シード層は、Fe、Co、Cr、V、Mo、Nb、Zr、W、Ta、B、Cより選ばれる少なくとも一つを含むことを特徴とする請求項1〜5のうちいずれか1項に記載の磁気記録媒体。
- 前記シード層は、飽和磁束密度Bsが0.2T以上、保磁力Hcが100(Oe)以下であることを特徴とする請求項1〜6のうちいずれか1項に記載の磁気記録媒体。
- 前記磁気記録層は、金属酸化物または半導体酸化物を含むCo合金からなることを特徴とする請求項1〜7のうちいずれか1項に記載の磁気記録媒体。
- 非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、
シード層が、Niを含む材料からなり、
下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、Y2O3を含む材料からなることを特徴とする磁気記録媒体の製造方法。 - 非磁性基板上に、軟磁性層、シード層、下地層、磁気記録層を順次設ける磁気記録媒体の製造方法であって、
シード層が、Niを含む材料からなり、
下地層が、非磁性材料からなる粒子が非磁性母材中に分散した粒子分散型構造を有し、非磁性母材が、金属酸化物、金属窒化物、金属炭化物、半導体酸化物、半導体窒化物、半導体炭化物より選ばれる少なくとも一つを含む材料からなり、前記粒子が、Au、Ag、Cuより選ばれる少なくとも一つを含む非磁性材料からなることを特徴とする磁気記録媒体の製造方法。 - 請求項1〜8のうちいずれか1項に記載の磁気記録媒体と、磁気ヘッドとを備えていることを特徴とする磁気記録再生装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003196559A JP2005032352A (ja) | 2003-07-14 | 2003-07-14 | 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 |
US10/564,316 US20070072012A1 (en) | 2003-07-14 | 2004-07-13 | Magnetic recording medium using grain isolation type film as under layer, method of manufacturing the same, and magnetic recording/reproducing apparatus using the same |
PCT/JP2004/010271 WO2005006310A1 (en) | 2003-07-14 | 2004-07-13 | Magnetic recording medium using grain isolation type film as under layer, method of manufacturing the same, and magnetic recording/reproducing apparatus using the same |
CNA2004800199310A CN1823371A (zh) | 2003-07-14 | 2004-07-13 | 使用颗粒隔离型膜作为垫层的磁记录介质、其制造方法及利用其的磁记录/再现装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003196559A JP2005032352A (ja) | 2003-07-14 | 2003-07-14 | 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005032352A true JP2005032352A (ja) | 2005-02-03 |
Family
ID=34207010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003196559A Pending JP2005032352A (ja) | 2003-07-14 | 2003-07-14 | 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20070072012A1 (ja) |
JP (1) | JP2005032352A (ja) |
CN (1) | CN1823371A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006331582A (ja) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | 垂直磁気記録媒体及び垂直磁気記録再生装置 |
JP2007073136A (ja) * | 2005-09-07 | 2007-03-22 | Showa Denko Kk | 磁気記録媒体及び磁気記録再生装置 |
JP2014078315A (ja) * | 2008-11-26 | 2014-05-01 | Seagate Technology Llc | 磁気記憶装置 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7641989B2 (en) * | 2004-12-13 | 2010-01-05 | Hitachi Global Storage Technologies Netherlands B.V. | Perpendicular magnetic recording medium for high density recording and manufacturing of the same |
JP2006244684A (ja) * | 2005-02-04 | 2006-09-14 | Fujitsu Ltd | 磁気記録媒体およびその製造方法、磁気記憶装置 |
US7833640B2 (en) * | 2005-08-19 | 2010-11-16 | Hitachi Global Storage Technologies Netherlands B.V. | Intermediate tri-layer structure for perpendicular recording media |
JP4557880B2 (ja) * | 2005-12-20 | 2010-10-06 | 株式会社東芝 | 磁気記録媒体及び磁気記録再生装置 |
JP2009026353A (ja) * | 2007-07-17 | 2009-02-05 | Hitachi Global Storage Technologies Netherlands Bv | 垂直磁気記録媒体 |
JP2009110606A (ja) * | 2007-10-30 | 2009-05-21 | Fujitsu Ltd | 磁気記録媒体、その製造方法及び磁気記憶装置 |
JP5443065B2 (ja) * | 2009-06-09 | 2014-03-19 | エイチジーエスティーネザーランドビーブイ | 垂直磁気記録媒体 |
JP5264630B2 (ja) * | 2009-06-23 | 2013-08-14 | エイチジーエスティーネザーランドビーブイ | 磁気ディスク・ドライブ及びそのデータの書き直し方法 |
US8445979B2 (en) * | 2009-09-11 | 2013-05-21 | Samsung Electronics Co., Ltd. | Magnetic memory devices including magnetic layers separated by tunnel barriers |
JP5703641B2 (ja) * | 2010-09-09 | 2015-04-22 | ソニー株式会社 | 記憶素子及びメモリ |
JP6182833B2 (ja) * | 2012-07-26 | 2017-08-23 | 富士電機株式会社 | 垂直磁気記録媒体 |
JP2016031773A (ja) | 2014-07-30 | 2016-03-07 | 株式会社東芝 | 磁気記録媒体、及び磁気記録再生装置 |
JP2017079090A (ja) | 2015-10-22 | 2017-04-27 | 株式会社東芝 | 磁気記録媒体、及び磁気記録再生装置 |
US10789979B2 (en) * | 2015-11-17 | 2020-09-29 | Sony Corporation | Magnetic recording medium |
JP7189520B2 (ja) * | 2018-03-30 | 2022-12-14 | 田中貴金属工業株式会社 | スパッタリングターゲット |
AU2019461917B2 (en) * | 2019-08-14 | 2022-08-25 | Ceramic Data Solutions GmbH | Method for long-term storage of information and storage medium therefor |
CN115552052A (zh) * | 2020-05-18 | 2022-12-30 | 田中贵金属工业株式会社 | Pt-氧化物系溅射靶和垂直磁记录介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6468670B1 (en) * | 2000-01-19 | 2002-10-22 | International Business Machines Corporation | Magnetic recording disk with composite perpendicular recording layer |
JP2001291230A (ja) * | 2000-03-31 | 2001-10-19 | Sony Corp | 磁気記録媒体及びその製造方法 |
JP2002133645A (ja) * | 2000-10-20 | 2002-05-10 | Fuji Electric Co Ltd | 磁気記録媒体およびその製造方法 |
US6682826B2 (en) * | 2001-08-01 | 2004-01-27 | Showa Denko K.K. | Magnetic recording medium, method of manufacturing therefor, and magnetic read/write apparatus |
-
2003
- 2003-07-14 JP JP2003196559A patent/JP2005032352A/ja active Pending
-
2004
- 2004-07-13 US US10/564,316 patent/US20070072012A1/en not_active Abandoned
- 2004-07-13 CN CNA2004800199310A patent/CN1823371A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006331582A (ja) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | 垂直磁気記録媒体及び垂直磁気記録再生装置 |
US7695832B2 (en) | 2005-05-27 | 2010-04-13 | Kanushiki Kaisha Toshiba | Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing apparatus |
JP2007073136A (ja) * | 2005-09-07 | 2007-03-22 | Showa Denko Kk | 磁気記録媒体及び磁気記録再生装置 |
JP2014078315A (ja) * | 2008-11-26 | 2014-05-01 | Seagate Technology Llc | 磁気記憶装置 |
Also Published As
Publication number | Publication date |
---|---|
US20070072012A1 (en) | 2007-03-29 |
CN1823371A (zh) | 2006-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4169663B2 (ja) | 垂直磁気記録媒体 | |
JP4751344B2 (ja) | 垂直磁気記録媒体、及び磁気記録再生装置 | |
US6942936B2 (en) | Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus | |
JP2005032352A (ja) | 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置 | |
JP2006268972A (ja) | 垂直磁気記録ディスク及びその製造方法 | |
JP4580817B2 (ja) | 垂直磁気記録媒体及び垂直磁気記録再生装置 | |
JP3730627B2 (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2004030767A (ja) | 垂直磁気記録媒体および磁気記録装置 | |
JP4585214B2 (ja) | 磁気記録媒体及びそれを用いた磁気記録再生装置 | |
JP3684231B2 (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2004303377A (ja) | 垂直磁気記録媒体及び磁気記録再生装置 | |
JP2006155861A (ja) | 垂直磁気記録媒体及びその製造方法並びに磁気記録再生装置 | |
JP2003157516A (ja) | 垂直磁気記録媒体および磁気記録装置 | |
JP2004303375A (ja) | 垂直磁気記録媒体、及び磁気記録再生装置 | |
JP2004178748A (ja) | 垂直磁気記録媒体、その製造方法、及び磁気記録再生装置 | |
JP2004327006A (ja) | 磁気記録媒体、その製造方法、および磁気記録再生装置 | |
JP4557880B2 (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP5782819B2 (ja) | 垂直磁気記録媒体 | |
JP4764308B2 (ja) | 垂直磁気記録媒体及び垂直磁気記録再生装置 | |
JP3913967B2 (ja) | 垂直磁気記録媒体及び垂直磁気記録再生装置 | |
JP4864391B2 (ja) | 磁気記録媒体、その製造方法および磁気記録再生装置 | |
JP2001176047A (ja) | 磁気記録媒体及び磁気記憶装置 | |
JP2012226792A (ja) | 磁気記録媒体 | |
WO2005006310A1 (en) | Magnetic recording medium using grain isolation type film as under layer, method of manufacturing the same, and magnetic recording/reproducing apparatus using the same | |
JP4534402B2 (ja) | 垂直磁気記録媒体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071204 |