JP2005026747A - フィルタ処理装置、画像符号化装置及び方法 - Google Patents
フィルタ処理装置、画像符号化装置及び方法 Download PDFInfo
- Publication number
- JP2005026747A JP2005026747A JP2003186840A JP2003186840A JP2005026747A JP 2005026747 A JP2005026747 A JP 2005026747A JP 2003186840 A JP2003186840 A JP 2003186840A JP 2003186840 A JP2003186840 A JP 2003186840A JP 2005026747 A JP2005026747 A JP 2005026747A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- image data
- unit
- image
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
【課題】画像の時間的な変化度合や映像の明暗に対する画像劣化の知覚特性を考慮して画像符号化装置での符号化効率を向上させることのできるフィルタ処理装置を提供するものである。
【解決手段】動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置(100)において、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段(120(121))と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段(130(131))とを有する構成となる。
【選択図】 図2
【解決手段】動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置(100)において、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段(120(121))と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段(130(131))とを有する構成となる。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、フィルタ処理装置に係り、詳しくは、動画像を表す符号化前の画像データに対してフィルタ処理を行なうフィルタ処理装置に関する。
【0002】
また、本発明は、そのようなフィルタ処理装置にて得られたフィルタ処理済みの画像データを所定のアルゴリズムに従って符号化するようにした画像符号化装置及び方法に関する。
【0003】
【従来の技術】
従来、動画像(映像)を表す画像データを符号化する前にその画像データに対してフィルタ処理を施すことによって符号化効率を向上させるようにした符号化装置が提案されている(例えば、特許文献1参照)。この従来の符号化装置では、所定のブロック単位に画像データの局所的変化度を算出し、その局所的変化度に応じてブロック単位にフィルタ特性を決定している。具体的には、画像データ(画素値)の局所的変化度の大きいブロックに対しては高周波成分の減衰度合いが大きくなるフィルタ係数を用いてフィルタ処理がなされる。濃度(画素値)の変化度合の大きい画像部分においては、その高周波成分を減衰させても画像劣化が目立たないことから、このようなフィルタ処理により、画像劣化を目立たせることなく符号化効率を向上させることができることとなる。
【0004】
【特許文献1】
特開平8−9370号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の符号化装置では、動画像(映像)の時間的な変化や画像の明暗に対する画像劣化の人間による知覚特性については何ら考慮されていない。例えば、時間的に変化する度合の大きい画像領域では、その画像劣化を知覚しにくい。また、暗い画像領域では、その画像劣化を知覚しにくい。
【0006】
本発明は、このような事情に鑑みてなされたもので、画像の時間的な変化度合や映像の明暗に対する画像劣化の知覚特性を考慮して画像符号化装置での符号化効率を向上させることのできるフィルタ処理装置を提供するものである。
【0007】
また、本発明は、そのようなフィルタ処理装置を用いた画像符号化装置及び方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明に係るフィルタ処理装置は、動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0009】
このような構成により、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0010】
前記フィルタ処理の効果は、フィルタ処理による画像データの平滑化、あるいは、画像データの周波数特性の調整等の程度であって、フィルタ処理前の画像データとフィルタ処理後の画像データとの変化度合に対応する。
【0011】
また、本発明に係るフィルタ処理装置は、前記単位領域画像変化検出手段が、現フレームと前フレームにおける対応する所定単位領域それぞれの画像データに基づいて輝度レベルの差分を算出する単位領域輝度差分算出手段を有する構成とすることができる。
【0012】
このような構成により、現フレームと前フレームにおける対応する所定単位領域それぞれの画像データに基づいて算出された輝度レベルの差分を用いて各所定単位領域の画像データの時間的な変化度合を表すことができることとなる。
【0013】
更に、本発明に係るフィルタ処理装置は、前記単位領域輝度差分算出手段が、前記所定単位領域それぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有する構成となる。
【0014】
このような構成により、現フレームと前フレームにおける所定単位領域それぞれの対応する画素の輝度値の差分絶対値の総和を用いて各所定単位領域の画像データの時間的な変化度合を表すことができることとなる。
【0015】
本発明に係るフィルタ処理装置は、フレーム全体の画像データの時間的な変化度合を検出するフレーム画像変化検出手段を有し、前記フィルタ制御手段が、前記フレーム画像変化手段にて検出される前記フレーム全体の画像データの時間的な変化度合と、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合とに基づいて前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を決定する構成とすることができる。
【0016】
このような構成により、フレーム全体の画像データの時間的な変化度合を考慮しつつ、そのフレーム内の各所定単位領域の画像データの時間的な変化度合に応じて適正なフィルタ特性にて各所定単位領域の画像データに対するフィルタ処理を行なうことができることとなる。
【0017】
また、本発明に係るフィルタ処理装置は、前記フレーム画像変化検出手段が、現フレームの輝度レベルと前フレームの輝度レベルとの差分を算出するフレーム輝度差分算出手段を有する構成とすることができる。
【0018】
このような構成により、現フレームの輝度レベルと前フレームの輝度レベルとの差分を用いてフレーム全体の画像データの時間的な変化度合を表すことができることとなる。
【0019】
更に、本発明に係るフィルタ処理装置は、前記フレーム輝度差分算出手段が、現フレームと前フレームそれぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有する構成とすることができる。
【0020】
このような構成により、現フレームと前フレームそれぞれの対応する画素の輝度値の差分絶対値の総和を用いてフレーム全体の画像データの時間的な変化度合を表すことができることとなる。
【0021】
本発明に係るフィルタ処理装置は、前記フィルタ制御手段が、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が所定基準値以上となる場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合に係わらず前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を所定特性に決定する構成とすることができる。
【0022】
このような構成により、シーンチェンジ等によりフレーム全体の画像データの変化度合が所定基準値以上となる場合には、そのフレーム内の各所定単位領域の画像データに対して統一的なフィルタ特性にてフィルタ処理を行なうことができることとなる。なお、前記所定特性は、実質的にフィルタ処理がなされないものであってもよい。
【0023】
また、本発明に係るフィルタ制御装置は、前記フィルタ制御手段が、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が前記所定基準値より小さい場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合が大きいほど前記所定単位領域の画像データに対するフィルタ処理の効果が大きくなるようにフィルタ特性を決定する構成とすることができる。
【0024】
このような構成により、シーンチェンジ等がなく、フレーム全体の画像データの変化度合が所定基準値より小さい場合には、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0025】
本発明に係るフィルタ処理装置は、動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0026】
このような構成により、輝度レベルが小さく画像劣化が知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0027】
また、本発明のフィルタ処理装置は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、前記フィルタ制御手段が、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理を行わせない構成とすることができる。
【0028】
このような構成により、所定単位領域毎にフィルタ特性が決定される過程で、画像エッジであるとの判定のなされた画素に対してフィルタ処理がなされなくなるので、再生画像における画像エッジが不鮮明になることを防止することができるようになる。
【0029】
更に、本発明のフィルタ処理装置は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、前記フィルタ制御手段が、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理の効果が最小となるようにフィルタ特性を決定する構成とすることができる。
【0030】
このような構成により、所定単位領域毎にフィルタ特性が決定される過程で、画像エッジであるとの判定のなされた画素に対してはフィルタ処理の効果が最小となるようなフィルタ特性が決められるので、再生画像における画像エッジの鮮鋭度の低下を極力防止することができることとなる。
【0031】
本発明に係る画像符号化装置は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、前記前処理部は、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0032】
このような構成により、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。そして、その所定単位領域毎に適正なフィルタ特性にてなされるフィルタ処理の結果得られた前処理済画像データが符号化されるので、画像劣化を極力抑えつつ効率的な符号化ができるようになる。
【0033】
また、本発明に係る画像符号化装置は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、前記前処理部は、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0034】
このような構成により、輝度レベルが小さく画像劣化が知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。そして、その所定単位領域毎に適正なフィルタ特性にてなされるフィルタ処理の結果得られた前処理済画像データが符号化されるので、画像劣化を極力抑えつつ効率的な符号化ができるようになる。
【0035】
本発明に係る画像符号化方法は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、前記前処理ステップは、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出ステップと、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出ステップにて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有する構成となる。
【0036】
また、本発明に係る画像符号化方法は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、前記前処理ステップは、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出ステップと、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出ステップにて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有する構成となる。
【0037】
更に、本発明に係る画像符号化方法は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、前記フィルタ制御ステップが、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理を行わせない構成とすることができる。
【0038】
また、本発明に係る画像符号化方法は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、
【0039】
前記フィルタ制御ステップは、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理の効果が小さくなるようなフィルタ特性を決定する構成とすることができる。
【0040】
【実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0041】
本発明の実施の形態に係る画像符号化装置は図1に示すように構成される。
【0042】
図1において、この画像符号化装置は、前処理部100及び符号化部200を有している。撮像装置から動画像(映像)を表す画像データが、例えば、1秒間に30フレームの割合で前処理部100に順次供給される。前処理部100は、入力画像データに対してフィルタ処理を行なって前処理済画像データを生成する。符号化部200は、前処理部100からの前処理済画像データを所定のアルゴリズム(例えば、MPEG)に従って符号化し、符号化画像データを出力する。
【0043】
前処理部100は、図2に示すように構成される。
【0044】
図2において、前処理部100は、メモリ110、解析部120、フィルタ制御部130及びフィルタ140を有する。メモリ110は、入力される1フレーム分の画像データを格納する。解析部120は、メモリ110に格納された前フレームの画像データbと現フレームの画像データaとを入力し、後述するような動画像の輝度レベルに関する特徴量c、d、e、gを算出する。フィルタ制御部130は、解析部120にて得られた特徴量c、d、e、gに基づいてフィルタ特性を制御するための制御情報k、hを生成する。フィルタ140は、フィルタ制御部130からの制御情報k、hに基づいて決められるフィルタ特性にて入力画像に対してフィルタ処理を行なう。フィルタ140にてフィルタ処理された画像データは前処理済画像データとして符号化部200に供給される。
【0045】
解析部120及びフィルタ制御部130は、図3に示すように構成される。
【0046】
解析部120は、ブロック輝度差分算出部121、フレーム輝度差分算出部122、ブロック輝度レベル算出部123及び周辺平均差分算出部124を有する。ブロック輝度差分算出部121は、フレームに対して予め設定された単位ブロック(単位領域)毎に、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて輝度レベルの差分を表すブロック輝度差分絶対値cを式(1)に従って算出する。
【0047】
【数1】
【0048】
a(i,j):現フレームの位置(i.j)にある画素の画素値(輝度値)
b(i.j):前フレームの位置(i,j)にある画素の画素値(輝度値)
m:単位ブロックにおける横方向の画素総数
n:単位ブロックにおける縦方向の画素総数
【0049】
前記ブロック輝度差分絶対値cは、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて算出されることから、単位ブロックについての画像データの時間的な変化度合を表し得る。
【0050】
フレーム輝度差分算出部122は、現フレームの画像データaと前フレームの画像データbとに基づいて現フレームの輝度レベルと前フレームの輝度レベルとの差分を表すフレーム輝度差分絶対値dを式(2)に従って算出する。
【0051】
【数2】
【0052】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
b(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
p:1フレームにおける横方向の画素総数
q:1フレームにおける縦方向の画素総数
【0053】
前記フレーム輝度差分絶対値dは、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて算出されることから、フレーム全体の画像データの時間的な変化度合を表し得る。
【0054】
ブロック輝度レベル算出部123は、単位ブロック毎に、現フレームの画像データaに基づいてブロック輝度レベルeを式(3)に従って算出する。
【0055】
【数3】
【0056】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
m:単位ブロックにおける横方向の画素総数
n:単位ブロックにおける縦方向の画素総数
【0057】
周辺平均差分算出部124は、現フレームの画像データaに基づいて注目画素の輝度レベルと前記注目画素を中心とした所定矩形領域の平均的な輝度レベルとの差分(周辺平均輝度差分)gを各注目画素について式(4)に従って演算する。
【0058】
【数4】
【0059】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
a(x,y):注目画素の画素値(輝度値)
r:注目画素を中心とした所定矩形領域における横方向の画素総数
s:注目画素を中心とした所定矩形領域における縦方向の画素総数
【0060】
フィルタ制御部130は、フィルタ係数決定部131及びエッジ判定部132を有する。フィルタ係数決定部131は、解析部120におけるブロック輝度差分算出部121からのブロック輝度差分絶対値c及びフレーム輝度差分算出部122からのフレーム輝度差分絶対値dに基づいて各単位ブロックに適用すべきフィルタ係数を決定する。フィルタ係数決定部131は、前記ブロック輝度差分絶対値c及びフレーム輝度差分絶対値d、更に、ブロック輝度レベル算出部123からのブロック輝度レベルeに基づいて各単位ブロックに適用すべきフィルタ係数kを決定することもできる。
【0061】
フィルタ係数決定部131は、例えば、図4に示すテーブルに従って各単位ブロックに適用すべきフィルタ係数kを決定する。なお、図4に示すフィルタ係数k{k1,k0,k2}は、各画素(注目画素)の輝度値に対して両隣接画素の輝度値を考慮してなされるフィルタ処理でのフィルタ特性を表している。
【0062】
フレーム輝度差分絶対値dが所定の基準値A以上となる場合(d≧A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合以上となる場合、フレームに含まれる各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値に係わらず、常にフィルタ処理の効果が最小となる{12,231,12}に決定される。シーンチェンジ時に一瞬画面全体(フレーム全体)の先鋭度が低下し、次のフレームから先鋭度が元に戻ることがある。このような場合に、先鋭度の低下を更に助長させないようにするために、シーンチェンジが発生したとみなしうる前記フレーム輝度差分絶対値dが所定の基準値A以上となる場合には、前述したように各単位ブロックに適用されるフィルタ係数kはフィルタ処理の効果が最小(実質的にOFF)となるものに決められる。
【0063】
一方、フレーム輝度差分絶対値dが所定の基準値Aより小さくなる場合(d<A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合、フレームの各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値が大きいほどフィルタ処理の効果が大きくなるように決定される。具体的には、ブロック輝度差分絶対値cが49152≦cの範囲にある場合、フィルタ係数kが{47,161,47}(フィルタ処理の効果が最大となるフィルタ係数)に決定され、ブロック輝度差分絶対値cが32768≦c<49152の範囲にある場合、フィルタ係数kが{40,175,40}に決定され、ブロック輝度差分絶対値cが16384≦c<32768の範囲にある場合、フィルタ係数kが{32,191,32}に決定され、ブロック輝度差分絶対値cがそれ以外の範囲にある場合、フィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0064】
このようにブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化の大きい単位ブロックに対しては、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。
【0065】
エッジ判定部132は、解析部120における周辺平均輝度差分gに基づいて各画素が画像エッジであるか否かを判定し、その判定結果hを出力する。注目画素毎に前記式(4)に従って算出される周辺平均輝度差分gが大きいことは、注目画素の輝度レベルが周辺領域の輝度レベルと比べて突出して大きいまたは小さいことを表す。従って、エッジ判定部132は、例えば、前記周辺平均輝度差分gが所定の閾値以上であるか否かに基づいて注目画素が画像エッジであるか否かを判定する。
【0066】
フィルタ係数決定部131にて各単位ブロックに対して決定されたフィルタ係数k及びエッジ判定部132から出力された各画素についての画像エッジの判定結果hは、フィルタ処理の制御情報としてフィルタ140に供給される。フィルタ140は、入力される画像データに対して画素単位にその画素が属する単位ブロックについて決定されたフィルタ係数kを用いてフィルタ処理を行なう。また、画像エッジであるとの判定(h)がなされた画素については前記フィルタ係数kを用いたフィルタ処理を行うことなく、入力される画像データをそのまま出力する。そして、このようなフィルタ140によるフィルタ処理のなされた画像データが前処理済画像データとして符号化部200に順次供給される。
【0067】
このような前処理部100によれば、特に、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合(シーンチェンジでない場合)、ブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化が大きく、画像劣化の目立たない単位ブロックに対しては、フィルタ処理の効果がより大きくなるようなフィルタ係数を用いてそのフィルタ処理がなされるようになるので、画像劣化を目立たせることなく符号化すべき情報の量を低減させることができ、符号化部200による符号化効率を向上させることができるようになる。
【0068】
また、そのような単位ブロック内の画素であっても、特に画像エッジであるとの判定がなされた画素については、個別的にフィルタ処理をキャンセルさせて、入力画像データをそのまま前処理済画像データとして出力する。従って、画像エッジの鮮鋭度を低下させることなく、フィルタ処理を有効に行なうことができる。
【0069】
なお、フィルタ140は、画像エッジであるとの判定がなされ画素については、フィルタ処理を行なわないようにしているが、処理ブロック毎に決定されたフィルタ係数よりそのフィルタ処理の効果が小さくなるようなフィルタ係数(例えば、前記{12,231,12}より更にフィルタ処理の効果が小さくなるフィルタ係数)をその画像エッジであるとの判定がなされた画素に適用することも可能である。この場合、エッジ判定部132からの判定結果hはフィルタ係数決定部130に供給され、フィルタ係数決定部130がその判定結果に基づいてフィルタ係数を決定する。
【0070】
フィルタ係数決定部131は、例えば、図5に示すテーブルに従って、フィルタ係数kを決定することもできる。この場合、前記ブロック輝度差分絶対値c及びフレーム輝度差分絶対値dに加えてブロック輝度レベル算出部123からのブロック輝度レベルeを考慮して各単位ブロックに適用すべきフィルタ係数kを決定している。
【0071】
フレーム輝度差分絶対値dが所定の基準値A以上となる場合(d≧A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合以上となる場合、ブロック輝度差分絶対値c及びブロック輝度レベルeの値に係わらず、各単位ブロックに適用されるフィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0072】
一方、フレーム輝度差分絶対値dが基準値Aより小さくなる場合(d<A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合、フレームの各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値が大きいほど、または、ブロック輝度レベルeの値が小さいほど、フィルタ処理の効果が大きくなるように決定される。具体的には、ブロック輝度差分絶対値cが49152≦cの範囲にある場合またはブロック輝度レベルeがe<16384の範囲にある場合には、フィルタ係数kが{47,161,47}(フィルタ処理の効果が最大となるフィルタ係数)に決定され、ブロック輝度差分絶対値cが32768≦c<49152の範囲にある場合またはブロック輝度レベルeが16384≦e<32768の範囲にある場合には、フィルタ係数kが{40,175,40}に決定され、ブロック輝度差分絶対値cが16384≦c<32768の範囲にある場合またはブロック輝度レベルeが32768≦e<49152の範囲にある場合には、フィルタ係数kが{32,191,32}に決定され、ブロック輝度差分絶対値c及びブロック輝度レベルeがそれ以外の範囲にある場合、フィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0073】
この場合、前述した例(図4参照)と同様に、ブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化の大きい単位ブロックに対しては、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。更に、ブロック輝度レベルeの値が小さい単位ブロック、即ち、画像濃度の低い単位ブロックに対しても、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。従って、画像濃度が低く、画像劣化の目立たない単位ブロックに対しても、フィルタ処理の効果がより大きくなるようなフィルタ係数を用いてそのフィルタ処理がなされるようになるので、画像劣化を目立たせることなく符号化すべき情報の量を低減させることができ、符号化部200による符号化効率を向上させることができるようになる。
【0074】
前処理部100での前述したようなフィルタ処理にて得られた前処理済画像データを符号化する符号化部200は、図6に示すように構成される。この例では、符号化部200は、MPEGに従って前記前処理済画像データの符号化を行なう。
【0075】
図6において、符号化部200は、分割部201、DCT(Discrete Cosine Transform:離散コサイン変換)部202、量子化部203、逆量子化部204、逆DCT部205、メモリ部206、動き補償部207、動き検出部208、動き予測部209、VLC(Variable Length Code:可変長符号化)部210、減算部211及び加算部212を有している。分割部201は、前処理部100からの前処理済画像データを取り込み、各フレームの画像データを所定の処理単位ブロック(例えば、16×16画素のマクロブロック)に分割して処理単位ブロック毎の画像データを生成する。分割部21から出力される処理単位ブロック毎の画像データは、その処理単位部ブロックがフレーム間符号化すべきもの場合には減算器211に入力される。また、その処理単位ブロックがフレーム内符号化されるべきものである場合、分割部201から出力される画像データがDCT部202に入力される。
【0076】
減算部211は、フレーム間符号化すべき処理単位ブロックの画像データを取り込む。そして、減算部211はその処理単位ブロックの画像データから動き補償部207にて後述するように生成された予測参照画像データを差し引いて、予測誤差データを出力する。DCT部202は、分割部201から出力された処理単位ブロックの画像データ及び減算部211から出力された予測誤差データに対して二次元離散コサイン変換を行なう。
【0077】
量子化部203は、DCT部202での二次元離散コサイン変換により得られた処理単位ブロックの画像データ及び予測誤差データを量子化する。VLC部25は、量子化された処理単位ブロックの画像データ及び予測誤差データを可変長変換して符号化画像データを生成する。
【0078】
逆量子化部204は、量子化部203にて得られた量子化済みの画像データ及び予測誤差データに対して逆量子化を施す。逆DCT部205は、逆量子化部204での逆量子化にて得られたデータに対して二次元逆離散コサイン変換を施して予測誤差データまたは再構成データを生成する。加算部212は、逆DCT部205にて生成された予測誤差データと動き補償部207で得られた予測参照画像データとを加算して再構成画像データを生成する。メモリ部206は、加算部212または逆DCT部205にて生成された再構成画像データを記憶する。動き検出部208は、メモリ部206に記憶された再構成画像データを取り込む。動き検出部208は、分割部201から供給された非圧縮の処理単位ブロックの画像データと再構成画像データとを比較することにより、動きベクトルデータを検出する。動き補償部207は、動き検出部208にて検出された動きベクトルデータをもとに、再構成画像データから予測参照画像データを取り出す。この予測参照画像データは、前述したように、減算部211に供給される。動き予測部209は、予測動きベクトルデータを算出し、動き検出部208にて検出された動きベクトルデータから予測動きベクトルデータを差し引いて、動きベクトル差分データを算出する。
【0079】
前述したような構成の符号化部200により前処理部100からの前処理済み画像データの符号化がなされ、それにより得られた符号化画像データが順次符号化部200から出力される。
【0080】
上述したような符号化装置では、前処理部100において画像の時間的な変化度合や画像の明暗に対する画像劣化の知覚特性を考慮したフィルタ処理がなされることによって、そのフィルタ処理済みの画像データ(前処理済み画像データ)をMPEGに従って符号化する符号化部100での符号化効率を向上させることができる。
【0081】
前処理部100においてフィルタ係数kを決めるための処理単位となる単位ブロックと、符号化部200において符号化の処理単位となる処理単位ブロックとは同じ大きさのものであっても、異なる大きさのものであってもよい。
【0082】
また、前処理部100は、フィルタ処理装置として、例えば、1チップの半導体装置(LSI等)の独立した製品とすることもできる。
【0083】
前処理部100において、フレーム輝度差分絶対値dを特に考慮せずに、ブロック輝度差分絶対値cまたはブロック輝度レベルeに基づいて各単位ブロックに適用すべきフィルタ係数kを決定するようにしてもよい。更に、ブロック輝度差分絶対値cとブロック輝度レベルeとのマトリクス的な条件に基づいて各単位ブロックに適用すべきフィルタ係数kを決定することもできる。
【0084】
更に、単位ブロックについてのフィルタ特性を決定するために単位ブロック毎に検出すべき画像データの時間的な変化度合は、前記式(1)に従って算出されるブロック輝度差分絶対値cに限定されることはない。また、単位ブロックについてのフィルタ特性を決定するために単位ブロック毎に検出すべき輝度レベルは、前記式(3)に従って算出されるブロック輝度レベルeに限定されることはない。
【0085】
【発明の効果】
以上、説明したように、本願発明によれば、フレーム内の各所定単位領域の画像データの時間的な変化度合に応じて、あるいはフレーム内の各所定単位領域の輝度レベルに応じて適正なフィルタ特性にて各所定単位領域の画像データに対するフィルタ処理を行なうことができるようになり、画像の時間的な変化度合や映像の明暗に対する画像劣化の知覚特性を考慮して画像符号化装置での符号化効率を向上させることのできるフィルタ処理装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る符号化装置の基本構成を示すブロック図
【図2】図1に示す符号化装置における前処理部の構成を示すブロック図
【図3】図2に示す前処理部における解析部及びフィルタ制御部の構成を示すブロック図
【図4】フィルタ係数kを決定するためのアルゴリズムの一例を示す図
【図5】フィルタ係数kを決定するためのアルゴリズムの他の一例を示す図
【図6】図1に示す符号化装置における符号化部の構成を示すブロック図
【符号の説明】
100 前処理部
110 メモリ
120 解析部
121 ブロック輝度差分算出部
122 フレーム輝度差分算出部
123 ブロック輝度レベル算出部
124 周辺平均差分算出部
130 フィルタ制御部
131 エッジ判定部
132 フィルタ係数決定部
200 符号化部
201 分割部
202 DCT部
203 量子化部
204 逆量子化部
205 逆DCT部
206 メモリ
207 動き補償部
208 動き検出部
209 動き予測部
210 VLC部
【発明の属する技術分野】
本発明は、フィルタ処理装置に係り、詳しくは、動画像を表す符号化前の画像データに対してフィルタ処理を行なうフィルタ処理装置に関する。
【0002】
また、本発明は、そのようなフィルタ処理装置にて得られたフィルタ処理済みの画像データを所定のアルゴリズムに従って符号化するようにした画像符号化装置及び方法に関する。
【0003】
【従来の技術】
従来、動画像(映像)を表す画像データを符号化する前にその画像データに対してフィルタ処理を施すことによって符号化効率を向上させるようにした符号化装置が提案されている(例えば、特許文献1参照)。この従来の符号化装置では、所定のブロック単位に画像データの局所的変化度を算出し、その局所的変化度に応じてブロック単位にフィルタ特性を決定している。具体的には、画像データ(画素値)の局所的変化度の大きいブロックに対しては高周波成分の減衰度合いが大きくなるフィルタ係数を用いてフィルタ処理がなされる。濃度(画素値)の変化度合の大きい画像部分においては、その高周波成分を減衰させても画像劣化が目立たないことから、このようなフィルタ処理により、画像劣化を目立たせることなく符号化効率を向上させることができることとなる。
【0004】
【特許文献1】
特開平8−9370号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の符号化装置では、動画像(映像)の時間的な変化や画像の明暗に対する画像劣化の人間による知覚特性については何ら考慮されていない。例えば、時間的に変化する度合の大きい画像領域では、その画像劣化を知覚しにくい。また、暗い画像領域では、その画像劣化を知覚しにくい。
【0006】
本発明は、このような事情に鑑みてなされたもので、画像の時間的な変化度合や映像の明暗に対する画像劣化の知覚特性を考慮して画像符号化装置での符号化効率を向上させることのできるフィルタ処理装置を提供するものである。
【0007】
また、本発明は、そのようなフィルタ処理装置を用いた画像符号化装置及び方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明に係るフィルタ処理装置は、動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0009】
このような構成により、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0010】
前記フィルタ処理の効果は、フィルタ処理による画像データの平滑化、あるいは、画像データの周波数特性の調整等の程度であって、フィルタ処理前の画像データとフィルタ処理後の画像データとの変化度合に対応する。
【0011】
また、本発明に係るフィルタ処理装置は、前記単位領域画像変化検出手段が、現フレームと前フレームにおける対応する所定単位領域それぞれの画像データに基づいて輝度レベルの差分を算出する単位領域輝度差分算出手段を有する構成とすることができる。
【0012】
このような構成により、現フレームと前フレームにおける対応する所定単位領域それぞれの画像データに基づいて算出された輝度レベルの差分を用いて各所定単位領域の画像データの時間的な変化度合を表すことができることとなる。
【0013】
更に、本発明に係るフィルタ処理装置は、前記単位領域輝度差分算出手段が、前記所定単位領域それぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有する構成となる。
【0014】
このような構成により、現フレームと前フレームにおける所定単位領域それぞれの対応する画素の輝度値の差分絶対値の総和を用いて各所定単位領域の画像データの時間的な変化度合を表すことができることとなる。
【0015】
本発明に係るフィルタ処理装置は、フレーム全体の画像データの時間的な変化度合を検出するフレーム画像変化検出手段を有し、前記フィルタ制御手段が、前記フレーム画像変化手段にて検出される前記フレーム全体の画像データの時間的な変化度合と、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合とに基づいて前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を決定する構成とすることができる。
【0016】
このような構成により、フレーム全体の画像データの時間的な変化度合を考慮しつつ、そのフレーム内の各所定単位領域の画像データの時間的な変化度合に応じて適正なフィルタ特性にて各所定単位領域の画像データに対するフィルタ処理を行なうことができることとなる。
【0017】
また、本発明に係るフィルタ処理装置は、前記フレーム画像変化検出手段が、現フレームの輝度レベルと前フレームの輝度レベルとの差分を算出するフレーム輝度差分算出手段を有する構成とすることができる。
【0018】
このような構成により、現フレームの輝度レベルと前フレームの輝度レベルとの差分を用いてフレーム全体の画像データの時間的な変化度合を表すことができることとなる。
【0019】
更に、本発明に係るフィルタ処理装置は、前記フレーム輝度差分算出手段が、現フレームと前フレームそれぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有する構成とすることができる。
【0020】
このような構成により、現フレームと前フレームそれぞれの対応する画素の輝度値の差分絶対値の総和を用いてフレーム全体の画像データの時間的な変化度合を表すことができることとなる。
【0021】
本発明に係るフィルタ処理装置は、前記フィルタ制御手段が、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が所定基準値以上となる場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合に係わらず前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を所定特性に決定する構成とすることができる。
【0022】
このような構成により、シーンチェンジ等によりフレーム全体の画像データの変化度合が所定基準値以上となる場合には、そのフレーム内の各所定単位領域の画像データに対して統一的なフィルタ特性にてフィルタ処理を行なうことができることとなる。なお、前記所定特性は、実質的にフィルタ処理がなされないものであってもよい。
【0023】
また、本発明に係るフィルタ制御装置は、前記フィルタ制御手段が、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が前記所定基準値より小さい場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合が大きいほど前記所定単位領域の画像データに対するフィルタ処理の効果が大きくなるようにフィルタ特性を決定する構成とすることができる。
【0024】
このような構成により、シーンチェンジ等がなく、フレーム全体の画像データの変化度合が所定基準値より小さい場合には、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0025】
本発明に係るフィルタ処理装置は、動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0026】
このような構成により、輝度レベルが小さく画像劣化が知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。
【0027】
また、本発明のフィルタ処理装置は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、前記フィルタ制御手段が、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理を行わせない構成とすることができる。
【0028】
このような構成により、所定単位領域毎にフィルタ特性が決定される過程で、画像エッジであるとの判定のなされた画素に対してフィルタ処理がなされなくなるので、再生画像における画像エッジが不鮮明になることを防止することができるようになる。
【0029】
更に、本発明のフィルタ処理装置は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、前記フィルタ制御手段が、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理の効果が最小となるようにフィルタ特性を決定する構成とすることができる。
【0030】
このような構成により、所定単位領域毎にフィルタ特性が決定される過程で、画像エッジであるとの判定のなされた画素に対してはフィルタ処理の効果が最小となるようなフィルタ特性が決められるので、再生画像における画像エッジの鮮鋭度の低下を極力防止することができることとなる。
【0031】
本発明に係る画像符号化装置は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、前記前処理部は、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0032】
このような構成により、変化が大きく画像劣化を知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。そして、その所定単位領域毎に適正なフィルタ特性にてなされるフィルタ処理の結果得られた前処理済画像データが符号化されるので、画像劣化を極力抑えつつ効率的な符号化ができるようになる。
【0033】
また、本発明に係る画像符号化装置は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、前記前処理部は、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有する構成となる。
【0034】
このような構成により、輝度レベルが小さく画像劣化が知覚されにくい所定単位領域の画像データに対してより大きなフィルタ処理の効果が表れるようにフィルタ特性を制御することができることとなる。そして、その所定単位領域毎に適正なフィルタ特性にてなされるフィルタ処理の結果得られた前処理済画像データが符号化されるので、画像劣化を極力抑えつつ効率的な符号化ができるようになる。
【0035】
本発明に係る画像符号化方法は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、前記前処理ステップは、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出ステップと、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出ステップにて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有する構成となる。
【0036】
また、本発明に係る画像符号化方法は、動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、前記前処理ステップは、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出ステップと、前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出ステップにて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有する構成となる。
【0037】
更に、本発明に係る画像符号化方法は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、前記フィルタ制御ステップが、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理を行わせない構成とすることができる。
【0038】
また、本発明に係る画像符号化方法は、フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、
【0039】
前記フィルタ制御ステップは、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理の効果が小さくなるようなフィルタ特性を決定する構成とすることができる。
【0040】
【実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0041】
本発明の実施の形態に係る画像符号化装置は図1に示すように構成される。
【0042】
図1において、この画像符号化装置は、前処理部100及び符号化部200を有している。撮像装置から動画像(映像)を表す画像データが、例えば、1秒間に30フレームの割合で前処理部100に順次供給される。前処理部100は、入力画像データに対してフィルタ処理を行なって前処理済画像データを生成する。符号化部200は、前処理部100からの前処理済画像データを所定のアルゴリズム(例えば、MPEG)に従って符号化し、符号化画像データを出力する。
【0043】
前処理部100は、図2に示すように構成される。
【0044】
図2において、前処理部100は、メモリ110、解析部120、フィルタ制御部130及びフィルタ140を有する。メモリ110は、入力される1フレーム分の画像データを格納する。解析部120は、メモリ110に格納された前フレームの画像データbと現フレームの画像データaとを入力し、後述するような動画像の輝度レベルに関する特徴量c、d、e、gを算出する。フィルタ制御部130は、解析部120にて得られた特徴量c、d、e、gに基づいてフィルタ特性を制御するための制御情報k、hを生成する。フィルタ140は、フィルタ制御部130からの制御情報k、hに基づいて決められるフィルタ特性にて入力画像に対してフィルタ処理を行なう。フィルタ140にてフィルタ処理された画像データは前処理済画像データとして符号化部200に供給される。
【0045】
解析部120及びフィルタ制御部130は、図3に示すように構成される。
【0046】
解析部120は、ブロック輝度差分算出部121、フレーム輝度差分算出部122、ブロック輝度レベル算出部123及び周辺平均差分算出部124を有する。ブロック輝度差分算出部121は、フレームに対して予め設定された単位ブロック(単位領域)毎に、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて輝度レベルの差分を表すブロック輝度差分絶対値cを式(1)に従って算出する。
【0047】
【数1】
【0048】
a(i,j):現フレームの位置(i.j)にある画素の画素値(輝度値)
b(i.j):前フレームの位置(i,j)にある画素の画素値(輝度値)
m:単位ブロックにおける横方向の画素総数
n:単位ブロックにおける縦方向の画素総数
【0049】
前記ブロック輝度差分絶対値cは、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて算出されることから、単位ブロックについての画像データの時間的な変化度合を表し得る。
【0050】
フレーム輝度差分算出部122は、現フレームの画像データaと前フレームの画像データbとに基づいて現フレームの輝度レベルと前フレームの輝度レベルとの差分を表すフレーム輝度差分絶対値dを式(2)に従って算出する。
【0051】
【数2】
【0052】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
b(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
p:1フレームにおける横方向の画素総数
q:1フレームにおける縦方向の画素総数
【0053】
前記フレーム輝度差分絶対値dは、時間的に前後する現フレームと前フレームそれぞれの画像データa、bに基づいて算出されることから、フレーム全体の画像データの時間的な変化度合を表し得る。
【0054】
ブロック輝度レベル算出部123は、単位ブロック毎に、現フレームの画像データaに基づいてブロック輝度レベルeを式(3)に従って算出する。
【0055】
【数3】
【0056】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
m:単位ブロックにおける横方向の画素総数
n:単位ブロックにおける縦方向の画素総数
【0057】
周辺平均差分算出部124は、現フレームの画像データaに基づいて注目画素の輝度レベルと前記注目画素を中心とした所定矩形領域の平均的な輝度レベルとの差分(周辺平均輝度差分)gを各注目画素について式(4)に従って演算する。
【0058】
【数4】
【0059】
a(i,j):現フレームの位置(i,j)にある画素の画素値(輝度値)
a(x,y):注目画素の画素値(輝度値)
r:注目画素を中心とした所定矩形領域における横方向の画素総数
s:注目画素を中心とした所定矩形領域における縦方向の画素総数
【0060】
フィルタ制御部130は、フィルタ係数決定部131及びエッジ判定部132を有する。フィルタ係数決定部131は、解析部120におけるブロック輝度差分算出部121からのブロック輝度差分絶対値c及びフレーム輝度差分算出部122からのフレーム輝度差分絶対値dに基づいて各単位ブロックに適用すべきフィルタ係数を決定する。フィルタ係数決定部131は、前記ブロック輝度差分絶対値c及びフレーム輝度差分絶対値d、更に、ブロック輝度レベル算出部123からのブロック輝度レベルeに基づいて各単位ブロックに適用すべきフィルタ係数kを決定することもできる。
【0061】
フィルタ係数決定部131は、例えば、図4に示すテーブルに従って各単位ブロックに適用すべきフィルタ係数kを決定する。なお、図4に示すフィルタ係数k{k1,k0,k2}は、各画素(注目画素)の輝度値に対して両隣接画素の輝度値を考慮してなされるフィルタ処理でのフィルタ特性を表している。
【0062】
フレーム輝度差分絶対値dが所定の基準値A以上となる場合(d≧A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合以上となる場合、フレームに含まれる各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値に係わらず、常にフィルタ処理の効果が最小となる{12,231,12}に決定される。シーンチェンジ時に一瞬画面全体(フレーム全体)の先鋭度が低下し、次のフレームから先鋭度が元に戻ることがある。このような場合に、先鋭度の低下を更に助長させないようにするために、シーンチェンジが発生したとみなしうる前記フレーム輝度差分絶対値dが所定の基準値A以上となる場合には、前述したように各単位ブロックに適用されるフィルタ係数kはフィルタ処理の効果が最小(実質的にOFF)となるものに決められる。
【0063】
一方、フレーム輝度差分絶対値dが所定の基準値Aより小さくなる場合(d<A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合、フレームの各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値が大きいほどフィルタ処理の効果が大きくなるように決定される。具体的には、ブロック輝度差分絶対値cが49152≦cの範囲にある場合、フィルタ係数kが{47,161,47}(フィルタ処理の効果が最大となるフィルタ係数)に決定され、ブロック輝度差分絶対値cが32768≦c<49152の範囲にある場合、フィルタ係数kが{40,175,40}に決定され、ブロック輝度差分絶対値cが16384≦c<32768の範囲にある場合、フィルタ係数kが{32,191,32}に決定され、ブロック輝度差分絶対値cがそれ以外の範囲にある場合、フィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0064】
このようにブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化の大きい単位ブロックに対しては、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。
【0065】
エッジ判定部132は、解析部120における周辺平均輝度差分gに基づいて各画素が画像エッジであるか否かを判定し、その判定結果hを出力する。注目画素毎に前記式(4)に従って算出される周辺平均輝度差分gが大きいことは、注目画素の輝度レベルが周辺領域の輝度レベルと比べて突出して大きいまたは小さいことを表す。従って、エッジ判定部132は、例えば、前記周辺平均輝度差分gが所定の閾値以上であるか否かに基づいて注目画素が画像エッジであるか否かを判定する。
【0066】
フィルタ係数決定部131にて各単位ブロックに対して決定されたフィルタ係数k及びエッジ判定部132から出力された各画素についての画像エッジの判定結果hは、フィルタ処理の制御情報としてフィルタ140に供給される。フィルタ140は、入力される画像データに対して画素単位にその画素が属する単位ブロックについて決定されたフィルタ係数kを用いてフィルタ処理を行なう。また、画像エッジであるとの判定(h)がなされた画素については前記フィルタ係数kを用いたフィルタ処理を行うことなく、入力される画像データをそのまま出力する。そして、このようなフィルタ140によるフィルタ処理のなされた画像データが前処理済画像データとして符号化部200に順次供給される。
【0067】
このような前処理部100によれば、特に、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合(シーンチェンジでない場合)、ブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化が大きく、画像劣化の目立たない単位ブロックに対しては、フィルタ処理の効果がより大きくなるようなフィルタ係数を用いてそのフィルタ処理がなされるようになるので、画像劣化を目立たせることなく符号化すべき情報の量を低減させることができ、符号化部200による符号化効率を向上させることができるようになる。
【0068】
また、そのような単位ブロック内の画素であっても、特に画像エッジであるとの判定がなされた画素については、個別的にフィルタ処理をキャンセルさせて、入力画像データをそのまま前処理済画像データとして出力する。従って、画像エッジの鮮鋭度を低下させることなく、フィルタ処理を有効に行なうことができる。
【0069】
なお、フィルタ140は、画像エッジであるとの判定がなされ画素については、フィルタ処理を行なわないようにしているが、処理ブロック毎に決定されたフィルタ係数よりそのフィルタ処理の効果が小さくなるようなフィルタ係数(例えば、前記{12,231,12}より更にフィルタ処理の効果が小さくなるフィルタ係数)をその画像エッジであるとの判定がなされた画素に適用することも可能である。この場合、エッジ判定部132からの判定結果hはフィルタ係数決定部130に供給され、フィルタ係数決定部130がその判定結果に基づいてフィルタ係数を決定する。
【0070】
フィルタ係数決定部131は、例えば、図5に示すテーブルに従って、フィルタ係数kを決定することもできる。この場合、前記ブロック輝度差分絶対値c及びフレーム輝度差分絶対値dに加えてブロック輝度レベル算出部123からのブロック輝度レベルeを考慮して各単位ブロックに適用すべきフィルタ係数kを決定している。
【0071】
フレーム輝度差分絶対値dが所定の基準値A以上となる場合(d≧A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合以上となる場合、ブロック輝度差分絶対値c及びブロック輝度レベルeの値に係わらず、各単位ブロックに適用されるフィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0072】
一方、フレーム輝度差分絶対値dが基準値Aより小さくなる場合(d<A)、即ち、フレーム全体の輝度レベルの変化度合が基準の度合より小さくなる場合、フレームの各単位ブロックに適用されるフィルタ係数kは、ブロック輝度差分絶対値cの値が大きいほど、または、ブロック輝度レベルeの値が小さいほど、フィルタ処理の効果が大きくなるように決定される。具体的には、ブロック輝度差分絶対値cが49152≦cの範囲にある場合またはブロック輝度レベルeがe<16384の範囲にある場合には、フィルタ係数kが{47,161,47}(フィルタ処理の効果が最大となるフィルタ係数)に決定され、ブロック輝度差分絶対値cが32768≦c<49152の範囲にある場合またはブロック輝度レベルeが16384≦e<32768の範囲にある場合には、フィルタ係数kが{40,175,40}に決定され、ブロック輝度差分絶対値cが16384≦c<32768の範囲にある場合またはブロック輝度レベルeが32768≦e<49152の範囲にある場合には、フィルタ係数kが{32,191,32}に決定され、ブロック輝度差分絶対値c及びブロック輝度レベルeがそれ以外の範囲にある場合、フィルタ係数kは、フィルタ処理の効果が最小となる{12,231,12}に決定される。
【0073】
この場合、前述した例(図4参照)と同様に、ブロック輝度差分絶対値cの値が大きい単位ブロック、即ち、画像変化の大きい単位ブロックに対しては、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。更に、ブロック輝度レベルeの値が小さい単位ブロック、即ち、画像濃度の低い単位ブロックに対しても、フィルタ処理の効果がより大きくなるようにフィルタ係数が決められる。従って、画像濃度が低く、画像劣化の目立たない単位ブロックに対しても、フィルタ処理の効果がより大きくなるようなフィルタ係数を用いてそのフィルタ処理がなされるようになるので、画像劣化を目立たせることなく符号化すべき情報の量を低減させることができ、符号化部200による符号化効率を向上させることができるようになる。
【0074】
前処理部100での前述したようなフィルタ処理にて得られた前処理済画像データを符号化する符号化部200は、図6に示すように構成される。この例では、符号化部200は、MPEGに従って前記前処理済画像データの符号化を行なう。
【0075】
図6において、符号化部200は、分割部201、DCT(Discrete Cosine Transform:離散コサイン変換)部202、量子化部203、逆量子化部204、逆DCT部205、メモリ部206、動き補償部207、動き検出部208、動き予測部209、VLC(Variable Length Code:可変長符号化)部210、減算部211及び加算部212を有している。分割部201は、前処理部100からの前処理済画像データを取り込み、各フレームの画像データを所定の処理単位ブロック(例えば、16×16画素のマクロブロック)に分割して処理単位ブロック毎の画像データを生成する。分割部21から出力される処理単位ブロック毎の画像データは、その処理単位部ブロックがフレーム間符号化すべきもの場合には減算器211に入力される。また、その処理単位ブロックがフレーム内符号化されるべきものである場合、分割部201から出力される画像データがDCT部202に入力される。
【0076】
減算部211は、フレーム間符号化すべき処理単位ブロックの画像データを取り込む。そして、減算部211はその処理単位ブロックの画像データから動き補償部207にて後述するように生成された予測参照画像データを差し引いて、予測誤差データを出力する。DCT部202は、分割部201から出力された処理単位ブロックの画像データ及び減算部211から出力された予測誤差データに対して二次元離散コサイン変換を行なう。
【0077】
量子化部203は、DCT部202での二次元離散コサイン変換により得られた処理単位ブロックの画像データ及び予測誤差データを量子化する。VLC部25は、量子化された処理単位ブロックの画像データ及び予測誤差データを可変長変換して符号化画像データを生成する。
【0078】
逆量子化部204は、量子化部203にて得られた量子化済みの画像データ及び予測誤差データに対して逆量子化を施す。逆DCT部205は、逆量子化部204での逆量子化にて得られたデータに対して二次元逆離散コサイン変換を施して予測誤差データまたは再構成データを生成する。加算部212は、逆DCT部205にて生成された予測誤差データと動き補償部207で得られた予測参照画像データとを加算して再構成画像データを生成する。メモリ部206は、加算部212または逆DCT部205にて生成された再構成画像データを記憶する。動き検出部208は、メモリ部206に記憶された再構成画像データを取り込む。動き検出部208は、分割部201から供給された非圧縮の処理単位ブロックの画像データと再構成画像データとを比較することにより、動きベクトルデータを検出する。動き補償部207は、動き検出部208にて検出された動きベクトルデータをもとに、再構成画像データから予測参照画像データを取り出す。この予測参照画像データは、前述したように、減算部211に供給される。動き予測部209は、予測動きベクトルデータを算出し、動き検出部208にて検出された動きベクトルデータから予測動きベクトルデータを差し引いて、動きベクトル差分データを算出する。
【0079】
前述したような構成の符号化部200により前処理部100からの前処理済み画像データの符号化がなされ、それにより得られた符号化画像データが順次符号化部200から出力される。
【0080】
上述したような符号化装置では、前処理部100において画像の時間的な変化度合や画像の明暗に対する画像劣化の知覚特性を考慮したフィルタ処理がなされることによって、そのフィルタ処理済みの画像データ(前処理済み画像データ)をMPEGに従って符号化する符号化部100での符号化効率を向上させることができる。
【0081】
前処理部100においてフィルタ係数kを決めるための処理単位となる単位ブロックと、符号化部200において符号化の処理単位となる処理単位ブロックとは同じ大きさのものであっても、異なる大きさのものであってもよい。
【0082】
また、前処理部100は、フィルタ処理装置として、例えば、1チップの半導体装置(LSI等)の独立した製品とすることもできる。
【0083】
前処理部100において、フレーム輝度差分絶対値dを特に考慮せずに、ブロック輝度差分絶対値cまたはブロック輝度レベルeに基づいて各単位ブロックに適用すべきフィルタ係数kを決定するようにしてもよい。更に、ブロック輝度差分絶対値cとブロック輝度レベルeとのマトリクス的な条件に基づいて各単位ブロックに適用すべきフィルタ係数kを決定することもできる。
【0084】
更に、単位ブロックについてのフィルタ特性を決定するために単位ブロック毎に検出すべき画像データの時間的な変化度合は、前記式(1)に従って算出されるブロック輝度差分絶対値cに限定されることはない。また、単位ブロックについてのフィルタ特性を決定するために単位ブロック毎に検出すべき輝度レベルは、前記式(3)に従って算出されるブロック輝度レベルeに限定されることはない。
【0085】
【発明の効果】
以上、説明したように、本願発明によれば、フレーム内の各所定単位領域の画像データの時間的な変化度合に応じて、あるいはフレーム内の各所定単位領域の輝度レベルに応じて適正なフィルタ特性にて各所定単位領域の画像データに対するフィルタ処理を行なうことができるようになり、画像の時間的な変化度合や映像の明暗に対する画像劣化の知覚特性を考慮して画像符号化装置での符号化効率を向上させることのできるフィルタ処理装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る符号化装置の基本構成を示すブロック図
【図2】図1に示す符号化装置における前処理部の構成を示すブロック図
【図3】図2に示す前処理部における解析部及びフィルタ制御部の構成を示すブロック図
【図4】フィルタ係数kを決定するためのアルゴリズムの一例を示す図
【図5】フィルタ係数kを決定するためのアルゴリズムの他の一例を示す図
【図6】図1に示す符号化装置における符号化部の構成を示すブロック図
【符号の説明】
100 前処理部
110 メモリ
120 解析部
121 ブロック輝度差分算出部
122 フレーム輝度差分算出部
123 ブロック輝度レベル算出部
124 周辺平均差分算出部
130 フィルタ制御部
131 エッジ判定部
132 フィルタ係数決定部
200 符号化部
201 分割部
202 DCT部
203 量子化部
204 逆量子化部
205 逆DCT部
206 メモリ
207 動き補償部
208 動き検出部
209 動き予測部
210 VLC部
Claims (17)
- 動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、
フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有することを特徴とするフィルタ処理装置。 - 前記単位領域画像変化検出手段は、現フレームと前フレームにおける対応する所定単位領域それぞれの画像データに基づいて輝度レベルの差分を算出する単位領域輝度差分算出手段を有することを特徴とする請求項1記載のフィルタ処理装置。
- 前記単位領域輝度差分算出手段は、前記所定単位領域それぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有することを特徴とする請求項2記載のフィルタ処理装置。
- フレーム全体の画像データの時間的な変化度合を検出するフレーム画像変化検出手段を有し、
前記フィルタ制御手段は、前記フレーム画像変化手段にて検出される前記フレーム全体の画像データの時間的な変化度合と、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合とに基づいて前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を決定することを特徴とする請求項1乃至3のいずれかに記載のフィルタ処理装置。 - 前記フレーム画像変化検出手段は、現フレームの輝度レベルと前フレームの輝度レベルとの差分を算出するフレーム輝度差分算出手段を有することを特徴とする請求項4記載のフィルタ処理装置。
- 前記フレーム輝度差分算出手段は、現フレームと前フレームそれぞれの対応する画素の輝度値の差分絶対値の総和を算出する手段を有することを特徴とする請求項5記載のフィルタ処理装置。
- 前記フィルタ制御手段は、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が所定基準値以上となる場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合に係わらず前記所定単位領域の画像データに対するフィルタ処理におけるフィルタ特性を所定特性に決定することを特徴とする請求項4乃至6のいずれかに記載のフィルタ処理装置。
- 前記フィルタ制御手段は、前記フレーム画像変化検出手段にて検出されるフレーム全体の画像データの変化度合が前記所定基準値より小さい場合に、前記単位領域画像変化検出手段にて検出される前記所定単位領域の画像データの時間的な変化度合が大きいほど前記所定単位領域の画像データに対するフィルタ処理の効果が大きくなるようにフィルタ特性を決定することを特徴とする請求項7記載のフィルタ処理装置。
- 動画像を表す入力画像データに対してフィルタ処理を行なうフィルタ処理装置において、
フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有することを特徴とするフィルタ処理装置。 - フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、
前記フィルタ制御手段は、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理を行わせないことを特徴とする請求項1乃至9のいずれかに記載のフィルタ処理装置。 - フレームの各画素が画像エッジであるか否かを判定するエッジ判定手段を有し、
前記フィルタ制御手段は、前記エッジ判定手段にて画像エッジであると判定された画素に対するフィルタ処理の効果が小さくなるようなフィルタ特性を決定することを特徴とする請求項1乃至9のいずれかに記載のフィルタ処理装置。 - 動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、
前記前処理部は、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出手段と、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出手段にて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有することを特徴とする画像符号化装置。 - 動画像を表す入力画像データに対してフィルタ処理を行なう前処理部と、前記前処理手段にて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化部とを有し、
前記前処理部は、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出手段と、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出手段にて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御手段とを有することを特徴とする画像符号化装置。 - 動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、
前記前処理ステップは、フレーム内の所定単位領域毎に画像データの時間的な変化度合を検出する単位領域画像変化検出ステップと、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域画像変化検出ステップにて検出される前記画像データの時間的な変化度合が大きいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有することを特徴とする画像符号化方法。 - 動画像を表す入力画像データに対してフィルタ処理を行なう前処理ステップと、前記前処理ステップにて得られた前処理済画像データを所定のアルゴリズムに従って符号化する符号化ステップとを有し、
前記前処理ステップは、フレーム内の所定単位領域毎に画像データに基づいて輝度レベルを検出する単位領域輝度レベル検出ステップと、
前記所定単位領域の前記画像データに対するフィルタ処理におけるフィルタ特性を前記単位領域輝度レベル検出ステップにて検出される輝度レベルが小さいほど前記フィルタ処理の効果が大きくなるように決定するフィルタ制御ステップとを有することを特徴とする画像符号化方法。 - フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、
前記フィルタ制御ステップは、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理を行わせないことを特徴とする請求項14または15記載の画像符号化方法。 - フレームの各画素が画像エッジであるか否かを判定するエッジ判定ステップを有し、
前記フィルタ制御ステップは、前記エッジ判定ステップにて画像エッジであると判定された画素に対するフィルタ処理の効果が小さくなるようなフィルタ特性を決定することを特徴とする請求項14または15記載の画像符号化方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186840A JP2005026747A (ja) | 2003-06-30 | 2003-06-30 | フィルタ処理装置、画像符号化装置及び方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186840A JP2005026747A (ja) | 2003-06-30 | 2003-06-30 | フィルタ処理装置、画像符号化装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005026747A true JP2005026747A (ja) | 2005-01-27 |
Family
ID=34185865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003186840A Pending JP2005026747A (ja) | 2003-06-30 | 2003-06-30 | フィルタ処理装置、画像符号化装置及び方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005026747A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008081813A1 (ja) * | 2006-12-28 | 2008-07-10 | Nippon Telegraph And Telephone Corporation | 映像処理方法および装置、映像処理プログラム並びにプログラムを記録した記憶媒体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089370A (ja) * | 1994-06-22 | 1996-01-12 | Sanyo Electric Co Ltd | 画像符号化方法 |
JPH09107549A (ja) * | 1995-08-09 | 1997-04-22 | Sony Corp | 動画像符号化方法及び装置、並びに信号記録媒体 |
JPH1084545A (ja) * | 1996-06-28 | 1998-03-31 | Deutsche Thomson Brandt Gmbh | ディジタルビデオ信号の符号化方法及び装置 |
WO1999045713A1 (en) * | 1998-03-05 | 1999-09-10 | Matsushita Electric Industrial Co., Ltd. | Image coding method, image coding / decoding method, image coder, or image recording/reproducing apparatus |
JP2001231038A (ja) * | 2000-02-18 | 2001-08-24 | Sony Corp | 画像圧縮装置 |
JP2002077909A (ja) * | 2000-08-24 | 2002-03-15 | Nippon Telegr & Teleph Corp <Ntt> | 画像符号化装置および画像符号化方法およびその方法を記述したプログラムを記録した記録媒体 |
JP2002077917A (ja) * | 2000-06-13 | 2002-03-15 | Sony Corp | 画像データ処理装置及び画像データ処理方法 |
-
2003
- 2003-06-30 JP JP2003186840A patent/JP2005026747A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089370A (ja) * | 1994-06-22 | 1996-01-12 | Sanyo Electric Co Ltd | 画像符号化方法 |
JPH09107549A (ja) * | 1995-08-09 | 1997-04-22 | Sony Corp | 動画像符号化方法及び装置、並びに信号記録媒体 |
JPH1084545A (ja) * | 1996-06-28 | 1998-03-31 | Deutsche Thomson Brandt Gmbh | ディジタルビデオ信号の符号化方法及び装置 |
WO1999045713A1 (en) * | 1998-03-05 | 1999-09-10 | Matsushita Electric Industrial Co., Ltd. | Image coding method, image coding / decoding method, image coder, or image recording/reproducing apparatus |
JP2001231038A (ja) * | 2000-02-18 | 2001-08-24 | Sony Corp | 画像圧縮装置 |
JP2002077917A (ja) * | 2000-06-13 | 2002-03-15 | Sony Corp | 画像データ処理装置及び画像データ処理方法 |
JP2002077909A (ja) * | 2000-08-24 | 2002-03-15 | Nippon Telegr & Teleph Corp <Ntt> | 画像符号化装置および画像符号化方法およびその方法を記述したプログラムを記録した記録媒体 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008081813A1 (ja) * | 2006-12-28 | 2008-07-10 | Nippon Telegraph And Telephone Corporation | 映像処理方法および装置、映像処理プログラム並びにプログラムを記録した記憶媒体 |
JP4999865B2 (ja) * | 2006-12-28 | 2012-08-15 | 日本電信電話株式会社 | 映像処理方法および装置、映像処理プログラム並びにプログラムを記録した記憶媒体 |
US8467460B2 (en) | 2006-12-28 | 2013-06-18 | Nippon Telegraph And Telephone Corporation | Video processing method and apparatus, video processing program, and storage medium which stores the program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3748717B2 (ja) | 動画像符号化装置 | |
JP3258840B2 (ja) | 動画像符号化装置および領域抽出装置 | |
KR100797807B1 (ko) | 코딩 아티팩트 감소 방법 | |
KR101045199B1 (ko) | 화소 데이터의 적응형 잡음 필터링을 위한 방법 및 장치 | |
US6463100B1 (en) | Adaptive quantization control method | |
JP3678481B2 (ja) | 映像データ後処理方法 | |
KR100335055B1 (ko) | 압축 영상신호의 블럭현상 및 링현상 제거방법 | |
US7343045B2 (en) | Image information compression device | |
US7382932B2 (en) | Image processing apparatus and method, and computer program and computer-readable storage medium | |
EP1555832A2 (en) | Adaptive loop filtering for reducing blocking artifacts | |
JP2008533937A (ja) | Dctコード化されたビデオの品質を、オリジナルビデオシーケンスを用いて、もしくは用いずに客観評価する装置及び方法 | |
JP2001510311A (ja) | 符号化方式におけるオブジェクトベースのレート制御装置及びその方法 | |
JP2007235291A (ja) | 適応量子化装置及び適応量子化プログラム | |
JP3778960B2 (ja) | 動画像符号化方法及び装置 | |
JP2006509437A (ja) | デジタルビデオ処理に対する統一測定基準(umdvp) | |
EP1506525A1 (en) | System for and method of sharpness enhancement for coded digital video | |
JP2005167520A (ja) | 圧縮復元画像におけるモスキート・ノイズの削減方法及び装置 | |
JP5295089B2 (ja) | 画像符号化装置 | |
JP2005026747A (ja) | フィルタ処理装置、画像符号化装置及び方法 | |
JP2005303555A (ja) | 動画像符号化装置および動画像符号化方法 | |
JP2001346208A (ja) | 画像信号復号化装置および方法 | |
JPH07336684A (ja) | 画像信号復号化装置 | |
KR100304897B1 (ko) | 압축 영상신호의 고속 실시간 처리를 위한 블럭현상 및 링현상 제거방법 | |
JP2005295371A (ja) | ブロックノイズ除去装置 | |
JP6012307B2 (ja) | 動画像符号化装置及びその制御方法、並びに、プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060628 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080415 |