[go: up one dir, main page]

JP2005026374A - Metallized film capacitor and its manufacturing method - Google Patents

Metallized film capacitor and its manufacturing method Download PDF

Info

Publication number
JP2005026374A
JP2005026374A JP2003188760A JP2003188760A JP2005026374A JP 2005026374 A JP2005026374 A JP 2005026374A JP 2003188760 A JP2003188760 A JP 2003188760A JP 2003188760 A JP2003188760 A JP 2003188760A JP 2005026374 A JP2005026374 A JP 2005026374A
Authority
JP
Japan
Prior art keywords
metallized film
metal electrode
metallized
deposited metal
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188760A
Other languages
Japanese (ja)
Inventor
Takao Kaneyasu
高男 金安
Hiroyuki Kurosawa
浩之 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitsuko Electronics Corp
Original Assignee
Nitsuko Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Electronics Corp filed Critical Nitsuko Electronics Corp
Priority to JP2003188760A priority Critical patent/JP2005026374A/en
Publication of JP2005026374A publication Critical patent/JP2005026374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallized film capacitor which is small in size and has an excellent reliability, and to provide its manufacturing method. <P>SOLUTION: A metallized film 40 is such that an insulation margin 42 is formed in an end in the widthwise direction of a dielectric film 41, and an evaporated metal electrode 43 is formed in the remaining part of the dielectric film 41. Such metallized films 40 are laminated and wound with the insulation margin parts 42 to be on the opposite sides to form a wound body. Both ends of the wound body are thermal sprayed with metallicon metal, and an electrode leadout portion is formed to fabricate a capacitor element. The capacitor element is coated with an outer packaging material to be formed into a metallized film capacitor. The metallized film 40 has such a structure that a plurality of insulation grooves 44 are formed in the evaporated metal electrode 43 at a prescribed angle α with respect to the longitudinal direction to divide the evaporated metal electrode 43 into a plurality of portions in the longitudinal direction. In a winding starting portion and a winding finishing portion of the metallized film 40, an insulation portion 45 is formed by removing part of the evaporated metal electrode 43. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属化フィルムコンデンサの蒸着金属電極に複数の絶縁溝を設けて区分電極を形成して保安機能を具備させた金属化フィルムコンデンサ及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、この種の金属化フィルムコンデンサにおいて、信頼性を向上させ小型化する方法として、図1に示すように誘電体フィルム21の幅方向の端部に絶縁マージン部22を設け蒸着金属電極23を形成し、且つ該誘電体フィルムの長手方向に所定ピッチで絶縁溝24を形成し、蒸着金属電極を複数個に区分した金属化フィルム20を使用し、保安機能を付与することが知られている。
【0003】
通常このような金属化フィルムコンデンサのコンデンサ素子の製造において、巻き始めと巻き終わり部分で蒸着金属電極23に、図1に示すように2本の棒状電極51、52を所定間隔で接触配置し、電源53から所定の電圧を印加して、棒状電極51、52の間の蒸着金属電極23を飛ばし(以下、「バーンオフ」と記す)、絶縁部分を形成しているが、図示するように、この蒸着金属電極23を複数個に区分した金属化フィルム20は図1に示すように棒状電極51と52の間に絶縁溝24が位置するため、バーンオフにより絶縁部分を形成できないという問題がある。これを解決するため、従来下記のような方法が採用されている。
【0004】
図2は従来の金属化フィルムコンデンサの製造方法を説明するための図である。図2において、金属化フィルム10は誘電体フィルム11の幅方向の端部に絶縁マージン部12を設け連続した蒸着金属電極13を形成した構成である。金属化フィルム20は誘電体フィルム21の幅方向の端部に絶縁マージン部22を設け、且つ該誘電体フィルム11の長手方向に所定ピッチで絶縁溝24を形成し複数に区分された蒸着金属電極23を形成した構成である。
【0005】
上記2枚の金属化フィルム10、20を重ね合せて巻回するとき、その巻き始め、巻き終わり部分で、金属化フィルム10にバーンオフにより絶縁部14を形成している。このように巻き始め、巻き終わり部分にバーンオフにより絶縁部14を形成した金属化フィルム10と金属化フィルム20を重ね合わせて巻回し、巻回体の両端部にメタリコン金属を溶射して電極引出部を形成したコンデンサ素子を形成し、該コンデンサ素子に外装を施して金属化フィルムコンデンサとする。
【0006】
また、図3に示すように、誘電体フィルム31の幅方向の端部に絶縁マージン部32を設け蒸着金属電極33を形成し、且つ該誘電体フィルム31の長手方向に所定ピッチでT字状の絶縁溝34を形成した金属化フィルム30を2枚重ね合わせて巻回する際、巻き始めと巻き終わりに金属化フィルム30にバーンオフにより絶縁部35を形成し、この巻回体の両端部にメタリコン金属を溶射して電極引出部を形成したコンデンサ素子を形成し、該コンデンサ素子に外装を施して金属化フィルムコンデンサとする。
【0007】
図2に示す金属化フィルム10と20を重ね合わせた金属化フィルムコンデンサ製造方法では、金属化フィルムを重ね合せて巻回するときの巻き始め、巻き終わりで、金属化フィルム10の蒸着金属電極13をバーンオフにより除去し絶縁部14、35を形成できるが、この方法では、重ね合わせる両方の金属化フィルムの蒸着金属電極が絶縁溝で区分されていないため、十分な保安機能を付与できないという問題があった。また、図3に示す金属化フィルム30と30を重ね合わせた金属化フィルムコンデンサ製造方法では、2枚の金属化フィルム30、30とも蒸着金属電極33、33が複数個に区分されているが、蒸着金属電極を区分するために必要な型をフィルムの幅毎に別々用意する必要がある。
【0008】
【特許文献1】
特開平6−163317号公報
【特許文献2】
特開平7−142284号公報
【0009】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、小形で信頼性に優れた金属化フィルムコンデンサ及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の発明は、誘電体フィルムの幅方向の端部に絶縁マージン部を設け蒸着金属電極を形成してなる金属化フィルムを絶縁マージン部が反対になるように重ね合せて巻回し、該巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子とし、該コンデンサ素子に外装を施した金属化フィルムコンデンサにおいて、金属化フィルムは蒸着金属電極に長手方向に対し所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分した構成であり、金属化フィルムの巻き始め、巻き終わり部分に蒸着金属電極を除去した絶縁部分を形成したことを特徴とする。
【0011】
上記のように蒸着金属電極に長手方向に対し所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分した金属化フィルムを重ね合わせて巻回し、その巻き始めと巻き終わり部分に蒸着金属電極を除去した絶縁部分を形成したので、後に詳述するように保安機能の優れた金属化フィルムコンデンサとなる。
【0012】
請求項2に記載の発明は、誘電体フィルムの幅方向の端部に絶縁マージン部を設け蒸着金属電極を形成してなる金属化フィルムを絶縁マージン部が反対になるように重ね合せて巻回し、その後この巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子を製造し、その後該コンデンサ素子に外装を施す金属化フィルムコンデンサの製造方法において、蒸着金属電極に誘電体フィルムの長手方向に所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分してなる金属化フィルムを用い、金属化フィルムの巻き始め、巻き終わり部分で蒸着金属電極に電圧を印加してこの部分の蒸着金属電極を飛ばして絶縁部分を形成することを特徴とする。
【0013】
上記のように蒸着金属電極に誘電体フィルムの長手方向に所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分してなる金属化フィルムを重ね合わせて巻回し、その巻き始め、巻き終わり部分で蒸着金属電極に電圧を印加してこの部分の蒸着金属電極を飛ばして絶縁部分を形成し、巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子を製造するので、後に詳述するように保安機能の優れた金属化フィルムコンデンサを製造できる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づいて説明する。図4は本発明に係る金属化フィルムコンデンサに用いる金属化フィルムの一部を示す図である。金属化フィルム40は、誘電体フィルム41の幅方向の端部に絶縁マージン部42を設けて蒸着金属電極43を形成し、蒸着金属電極43に長手方向に対し所定の角度αで斜めに絶縁溝44を複数個形成して、蒸着金属電極43を長手方向に複数に区分した構成である。絶縁溝44は、該絶縁溝44で区分された蒸着金属電極43の少なくとも一つが図5に示すように、バーンオフ用の2本の棒状電極51、52を横切ることができる長さとする。即ち、該絶縁溝44の長さaが棒状電極51と棒状電極52の間隔Lより大きく(a>L)なるように、前記絶縁溝44の傾斜角度αを設定する。
【0015】
上記構成の金属化フィルム40を2枚、その絶縁マージン部42、42が反対になるように重ね合せて図6に示すように巻回して巻回体46を形成する。そして巻回体46と重ね合わせた金属化フィルム40、40の巻き始め、巻き終わり部分で棒状電極51と52の間に電源53から所定の電圧を印加し、蒸着金属電極43を飛ばし、即ちバーンオフして絶縁部分45を形成する(図5参照)。上記のように巻き始め、巻き終わり部分をバーンオフして絶縁部分45を形成した巻回体46の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子(図示せず)とし、該コンデンサ素子に外装を施した金属化フィルムコンデンサ(図示せず)とする。
【0016】
長手方向に対し所定角度α傾斜した絶縁溝44を設けて区分したバーンオフ可能な蒸着金属電極43を形成した金属化フィルム40を2枚、その絶縁マージン部42、42が反対になるように重ね合わせて巻回し、その巻き始めと巻き終わり部分にバーンオフにより蒸着金属電極43を除去した絶縁部分45を形成したので、後に実験結果で示すように保安機能が向上し、小型で信頼性の高い金属化フィルムコンデンサとなる。即ち、金属化フィルム40が2枚とも絶縁溝44で複数に区分された蒸着金属電極43を設けているので、図2の従来例に比較して、保安機能が2重に働き、より信頼性が向上する。また、図3の従来例では、2枚の金属化フィルム30、30とも蒸着金属電極33、33が複数個に区分されているが、蒸着金属電極33、33を区分するために必要な型をフィルムの幅毎に別々用意する必要があるが、本実施形態例では、1つの型で実現できる。
【0017】
【実施例1】
図7は完成した本実施例の金属化フィルムコンデンサと比較例の金属化フィルムコンデンサの試験結果を示す図である。ここで本実施例の金属化フィルムコンデンサのコンデンサ素子は、図8に示すように、厚さ4.4μmのポリエチレンテレフタレートフィルムからなる誘電体フィルム41に長手方向に対し所定の角度αで設けた絶縁溝44で区分された蒸着金属電極43を複数設けた構成の金属化フィルム40を2枚、その絶縁マージン部42が反対になるように重ね合わせて巻回し、その巻き始め、巻き終わり部分にバーンオフにより絶縁部分45を形成し、更に該巻回体46の両端部にメタリコン金属を溶射して電極引出部を形成した構成のコンデンサ素子である。そして該コンデンサ素子に所定の外装を施して本実施例の金属化フィルムコンデンサとした。なお、絶縁溝44の長さaを10mm以上(a≧10mm)とする。
【0018】
また、比較例の金属化フィルムコンデンサのコンデンサ素子は、図9に示すように、厚さ4.4μmのポリエチレンテレフタレートフィルムからなる誘電体フィルム11に蒸着金属電極13を複数設けた構成の金属化フィルム10と、厚さ4.4μmのポリエチレンテレフタレートフィルムからなる誘電体フィルム21に絶縁溝24で区分された蒸着金属電極23を長手方向に複数設けた構成の金属化フィルム20とをその絶縁マージン部12、22が反対になるように重ね合わせて巻回し、その巻き始め、巻き終わり部分に金属化フィルム10の蒸着金属電極13をバーンオフにより除去し絶縁部14を形成し、更に該巻回体26の両端部にメタリコン金属を溶射して電極引出部を形成した構成のコンデンサ素子である。そして該コンデンサ素子に所定の外装を施して比較例の金属化フィルムコンデンサとした。
【0019】
図7は、完成した上記構成の本実施例及び比較例の金属化フィルムコンデンサを85℃の高温雰囲気中において連続直流電圧(563V、600V、650V)を印加する試験をおこなった結果を示す。図示するように、印加電圧563Vでは本実施例及び比較例も共にショート発生数0/20、評価良(○)、印加電圧600Vでは本実施例ショート発生数0/20、評価良(○)、比較例ではショート発生数2/20、評価不良(×)、印加電圧650Vでは本実施例ショート発生数0/20、評価良(○)、比較例ではショート発生数4/20、評価不良(×)であり、比較例では印加電圧600Vでショートが発生するのにたいして、本実施例では印加電圧600V、650Vでも異常が見られない。即ち、本実施例ではその保安機能が著しく向上している。
【0020】
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。
【0021】
【発明の効果】
以上、説明したように各請求項に記載の発明によれば下記のような優れた効果が得られる。
【0022】
請求項1に記載の発明によれば、蒸着金属電極に長手方向に対し所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分した金属化フィルムを重ね合わせて巻回し、その巻き始めと巻き終わり部分に蒸着金属電極を除去した絶縁部分を形成したので、保安機能が向上し、小型で信頼性に優れた金属化フィルムコンデンサを提供できる。
【0023】
請求項2に記載の発明によれば、蒸着金属電極に誘電体フィルムの長手方向に所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分してなる金属化フィルムを重ね合わせて巻回し、その巻き始め、巻き終わり部分で蒸着金属電極に電圧を印加してこの部分の蒸着金属電極を飛ばして絶縁部分を形成し、巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子を製造するので、保安機能が向上し、小型で信頼性に優れた金属化フィルムコンデンサを製造できる。
【図面の簡単な説明】
【図1】従来の金属化フィルムの蒸着金属電極とバーンオフ電極の関係を示す図である。
【図2】従来の金属化フィルムフィルムコンデンサに用いる金属化フィルムの一部を示す図である。
【図3】従来の金属化フィルムコンデンサに用いる金属化フィルムの一部を示す図である。
【図4】本発明に係る金属化フィルムコンデンサに用いる金属化フィルムの一部を示す図である。
【図5】本発明に係る金属化フィルムコンデンサに用いる金属化フィルムの蒸着金属電極とバーンオフ電極の関係を示す図である。
【図6】本発明に係る金属化フィルムコンデンサの金属化フィルムの巻回方法を示す図である。
【図7】本発明に係る実施例の金属化フィルムコンデンサと比較例の金属化フィルムコンデンサの連続直流電圧印加試験結果を示す図である。
【図8】本発明に係る実施例の金属化フィルムコンデンサのコンデンサ素子の構成例を示す図である。
【図9】比較例の金属化フィルムコンデンサのコンデンサ素子の構成例を示す図である。
【符号の説明】
10 金属化フィルム
11 誘電体フィルム
12 絶縁マージン部
13 蒸着金属電極
14 絶縁部
20 金属化フィルム
21 誘電体フィルム
22 絶縁マージン部
23 蒸着金属電極
24 絶縁溝
30 金属化フィルム
31 誘電体フィルム
32 絶縁マージン部
33 蒸着金属電極
34 絶縁溝
35 絶縁部
40 金属化フィルム
41 誘電体フィルム
42 絶縁マージン部
43 蒸着金属電極
44 絶縁溝
45 絶縁部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metallized film capacitor in which a plurality of insulating grooves are provided in a vapor-deposited metal electrode of a metallized film capacitor to form a segmented electrode and have a security function, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in this type of metallized film capacitor, as a method for improving reliability and downsizing, an insulating margin part 22 is provided at the end in the width direction of the dielectric film 21 as shown in FIG. It is known to form a dielectric film 24 at a predetermined pitch in the longitudinal direction of the dielectric film, and use a metallized film 20 in which vapor-deposited metal electrodes are divided into a plurality of parts, thereby providing a security function. .
[0003]
Usually, in the manufacture of the capacitor element of such a metallized film capacitor, two rod-shaped electrodes 51 and 52 are arranged in contact with each other at a predetermined interval as shown in FIG. A predetermined voltage is applied from the power source 53 to blow off the vapor-deposited metal electrode 23 between the rod-shaped electrodes 51 and 52 (hereinafter referred to as “burn-off”) to form an insulating portion. As shown in FIG. 1, the metallized film 20 in which the vapor-deposited metal electrode 23 is divided into a plurality has an insulating groove 24 between the rod-shaped electrodes 51 and 52, so that there is a problem that an insulating portion cannot be formed by burn-off. In order to solve this problem, the following method has been conventionally employed.
[0004]
FIG. 2 is a diagram for explaining a conventional method of manufacturing a metallized film capacitor. In FIG. 2, the metallized film 10 has a configuration in which an insulating margin portion 12 is provided at an end in the width direction of a dielectric film 11 and a continuous vapor deposited metal electrode 13 is formed. The metallized film 20 is provided with an insulating margin portion 22 at an end portion in the width direction of the dielectric film 21, and an insulating groove 24 is formed at a predetermined pitch in the longitudinal direction of the dielectric film 11. 23 is formed.
[0005]
When the two metallized films 10 and 20 are overlapped and wound, the insulating part 14 is formed on the metallized film 10 by burn-off at the beginning and end of the winding. In this way, the metallized film 10 and the metallized film 20 in which the insulating part 14 is formed by burn-off are overlapped and wound at the winding end part, and the metallicon metal is thermally sprayed on both ends of the wound body to extract the electrode. A capacitor element is formed, and the capacitor element is coated to obtain a metallized film capacitor.
[0006]
Also, as shown in FIG. 3, an insulating margin 32 is provided at the end of the dielectric film 31 in the width direction to form a vapor-deposited metal electrode 33, and a T-shape is formed at a predetermined pitch in the longitudinal direction of the dielectric film 31. When the two metallized films 30 having the insulating grooves 34 are overlapped and wound, an insulating part 35 is formed by burn-off on the metallized film 30 at the start and end of winding, and both ends of the wound body are formed. A metallized metal is sprayed to form a capacitor element in which an electrode lead portion is formed, and the capacitor element is coated to form a metallized film capacitor.
[0007]
In the metallized film capacitor manufacturing method in which the metallized films 10 and 20 shown in FIG. 2 are overlapped, the deposited metal electrode 13 of the metallized film 10 at the start and end of winding when the metallized films are overlapped and wound. Can be formed by burn-off to form the insulating portions 14 and 35. However, in this method, the deposited metal electrodes of both metallized films to be overlaid are not separated by the insulating grooves, so that a sufficient security function cannot be provided. there were. Further, in the metallized film capacitor manufacturing method in which the metallized films 30 and 30 shown in FIG. 3 are superposed, the two metallized films 30 and 30 are divided into a plurality of vapor deposited metal electrodes 33 and 33, It is necessary to prepare separately the molds necessary for separating the deposited metal electrodes for each width of the film.
[0008]
[Patent Document 1]
JP-A-6-163317 [Patent Document 2]
JP-A-7-142284 [0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and an object thereof is to provide a metallized film capacitor that is small and excellent in reliability, and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is directed to a metallized film in which an insulating margin portion is provided at an end portion in the width direction of the dielectric film and a deposited metal electrode is formed, and the insulating margin portion is opposite. In a metallized film capacitor in which a metallized metal is thermally sprayed on both ends of the wound body to form an electrode lead part to form a capacitor element, and the capacitor element is provided with an exterior, a metallized film Is a configuration in which a plurality of insulating grooves are formed obliquely at a predetermined angle with respect to the longitudinal direction on the vapor-deposited metal electrode, and the vapor-deposited metal electrode is divided into a plurality of portions in the longitudinal direction. An insulating portion is formed by removing the deposited metal electrode.
[0011]
As described above, a plurality of insulating grooves are formed obliquely at a predetermined angle with respect to the longitudinal direction on the vapor-deposited metal electrode, and the metallized film in which the vapor-deposited metal electrode is divided into a plurality of lengths are overlapped and wound. Since the insulating part from which the vapor-deposited metal electrode is removed is formed at the beginning and the end of winding, a metallized film capacitor having an excellent security function is obtained as described in detail later.
[0012]
According to the second aspect of the present invention, a metallized film in which an insulating margin portion is provided at an end portion in the width direction of the dielectric film and a deposited metal electrode is formed is overlapped and wound so that the insulating margin portion is opposite. Then, metallized metal is sprayed on both ends of the wound body to form an electrode lead portion to manufacture a capacitor element, and then a metallized film capacitor manufacturing method for applying an exterior to the capacitor element. Using a metallized film formed by forming a plurality of insulating grooves obliquely at a predetermined angle in the longitudinal direction of the dielectric film and dividing the vapor-deposited metal electrode into a plurality of longitudinal directions, the winding start and end of the metallized film A voltage is applied to the vapor-deposited metal electrode at a portion, and the vapor-deposited metal electrode at this portion is skipped to form an insulating portion.
[0013]
As described above, a plurality of insulating grooves are formed obliquely at a predetermined angle in the longitudinal direction of the dielectric film on the vapor-deposited metal electrode, and the metallized film formed by dividing the vapor-deposited metal electrode into a plurality of longitudinal directions is superposed. Winding, applying voltage to the vapor deposition metal electrode at the beginning and end of winding to blow off the vapor deposition metal electrode of this part to form an insulating part, and spraying metallicon metal on both ends of the wound body to extract the electrode Since the capacitor element is manufactured by forming the portion, a metallized film capacitor having an excellent safety function can be manufactured as will be described in detail later.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a view showing a part of the metallized film used in the metallized film capacitor according to the present invention. The metallized film 40 is provided with an insulating margin portion 42 at the end in the width direction of the dielectric film 41 to form a vapor-deposited metal electrode 43, and the vapor-deposited metal electrode 43 is obliquely insulated at a predetermined angle α with respect to the longitudinal direction. In this configuration, a plurality of 44 are formed and the vapor-deposited metal electrode 43 is divided into a plurality in the longitudinal direction. The insulating groove 44 has such a length that at least one of the vapor-deposited metal electrodes 43 divided by the insulating groove 44 can traverse the two bar-shaped electrodes 51 and 52 for burn-off as shown in FIG. That is, the inclination angle α of the insulating groove 44 is set so that the length a of the insulating groove 44 is larger than the distance L between the rod-shaped electrode 51 and the rod-shaped electrode 52 (a> L).
[0015]
Two metallized films 40 having the above configuration are overlapped so that the insulation margin portions 42 and 42 are opposite to each other and wound as shown in FIG. 6 to form a wound body 46. Then, a predetermined voltage is applied from the power source 53 between the rod-shaped electrodes 51 and 52 at the beginning and end of winding of the metallized films 40 and 40 overlapped with the wound body 46, and the deposited metal electrode 43 is blown off, that is, burn-off. Thus, the insulating portion 45 is formed (see FIG. 5). As described above, a metallized metal is sprayed on both ends of the wound body 46 where the winding end portion is burned off to form the insulating portion 45 to form an electrode lead portion to form a capacitor element (not shown), The capacitor element is a metallized film capacitor (not shown) with an exterior.
[0016]
Two metallized films 40 on which vapor-deposited metal electrodes 43 that can be burned off are provided by providing insulating grooves 44 inclined by a predetermined angle α with respect to the longitudinal direction, and the insulating margins 42 and 42 are overlapped so as to be opposite to each other. Since the insulating portion 45 is formed by removing the vapor-deposited metal electrode 43 by burn-off at the winding start and winding end portions, the safety function is improved as will be shown later in the experimental results, and the metalization is small and highly reliable. It becomes a film capacitor. That is, since the two metallized films 40 are provided with the vapor-deposited metal electrode 43 divided into a plurality by the insulating grooves 44, the safety function is doubled and more reliable than the conventional example of FIG. Will improve. Further, in the conventional example of FIG. 3, the two metallized films 30, 30 are divided into a plurality of vapor-deposited metal electrodes 33, 33, but a mold necessary for dividing the vapor-deposited metal electrodes 33, 33 is selected. Although it is necessary to prepare for each width of the film, this embodiment can be realized by one type.
[0017]
[Example 1]
FIG. 7 is a diagram showing test results of the completed metalized film capacitor of this example and the comparative example of the metalized film capacitor. Here, as shown in FIG. 8, the capacitor element of the metallized film capacitor of this example is an insulating film provided at a predetermined angle α with respect to the longitudinal direction on a dielectric film 41 made of a polyethylene terephthalate film having a thickness of 4.4 μm. Two metallized films 40 each having a structure in which a plurality of vapor-deposited metal electrodes 43 divided by the grooves 44 are provided and wound so that the insulation margin portions 42 are opposite to each other, and are wound off at the start and end of winding. In this capacitor element, the insulating portion 45 is formed by the above, and the metal lead metal is thermally sprayed on both end portions of the wound body 46 to form the electrode lead portion. The capacitor element was provided with a predetermined exterior to obtain a metallized film capacitor of this example. The length a of the insulating groove 44 is 10 mm or more (a ≧ 10 mm).
[0018]
Further, as shown in FIG. 9, the capacitor element of the metallized film capacitor of the comparative example is a metallized film having a structure in which a plurality of deposited metal electrodes 13 are provided on a dielectric film 11 made of a polyethylene terephthalate film having a thickness of 4.4 μm. 10 and a metallized film 20 having a structure in which a plurality of vapor-deposited metal electrodes 23 divided by insulating grooves 24 are provided in a longitudinal direction on a dielectric film 21 made of a polyethylene terephthalate film having a thickness of 4.4 μm. , 22 are overlapped and wound so as to be opposite to each other, and the deposited metal electrode 13 of the metallized film 10 is removed by burn-off at the beginning and end of the winding to form an insulating portion 14. This is a capacitor element having a configuration in which metal lead metal is sprayed on both ends to form electrode lead portions. Then, the capacitor element was given a predetermined exterior to obtain a metallized film capacitor of a comparative example.
[0019]
FIG. 7 shows the results of a test in which continuous DC voltages (563 V, 600 V, and 650 V) were applied to the completed metallized film capacitors of the present example and the comparative example having the above-described configuration in a high-temperature atmosphere at 85 ° C. As shown in the figure, at an applied voltage of 563 V, both the present example and the comparative example had 0/20 short occurrences and good evaluation (◯), and at an applied voltage of 600 V, this example had 0/20 short occurrences and good evaluation (◯). In the comparative example, the number of shorts generated is 2/20, evaluation failure (×), the applied voltage is 650 V, the number of shorts generated in this example is 0/20, the evaluation is good (◯), and in the comparative example, the number of shorts is 4/20, the evaluation failure (× In the comparative example, no short circuit occurs at an applied voltage of 600 V, but in this embodiment, no abnormality is observed at applied voltages of 600 V and 650 V. That is, in this embodiment, the security function is remarkably improved.
[0020]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.
[0021]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0022]
According to the first aspect of the present invention, a plurality of insulating grooves are formed obliquely at a predetermined angle with respect to the longitudinal direction on the vapor-deposited metal electrode, and a metallized film in which the vapor-deposited metal electrode is divided into a plurality of longitudinal directions is stacked. Since the insulating part from which the vapor-deposited metal electrode is removed is formed at the start and end of the winding, a metallized film capacitor with improved safety function, small size and excellent reliability can be provided.
[0023]
According to the second aspect of the present invention, a plurality of insulating grooves are formed obliquely at a predetermined angle in the longitudinal direction of the dielectric film on the vapor-deposited metal electrode, and the vapor-deposited metal electrode is divided into a plurality of portions in the longitudinal direction. Metallized film is overlapped and wound, and voltage is applied to the vapor-deposited metal electrode at the beginning and end of winding to blow off the vapor-deposited metal electrode of this part to form an insulating part. Metallicons are formed at both ends of the wound body. Since the capacitor element is manufactured by spraying metal to form an electrode lead portion, the safety function is improved, and a metallized film capacitor having a small size and excellent reliability can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between a vapor deposited metal electrode and a burn-off electrode of a conventional metallized film.
FIG. 2 is a view showing a part of a metallized film used in a conventional metallized film film capacitor.
FIG. 3 is a view showing a part of a metallized film used in a conventional metallized film capacitor.
FIG. 4 is a view showing a part of a metallized film used in the metallized film capacitor according to the present invention.
FIG. 5 is a view showing a relationship between a vapor deposition metal electrode and a burn-off electrode of a metallized film used in the metallized film capacitor according to the present invention.
FIG. 6 is a view showing a winding method of a metallized film of the metallized film capacitor according to the present invention.
FIG. 7 is a diagram showing the results of a continuous DC voltage application test of a metallized film capacitor of an example according to the present invention and a metallized film capacitor of a comparative example.
FIG. 8 is a diagram illustrating a configuration example of a capacitor element of a metallized film capacitor according to an embodiment of the present invention.
FIG. 9 is a diagram showing a configuration example of a capacitor element of a metallized film capacitor of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Metallized film 11 Dielectric film 12 Insulation margin part 13 Deposition metal electrode 14 Insulation part 20 Metallized film 21 Dielectric film 22 Insulation margin part 23 Deposition metal electrode 24 Insulation groove 30 Metallized film 31 Dielectric film 32 Insulation margin part 33 Deposition metal electrode 34 Insulation groove 35 Insulation part 40 Metallized film 41 Dielectric film 42 Insulation margin part 43 Deposition metal electrode 44 Insulation groove 45 Insulation part

Claims (2)

誘電体フィルムの幅方向の端部に絶縁マージン部を設け蒸着金属電極を形成してなる金属化フィルムを絶縁マージン部が反対になるように重ね合せて巻回し、該巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子とし、該コンデンサ素子に外装を施した金属化フィルムコンデンサにおいて、
前記金属化フィルムは蒸着金属電極に長手方向に対し所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分した構成であり、
前記金属化フィルムの巻き始め、巻き終わり部分に前記蒸着金属電極を除去した絶縁部分を形成したことを特徴とする金属化フィルムコンデンサ。
An insulating margin is provided at the end of the dielectric film in the width direction, and a metallized film formed by forming a vapor-deposited metal electrode is overlapped and wound so that the insulating margin is opposite, and is wound on both ends of the wound body. In the metallized film capacitor in which the metallized metal is thermally sprayed to form the electrode lead portion to form a capacitor element,
The metallized film has a structure in which a plurality of insulating grooves are formed obliquely at a predetermined angle with respect to the longitudinal direction on the vapor-deposited metal electrode, and the vapor-deposited metal electrode is divided into a plurality of longitudinal directions,
A metallized film capacitor, wherein an insulating part from which the vapor-deposited metal electrode is removed is formed at the beginning and end of winding of the metallized film.
誘電体フィルムの幅方向の端部に絶縁マージン部を設け蒸着金属電極を形成してなる金属化フィルムを絶縁マージン部が反対になるように重ね合せて巻回し、その後この巻回体の両端部にメタリコン金属を溶射して電極引出部を形成してコンデンサ素子を製造し、その後該コンデンサ素子に外装を施す金属化フィルムコンデンサの製造方法において、
前記蒸着金属電極に前記誘電体フィルムの長手方向に所定の角度で斜めに絶縁溝を複数個形成して該蒸着金属電極を長手方向に複数に区分してなる金属化フィルムを用い、
前記金属化フィルムの巻き始め、巻き終わり部分で前記蒸着金属電極に電圧を印加してこの部分の蒸着金属電極を飛ばして絶縁部分を形成することを特徴とする金属化フィルムコンデンサの製造方法。
A metallized film in which an insulating margin is provided at the end in the width direction of the dielectric film to form a deposited metal electrode is overlapped and wound so that the insulating margin is opposite, and then both ends of the wound body In the method of manufacturing a metallized film capacitor, a metallized metal is thermally sprayed to form an electrode lead part to manufacture a capacitor element, and then the capacitor element is sheathed.
Using a metallized film formed by dividing a plurality of insulating grooves in the longitudinal direction by forming a plurality of insulating grooves obliquely at a predetermined angle in the longitudinal direction of the dielectric film on the deposited metal electrode,
A method of manufacturing a metallized film capacitor, wherein a voltage is applied to the vapor-deposited metal electrode at the beginning and end of winding of the metallized film, and the vapor-deposited metal electrode is skipped to form an insulating part.
JP2003188760A 2003-06-30 2003-06-30 Metallized film capacitor and its manufacturing method Pending JP2005026374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188760A JP2005026374A (en) 2003-06-30 2003-06-30 Metallized film capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188760A JP2005026374A (en) 2003-06-30 2003-06-30 Metallized film capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005026374A true JP2005026374A (en) 2005-01-27

Family

ID=34187183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188760A Pending JP2005026374A (en) 2003-06-30 2003-06-30 Metallized film capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005026374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035457A1 (en) 2017-08-15 2019-02-21 王子ホールディングス株式会社 Metallized film, metallized film roll, plate roll
CN116089880A (en) * 2023-02-11 2023-05-09 重庆大学 Method and system for classifying initial self-healing types of metallized film capacitors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035457A1 (en) 2017-08-15 2019-02-21 王子ホールディングス株式会社 Metallized film, metallized film roll, plate roll
KR20200035433A (en) 2017-08-15 2020-04-03 오지 홀딩스 가부시키가이샤 Metallized film, metallized film roll, plate roll
CN111033655A (en) * 2017-08-15 2020-04-17 王子控股株式会社 Metallized film, metallized film roll, and printing plate cylinder
CN111033655B (en) * 2017-08-15 2023-02-17 王子控股株式会社 Metallized film, metallized film roll, plate cylinder
US11817272B2 (en) 2017-08-15 2023-11-14 Oji Holdings Corporation Metallized film, metallized film roll, plate roll
CN116089880A (en) * 2023-02-11 2023-05-09 重庆大学 Method and system for classifying initial self-healing types of metallized film capacitors
CN116089880B (en) * 2023-02-11 2024-01-05 重庆大学 Method and system for classifying initial self-healing types of metallized film capacitors

Similar Documents

Publication Publication Date Title
JP4561832B2 (en) Metalized film capacitors and inverter smoothing capacitors for automobiles
CN107275084B (en) Metallized film capacitor, method of making the same, and metallized film laminate
EP1254468B1 (en) A capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
JPH03286514A (en) Film winding method for metallized film capacitor
JPS5833683B2 (en) capacitor device
JP2005026374A (en) Metallized film capacitor and its manufacturing method
CA1116706A (en) Electrical capacitor with a pleated metallized portion and a starting portion wound about the lead wires
JPH08288171A (en) Metallized film capacitors
US2891204A (en) Metallized electrical capacitor
JP2006286988A (en) Metallization film capacitor
JP2007103534A (en) Metallization film capacitor
JPH09283366A (en) Capacitor
JP6649096B2 (en) Film capacitors, connected capacitors, inverters and electric vehicles
JPH0758658B2 (en) Capacitor with self-protection function
JP2012074413A (en) Film capacitor, and method of manufacturing the same
JPH03211809A (en) Metallized film capacitor
JP2737896B2 (en) Metallized substrate for capacitors with security function
JPH0143853Y2 (en)
JPH09167716A (en) Metallized film capacitor and its manufacturing method
JPH1126281A (en) Metallized film capacitor
JPH11251183A (en) Film capacitor
JPH0227551Y2 (en)
JP2000260656A (en) Method of manufacturing film capacitor and film capacitor
JP2002324725A (en) Evaporated film for capacitor and capacitor using the same
JPH02139910A (en) High-voltage capacitor and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060530

A621 Written request for application examination

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825