JP2005030901A - 容量センサ - Google Patents
容量センサ Download PDFInfo
- Publication number
- JP2005030901A JP2005030901A JP2003195951A JP2003195951A JP2005030901A JP 2005030901 A JP2005030901 A JP 2005030901A JP 2003195951 A JP2003195951 A JP 2003195951A JP 2003195951 A JP2003195951 A JP 2003195951A JP 2005030901 A JP2005030901 A JP 2005030901A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- column
- capacitance
- row
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 11
- 230000006698 induction Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/12—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
- G01R23/165—Spectrum analysis; Fourier analysis using filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1306—Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/117—Identification of persons
- A61B5/1171—Identification of persons based on the shapes or appearances of their bodies or parts thereof
- A61B5/1172—Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Mathematical Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measuring Fluid Pressure (AREA)
- Geophysics And Detection Of Objects (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Image Input (AREA)
Abstract
【課題】ノイズの影響を受け難く、且つ、スイッチ用トランジスタでの漏れ電流やフィードスルーの問題もなく、微小な容量を確実に捉えることができる感圧型容量センサを提供する。
【解決手段】センサ部2は、複数の列配線と行配線とがマトリックス状をなし、各配線の交差点の容量が、外部から加えられる圧力に応じて変化する。検出信号発生部3はセンサ部2の列配線に特定周波数のパルス信号を順次出力する。フィルタ4i−1、4i、4i+1、・・・がセンサ部2の各行配線に各々設けられ、特定の周波数の信号の、各容量に比例した振幅を抽出する。
【選択図】 図1
【解決手段】センサ部2は、複数の列配線と行配線とがマトリックス状をなし、各配線の交差点の容量が、外部から加えられる圧力に応じて変化する。検出信号発生部3はセンサ部2の列配線に特定周波数のパルス信号を順次出力する。フィルタ4i−1、4i、4i+1、・・・がセンサ部2の各行配線に各々設けられ、特定の周波数の信号の、各容量に比例した振幅を抽出する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、主として指紋センサに用いられる容量センサに関する。
【0002】
【従来の技術】
従来、バイオメトリクス(生態認証技術)の中で最も有望とされる指紋センサとして、所定の間隔で列配線と行配線を2枚のフィルムの表面にそれぞれ形成し、このフィルムを絶縁膜等を介して所定の間隔をおいて対向して配置した感圧式容量センサが開発されている。この感圧型容量センサでは、指を置いたときに指紋の形状に対応してフィルム形状が変形し、列配線と行配線の間隔が場所によって変化して、指紋の形状が列配線および行配線の交点の容量として検出される。この感圧型容量センサにおいて、数百fF(フェムトファラッド)に満たない容量を検出するのに応用できる従来技術としては、容量をスイッチドキャパシタ回路により、電気信号に変換する検出回路が挙げられる。これは、第1のセンサ駆動信号で駆動され、検出対象の容量を検出するセンサ容量素子と、第2のセンサ駆動信号で駆動され検出回路基準容量となる参照容量素子とが共通のスイッチドキャパシタ回路に接続され、交互に動作する第1および第2のサンプルホールド部がそれぞれの出力信号をサンプリングした後に、サンプリング結果の差を求めることにより、検出信号を得るものである。
【0003】
この検出回路は、共通のスイッチドキャパシタ回路において、検出対象となる容量Csが帰還容量Cfに反比例して、安定した検出が可能であり、且つ、スイッチドキャパシタ回路のリセットスイッチ(帰還制御スイッチ)のゲート電極と他電極間の寄生容量に蓄積された電荷Qdが他の電極に漏れ出る影響(フィードスルー)が相殺される。また、スイッチドキャパシタ回路の基準電圧のオフセット成分や入力信号などに含まれる低周波のノイズに対しては、2つのサンプリング結果の差を求めることによりある程度除去できる効果も期待される(例えば、特許文献1)。
【0004】
【特許文献1】
特開平8−145717号公報(段落0018−0052、図1〜図4)
【0005】
【発明が解決しようとする課題】
しかしながら、上述した感圧式容量センサの検出回路にあって、小容量であるセンサ容量Csの測定時において、スイッチドキャパシタ回路の出力電圧は帰還容量Cfに反比例することより、大きな出力電圧を得るためにはCfを小さくする必要がある。このために、オペアンプをオープンループに近い状態で使用することになり、配線が拾うノイズや人体からのノイズ、電源系からのノイズが出力に顕著に現れ、また、完全にシールドしても負入力端子をある電圧にするために必要な電流があるためにアンプの出力電圧が安定しない。また、リセットスイッチの開放時に漏れ電流のために、Cfの電荷が失われるが、Cfが小さくなると、この電荷の消失が相対的に無視できなくなってくる。また、リセットスイッチのフィードスルーによる影響が顕著になり、オペアンプの電源電圧以上の出力が出て飽和し検出が困難になる可能性がある。
以上のことにより、容量の捕捉が困難になるという問題があった。
【0006】
本発明は、上記事情を考慮してなされたもので、その目的は、ノイズの影響を受け難く、且つ、スイッチ用トランジスタでの漏れ電流やフィードスルーの問題もなく、微小な容量を確実に捉えることができる容量センサを提供することにある。
【0007】
【課題を解決するための手段】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタとを備えることを特徴とする。
この構成によれば、特定の周波数のみをフィルタによって抽出し、その振幅を検出する構成としたため、各種ノイズを低減できる。また、リセットスイッチを用いない構成としたため、漏れ電流による帰還コンデンサの電荷の消失や、ゲートに蓄積された電荷が漏れ出すフィードスルーの影響もなく、微小な容量を確実に捉えることができる。
【0008】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタとを備えることを特徴とする。
この構成によれば、各々の行配線に複数のフィルタが接続されるのではなく、各行配線から選択的に1つのフィルタが接続される構成としたため、フィルタのバラツキの問題は基本的になくなり、且つ、それ以降の回路ブロックの規模を小さくすることができる。
【0009】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタとを備えることを特徴とする。
この構成によれば、センサに、外部にある表面に凹凸形状を有する誘電体でできている被測定物を接触させずに近接させることで、静電誘導により前記列配線と前記行配線との交差点近傍の容量を変化させる構成としたため、センサにストレスがかかり難くなり、センサの寿命を伸ばすことができる。
【0010】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタとを備えることを特徴とする。
この構成によれば、センサに、外部にある表面に凹凸形状を有する誘電体でできている被測定物を接触させずに近接させることで、静電誘導により前記列配線と前記行配線との交差点近傍の容量を変化させる構成としたため、センサにストレスがかかり難くなり、センサの寿命を伸ばすことができる。
【0011】
この発明は、前記フィルタが、入力端および接地間に挿入された第1のコンデンサと、増幅器と、前記入力端および前記増幅器の出力端間に介挿された第1の抵抗と、前記入力端および前記増幅器の反転入力端間に介挿された第2の抵抗と、前記増幅器の反転入力端および出力端間に介挿された第2のコンデンサとから構成されていることを特徴とする。
この構成によれば、増幅器の反転入力端子に直流的にフィードバックされたバイアス電圧が加わっているため、安定した動作を実現することができる。
【0012】
この発明は、前記フィルタの入力端にシリアルコンデンサを介挿したことを特徴とする。
この構成によれば、センサからフィルタまでの間で受ける低周波のノイズを減少させることができる。
【0013】
【発明の実施の形態】
以下、図面を参照し、この発明の第1の実施の形態について説明する。
図1は同実施形態による容量センサ1の構成を示すブロック図である。この図に示す容量センサ1は、被検出物(例えば、指先)が当接されるセンサ部2と、センサ部2へ検出信号を出力する検出信号発生部3と、センサ部2の出力信号を受けるフィルタ4i−1、4i、4i+1、・・・と、フィルタ4i−1、4i、4i+1、・・・の出力を処理する処理回路(図示略)とから構成されている。
【0014】
センサ部2は、可撓性を有する第1、第2の薄板体を微少間隔をおいて配置し、第1の薄板体に等間隔で複数の列配線を形成し、第2の薄板体に等間隔で、かつ、列配線に直交する方向に複数の行配線を形成したものであり、このセンサ部2に指を押しつけると、指の指紋の凹凸に応じて列配線と行配線の各交点の間隔(すなわち、交点の容量)が変化するものである。
【0015】
検出信号発生部3は、センサ部2の各列配線Sj−1、Sj、Sj+1、・・・に順次パルス信号を出力する(図3参照)。この場合、各列配線Sj−1、Sj、Sj+1、・・・へ出力するパルス信号は同一の信号である。また、1つの列配線へパルス信号を出力している時、他の列配線へは接地レベルを出力する。
【0016】
フィルタ4i−1、4i、4i+1、・・・は同一構成のフィルタであり、センサ部2の各行配線に得られる信号から特定の周波数の信号、すなわち、検出信号発生部3から出力され、列配線から行配線へ伝わった信号を抽出する回路である。図2はフィルタ4iの具体的構成例を示す回路図であり、この図において、Aは行配線に接続される入力端子である。この入力端子Aは抵抗R2を介してオペアンプOPの反転入力端子に接続されると共に、コンデンサC1を介して接地され、オペアンプOPの非反転入力端子が接地され、オペアンプOPの出力端子がコンデンサC2を介して反転入力端子に接続されると共に、抵抗R1を介して入力端子Aに接続されている。
【0017】
次に、上述した容量センサ1の動作を図3に示す波形図を参照して説明する。
検出信号発生部3は、まず、列配線Sj−1へパルス信号を出力し、他の列配線Sj、Sj+1へ接地レベルを出力する。列配線Sj−1へ出力されたパルス信号は、列配線と行配線の交点の容量を介して各行配線へ伝えられる。すなわち、図3に示すように、交点の容量が大きければ、行配線に伝えられる信号が大きくなり、交点の容量が小さければ、行配線に伝えられる信号も小さくなる。この行配線に伝えられた信号はフィルタ4i−1、4i、4i+1、・・・によって抽出され、処理回路へ出力される。処理回路はフィルタ4i−1、4i、4i+1、・・・によって抽出された信号の波高値をディジタルデータに変換し、メモリに記憶させる。以上の過程により、列配線Sj−1と各行配線の交点の容量に対応するデータがメモリに収録される。
【0018】
次に、検出信号発生部3は、列配線Sjへパルス信号を出力し、フィルタ4i−1、4i、4i+1、・・・は各行配線の信号を処理回路へ出力する。これにより、処理回路のメモリに列配線Sjと各行配線の交点の容量に対応するデータが収録される。以下、上記の処理が繰り返され、各列配線と各行配線の全部の交点容量がメモリに収録される。そして、このメモリ内のデータを表示すれば、センサ部2の表面の凹凸状態を目視することができる。したがって、ユーザが指をセンサ部2に押しつけた状態で上述したデータ収録を行えば、ユーザの指の指紋のデータを収録し、表示することが可能となる。
【0019】
ところで、図2に示す入力端子Aから見たフィルタはローパスフィルタの構成であるが、検出信号発生部3の駆動端子から見ると、以下に示すように、バンドパスフィルタに近似できる。フィルタの伝達関数A(jω)は、
【0020】
【数1】
【0021】
【数2】
【0022】
[数1]となる。但し、[数2]とおく。
【0023】
【数3】
【0024】
[数3]とおくと、以下のようになる。
【0025】
【数4】
【0026】
ここで、この回路は、フィルタの中心周波数付近で使うため、
【0027】
【数5】
【0028】
となり、且つ、Cs が、150fFで、C1 が、数百pFなので、
【0029】
【数6】
【0030】
となり、そのために、
【0031】
【数7】
【0032】
となるので、
【0033】
【数8】
【0034】
と、近似される。これはバンドパスフィルタの伝達関数である。この近似をすることで、振幅の特性A(jω)が、BPFの伝達特性と同じ特性とみなせるようになる。
【0035】
このとき、図2に示すように、コンデンサC1(例えば150pF) に並列に容量Cy(グランドレベルになっている列配線に接続されている容量)の変化の総和(例えば100fF×255個=25.5pF)が追加されることとなるが、上述したようにC1の変化による遮断周波数の変化が緩和されるので、フィルタの特性に影響はなくなる。実測結果を図4に示す。その結果から、容量Cyの大小(外部から圧力を受けているか否か)に関わらず、リニアリティを保ったまま、出力電圧のカーブ全体がシフトしていることが分かる。また、列方向のスキャンの時間(約0.1秒)は、人が指をセンサ上で動かすと思われる時間(約0.5秒)より短いので、Cyは1スキャン中には変化せず、測定値には影響を及ぼさない。
【0036】
以上のように、上記実施形態によれば、出力信号から特定の周波数のみをフィルタによって抽出し、その振幅を検出するため、各種ノイズを低減でき、リセットスイッチの使用に伴う、フィードスルー等の影響もなく容量測定をすることができる。
【0037】
次に、この発明の第2の実施形態について説明する。
図5,図6は同第2の実施形態による容量センサの構成を示すブロック図であり、図1の各部と対応する部分には同一の符号が付してある。図5において、センサ部2、検出信号発生部3は図1の同符号の構成と同一構成である。また、フィルタ4は図1のフィルタ4i−1、4i、4i+1、・・・と同一構成のフィルタである。符号11はセレクタであり、セレクト信号SELに基づいて各行配線を選択してフィルタ4の入力端子に接続する。
【0038】
図6は上述した構成に処理回路12を加えた構成を示す。処理回路12において、アンプ13はフィルタ4の出力を増幅して出力する。振幅検出部14は、アンプ13から順次出力される各波形の振幅値に相当するアナログ信号を順次出力する。A/Dコンバータ15は、振幅検出部14から順次出力されるアナログ信号をディジタルデータに変換し、制御ロジック部16へ出力する。制御ロジック部16は、A/Dコンバータ15から出力されるディジタルデータを内部のメモリに記憶し、記憶したデータを表示部(図示略)等へ出力する。また、この制御ロジック部16は、各部を制御する制御信号を出力する。
【0039】
次に、上述した実施形態の動作を図7に示す波形図を参照して説明する。
容量測定がスタートすると、制御ロジック部16は、まず、センサ部2の行配線l−1を選択するセレクト信号SELをセレクタ11へ出力する。セレクタ11はこのセレクト信号を受け、行配線l−1をフィルタ4の入力端子に接続する。次に、制御ロジック部16は検出信号発生部3へスタート信号を出力する。検出信号発生部3はこのスタート信号を受け、まず、列配線Sj−1へパルス信号を出力し、一定時間後、列配線Sjへパルス信号を出力し、以下、同様に一定時間が経過する毎に列配線Sj+1・・・へ順次パルス信号を出力する。なお、パルス信号を出力していない列配線へ接地レベルを出力することは第1の実施形態と同様である。
【0040】
上記の処理により、フィルタ4から、まず、検出信号発生部3から出力され、列配線Sj−1と行配線l−1の交点の容量を通過したパルス信号が出力され、次に、列配線Sjと行配線l−1の交点の容量を通過したパルス信号が出力され、以下、同様に行配線l−1の交点容量を通過したパルス信号が順次出力される(図7参照)。そして、フィルタ4から出力されたパルス信号はアンプ13によって増幅され、振幅検出部14によって振幅が検出され、A/Dコンバータによって振幅値がディジタルデータに変換され、制御ロジック部16へ入力される。制御ロジック部16は順次入力されるデータをメモリに記憶させる。これにより、行配線l−1の各交点の容量に対応するデータがメモリに記憶される。
【0041】
次に、制御ロジック部16は、行配線l−1の全交点のデータをメモリに収録した時点で、行配線lを選択するセレクト信号SELをセレクタ11へ出力する。セレクタ11はこのセレクト信号を受け、行配線lをフィルタ4の入力端子に接続する。一方、検出信号発生部3は、全ての列配線へパルス信号を出力した後、再び、列配線Sj−1へ戻り、以後、列配線Sj−1、Sj、Sj+1、・・・に順次パルス信号を出力する。これにより、行配線lの各交点を通過したパルス信号が順次フィルタ4から出力され、その振幅値を示すディジタルデータが制御ロジック部16のメモリに記憶される。以下、同様の処理が繰り返され、これにより、センサ部2の全交点の容量に対応するデータが制御ロジック部16のメモリに収録される。
【0042】
図8は図5に示す回路の等価回路を示す図であり、この図に示すように、セレクタ11(マルチプレクサ)は1チャンネル当たり約Cpmの出力寄生容量があり、h段のセレクタではh倍となる。トータル容量をCpm_totalとした時の等価回路を図9に示す。この容量はフィルタ11のコンデンサC1に含めることができる。
【0043】
以上のように、上記実施形態によれば、各行配線から選択的に1つのフィルタが接続される構成としたため、フィルタのバラツキの問題もなく、回路ブロックの規模を小さくすることができる。
【0044】
なお、上記第1、第2の実施形態において、フィルタ4またはフィルタ4i−1、4i、4i+1、・・・の入力側に図10に示すようにコンデンサC3を挿入してもよい。これにより、センサ部2からフィルタまでの間において受ける低域ノイズを大幅に低減することができる。この場合、例えば、コンデンサの値としては、50〜60Hzのノイズをカットすることを主眼とし、10〜100pFとする。定性的な見方としては、C3は、値が大きいため、交流的に見るとショートに近く、定量的な見方としては、CsとC3の合成容量 Csymを考える。
【0045】
【数9】
【0046】
ここで、Cs が、150fFで、C3 が、100pFなので、
【0047】
【数10】
【0048】
位になる。よって、Csym ≒ Cs となり、Cs はC3の影響を殆ど受けない。
【0049】
次に、第3の実施の形態を説明する。図11は電極を上から見た様子を示す。列配線からは櫛形に第2電極22が伸び、一方、行配線24からは櫛形に第1電極25が伸びている。次いで、断面図を図12に示す。第2電極22と第1電極25は同じ面に形成されるのではなく、ガラス基板26の上に第1電極25が形成され、第1絶縁膜28で保護され、第1絶縁膜28の上に第2電極22が形成され、第2絶縁膜29で保護されている。これらの、線や電極は、例えば、ITO(透明電極)を用いて作り、第1保護膜28ならびに第2保護膜29を窒化シリコン(SiNx)を用いて作ると、検出装置を光透過型にすることができる。
【0050】
図13は、第2電極22と第1電極25の間の静電容量が変化する仕組みを説明する図である。指紋凹部では(a)に示すような電気力線Eの分布となるが、指紋凸部では(b)に示すように、誘電体である人間の指が接近したことによって、第2電極22から出る電気力線Eの一部が、第1電極25に向かわずに、人間の指に誘導されて引き寄せられて、第2電極22と第1電極25とで形成される容量値が小さくなる。このように、第3の実施形態によれば、指をセンサ部に押しつけなくても、当てるだけで、電極間容量の変化が生じ、この変化を前述した方法で検出することにより指紋を検出することが可能となる。
【0051】
以上のように、上記実施形態によれば、センサ部に、表面に凹凸形状を有する誘電体でできている被測定物を当てるだけで、静電誘導により容量が変化するため、センサにストレスがかかることをなくすことができる。
【0052】
なお、この時に、第2電極22と第1電極25とがオーバーラップしていると、人間の指が静電誘導を起こしても、第2電極12と第1電極14がオーバーラップしている領域では、電気力線Eは2つの電極の間に閉じ込められてしまい、静電容量が変化しなくなるので、両者をオーバーラップさせないようにすることが必要である。
【0053】
【発明の効果】
以上説明したように、この発明によれば、従来のスイッチドキャパシタ回路を使用するものに比較し、ノイズの影響を受け難く、また、スイッチ用トランジスタの漏れ電流やフィードスルーの影響もなく、これにより、微少な容量を確実に検出することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の構成を示すブロック図である。
【図2】同実施形態におけるフィルタの回路図である。
【図3】同実施形態の動作を示すためのタイミングチャートである。
【図4】非選択容量Cyのフィルタに対する影響を示すグラフである。
【図5】この発明の第2の実施形態の要部の構成を示すブロック図である。
【図6】同実施形態の全体構成を示すブロック図である。
【図7】同実施形態の動作を説明するためのタイミングチャートである。
【図8】図5に示す回路の等価回路を示す図である。
【図9】図8に示す等価回路を書き直した図である。
【図10】図1または図5におけるフィルタの前にコンデンサC3を挿入した構成例を示す図である。
【図11】この発明の第3の実施の形態におけるセンサ部の上面図である。
【図12】同センサ部の断面図である。
【図13】同センサ部の動作を説明するための図である。
【符号の説明】
1 ・・・ 容量センサ
2 ・・・ センサ部
3 ・・・ 検出信号発生部
4,4i−1,4i,4i+1 ・・・ フィルタ
11・・・ セレクタ
12・・・ 処理回路
13・・・ アンプ
14・・・ 振幅検出部
15・・・ A/Dコンバータ
16・・・ 制御ロジック部
21・・・ 列配線
22・・・ 第2電極
24・・・ 行配線
25・・・ 第1電極
26・・・ ガラス基板
28・・・ 第1絶縁膜
29・・・ 第2絶縁膜
A ・・・ フィルタ4,4i−1,4i,4i+1 の入力端子
B ・・・ 検出信号発生部3 の駆動端子
E ・・・ 電気力線
OP・・・ オペアンプ
SEL・・・ セレクタ11のセレクト信号
【発明の属する技術分野】
本発明は、主として指紋センサに用いられる容量センサに関する。
【0002】
【従来の技術】
従来、バイオメトリクス(生態認証技術)の中で最も有望とされる指紋センサとして、所定の間隔で列配線と行配線を2枚のフィルムの表面にそれぞれ形成し、このフィルムを絶縁膜等を介して所定の間隔をおいて対向して配置した感圧式容量センサが開発されている。この感圧型容量センサでは、指を置いたときに指紋の形状に対応してフィルム形状が変形し、列配線と行配線の間隔が場所によって変化して、指紋の形状が列配線および行配線の交点の容量として検出される。この感圧型容量センサにおいて、数百fF(フェムトファラッド)に満たない容量を検出するのに応用できる従来技術としては、容量をスイッチドキャパシタ回路により、電気信号に変換する検出回路が挙げられる。これは、第1のセンサ駆動信号で駆動され、検出対象の容量を検出するセンサ容量素子と、第2のセンサ駆動信号で駆動され検出回路基準容量となる参照容量素子とが共通のスイッチドキャパシタ回路に接続され、交互に動作する第1および第2のサンプルホールド部がそれぞれの出力信号をサンプリングした後に、サンプリング結果の差を求めることにより、検出信号を得るものである。
【0003】
この検出回路は、共通のスイッチドキャパシタ回路において、検出対象となる容量Csが帰還容量Cfに反比例して、安定した検出が可能であり、且つ、スイッチドキャパシタ回路のリセットスイッチ(帰還制御スイッチ)のゲート電極と他電極間の寄生容量に蓄積された電荷Qdが他の電極に漏れ出る影響(フィードスルー)が相殺される。また、スイッチドキャパシタ回路の基準電圧のオフセット成分や入力信号などに含まれる低周波のノイズに対しては、2つのサンプリング結果の差を求めることによりある程度除去できる効果も期待される(例えば、特許文献1)。
【0004】
【特許文献1】
特開平8−145717号公報(段落0018−0052、図1〜図4)
【0005】
【発明が解決しようとする課題】
しかしながら、上述した感圧式容量センサの検出回路にあって、小容量であるセンサ容量Csの測定時において、スイッチドキャパシタ回路の出力電圧は帰還容量Cfに反比例することより、大きな出力電圧を得るためにはCfを小さくする必要がある。このために、オペアンプをオープンループに近い状態で使用することになり、配線が拾うノイズや人体からのノイズ、電源系からのノイズが出力に顕著に現れ、また、完全にシールドしても負入力端子をある電圧にするために必要な電流があるためにアンプの出力電圧が安定しない。また、リセットスイッチの開放時に漏れ電流のために、Cfの電荷が失われるが、Cfが小さくなると、この電荷の消失が相対的に無視できなくなってくる。また、リセットスイッチのフィードスルーによる影響が顕著になり、オペアンプの電源電圧以上の出力が出て飽和し検出が困難になる可能性がある。
以上のことにより、容量の捕捉が困難になるという問題があった。
【0006】
本発明は、上記事情を考慮してなされたもので、その目的は、ノイズの影響を受け難く、且つ、スイッチ用トランジスタでの漏れ電流やフィードスルーの問題もなく、微小な容量を確実に捉えることができる容量センサを提供することにある。
【0007】
【課題を解決するための手段】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタとを備えることを特徴とする。
この構成によれば、特定の周波数のみをフィルタによって抽出し、その振幅を検出する構成としたため、各種ノイズを低減できる。また、リセットスイッチを用いない構成としたため、漏れ電流による帰還コンデンサの電荷の消失や、ゲートに蓄積された電荷が漏れ出すフィードスルーの影響もなく、微小な容量を確実に捉えることができる。
【0008】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタとを備えることを特徴とする。
この構成によれば、各々の行配線に複数のフィルタが接続されるのではなく、各行配線から選択的に1つのフィルタが接続される構成としたため、フィルタのバラツキの問題は基本的になくなり、且つ、それ以降の回路ブロックの規模を小さくすることができる。
【0009】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタとを備えることを特徴とする。
この構成によれば、センサに、外部にある表面に凹凸形状を有する誘電体でできている被測定物を接触させずに近接させることで、静電誘導により前記列配線と前記行配線との交差点近傍の容量を変化させる構成としたため、センサにストレスがかかり難くなり、センサの寿命を伸ばすことができる。
【0010】
この発明は、複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタとを備えることを特徴とする。
この構成によれば、センサに、外部にある表面に凹凸形状を有する誘電体でできている被測定物を接触させずに近接させることで、静電誘導により前記列配線と前記行配線との交差点近傍の容量を変化させる構成としたため、センサにストレスがかかり難くなり、センサの寿命を伸ばすことができる。
【0011】
この発明は、前記フィルタが、入力端および接地間に挿入された第1のコンデンサと、増幅器と、前記入力端および前記増幅器の出力端間に介挿された第1の抵抗と、前記入力端および前記増幅器の反転入力端間に介挿された第2の抵抗と、前記増幅器の反転入力端および出力端間に介挿された第2のコンデンサとから構成されていることを特徴とする。
この構成によれば、増幅器の反転入力端子に直流的にフィードバックされたバイアス電圧が加わっているため、安定した動作を実現することができる。
【0012】
この発明は、前記フィルタの入力端にシリアルコンデンサを介挿したことを特徴とする。
この構成によれば、センサからフィルタまでの間で受ける低周波のノイズを減少させることができる。
【0013】
【発明の実施の形態】
以下、図面を参照し、この発明の第1の実施の形態について説明する。
図1は同実施形態による容量センサ1の構成を示すブロック図である。この図に示す容量センサ1は、被検出物(例えば、指先)が当接されるセンサ部2と、センサ部2へ検出信号を出力する検出信号発生部3と、センサ部2の出力信号を受けるフィルタ4i−1、4i、4i+1、・・・と、フィルタ4i−1、4i、4i+1、・・・の出力を処理する処理回路(図示略)とから構成されている。
【0014】
センサ部2は、可撓性を有する第1、第2の薄板体を微少間隔をおいて配置し、第1の薄板体に等間隔で複数の列配線を形成し、第2の薄板体に等間隔で、かつ、列配線に直交する方向に複数の行配線を形成したものであり、このセンサ部2に指を押しつけると、指の指紋の凹凸に応じて列配線と行配線の各交点の間隔(すなわち、交点の容量)が変化するものである。
【0015】
検出信号発生部3は、センサ部2の各列配線Sj−1、Sj、Sj+1、・・・に順次パルス信号を出力する(図3参照)。この場合、各列配線Sj−1、Sj、Sj+1、・・・へ出力するパルス信号は同一の信号である。また、1つの列配線へパルス信号を出力している時、他の列配線へは接地レベルを出力する。
【0016】
フィルタ4i−1、4i、4i+1、・・・は同一構成のフィルタであり、センサ部2の各行配線に得られる信号から特定の周波数の信号、すなわち、検出信号発生部3から出力され、列配線から行配線へ伝わった信号を抽出する回路である。図2はフィルタ4iの具体的構成例を示す回路図であり、この図において、Aは行配線に接続される入力端子である。この入力端子Aは抵抗R2を介してオペアンプOPの反転入力端子に接続されると共に、コンデンサC1を介して接地され、オペアンプOPの非反転入力端子が接地され、オペアンプOPの出力端子がコンデンサC2を介して反転入力端子に接続されると共に、抵抗R1を介して入力端子Aに接続されている。
【0017】
次に、上述した容量センサ1の動作を図3に示す波形図を参照して説明する。
検出信号発生部3は、まず、列配線Sj−1へパルス信号を出力し、他の列配線Sj、Sj+1へ接地レベルを出力する。列配線Sj−1へ出力されたパルス信号は、列配線と行配線の交点の容量を介して各行配線へ伝えられる。すなわち、図3に示すように、交点の容量が大きければ、行配線に伝えられる信号が大きくなり、交点の容量が小さければ、行配線に伝えられる信号も小さくなる。この行配線に伝えられた信号はフィルタ4i−1、4i、4i+1、・・・によって抽出され、処理回路へ出力される。処理回路はフィルタ4i−1、4i、4i+1、・・・によって抽出された信号の波高値をディジタルデータに変換し、メモリに記憶させる。以上の過程により、列配線Sj−1と各行配線の交点の容量に対応するデータがメモリに収録される。
【0018】
次に、検出信号発生部3は、列配線Sjへパルス信号を出力し、フィルタ4i−1、4i、4i+1、・・・は各行配線の信号を処理回路へ出力する。これにより、処理回路のメモリに列配線Sjと各行配線の交点の容量に対応するデータが収録される。以下、上記の処理が繰り返され、各列配線と各行配線の全部の交点容量がメモリに収録される。そして、このメモリ内のデータを表示すれば、センサ部2の表面の凹凸状態を目視することができる。したがって、ユーザが指をセンサ部2に押しつけた状態で上述したデータ収録を行えば、ユーザの指の指紋のデータを収録し、表示することが可能となる。
【0019】
ところで、図2に示す入力端子Aから見たフィルタはローパスフィルタの構成であるが、検出信号発生部3の駆動端子から見ると、以下に示すように、バンドパスフィルタに近似できる。フィルタの伝達関数A(jω)は、
【0020】
【数1】
【0021】
【数2】
【0022】
[数1]となる。但し、[数2]とおく。
【0023】
【数3】
【0024】
[数3]とおくと、以下のようになる。
【0025】
【数4】
【0026】
ここで、この回路は、フィルタの中心周波数付近で使うため、
【0027】
【数5】
【0028】
となり、且つ、Cs が、150fFで、C1 が、数百pFなので、
【0029】
【数6】
【0030】
となり、そのために、
【0031】
【数7】
【0032】
となるので、
【0033】
【数8】
【0034】
と、近似される。これはバンドパスフィルタの伝達関数である。この近似をすることで、振幅の特性A(jω)が、BPFの伝達特性と同じ特性とみなせるようになる。
【0035】
このとき、図2に示すように、コンデンサC1(例えば150pF) に並列に容量Cy(グランドレベルになっている列配線に接続されている容量)の変化の総和(例えば100fF×255個=25.5pF)が追加されることとなるが、上述したようにC1の変化による遮断周波数の変化が緩和されるので、フィルタの特性に影響はなくなる。実測結果を図4に示す。その結果から、容量Cyの大小(外部から圧力を受けているか否か)に関わらず、リニアリティを保ったまま、出力電圧のカーブ全体がシフトしていることが分かる。また、列方向のスキャンの時間(約0.1秒)は、人が指をセンサ上で動かすと思われる時間(約0.5秒)より短いので、Cyは1スキャン中には変化せず、測定値には影響を及ぼさない。
【0036】
以上のように、上記実施形態によれば、出力信号から特定の周波数のみをフィルタによって抽出し、その振幅を検出するため、各種ノイズを低減でき、リセットスイッチの使用に伴う、フィードスルー等の影響もなく容量測定をすることができる。
【0037】
次に、この発明の第2の実施形態について説明する。
図5,図6は同第2の実施形態による容量センサの構成を示すブロック図であり、図1の各部と対応する部分には同一の符号が付してある。図5において、センサ部2、検出信号発生部3は図1の同符号の構成と同一構成である。また、フィルタ4は図1のフィルタ4i−1、4i、4i+1、・・・と同一構成のフィルタである。符号11はセレクタであり、セレクト信号SELに基づいて各行配線を選択してフィルタ4の入力端子に接続する。
【0038】
図6は上述した構成に処理回路12を加えた構成を示す。処理回路12において、アンプ13はフィルタ4の出力を増幅して出力する。振幅検出部14は、アンプ13から順次出力される各波形の振幅値に相当するアナログ信号を順次出力する。A/Dコンバータ15は、振幅検出部14から順次出力されるアナログ信号をディジタルデータに変換し、制御ロジック部16へ出力する。制御ロジック部16は、A/Dコンバータ15から出力されるディジタルデータを内部のメモリに記憶し、記憶したデータを表示部(図示略)等へ出力する。また、この制御ロジック部16は、各部を制御する制御信号を出力する。
【0039】
次に、上述した実施形態の動作を図7に示す波形図を参照して説明する。
容量測定がスタートすると、制御ロジック部16は、まず、センサ部2の行配線l−1を選択するセレクト信号SELをセレクタ11へ出力する。セレクタ11はこのセレクト信号を受け、行配線l−1をフィルタ4の入力端子に接続する。次に、制御ロジック部16は検出信号発生部3へスタート信号を出力する。検出信号発生部3はこのスタート信号を受け、まず、列配線Sj−1へパルス信号を出力し、一定時間後、列配線Sjへパルス信号を出力し、以下、同様に一定時間が経過する毎に列配線Sj+1・・・へ順次パルス信号を出力する。なお、パルス信号を出力していない列配線へ接地レベルを出力することは第1の実施形態と同様である。
【0040】
上記の処理により、フィルタ4から、まず、検出信号発生部3から出力され、列配線Sj−1と行配線l−1の交点の容量を通過したパルス信号が出力され、次に、列配線Sjと行配線l−1の交点の容量を通過したパルス信号が出力され、以下、同様に行配線l−1の交点容量を通過したパルス信号が順次出力される(図7参照)。そして、フィルタ4から出力されたパルス信号はアンプ13によって増幅され、振幅検出部14によって振幅が検出され、A/Dコンバータによって振幅値がディジタルデータに変換され、制御ロジック部16へ入力される。制御ロジック部16は順次入力されるデータをメモリに記憶させる。これにより、行配線l−1の各交点の容量に対応するデータがメモリに記憶される。
【0041】
次に、制御ロジック部16は、行配線l−1の全交点のデータをメモリに収録した時点で、行配線lを選択するセレクト信号SELをセレクタ11へ出力する。セレクタ11はこのセレクト信号を受け、行配線lをフィルタ4の入力端子に接続する。一方、検出信号発生部3は、全ての列配線へパルス信号を出力した後、再び、列配線Sj−1へ戻り、以後、列配線Sj−1、Sj、Sj+1、・・・に順次パルス信号を出力する。これにより、行配線lの各交点を通過したパルス信号が順次フィルタ4から出力され、その振幅値を示すディジタルデータが制御ロジック部16のメモリに記憶される。以下、同様の処理が繰り返され、これにより、センサ部2の全交点の容量に対応するデータが制御ロジック部16のメモリに収録される。
【0042】
図8は図5に示す回路の等価回路を示す図であり、この図に示すように、セレクタ11(マルチプレクサ)は1チャンネル当たり約Cpmの出力寄生容量があり、h段のセレクタではh倍となる。トータル容量をCpm_totalとした時の等価回路を図9に示す。この容量はフィルタ11のコンデンサC1に含めることができる。
【0043】
以上のように、上記実施形態によれば、各行配線から選択的に1つのフィルタが接続される構成としたため、フィルタのバラツキの問題もなく、回路ブロックの規模を小さくすることができる。
【0044】
なお、上記第1、第2の実施形態において、フィルタ4またはフィルタ4i−1、4i、4i+1、・・・の入力側に図10に示すようにコンデンサC3を挿入してもよい。これにより、センサ部2からフィルタまでの間において受ける低域ノイズを大幅に低減することができる。この場合、例えば、コンデンサの値としては、50〜60Hzのノイズをカットすることを主眼とし、10〜100pFとする。定性的な見方としては、C3は、値が大きいため、交流的に見るとショートに近く、定量的な見方としては、CsとC3の合成容量 Csymを考える。
【0045】
【数9】
【0046】
ここで、Cs が、150fFで、C3 が、100pFなので、
【0047】
【数10】
【0048】
位になる。よって、Csym ≒ Cs となり、Cs はC3の影響を殆ど受けない。
【0049】
次に、第3の実施の形態を説明する。図11は電極を上から見た様子を示す。列配線からは櫛形に第2電極22が伸び、一方、行配線24からは櫛形に第1電極25が伸びている。次いで、断面図を図12に示す。第2電極22と第1電極25は同じ面に形成されるのではなく、ガラス基板26の上に第1電極25が形成され、第1絶縁膜28で保護され、第1絶縁膜28の上に第2電極22が形成され、第2絶縁膜29で保護されている。これらの、線や電極は、例えば、ITO(透明電極)を用いて作り、第1保護膜28ならびに第2保護膜29を窒化シリコン(SiNx)を用いて作ると、検出装置を光透過型にすることができる。
【0050】
図13は、第2電極22と第1電極25の間の静電容量が変化する仕組みを説明する図である。指紋凹部では(a)に示すような電気力線Eの分布となるが、指紋凸部では(b)に示すように、誘電体である人間の指が接近したことによって、第2電極22から出る電気力線Eの一部が、第1電極25に向かわずに、人間の指に誘導されて引き寄せられて、第2電極22と第1電極25とで形成される容量値が小さくなる。このように、第3の実施形態によれば、指をセンサ部に押しつけなくても、当てるだけで、電極間容量の変化が生じ、この変化を前述した方法で検出することにより指紋を検出することが可能となる。
【0051】
以上のように、上記実施形態によれば、センサ部に、表面に凹凸形状を有する誘電体でできている被測定物を当てるだけで、静電誘導により容量が変化するため、センサにストレスがかかることをなくすことができる。
【0052】
なお、この時に、第2電極22と第1電極25とがオーバーラップしていると、人間の指が静電誘導を起こしても、第2電極12と第1電極14がオーバーラップしている領域では、電気力線Eは2つの電極の間に閉じ込められてしまい、静電容量が変化しなくなるので、両者をオーバーラップさせないようにすることが必要である。
【0053】
【発明の効果】
以上説明したように、この発明によれば、従来のスイッチドキャパシタ回路を使用するものに比較し、ノイズの影響を受け難く、また、スイッチ用トランジスタの漏れ電流やフィードスルーの影響もなく、これにより、微少な容量を確実に検出することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の構成を示すブロック図である。
【図2】同実施形態におけるフィルタの回路図である。
【図3】同実施形態の動作を示すためのタイミングチャートである。
【図4】非選択容量Cyのフィルタに対する影響を示すグラフである。
【図5】この発明の第2の実施形態の要部の構成を示すブロック図である。
【図6】同実施形態の全体構成を示すブロック図である。
【図7】同実施形態の動作を説明するためのタイミングチャートである。
【図8】図5に示す回路の等価回路を示す図である。
【図9】図8に示す等価回路を書き直した図である。
【図10】図1または図5におけるフィルタの前にコンデンサC3を挿入した構成例を示す図である。
【図11】この発明の第3の実施の形態におけるセンサ部の上面図である。
【図12】同センサ部の断面図である。
【図13】同センサ部の動作を説明するための図である。
【符号の説明】
1 ・・・ 容量センサ
2 ・・・ センサ部
3 ・・・ 検出信号発生部
4,4i−1,4i,4i+1 ・・・ フィルタ
11・・・ セレクタ
12・・・ 処理回路
13・・・ アンプ
14・・・ 振幅検出部
15・・・ A/Dコンバータ
16・・・ 制御ロジック部
21・・・ 列配線
22・・・ 第2電極
24・・・ 行配線
25・・・ 第1電極
26・・・ ガラス基板
28・・・ 第1絶縁膜
29・・・ 第2絶縁膜
A ・・・ フィルタ4,4i−1,4i,4i+1 の入力端子
B ・・・ 検出信号発生部3 の駆動端子
E ・・・ 電気力線
OP・・・ オペアンプ
SEL・・・ セレクタ11のセレクト信号
Claims (6)
- 複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、
前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、
前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタと、
を備えることを特徴とする感圧型の容量センサ。 - 複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から加えられる圧力に応じて前記列配線と前記行配線との交差点の容量が変化するセンサ部と、前記列配線と前記行配線との交差点の容量の変化を検出し、検出結果に基づいて外部から加えられた圧力分布を検出する検出部とを有する感圧型の容量センサであって、
前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、
前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、
前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタと、
を備えることを特徴とする感圧型の容量センサ。 - 複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、
前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、
前記センサ部の各行配線に各々設けられ、行配線に得られる信号から前記特定の周波数の信号を抽出する複数のフィルタと、
を備えることを特徴とする容量センサ。 - 複数の列配線、複数の行配線で構成されるマトリックス状をなし、外部から近接対向配置され、表面に凹凸形状を有する被測定物の該表面凹凸形状に応じて前記列配線と前記行配線との交差点近傍の容量が変化するセンサ部と、前記列配線と前記行配線との交差点近傍の容量の変化を検出し、検出結果に基づいて被測定物の前記表面凹凸形状を検出する検出部とを有する容量センサであって、
前記検出部が、前記センサ部の各列配線へ特定周波数のパルス信号を順次出力する信号出力部と、
前記センサ部の各行配線に得られる信号を順次選択して出力するセレクタと、
前記セレクタの出力信号から前記特定の周波数の信号を抽出するフィルタと、
を備えることを特徴とする容量センサ。 - 前記フィルタが、入力端および接地間に挿入された第1のコンデンサと、増幅器と、前記入力端および前記増幅器の出力端間に介挿された第1の抵抗と、前記入力端および前記増幅器の反転入力端間に介挿された第2の抵抗と、前記増幅器の反転入力端および出力端間に介挿された第2のコンデンサとから構成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の容量センサ。
- 前記フィルタの入力端にシリアルにコンデンサを介挿したことを特徴とする請求項1ないし請求項4のいずれか一項に記載の容量センサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195951A JP2005030901A (ja) | 2003-07-11 | 2003-07-11 | 容量センサ |
US10/875,251 US20050005703A1 (en) | 2003-07-11 | 2004-06-23 | Capacitive sensor |
CNA2004100628267A CN1576799A (zh) | 2003-07-11 | 2004-06-25 | 电容传感器 |
KR1020040050338A KR20050007131A (ko) | 2003-07-11 | 2004-06-30 | 용량 센서 |
EP04253999A EP1496467A3 (en) | 2003-07-11 | 2004-07-02 | Capacitive sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195951A JP2005030901A (ja) | 2003-07-11 | 2003-07-11 | 容量センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005030901A true JP2005030901A (ja) | 2005-02-03 |
Family
ID=33448030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003195951A Withdrawn JP2005030901A (ja) | 2003-07-11 | 2003-07-11 | 容量センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050005703A1 (ja) |
EP (1) | EP1496467A3 (ja) |
JP (1) | JP2005030901A (ja) |
KR (1) | KR20050007131A (ja) |
CN (1) | CN1576799A (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009162538A (ja) * | 2007-12-28 | 2009-07-23 | Wacom Co Ltd | 位置検出装置 |
JP2009192306A (ja) * | 2008-02-13 | 2009-08-27 | Wacom Co Ltd | 位置検出装置 |
JP2009534673A (ja) * | 2006-04-25 | 2009-09-24 | エックスセンサー テクノロジー コーポレイション | 容量マトリックス圧力変換器における容量ノード測定 |
JP2010533859A (ja) * | 2007-07-19 | 2010-10-28 | バルン・エレクトロニクス・カンパニー,リミテッド | 多チャネル容量検知回路 |
WO2011070660A1 (ja) * | 2009-12-09 | 2011-06-16 | 富士通株式会社 | 静電容量センサ及び生体画像生成方法 |
JP2012238347A (ja) * | 2012-09-13 | 2012-12-06 | Wacom Co Ltd | 位置検出装置及び静電容量方式検出部 |
JP2014209344A (ja) * | 2007-10-04 | 2014-11-06 | アップル インコーポレイテッド | 単層タッチ感知ディスプレイ |
TWI507949B (zh) * | 2010-02-08 | 2015-11-11 | Novatek Microelectronics Corp | 觸控感測系統、電容感測電路及電容感測方法 |
JP2017521767A (ja) * | 2014-06-11 | 2017-08-03 | コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ | 接触検知表面上での操作の位置を特定する方法および装置 |
US10001888B2 (en) | 2009-04-10 | 2018-06-19 | Apple Inc. | Touch sensor panel design |
JP2019504407A (ja) * | 2015-12-23 | 2019-02-14 | ケンブリッジ タッチ テクノロジーズ リミテッドCambridge Touch Technologies Limited | 感圧式タッチパネル |
US10288467B2 (en) | 2015-01-13 | 2019-05-14 | Sumitomo Riko Company Limited | Capacitance measurement device, capacitance-type sheet-shaped sensor apparatus, and capacitance-type liquid-level detector apparatus |
US10534481B2 (en) | 2015-09-30 | 2020-01-14 | Apple Inc. | High aspect ratio capacitive sensor panel |
US10642418B2 (en) | 2017-04-20 | 2020-05-05 | Apple Inc. | Finger tracking in wet environment |
US11009409B2 (en) | 2017-12-22 | 2021-05-18 | Renesas Electronics Corporation | Pressure sensor device, control device, and pressure sensor unit |
US11294503B2 (en) | 2008-01-04 | 2022-04-05 | Apple Inc. | Sensor baseline offset adjustment for a subset of sensor output values |
US20230064937A1 (en) * | 2021-09-01 | 2023-03-02 | Infineon Technologies Ag | Detecting sensitivity faults in capacitive sensors by using pull-in functionality |
US11662867B1 (en) | 2020-05-30 | 2023-05-30 | Apple Inc. | Hover detection on a touch sensor panel |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US7312785B2 (en) | 2001-10-22 | 2007-12-25 | Apple Inc. | Method and apparatus for accelerated scrolling |
US7345671B2 (en) | 2001-10-22 | 2008-03-18 | Apple Inc. | Method and apparatus for use of rotational user inputs |
US7333092B2 (en) | 2002-02-25 | 2008-02-19 | Apple Computer, Inc. | Touch pad for handheld device |
WO2004112448A2 (en) * | 2003-06-13 | 2004-12-23 | Semtech Corporation | Sensor for capacitive touch pad pointing device |
US20070152977A1 (en) | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Illuminated touchpad |
US7499040B2 (en) | 2003-08-18 | 2009-03-03 | Apple Inc. | Movable touch pad with added functionality |
US7495659B2 (en) | 2003-11-25 | 2009-02-24 | Apple Inc. | Touch pad for handheld device |
US8059099B2 (en) | 2006-06-02 | 2011-11-15 | Apple Inc. | Techniques for interactive input to portable electronic devices |
US7644628B2 (en) * | 2005-12-16 | 2010-01-12 | Loadstar Sensors, Inc. | Resistive force sensing device and method with an advanced communication interface |
WO2006023569A1 (en) | 2004-08-16 | 2006-03-02 | Fingerworks, Inc. | A method of increasing the spatial resolution of touch sensitive devices |
US7343813B1 (en) * | 2005-02-15 | 2008-03-18 | Harrington Richard H | Multicapacitor sensor array |
US7671837B2 (en) | 2005-09-06 | 2010-03-02 | Apple Inc. | Scrolling input arrangements using capacitive sensors on a flexible membrane |
US7880729B2 (en) | 2005-10-11 | 2011-02-01 | Apple Inc. | Center button isolation ring |
US7868874B2 (en) | 2005-11-15 | 2011-01-11 | Synaptics Incorporated | Methods and systems for detecting a position-based attribute of an object using digital codes |
US20070152983A1 (en) | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Touch pad with symbols based on mode |
US8279180B2 (en) * | 2006-05-02 | 2012-10-02 | Apple Inc. | Multipoint touch surface controller |
KR102319325B1 (ko) | 2006-06-09 | 2021-11-01 | 애플 인크. | 터치 스크린 액정 디스플레이 |
US8743060B2 (en) | 2006-07-06 | 2014-06-03 | Apple Inc. | Mutual capacitance touch sensing device |
US9360967B2 (en) | 2006-07-06 | 2016-06-07 | Apple Inc. | Mutual capacitance touch sensing device |
US8022935B2 (en) | 2006-07-06 | 2011-09-20 | Apple Inc. | Capacitance sensing electrode with integrated I/O mechanism |
US7795553B2 (en) | 2006-09-11 | 2010-09-14 | Apple Inc. | Hybrid button |
US20080088600A1 (en) * | 2006-10-11 | 2008-04-17 | Apple Inc. | Method and apparatus for implementing multiple push buttons in a user input device |
US8274479B2 (en) | 2006-10-11 | 2012-09-25 | Apple Inc. | Gimballed scroll wheel |
WO2008052017A2 (en) * | 2006-10-23 | 2008-05-02 | Patrick Antaki | Flexible fingerprint sensor |
US8482530B2 (en) | 2006-11-13 | 2013-07-09 | Apple Inc. | Method of capacitively sensing finger position |
US9710095B2 (en) | 2007-01-05 | 2017-07-18 | Apple Inc. | Touch screen stack-ups |
US9654104B2 (en) | 2007-07-17 | 2017-05-16 | Apple Inc. | Resistive force sensor with capacitive discrimination |
WO2009032898A2 (en) | 2007-09-04 | 2009-03-12 | Apple Inc. | Compact input device |
US8683378B2 (en) | 2007-09-04 | 2014-03-25 | Apple Inc. | Scrolling techniques for user interfaces |
US8416198B2 (en) | 2007-12-03 | 2013-04-09 | Apple Inc. | Multi-dimensional scroll wheel |
US8125461B2 (en) | 2008-01-11 | 2012-02-28 | Apple Inc. | Dynamic input graphic display |
US8820133B2 (en) | 2008-02-01 | 2014-09-02 | Apple Inc. | Co-extruded materials and methods |
US9454256B2 (en) | 2008-03-14 | 2016-09-27 | Apple Inc. | Sensor configurations of an input device that are switchable based on mode |
US8816967B2 (en) | 2008-09-25 | 2014-08-26 | Apple Inc. | Capacitive sensor having electrodes arranged on the substrate and the flex circuit |
US9927924B2 (en) * | 2008-09-26 | 2018-03-27 | Apple Inc. | Differential sensing for a touch panel |
US8614690B2 (en) | 2008-09-26 | 2013-12-24 | Apple Inc. | Touch sensor panel using dummy ground conductors |
US8395590B2 (en) | 2008-12-17 | 2013-03-12 | Apple Inc. | Integrated contact switch and touch sensor elements |
US9354751B2 (en) | 2009-05-15 | 2016-05-31 | Apple Inc. | Input device with optimized capacitive sensing |
US8872771B2 (en) | 2009-07-07 | 2014-10-28 | Apple Inc. | Touch sensing device having conductive nodes |
WO2011045836A1 (ja) * | 2009-10-14 | 2011-04-21 | 国立大学法人東北大学 | センサ装置およびセンサ装置の製造方法 |
CN102200868B (zh) * | 2010-03-25 | 2013-02-13 | 太瀚科技股份有限公司 | 兼具电容感应与电磁感应功能的天线回路架构 |
KR101123147B1 (ko) * | 2010-04-05 | 2012-03-16 | (주)유민에쓰티 | 정전용량형 근접센서 |
US8941395B2 (en) | 2010-04-27 | 2015-01-27 | 3M Innovative Properties Company | Integrated passive circuit elements for sensing devices |
US9164620B2 (en) | 2010-06-07 | 2015-10-20 | Apple Inc. | Touch sensing error compensation |
US8730204B2 (en) | 2010-09-16 | 2014-05-20 | Synaptics Incorporated | Systems and methods for signaling and interference detection in sensor devices |
US8804056B2 (en) | 2010-12-22 | 2014-08-12 | Apple Inc. | Integrated touch screens |
US8743080B2 (en) | 2011-06-27 | 2014-06-03 | Synaptics Incorporated | System and method for signaling in sensor devices |
US8766949B2 (en) | 2011-12-22 | 2014-07-01 | Synaptics Incorporated | Systems and methods for determining user input using simultaneous transmission from multiple electrodes |
WO2013133136A1 (ja) * | 2012-03-09 | 2013-09-12 | 富士フイルム株式会社 | 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム |
AU2013251459A1 (en) * | 2012-04-27 | 2014-11-20 | Alsentis, Llc | Apparatus for determining a touch input stimulus |
US9063608B2 (en) | 2012-06-14 | 2015-06-23 | Synaptics Incorporated | Systems and methods for sensor devices having a non-commensurate number of transmitter electrodes |
US9250143B2 (en) * | 2012-09-19 | 2016-02-02 | College Park Industries, Inc. | Multicapacitor force/moment sensor arrays |
US9651513B2 (en) | 2012-10-14 | 2017-05-16 | Synaptics Incorporated | Fingerprint sensor and button combinations and methods of making same |
US10222921B2 (en) * | 2012-11-27 | 2019-03-05 | Guardian Glass, LLC | Transparent conductive coating for capacitive touch panel with silver having increased resistivity |
US10248274B2 (en) * | 2012-11-27 | 2019-04-02 | Guardian Glass, LLC | Transparent conductive coating for capacitive touch panel and method of making same |
US10444926B2 (en) * | 2012-11-27 | 2019-10-15 | Guardian Glass, LLC | Transparent conductive coating for capacitive touch panel with additional functional film(s) |
US10817096B2 (en) | 2014-02-06 | 2020-10-27 | Apple Inc. | Force sensor incorporated into display |
WO2014124173A1 (en) | 2013-02-08 | 2014-08-14 | Changello Enterprise Llc | Force determination based on capacitive sensing |
JP6161189B2 (ja) * | 2013-02-19 | 2017-07-12 | アルプス電気株式会社 | 静電容量式入力装置 |
WO2015013530A1 (en) * | 2013-07-24 | 2015-01-29 | Synaptics Incorporated | Signal strength enhancement in a biometric sensor array |
US9671889B1 (en) | 2013-07-25 | 2017-06-06 | Apple Inc. | Input member with capacitive sensor |
CN103389175B (zh) * | 2013-07-30 | 2015-11-04 | 郑州大学 | 用于聚合物成型加工在线测量剪切应力的方法及装置 |
US9851816B2 (en) * | 2013-11-08 | 2017-12-26 | Egalax_Empia Technology Inc. | Transmitter and controlling method thereof |
CN103793688B (zh) * | 2014-01-23 | 2017-04-19 | 深圳市汇顶科技股份有限公司 | 生物特征识别装置和电子设备 |
AU2015217268B2 (en) | 2014-02-12 | 2018-03-01 | Apple Inc. | Force determination employing sheet sensor and capacitive array |
TWI524251B (zh) | 2014-02-24 | 2016-03-01 | 原相科技股份有限公司 | 電容式手指導航模組及其製作方法 |
US9176633B2 (en) | 2014-03-31 | 2015-11-03 | Synaptics Incorporated | Sensor device and method for estimating noise in a capacitive sensing device |
TWI575461B (zh) * | 2015-02-13 | 2017-03-21 | 比亞迪股份有限公司 | 指紋檢測電路及指紋檢測方法及電子裝置 |
CN105447439B (zh) | 2015-02-13 | 2017-05-03 | 比亚迪股份有限公司 | 指纹检测电路及电子装置 |
US10006937B2 (en) | 2015-03-06 | 2018-06-26 | Apple Inc. | Capacitive sensors for electronic devices and methods of forming the same |
US10025428B2 (en) | 2015-11-19 | 2018-07-17 | Synaptics Incorporated | Method and apparatus for improving capacitive sensing detection |
US10019122B2 (en) | 2016-03-31 | 2018-07-10 | Synaptics Incorporated | Capacitive sensing using non-integer excitation |
US10007343B2 (en) * | 2016-03-31 | 2018-06-26 | Apple Inc. | Force sensor in an input device |
JP2018025848A (ja) * | 2016-08-08 | 2018-02-15 | 株式会社東海理化電機製作所 | 操作入力装置 |
CN107766777A (zh) * | 2016-08-18 | 2018-03-06 | 北京小米移动软件有限公司 | 指纹识别组件、压力检测方法及指纹识别ic |
JP6753615B2 (ja) * | 2016-11-04 | 2020-09-09 | 国立大学法人弘前大学 | 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体 |
US11123013B2 (en) * | 2016-11-08 | 2021-09-21 | The Regents Of The University Of California | Hypertonicity measuring device and method |
US10346665B2 (en) * | 2017-05-30 | 2019-07-09 | Sunasic Technologies Limited | Noise reduced capacitive image sensor and method operating the same |
US11525749B2 (en) * | 2018-05-22 | 2022-12-13 | Apple Inc. | Telescopic analog front-end for pressure sensors |
US10866683B2 (en) | 2018-08-27 | 2020-12-15 | Apple Inc. | Force or touch sensing on a mobile device using capacitive or pressure sensing |
CN110715763B (zh) * | 2019-11-11 | 2021-04-13 | 西安近代化学研究所 | 并联组合式介电弹性体的冲击波压力测量装置及测量方法 |
US11610426B2 (en) * | 2020-11-20 | 2023-03-21 | Image Match Design Inc. | In-glass fingerprint sensor and sensing circuit thereof |
US11967172B2 (en) | 2020-11-20 | 2024-04-23 | Image Match Design Inc. | Biometric sensor device with in-glass fingerprint sensor |
US12223762B2 (en) | 2020-11-20 | 2025-02-11 | Image Match Design Inc. | Biometric sensor device with in-glass fingerprint sensor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4353056A (en) * | 1980-06-05 | 1982-10-05 | Siemens Corporation | Capacitive fingerprint sensor |
BE1007462A3 (nl) * | 1993-08-26 | 1995-07-04 | Philips Electronics Nv | Dataverwerkings inrichting met aanraakscherm en krachtopnemer. |
US5489776A (en) * | 1994-08-30 | 1996-02-06 | Hughes Aircraft Company | Microbolometer unit cell signal processing circuit |
JP2561040B2 (ja) * | 1994-11-28 | 1996-12-04 | 日本電気株式会社 | 容量型センサの容量変化検出回路およびその検出方法 |
US5963679A (en) * | 1996-01-26 | 1999-10-05 | Harris Corporation | Electric field fingerprint sensor apparatus and related methods |
JP3436637B2 (ja) * | 1996-06-04 | 2003-08-11 | アルプス電気株式会社 | 座標入力装置 |
JP3301405B2 (ja) * | 1999-03-17 | 2002-07-15 | 株式会社村田製作所 | 圧電式加速度センサ用増幅回路 |
US6492911B1 (en) * | 1999-04-19 | 2002-12-10 | Netzer Motion Sensors Ltd. | Capacitive displacement encoder |
US6297811B1 (en) * | 1999-06-02 | 2001-10-02 | Elo Touchsystems, Inc. | Projective capacitive touchscreen |
WO2002061668A1 (en) * | 2000-12-05 | 2002-08-08 | Arete Associates, A California Corporation | Linear contact sensor apparatus and method for use in imaging features of an object |
JP2004279261A (ja) * | 2003-03-17 | 2004-10-07 | Denso Corp | 物理量検出装置 |
-
2003
- 2003-07-11 JP JP2003195951A patent/JP2005030901A/ja not_active Withdrawn
-
2004
- 2004-06-23 US US10/875,251 patent/US20050005703A1/en not_active Abandoned
- 2004-06-25 CN CNA2004100628267A patent/CN1576799A/zh active Pending
- 2004-06-30 KR KR1020040050338A patent/KR20050007131A/ko not_active Abandoned
- 2004-07-02 EP EP04253999A patent/EP1496467A3/en not_active Withdrawn
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009534673A (ja) * | 2006-04-25 | 2009-09-24 | エックスセンサー テクノロジー コーポレイション | 容量マトリックス圧力変換器における容量ノード測定 |
JP2010533859A (ja) * | 2007-07-19 | 2010-10-28 | バルン・エレクトロニクス・カンパニー,リミテッド | 多チャネル容量検知回路 |
US11983371B2 (en) | 2007-10-04 | 2024-05-14 | Apple Inc. | Single-layer touch-sensitive display |
US11269467B2 (en) | 2007-10-04 | 2022-03-08 | Apple Inc. | Single-layer touch-sensitive display |
JP2014209344A (ja) * | 2007-10-04 | 2014-11-06 | アップル インコーポレイテッド | 単層タッチ感知ディスプレイ |
US10331278B2 (en) | 2007-10-04 | 2019-06-25 | Apple Inc. | Single-layer touch-sensitive display |
JP2009162538A (ja) * | 2007-12-28 | 2009-07-23 | Wacom Co Ltd | 位置検出装置 |
US11294503B2 (en) | 2008-01-04 | 2022-04-05 | Apple Inc. | Sensor baseline offset adjustment for a subset of sensor output values |
JP2009192306A (ja) * | 2008-02-13 | 2009-08-27 | Wacom Co Ltd | 位置検出装置 |
US10001888B2 (en) | 2009-04-10 | 2018-06-19 | Apple Inc. | Touch sensor panel design |
JP5472319B2 (ja) * | 2009-12-09 | 2014-04-16 | 富士通株式会社 | 静電容量センサ及び生体画像生成方法 |
WO2011070660A1 (ja) * | 2009-12-09 | 2011-06-16 | 富士通株式会社 | 静電容量センサ及び生体画像生成方法 |
US8787631B2 (en) | 2009-12-09 | 2014-07-22 | Fujitsu Limited | Capacitive sensor and biometric image generating method |
TWI507949B (zh) * | 2010-02-08 | 2015-11-11 | Novatek Microelectronics Corp | 觸控感測系統、電容感測電路及電容感測方法 |
JP2012238347A (ja) * | 2012-09-13 | 2012-12-06 | Wacom Co Ltd | 位置検出装置及び静電容量方式検出部 |
JP2017521767A (ja) * | 2014-06-11 | 2017-08-03 | コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ | 接触検知表面上での操作の位置を特定する方法および装置 |
US10288467B2 (en) | 2015-01-13 | 2019-05-14 | Sumitomo Riko Company Limited | Capacitance measurement device, capacitance-type sheet-shaped sensor apparatus, and capacitance-type liquid-level detector apparatus |
US10534481B2 (en) | 2015-09-30 | 2020-01-14 | Apple Inc. | High aspect ratio capacitive sensor panel |
JP2019504407A (ja) * | 2015-12-23 | 2019-02-14 | ケンブリッジ タッチ テクノロジーズ リミテッドCambridge Touch Technologies Limited | 感圧式タッチパネル |
US10642418B2 (en) | 2017-04-20 | 2020-05-05 | Apple Inc. | Finger tracking in wet environment |
US11009409B2 (en) | 2017-12-22 | 2021-05-18 | Renesas Electronics Corporation | Pressure sensor device, control device, and pressure sensor unit |
US11662867B1 (en) | 2020-05-30 | 2023-05-30 | Apple Inc. | Hover detection on a touch sensor panel |
CN115727887A (zh) * | 2021-09-01 | 2023-03-03 | 英飞凌科技股份有限公司 | 通过使用吸合功能性检测电容传感器中的灵敏度故障 |
US11927645B2 (en) * | 2021-09-01 | 2024-03-12 | Infineon Technologies Ag | Detecting sensitivity faults in capacitive sensors by using pull-in functionality |
US20230064937A1 (en) * | 2021-09-01 | 2023-03-02 | Infineon Technologies Ag | Detecting sensitivity faults in capacitive sensors by using pull-in functionality |
Also Published As
Publication number | Publication date |
---|---|
EP1496467A3 (en) | 2006-08-09 |
CN1576799A (zh) | 2005-02-09 |
EP1496467A2 (en) | 2005-01-12 |
KR20050007131A (ko) | 2005-01-17 |
US20050005703A1 (en) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005030901A (ja) | 容量センサ | |
TWI576768B (zh) | 具有在感測元件內的解調變電路系統之電容式指紋感測系統、電子裝置與方法 | |
JP6736552B2 (ja) | タイミング回路構成を備える感知素子を有する容量性指紋センサ | |
KR100550413B1 (ko) | 화상판독장치 및 그 구동방법 | |
CN105426865B (zh) | 指纹检测电路、指纹传感器以及指纹检测方法 | |
US8116540B2 (en) | Apparatus and method for reducing noise in fingerprint sensing circuits | |
CN112601966B (zh) | 电容检测电路、触摸检测装置和电子设备 | |
US20050281441A1 (en) | Live finger detection by four-point measurement of complex impedance | |
US20240231531A1 (en) | High resolution touch sensor apparatus and method | |
KR20180088804A (ko) | 정용량성 지문감지장치에서 아날로그 샘플링 시스템 및 노이즈 억제방법 | |
JP2000513839A (ja) | 接触撮像装置 | |
EP1482441A3 (en) | Sweep-type fingerprint sensor module and a sensing method therefor | |
TW201108081A (en) | High speed multi-touch touch device and controller therefor | |
CN107710226A (zh) | 用于噪声检测的指纹感测装置及其中的方法 | |
WO2018088947A1 (en) | Fingerprint sensing system with liveness detection | |
TW201823962A (zh) | 用於控制在指紋感測裝置內之訊號的系統和方法 | |
KR20160069357A (ko) | 각 센서 패드 간의 오프셋 보정을 수행하는 지문 검출 장치 및 이의 구동 방법 | |
US20230326230A1 (en) | Biometric skin contact sensor and methods of operating a biometric skin contact sensor | |
WO2022049400A1 (en) | Biometric skin contact sensor and methods of operating a biometric skin contact sensor | |
KR20160109258A (ko) | 지문 검출 장치 및 이의 구동 방법 | |
US20240288972A1 (en) | Apparatus and method for capacitive touch detection | |
US11495042B1 (en) | Voltage sensing fingerprint recognition device and fingerprint recognition method thereof | |
JP2000229075A (ja) | 指の凹凸情報入力装置及びこの装置を使用した個人認証装置 | |
US20190057235A1 (en) | Biometric identification apparatus having multiple electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061003 |