[go: up one dir, main page]

JP2005027361A - Wind power generation water electrolysis hydrogen production system - Google Patents

Wind power generation water electrolysis hydrogen production system Download PDF

Info

Publication number
JP2005027361A
JP2005027361A JP2003186556A JP2003186556A JP2005027361A JP 2005027361 A JP2005027361 A JP 2005027361A JP 2003186556 A JP2003186556 A JP 2003186556A JP 2003186556 A JP2003186556 A JP 2003186556A JP 2005027361 A JP2005027361 A JP 2005027361A
Authority
JP
Japan
Prior art keywords
power generation
water electrolysis
wind power
output
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186556A
Other languages
Japanese (ja)
Other versions
JP4251928B2 (en
Inventor
Hiroshi Seto
弘 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETEC KK
Original Assignee
SETEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETEC KK filed Critical SETEC KK
Priority to JP2003186556A priority Critical patent/JP4251928B2/en
Publication of JP2005027361A publication Critical patent/JP2005027361A/en
Application granted granted Critical
Publication of JP4251928B2 publication Critical patent/JP4251928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Wind Motors (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promote energy storage performance and effective use of natural energy by establishing a control system for maximizing hydrogen production in correspondence with wind atlas in wind power generation producing an output variable with weather conditions, producing water electroysis hydrogen with the variable output and supplying power from a fuel cell. <P>SOLUTION: Wind power generation output varies depending on the wind velocity and when the r.p.m. of a propeller is adapted to the wind velocity, the output is maximized but the frequency is varied and water electrolysis hydrogen production is optimal with a DC load. When a solid polymer water electrolysis system is utilized in water electrolysis hydrogen production, constant current control is performed when the wind velocity is not lower than a rated output. When the wind velocity is lower than the rated output, load division control is combined with constant current control thus enhancing unit power consumption in hydrogen production. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
気象条件による風況変化に伴い風力発電出力は変動するが、本発明は、その変動する出力において水電解水素を製造し、エネルギーの貯蔵性と自然エネルギーの有効利用を推進するものである。
風力発電は電力系統上の発電を目的とする場合、風力出力の変動より風力立地点の電力系統容量により風力発電の受入量が制約されることがある。風力発電による水素製造は全くその制約を受けることなく、燃料電池自動車の普及などと共に、水素需要に供給してゆくものとする。また、離島などの小規模電力系統においても、系統容量に関せず、大容量風力発電は立地可能になる場合もある。
【0002】
【従来の技術】
従来、国内の水素製造は、苛性ソーダ製造における副産物として製造されていた。海外においては、電力料金の廉価な国では、水電解により水素製造されている。
我が国においては、風力発電は電力系統の発電を目的として開発されてきたが、電力系統の系統容量によって、風力発電の系統での受入量には制約されることがあり、新エネルギーとして風力発電は期待されているが、その開発の阻害要因となる場合もある。
【0003】
【発明が解決しようとする課題】
風力発電出力は、気象条件及び地域による風況変化に伴い変動し、出力が常時変動するため、安定した電力を供給できないという欠点がある。しかし、その変動する出力において水電解水素を製造し、燃料電池によって電力を供給することにより、エネルギーの貯蔵性と自然エネルギーの有効利用を推進するものであり、燃料電池自動車の燃料としての水素需要拡大に対処し得るものとなる。
水電解は固体高分子型としており、固体高分子膜及び電極触媒の高性能化によって水電解効率を向上させ、風力の出力変動に対応して水電解水素製造量を最大にする風力発電水素製造の制御システムを必要とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は下記のようになるものである。
風力発電は風速に対応してプロペラ回転数を可変にすると風力発電電力量は、定速回転の風力発電より出力増加するが周波数変動を生ずる。
水電解負荷は直流負荷であり、周波数変動には無関係である。
風力発電の発電出力を直流化して水電解水素製造に利用する場合、水電解装置の定格容量をn個に分割し、n≧3とした電解装置の各々の電解容量は、P1>P2>P3......>Pnの関係を有して、風力発電の定格出力PはP1+P2+P3......+Pn=Pであるとき、風力発電の定格出力Pを発生する定格風速以上の領域においては、電解装置は供給電圧を電解電圧以上として定電流制御とする。
また、定格風速未満の領域においてはn個の電解装置を、風力発電出力に適合するように負荷を分割制御し、その供給電圧は電解電圧以上において定電圧制御し、負荷分割制御における電流密度は定格電流密度を低減して電解効率の向上を図るものとする。
電流密度と水素1Nm 製造に要す電力量(水素製造電力原単位kWH/Nm −H)との関係の一例を図1に示す。
図1において、水電解電極の電流密度(A/cm )±50%の変化において水素1Nm 製造に要する電力量は±7%の増減を示す。
以上、風速変動による風力発電出力の変化に対応して、負荷を分割制御し、定格風速以下においては発電出力が水電解負荷容量より下回る場合、水電解電流密度を定格電流密度より低減させて、水素製造電力原単位を節減させ、水電解効率の向上を図るものとする。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づき、図1、図2、図3を参照して説明する。
図2における(A)は、風力発電における風速と発電出力特性を示したものであり、風力出力特性において、風速12m/s 以上においては定格出力100%を発電し、風速25m/s 以上にて、プロペラ回転を停止して発電停止し、風速12m/s 未満においては発電出力は低減し、風速3m/s にて発電停止する特性を有する。
風力発電の定格出力を100%とし、その水電解容量を100%とするとき、水電解容量は、45%、30%、15%、10%の4組で構成し、その容量の総和は、45+30+15+10=100%とする。
図2における(B)は、風速と電解負荷の分割制御の関係を示したものであり、風速12〜25m/s においては、4組の水電解装置の全容量を使用し、風速12m/s 未満においては発電出力50%(風速8m/s 相当)に低減するまでは水電解装置の全容量を負荷とする。その場合、電流密度は1.0〜0.5A/cm まで変化することになる。
発電出力50〜35%においては、水電解装置は3組に分割制御し、45+15+10=70%容量として電極の電流密度は0.71〜0.5A/cm となる。発電出力35〜30%においては、水電解装置は2組に分割制御し、45+15=60%容量として電流密度は0.58〜0.5A/cm となる。
以下発電出力の低減においては表1のように制御される。
【0006】
【表1】

Figure 2005027361
【0007】
以上、4組の水電解装置は負荷を分割制御し、供給電圧は電解電圧以上の電圧において定電圧制御するとき、電流密度は図2における(C)に示す風速と電流密度の関係は定格電流密度を1.0〜0.5A/cm に低減することにより図1に示す電極電流密度と水素製造電力原単位の特性より、水素製造に要する電力原単位(電解電力量 kWH/水素1Nm )を節減し水電解効率の向上を図るものである。
図3に風力発電水電解水素製造装置の構成図を示す。
図3において、風力発電機1の出力は、負荷時電圧調整機能を有する水電解用変圧器2に供給され、電圧調整された出力は、負荷開閉器3及び整流器4を経て、固体高分子型水電解装置5に供給される。
負荷容量は、P1=45%、P2=30%、P3=15%、P4=10%に分割されて、風力発電の出力に応じて、負荷開閉器3により負荷が分割制御される。
固体高分子型水電解装置5には純水供給装置6より純水が供給され、また、発生した水素は水素供給部7及び水素圧縮機8を経て高圧水素貯溜部9に貯溜される。
以上において固体高分子型水電解装置5の水電解電圧を検出して、水電解用変圧器2に付属している負荷時電圧調整部を制御するものとし、風力発電出力の交流側において電圧調整するものとして、高調波を生じない方式としている。
【0008】
【発明の効果】
本発明は、上述の通り構成されているので、次に記載する効果を奏する。
気象状態により出力変動する風力発電において、風況に対応した水素製造量を最大にする制御システムを確立し、変動する出力において、水電解水素を製造し、燃料電池によって電力を供給することにより、エネルギーの貯蔵性と自然エネルギーの有効利用を推進するものである。
また、無公害の燃料電池自動車の燃料として、水素需要に供給し得る。
【図面の簡単な説明】
【図1】水電解電流密度と水素製造電力原単位の特性を示すグラフである。
【図2】風力発電における風速と風力出力特性の関係と、風速と電解負荷の分割制御の関係と、風速と分割負荷による電極電流密度の関係を示すグラフである。
【図3】風力発電水電解水素製造装置の構成図である。
【符号の説明】
1 風力発電機
2 水電解用変圧器
3 負荷開閉器
4 整流器
5 固体高分子型水電解装置
6 純水供給装置
7 水素供給部
8 水素圧縮機
9 高圧水素貯溜部[0001]
BACKGROUND OF THE INVENTION
Wind power generation output fluctuates with changes in wind conditions due to weather conditions, but the present invention produces water electrolysis hydrogen at the fluctuating output to promote energy storage and effective use of natural energy.
When wind power generation is intended for power generation on the power system, the amount of wind power generation received may be limited by the power system capacity at the wind power location due to fluctuations in wind power output. Hydrogen production by wind power generation will not be restricted at all, and will be supplied to hydrogen demand along with the spread of fuel cell vehicles. Even in small-scale power systems such as remote islands, large-capacity wind power generation may be possible regardless of the system capacity.
[0002]
[Prior art]
Traditionally, domestic hydrogen production has been produced as a by-product in caustic soda production. Overseas, hydrogen is produced by water electrolysis in countries with low electricity prices.
In Japan, wind power generation has been developed for the purpose of power system power generation. However, the capacity of the wind power generation system may be limited by the capacity of the power system. Although expected, it may be an impediment to its development.
[0003]
[Problems to be solved by the invention]
Wind power generation output fluctuates with changes in wind conditions depending on weather conditions and regions, and the output constantly fluctuates, so that there is a drawback that stable power cannot be supplied. However, by producing water electrolysis hydrogen at the fluctuating output and supplying electric power by the fuel cell, it promotes energy storage and effective use of natural energy. Demand for hydrogen as fuel for fuel cell vehicles It can deal with expansion.
Water electrolysis is a solid polymer type, wind power generation hydrogen production that improves water electrolysis efficiency by improving the performance of solid polymer membrane and electrode catalyst, and maximizes water electrolysis hydrogen production in response to wind power fluctuations Requires a control system.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is as follows.
In wind power generation, if the propeller rotation speed is made variable in accordance with the wind speed, the amount of wind power generation increases from that of wind power generation at constant speed, but the frequency fluctuates.
The water electrolysis load is a direct current load and is independent of frequency fluctuations.
When the power generation output of wind power generation is converted to direct current and used for water electrolysis hydrogen production, the electrolysis capacity of each electrolysis apparatus in which the rated capacity of the water electrolysis apparatus is divided into n and n ≧ 3 is P1>P2> P3 . . . . . . > Pn, the rated output P of wind power generation is P1 + P2 + P3. . . . . . When + Pn = P, in the region of the rated wind speed or higher that generates the rated output P of wind power generation, the electrolyzer performs constant current control by setting the supply voltage to be equal to or higher than the electrolytic voltage.
Also, in the region below the rated wind speed, the n electrolyzers are divided and controlled so as to match the wind power generation output, and the supply voltage is controlled at a constant voltage above the electrolysis voltage, and the current density in the load division control is The rated current density is reduced to improve electrolytic efficiency.
An example of the relationship between the current density and the hydrogen 1 Nm 3 amount of power takes to manufacture (hydrogen production unit power consumption kWH / Nm 3 -H 2) shown in FIG.
In FIG. 1, when the current density (A / cm 2 ) of the water electrolysis electrode is changed by ± 50%, the amount of power required for producing hydrogen 1Nm 3 shows an increase / decrease of ± 7%.
As described above, the load is divided and controlled in response to the change in the wind power generation output due to the wind speed fluctuation, and when the power generation output is lower than the water electrolysis load capacity below the rated wind speed, the water electrolysis current density is reduced from the rated current density, Reduce the unit of electricity used for hydrogen production to improve water electrolysis efficiency.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples with reference to FIGS. 1, 2, and 3. FIG.
(A) in FIG. 2 shows the wind speed and power generation output characteristics in wind power generation. In the wind power output characteristics, when the wind speed is 12 m / s or more, a rated output of 100% is generated and the wind speed is 25 m / s or more. The propeller rotation is stopped to stop the power generation, and the power generation output is reduced when the wind speed is less than 12 m / s, and the power generation is stopped at the wind speed of 3 m / s.
When the rated output of wind power generation is 100% and the water electrolysis capacity is 100%, the water electrolysis capacity is composed of 4 groups of 45%, 30%, 15%, and 10%. 45 + 30 + 15 + 10 = 100%.
(B) in FIG. 2 shows the relationship between the wind speed and the split control of the electrolytic load. At the wind speed of 12 to 25 m / s, the total capacity of the four sets of water electrolyzers is used, and the wind speed of 12 m / s. If it is less than 50%, the total capacity of the water electrolysis apparatus is used as a load until the power generation output is reduced to 50% (equivalent to a wind speed of 8 m / s). In that case, the current density will vary from 1.0 to 0.5 A / cm 2 .
At the power generation output of 50 to 35%, the water electrolysis apparatus is divided and controlled into three sets, and the current density of the electrode is 0.71 to 0.5 A / cm 2 with 45 + 15 + 10 = 70% capacity. At a power generation output of 35 to 30%, the water electrolysis device is divided and controlled in two sets, and the current density is 0.58 to 0.5 A / cm 2 with 45 + 15 = 60% capacity.
In the following, the power generation output is reduced as shown in Table 1.
[0006]
[Table 1]
Figure 2005027361
[0007]
As described above, when the four sets of water electrolyzer control the load in a divided manner and the supply voltage is controlled at a constant voltage at a voltage higher than the electrolysis voltage, the relationship between the wind speed and the current density shown in FIG. By reducing the density to 1.0 to 0.5 A / cm 2 , the power consumption required for hydrogen production (electrolytic power amount kWh / hydrogen 1 Nm 3 is obtained from the electrode current density and the characteristics of hydrogen production power consumption shown in FIG. ) To improve water electrolysis efficiency.
FIG. 3 shows a configuration diagram of the wind power generation water electrolysis hydrogen production apparatus.
In FIG. 3, the output of the wind power generator 1 is supplied to a water electrolysis transformer 2 having a load voltage adjustment function, and the voltage-adjusted output passes through a load switch 3 and a rectifier 4 to be a solid polymer type. It is supplied to the water electrolysis device 5.
The load capacity is divided into P1 = 45%, P2 = 30%, P3 = 15%, and P4 = 10%, and the load is divided and controlled by the load switch 3 according to the output of wind power generation.
Pure water is supplied to the polymer electrolyte water electrolysis device 5 from the pure water supply device 6, and the generated hydrogen is stored in the high-pressure hydrogen storage portion 9 through the hydrogen supply portion 7 and the hydrogen compressor 8.
In the above, the water electrolysis voltage of the polymer electrolyte water electrolysis device 5 is detected, and the load voltage adjustment unit attached to the water electrolysis transformer 2 is controlled, and the voltage adjustment is performed on the AC side of the wind power generation output. In order to achieve this, a method that does not generate harmonics is used.
[0008]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect described below.
By establishing a control system that maximizes the amount of hydrogen produced in response to wind conditions in wind power generation that fluctuates in output due to weather conditions, by producing water electrolysis hydrogen at fluctuating output and supplying power through a fuel cell, It promotes energy storage and effective use of natural energy.
It can also be supplied to hydrogen demand as a fuel for pollution-free fuel cell vehicles.
[Brief description of the drawings]
FIG. 1 is a graph showing characteristics of water electrolysis current density and hydrogen production power intensity.
FIG. 2 is a graph showing the relationship between wind speed and wind power output characteristics in wind power generation, the relationship between wind speed and electrolytic load division control, and the relationship between wind speed and electrode current density due to the divided load.
FIG. 3 is a configuration diagram of a wind power generation water electrolysis hydrogen production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wind generator 2 Water electrolysis transformer 3 Load switch 4 Rectifier 5 Solid polymer type water electrolysis apparatus 6 Pure water supply apparatus 7 Hydrogen supply part 8 Hydrogen compressor 9 High-pressure hydrogen storage part

Claims (2)

風力発電の発電出力を直流化して水電解による水素製造において、水電解装置は定格容量を3組以上のn個に分割し、風力発電の定格出力を発生する定格風速以上の領域においては、電解装置への供給電圧は電解電圧以上として定電流制御とし、また定格風速未満の領域においてはn個の電解装置を風力発電出力に適合するように負荷を分割制御し、その供給電圧は電解電圧以上において定電圧制御し、電解装置の電極における電流密度は定格電流密度を低減して電解効率の向上を図るよう構成したことを特徴とする風力発電水電解水素製造システム。In hydrogen production by water electrolysis by converting the power output of wind power generation to water electrolysis, the water electrolysis device divides the rated capacity into n of 3 or more sets, and in the region above the rated wind speed that generates the rated output of wind power generation, electrolysis The supply voltage to the equipment is constant current control over the electrolysis voltage, and in the region below the rated wind speed, the n electrolyzers are divided and controlled to match the wind power generation output, and the supply voltage is over the electrolysis voltage. In the wind power generation water electrolysis hydrogen production system, the current density at the electrode of the electrolyzer is configured to reduce the rated current density and improve the electrolysis efficiency. 請求項1記載の風力発電水電解水素製造システムにおいて、電解装置は、風力発電の出力変圧器は負荷時電圧調整器を有していて、分割された水電解負荷は、交流側において負荷開閉する制御方式として直流負荷における高調波発生を抑制するよう構成されていることを特徴とする風力発電水電解水素製造システム。2. The wind power generation water electrolysis hydrogen production system according to claim 1, wherein the electrolysis apparatus has a load voltage regulator in the output transformer of the wind power generation, and the divided water electrolysis load opens and closes the load on the AC side. A wind power generation water electrolysis hydrogen production system configured to suppress harmonic generation in a DC load as a control method.
JP2003186556A 2003-06-30 2003-06-30 Wind power generation water electrolysis hydrogen production system Expired - Fee Related JP4251928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186556A JP4251928B2 (en) 2003-06-30 2003-06-30 Wind power generation water electrolysis hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186556A JP4251928B2 (en) 2003-06-30 2003-06-30 Wind power generation water electrolysis hydrogen production system

Publications (2)

Publication Number Publication Date
JP2005027361A true JP2005027361A (en) 2005-01-27
JP4251928B2 JP4251928B2 (en) 2009-04-08

Family

ID=34185654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186556A Expired - Fee Related JP4251928B2 (en) 2003-06-30 2003-06-30 Wind power generation water electrolysis hydrogen production system

Country Status (1)

Country Link
JP (1) JP4251928B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278726A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation control system and control method thereof
US7667343B2 (en) 2006-03-14 2010-02-23 Hitachi, Ltd. Hydrogen production system using wind turbine generator
EP1878714A4 (en) * 2005-05-02 2010-03-10 Hrein Energy Inc Organic hydride synthesizing apparatus, organic hydride synthesizing system and hydrogen production apparatus
CN101976853A (en) * 2010-11-09 2011-02-16 张建洲 Wind power hydrogen production regulation, control and grid-connection system
US8203225B2 (en) 2007-11-06 2012-06-19 Devine Timothy J Systems and methods for producing, shipping, distributing, and storing hydrogen
US8275489B1 (en) 2009-04-21 2012-09-25 Devine Timothy J Systems and methods for deployment of wind turbines
CN103114297A (en) * 2013-02-18 2013-05-22 一重集团大连设计研究院有限公司 Hydrogen production system
WO2013099524A1 (en) * 2011-12-28 2013-07-04 株式会社 日立製作所 System for converting and storing renewable energy
JP2014530321A (en) * 2011-10-11 2014-11-17 ヘイサム, ヤクブHAISAM, Yakoub Wind energy turbine shell station
JP2015004112A (en) * 2013-06-21 2015-01-08 昭和シェル石油株式会社 Electrosynthesis system
KR102049020B1 (en) * 2018-06-21 2019-11-27 (주)지필로스 Power control apparatus using wind power for water electrolysis device and hydrogen generation system based on wind power
JP2021161540A (en) * 2020-03-30 2021-10-11 シーメンス ガメサ リニューアブル エナジー エー/エスSiemens Gamesa Renewable Energy A/S Electrolyzer
EP3885472A4 (en) * 2018-11-19 2022-01-05 Asahi Kasei Kabushiki Kaisha Hydrogen production method
CN114752950A (en) * 2022-05-16 2022-07-15 中国标准化研究院 A method and device for producing hydrogen by electrolysis of water with fluctuating power input
CN115882497A (en) * 2022-11-01 2023-03-31 双良节能系统股份有限公司 Green electricity hydrogen production system, method and device and medium thereof
WO2023087689A1 (en) * 2021-11-19 2023-05-25 中国华能集团清洁能源技术研究院有限公司 Method for controlling intermittent and fluctuating electrolytic hydrogen production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710724B (en) * 2013-07-20 2018-01-30 陈世浩 A kind of wind-powered electricity generation solar hydrogen making device
CN103789783A (en) * 2013-07-30 2014-05-14 陈世浩 Wind power-solar energy hydrogen production device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878714A4 (en) * 2005-05-02 2010-03-10 Hrein Energy Inc Organic hydride synthesizing apparatus, organic hydride synthesizing system and hydrogen production apparatus
US7667343B2 (en) 2006-03-14 2010-02-23 Hitachi, Ltd. Hydrogen production system using wind turbine generator
JP2008278726A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation control system and control method thereof
US8203225B2 (en) 2007-11-06 2012-06-19 Devine Timothy J Systems and methods for producing, shipping, distributing, and storing hydrogen
US8275489B1 (en) 2009-04-21 2012-09-25 Devine Timothy J Systems and methods for deployment of wind turbines
CN101976853A (en) * 2010-11-09 2011-02-16 张建洲 Wind power hydrogen production regulation, control and grid-connection system
EP2718563A4 (en) * 2011-10-11 2015-04-15 Yakoub Haisam Wind energy turbine shell station (wetss)
JP2014530321A (en) * 2011-10-11 2014-11-17 ヘイサム, ヤクブHAISAM, Yakoub Wind energy turbine shell station
WO2013099524A1 (en) * 2011-12-28 2013-07-04 株式会社 日立製作所 System for converting and storing renewable energy
JP2013136801A (en) * 2011-12-28 2013-07-11 Hitachi Ltd System for converting and storing renewable energy
CN103114297A (en) * 2013-02-18 2013-05-22 一重集团大连设计研究院有限公司 Hydrogen production system
JP2015004112A (en) * 2013-06-21 2015-01-08 昭和シェル石油株式会社 Electrosynthesis system
KR102049020B1 (en) * 2018-06-21 2019-11-27 (주)지필로스 Power control apparatus using wind power for water electrolysis device and hydrogen generation system based on wind power
EP3885472A4 (en) * 2018-11-19 2022-01-05 Asahi Kasei Kabushiki Kaisha Hydrogen production method
JP2021161540A (en) * 2020-03-30 2021-10-11 シーメンス ガメサ リニューアブル エナジー エー/エスSiemens Gamesa Renewable Energy A/S Electrolyzer
JP7136960B2 (en) 2020-03-30 2022-09-13 シーメンス ガメサ リニューアブル エナジー エー/エス Electrolyzer
TWI794777B (en) * 2020-03-30 2023-03-01 丹麥商西門子歌美颯再生能源公司 Electrolysis arrangement and method of operating the same
US11643738B2 (en) 2020-03-30 2023-05-09 Siemens Gamesa Renewable Energy A/S Electrolysis arrangement
WO2023087689A1 (en) * 2021-11-19 2023-05-25 中国华能集团清洁能源技术研究院有限公司 Method for controlling intermittent and fluctuating electrolytic hydrogen production
CN114752950A (en) * 2022-05-16 2022-07-15 中国标准化研究院 A method and device for producing hydrogen by electrolysis of water with fluctuating power input
CN115882497A (en) * 2022-11-01 2023-03-31 双良节能系统股份有限公司 Green electricity hydrogen production system, method and device and medium thereof
CN115882497B (en) * 2022-11-01 2024-06-04 江苏双良新能源装备有限公司 Green electricity hydrogen production system, method, device and medium thereof

Also Published As

Publication number Publication date
JP4251928B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4251928B2 (en) Wind power generation water electrolysis hydrogen production system
Chang et al. Review on distributed energy storage systems for utility applications
CN102116244B (en) Wind-light supplementary power generating energy storing device
US4084038A (en) Electrical power generation and storage system
CN113612260A (en) Electric-hydrogen island direct current micro-grid operation control method
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
US20070079611A1 (en) Renewable Power Controller for Hydrogen Production
CN201972859U (en) Wind-solar hybrid power generation and energy storage device
CN101565832A (en) Water electrolysis hydrogen production system for solar battery
CN107769255B (en) Control method of variable-speed constant-frequency wind power generation system based on offshore wind power hydrogen production
CN105186660A (en) Off-grid type wind power hydrogen production conversion system
CN115882515A (en) Micro-grid system for cooperating multi-type electrolytic hydrogen production and energy storage battery and operation method
CN109962482B (en) Wind power non-grid-connected hydrogen production system based on commercial power compensation and control method thereof
KR20190032999A (en) Renewable energy hybrid power generation system, and power generation method therefor
CN110565108A (en) Wind, light and water combined hydrogen production system and hydrogen production method
CN210297269U (en) Wind, light and proton exchange membrane fuel cell multi-energy complementary hybrid power generation system
CN215817549U (en) Wind-solar combined stable water electrolysis hydrogen production system
CN102433864A (en) Hydrogen production hydropower station
JP2021138563A (en) Hydrogen production system and hydrogen production method
KR20150029951A (en) Intelligent power control system and power control method for floating structures
CN101024884A (en) Non-merged-net wind-driven power-supplying method and apparatus of high energy-consumption industry
CN113629731A (en) Wind-solar combined stable water electrolysis hydrogen production system
US9048663B2 (en) Electrical energy distribution system with ride-through capability
CN109899236A (en) A kind of new energy comprehensive utilization device converting wind energy into hydrogen
CN104682427A (en) AC-DC (Alternating Current-Direct Current) hybrid clean energy source system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees