[go: up one dir, main page]

JP2005023671A - Structure settlement reduction structure - Google Patents

Structure settlement reduction structure Download PDF

Info

Publication number
JP2005023671A
JP2005023671A JP2003190993A JP2003190993A JP2005023671A JP 2005023671 A JP2005023671 A JP 2005023671A JP 2003190993 A JP2003190993 A JP 2003190993A JP 2003190993 A JP2003190993 A JP 2003190993A JP 2005023671 A JP2005023671 A JP 2005023671A
Authority
JP
Japan
Prior art keywords
ground
layer
liquefied
surface layer
improvement body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190993A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hotta
洋之 堀田
Yutaka Katsura
豊 桂
Yasuhiro Shamoto
康広 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003190993A priority Critical patent/JP2005023671A/en
Publication of JP2005023671A publication Critical patent/JP2005023671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

【課題】本発明は、簡略な構成で、安価な構造物の沈下低減構造を提供する。
【解決手段】地盤1は、地震の発生に伴い液状化を生じやすい砂層等により構成される表層3と、表層3の直下に位置し、粘性土等の非液状化地盤により構成される中間層2を備えている。また、地盤1の液状化層により構成される表層3には、構造物4の鉛直同軸上に地盤改良体6が構築されている。地盤改良体6の形状は、少なくとも前記構造物4の構築面積を内包する平面視断面を有するとともに、地震等が発生して表層3が一様に液状化し、これに伴い一様な体積ひずみが生じて地盤1全体が表層3の層厚に比例して沈下した際にも、地盤改良体6の構築位置では、地盤1の沈下に伴う構造物4の沈下量を許容範囲内に収めることのできる層厚を有する大きさに成形されている。
【選択図】 図1
The present invention provides a structure for reducing settlement of an inexpensive structure with a simple configuration.
SOLUTION: The ground 1 includes a surface layer 3 composed of a sand layer or the like that is liable to be liquefied due to the occurrence of an earthquake, and an intermediate layer that is located immediately below the surface layer 3 and is composed of a non-liquefied ground such as viscous soil. 2 is provided. A ground improvement body 6 is constructed on the vertical axis of the structure 4 on the surface layer 3 constituted by the liquefied layer of the ground 1. The shape of the ground improvement body 6 has a plan view cross section including at least the construction area of the structure 4, and an earthquake or the like occurs to cause the surface layer 3 to be liquefied uniformly. Even when the entire ground 1 sinks in proportion to the layer thickness of the surface layer 3, the subsidence amount of the structure 4 accompanying the subsidence of the ground 1 can be kept within an allowable range at the construction position of the ground improvement body 6. It is formed into a size having a possible layer thickness.
[Selection] Figure 1

Description

【0001】
【発明の属する技術分野】
本発明は、構造物の沈下低減構造に関する。
【0002】
【従来の技術】
表層、あるいは表層の直下に位置する中間層が砂層等の液状化の可能性がある層により構成されている地盤に、構造物を構築すると、地震等の発生に伴い表層もしくは中間層に液状化が生じ、その後地盤が沈下して構造物に不具合が発生することが考えられる。そこで、例えば、特許文献1に示すように、液状化そのものの発生を防止する対策が取られている。
【0003】
【特許文献1】
特開平05−059717号公報(第2図参照)
【0004】
【発明が解決しようとする課題】
しかし、上述する構成は、液状化の発生を完全に抑制することが困難な場合もあり、また、構造物の規模や液状化を生じる層の層厚が大きくなるに従い、工期の長期化や工費が膨大になるなど、様々な課題が生じていた。
【0005】
上記事情に鑑み、本発明は、簡略な構成で、安価な構造物の沈下低減構造を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1記載の構造物の沈下低減構造は、表層、もしくは該表層の直下に位置する中間層の何れかが、地震時に液状化する可能性のある液状化層により構成されている地盤の、上部に構築される構造物の沈下低減構造であって、少なくとも構造物の構築面積を内包する平面視断面と、前記液状化層の液状化後に地盤が沈下した際にも、前記構造物を許容沈下量に抑えることのできる層厚を有する地盤改良体が、前記構造物の鉛直同軸上で、液状化層中に水平に構築されることを特徴としている。
【0007】
請求項2記載の構造物の沈下低減構造は、前記地盤改良体が、複数層に鉛直分割されて、前記液状化層内で所定の離間間隔をもって層状に構築されることを特徴としている。
【0008】
【発明の実施の形態】
以下、本発明に係る構造物の沈下低減構造を図1から図7に示す。本発明の構造物の沈下低減構造は、表層、もしくは表層の直下に位置する中間層の何れかが地震時に液状化する可能性のある液状化層により構成されている地盤において、液状化層の内方で、前記構造物の鉛直同軸上に、所定の大きさを有する地盤改良体を構築することにより、液状化による地盤沈下が生じた際にも、構造物が位置する領域における地盤沈下量を、他の領域と比較して低減させ、地盤沈下に伴う構造物の沈下量を許容範囲内に収めるものである。
【0009】
(第1の実施の形態)
図1に示すように、地盤1は、地震の発生に伴い液状化を生じやすい砂層等の液状化層により構成される表層3と、該表層3の直下に位置し、粘性土等の非液状化地盤により構成される中間層2を備えている。また、このような構成の地盤1の上部に構築されている構造物4は、地盤1に対して基礎5を介して支持されており、本実施の形態では、該基礎5に一般的な構造物の基礎として知られている基礎スラブが用いられているが、基礎5の構造は必ずしもこれにこだわるものではない。
【0010】
また、前記地盤1の表層3には、前記構造物4の鉛直同軸上に地盤改良体6が構築されており、該地盤改良体6は、地盤改良を行う際に一般に用いられるセメント系の固化材料、または液状化対策として用いられている水ガラス系薬液注入材料等により構成されている。これら地盤改良体6の形状は、少なくとも前記構造物4の構築面積を内包する平面視断面を有するとともに、地震等が発生して表層3が一様に液状化し、これに伴い一様な体積ひずみが生じて地盤1全体が表層3の層厚に比例して沈下した際にも、地盤改良体6の構築位置では、地盤1の沈下に伴う構造物4の沈下量を許容範囲内に収めることのできる層厚を有する大きさに成形されている。
【0011】
したがって、地盤改良体6を構築する際には、あらかじめ地震等の発生に伴う液状化による地盤1の沈下量を予測しておく必要がある。液状化による地盤1の沈下量の算定には、様々な予測手法が検討されているが、その一事例を、以下に詳述する。なお、液状化による地盤1の沈下量の算定に係る予測手法は、精度良く沈下量を予測できる手法であれば、これに限るものではない。
【0012】
地震等により生じる液状化の後に発生する液状化層の体積ひずみの大きさ(間隙比の変化)は、液状化時に発生した最大せん断ひずみの大きさγmaxに依存することが知られている(図3を参照)。このことから、液状化後の砂要素の残留体積ひずみの最大値(εvrmax は、(1)式で示すことができる。
【0013】
【数1】

Figure 2005023671
【0014】
ここで、砂の真の最小間隙比e min は(2)式で表すことができる。ここで、砂の最大、最小間隙比emin、emax は、最小・最大密度試験より求めることが望ましいが、経験的には、細粒分含有率Fより、各々(3)(4)の式を用いて求めることができる。
【0015】
【数2】
Figure 2005023671
【数3】
Figure 2005023671
【数4】
Figure 2005023671
【0016】
一方、液状化前の砂の間隙比eは、砂の最大、最小間隙比emin、emax より(5)式で表すことができる。なお、砂の相対密度Drは、原位置の砂の密度より求められるが、経験的には(7)式に示す地盤の補正N値Naを用いて(6)式より計算できる。
【0017】
【数5】
Figure 2005023671
【数6】
Figure 2005023671
【数7】
Figure 2005023671
【0018】
ところで、液状化時に発生する最大せん断ひずみは、有効応力解析等の手段により求めることができるが、簡易的には、地震時に地盤の各深さに発生する等価繰り返しせん断力比(τ/σ’)と補正N値より、図5に示す液状化時の最大せん断ひずみの予測チャートを用いて求めることができる。ここで、等価繰り返しせん断応力比(τ/σ’)は、(8)式より計算できる。
【0019】
【数8】
Figure 2005023671
【0020】
以上の手順により、液状化後の砂の残留体積ひずみの最大値(εvrmax を求められる。砂の細粒分含有率Fに応じて、補正N値Naと等価繰り返しせん断応力比(τ/σ’)から、容易に液状化後の砂の残留体積ひずみの最大値(εvrmax を読みとれるようにした、液状化後の最大残留体積ひずみの予測チャートを図6に示す。
したがって、液状化後の地盤1の沈下量Dは、(9)式に示すように、液状化後の砂の残留体積ひずみの最大値(εvrmax に液状化層の層厚Hを乗じることにより予測できる。
【0021】
【数9】
Figure 2005023671
【0022】
上述する方法により算定された、地震等の発生に伴う液状化により生じる地盤1の予測沈下量を考慮し、地盤1の沈下に伴う構造物4の沈下量を、許容範囲内に収めるように層厚を決定された地盤改良体6は、図1に示すように、前記表層3内で構造物4の直下に構築されている。しかし、その高さ位置は、必ずしもこれにこだわるものではなく、図2(a)及び(b)に示すように、前記構造物4と鉛直方向の同軸上に位置し、液状化層より構成される表層3中に配置されていれば、何れの高さ位置に配置されても良い。
【0023】
さらに、該地盤改良体6は、図2(c)に示すように、これを2層に鉛直分割した上で、所定の離間間隔をもって表層3中に層状に構築する構成としても良い。これらは、必ずしも2層に分割する必要はなく、足し合わせた層厚が、地盤1の沈下に伴う構造物4の沈下量を、許容範囲内に収めることのできる層厚を確保していれば、複数に鉛直分割して構築しても良い。
つまり、液状化層より構成される前記表層3中で、かつ前記構造物4の構築位置に対して鉛直方向で同軸上に位置していれば、地盤改良体6をどのように構築しても良い。
【0024】
このように、構造物4の沈下低減構造は、構造物4が構築されている地盤1の液状化層よりなる表層3の内方で、構造物4と鉛直方向で同軸上となる位置に、構造物4の構築面積を内包する平面視断面と、前記表層3の液状化後に地盤1が沈下した際にも、前記構造物4の沈下を許容沈下量に抑えることのできる層厚を有する地盤改良体6が、構築される構成である。
【0025】
これにより、地震等により表層3で一様な液状化が発生して体積ひずみが生じ、表層3の層厚に比例した量の地盤1の沈下が全域にわたり生じた場合にも、構造物4が位置する領域における地盤1の沈下量を、他の領域と比較して低減させることができるため、地盤1の沈下に伴う構造物4の沈下量を許容範囲内に収めることができるものである。
また、液状化層よりなる表層3の内方で、構造物4と鉛直方向で同軸上となる位置に、他の領域と比較して剛性の高い前記地盤改良体6が配置されていることから、該地盤改良体6を介して構造物4の鉛直荷重が均等化されるため、構造物4にとって有害な不同沈下を抑制できるものである。
【0026】
(第2の実施の形態)
第1の実施の形態では、表層3が液状化層により形成されている場合を例に取り、構造物4の沈下低減構造を詳述したが、本構造を適用する地盤1は、必ずしもこれにこだわるものではない。
例えば、図7(a)に示すように、非液状化層よりなる表層3と、該表層3の直下に位置し、地震の発生に伴い液状化を生じやすい砂層等の液状化層により構成される中間層2を備える地盤1上に、構造物4を構築する際にも、前記地盤改良体6を、構造物4の鉛直方向の同軸上で前記中間層2内に構築すればよい。
これら地盤改良体6は、前述した平面視断面及び層厚を満足していれば良く、また、その配置高さも、図7(a)から(c)に示すように、中間層2の内方であれば、上端部近傍、中間部、下端部近傍の何れでも良い。さらに図7(d)に示すように、地盤改良体6を複数層に鉛直分割して、所定の離間間隔をもって前記中間層2の内方に層状に配置しても良い。
【0027】
【発明の効果】
請求項1及び2記載の構造物の沈下低減構造は、表層、もしくは該表層の直下に位置する中間層の何れかが、地震時に液状化する可能性のある液状化層により構成されている地盤の、上部に構築される構造物の沈下低減構造であって、少なくとも構造物の構築面積を内包する平面視断面と、前記液状化層の液状化後に地盤が沈下した際にも、前記構造物を許容沈下量に抑えることのできる層厚を有する地盤改良体が、前記構造物の鉛直同軸上で、液状化層中に水平に構築される。
もしくは、前記地盤改良体が、複数層に鉛直分割されて、前記液状化層内で所定の離間間隔をもって層状に構築される。
これにより、地震等により液状化層に一様な液状化が発生して体積ひずみが生じ、液状化層の層厚に比例した量の地盤の沈下が全域にわたり生じた場合にも、構造物が位置する領域における地盤の沈下量を、他の領域と比較して低減させることができるため、地盤の沈下に伴う構造物の沈下量を許容範囲内に収めることが可能となる。
また、液状化層の内方で、構造物と鉛直方向で同軸上となる位置に、他の領域と比較して剛性の高い前記地盤改良体が配置されていることから、該地盤改良体を介して構造物の鉛直荷重が均等化されるため、構造物にとって有害な不同沈下を抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る地盤の沈下低減工法を示す図である。
【図2】本発明に係る地盤の沈下低減工法の他の事例を示す図である。
【図3】本発明に係る砂の相対圧縮指数の最大せん断ひずみ依存性を示すグラフである。
【図4】本発明に係る細粒分含有率とN値の補正係数を示すグラフである。
【図5】本発明に係る液状化時に発生する最大せん断ひずみの予測チャートを示すグラフである。
【図6】本発明に係る液状化後の最大体積ひずみ予測チャートを示す図である。
【図7】本発明に係る地盤の沈下低減工法の他の事例を示す図である。
【符号の説明】
1 地盤
2 中間層
3 表層
4 構造物
5 基礎
6 地盤改良体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure for reducing settlement of a structure.
[0002]
[Prior art]
If a structure is constructed on the ground, or a ground layer that is composed of layers that may be liquefied, such as sand layers, the surface layer or the intermediate layer located immediately below the surface layer will liquefy to the surface layer or intermediate layer due to the occurrence of an earthquake, etc. It is conceivable that the ground will sink and the structure will fail. Therefore, for example, as shown in Patent Document 1, measures are taken to prevent the occurrence of liquefaction itself.
[0003]
[Patent Document 1]
JP 05-059717 A (see FIG. 2)
[0004]
[Problems to be solved by the invention]
However, with the above-described configuration, it may be difficult to completely suppress the occurrence of liquefaction, and as the scale of the structure and the layer thickness of the layer that causes liquefaction increase, the construction period becomes longer and the construction cost increases. Various problems have arisen, such as an enormous volume.
[0005]
In view of the above circumstances, an object of the present invention is to provide an inexpensive structure for reducing settlement of structures with a simple configuration.
[0006]
[Means for Solving the Problems]
The structure for reducing settlement of a structure according to claim 1, wherein the surface layer, or an intermediate layer located immediately below the surface layer, is composed of a liquefied layer that may be liquefied during an earthquake, It is a structure for reducing settlement of a structure built on top, and it allows the structure even when the ground sinks after liquefaction of the liquefied layer, and a cross-sectional view including at least the construction area of the structure A ground improvement body having a layer thickness that can be suppressed to the subsidence amount is constructed horizontally in the liquefied layer on the vertical axis of the structure.
[0007]
The structure subsidence reducing structure according to claim 2 is characterized in that the ground improvement body is vertically divided into a plurality of layers, and is constructed in layers with a predetermined spacing in the liquefied layer.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A structure for reducing settlement of a structure according to the present invention is shown in FIGS. The structure settlement reduction structure of the present invention has a structure in which the surface layer or an intermediate layer located immediately below the surface layer is composed of a liquefied layer that may liquefy during an earthquake. The amount of ground subsidence in the region where the structure is located even when ground subsidence due to liquefaction occurs by constructing a ground improvement body having a predetermined size on the vertical axis of the structure inside In comparison with other regions, the amount of subsidence of the structure accompanying the subsidence falls within an allowable range.
[0009]
(First embodiment)
As shown in FIG. 1, the ground 1 is composed of a surface layer 3 composed of a liquefied layer such as a sand layer that is liable to be liquefied due to the occurrence of an earthquake, and a non-liquid state such as a viscous soil located immediately below the surface layer 3. It has an intermediate layer 2 composed of a chemical ground. Moreover, the structure 4 constructed | assembled on the upper part of the ground 1 of such a structure is supported via the foundation 5 with respect to the ground 1, and in this Embodiment, it is a structure common to this foundation 5 Although the basic slab known as the foundation of a thing is used, the structure of the foundation 5 does not necessarily stick to this.
[0010]
In addition, a ground improvement body 6 is constructed on the surface layer 3 of the ground 1 on the vertical axis of the structure 4. The ground improvement body 6 is a cement-based solidification generally used for ground improvement. It is comprised by the material or the water glass type chemical | medical solution injection material etc. which are used as a countermeasure against liquefaction. The shape of the ground improvement body 6 has a cross-sectional view including at least the construction area of the structure 4, and the surface layer 3 is liquefied uniformly due to an earthquake or the like, resulting in uniform volume strain. Even when the ground 1 sinks in proportion to the layer thickness of the surface layer 3, the subsidence amount of the structure 4 accompanying the subsidence of the ground 1 is within an allowable range at the construction position of the ground improvement body 6. It is formed into a size having a layer thickness that can be obtained.
[0011]
Therefore, when the ground improvement body 6 is constructed, it is necessary to predict the amount of settlement of the ground 1 due to liquefaction accompanying the occurrence of an earthquake or the like in advance. Various prediction methods have been studied for calculating the amount of settlement of the ground 1 due to liquefaction, and one example will be described in detail below. In addition, if the prediction method which concerns on calculation of the subsidence amount of the ground 1 by liquefaction is a method which can predict a subsidence amount accurately, it will not be restricted to this.
[0012]
It is known that the volume strain (change in the gap ratio) of the liquefied layer generated after liquefaction caused by an earthquake or the like depends on the magnitude γ max of the maximum shear strain generated during liquefaction ( (See FIG. 3). From this, the maximum value (ε vr ) max of the residual volume strain of the sand element after liquefaction can be expressed by equation (1).
[0013]
[Expression 1]
Figure 2005023671
[0014]
Here, the true minimum clearance ratio e * min of sand Can be expressed by equation (2). Here, sand maximum and minimum gap ratios e min , e max Is preferably obtained from the minimum / maximum density test, but empirically, it can be obtained from the fine particle content F C using the equations (3) and (4), respectively.
[0015]
[Expression 2]
Figure 2005023671
[Equation 3]
Figure 2005023671
[Expression 4]
Figure 2005023671
[0016]
On the other hand, the sand gap ratio e 0 before liquefaction is the maximum sand sand gap ratio e min , e max. (5). The relative density Dr of sand can be obtained from the density of the sand at the original position, but can be calculated from the equation (6) using the ground corrected N value Na shown in the equation (7).
[0017]
[Equation 5]
Figure 2005023671
[Formula 6]
Figure 2005023671
[Expression 7]
Figure 2005023671
[0018]
By the way, the maximum shear strain generated at the time of liquefaction can be obtained by means such as effective stress analysis. However, simply, the equivalent repeated shear force ratio (τ d / σ generated at each depth of the ground during an earthquake) It can obtain | require from the prediction chart of the maximum shear strain at the time of liquefaction shown in FIG. 5 from ' z ) and correction | amendment N value. Here, the equivalent repeated shear stress ratio (τ d / σ ′ z ) can be calculated from the equation (8).
[0019]
[Equation 8]
Figure 2005023671
[0020]
By the above procedure, the maximum value (ε vr ) max of the residual volume strain of the sand after liquefaction is obtained. Depending on the fine grain content F c of the sand, the maximum value (ε vr ) of the residual volume strain of the sand after liquefaction is easily obtained from the corrected N value Na and the equivalent repeated shear stress ratio (τ d / σ ' z ). FIG. 6 shows a prediction chart of the maximum residual volume strain after liquefaction so that max can be read.
Therefore, the subsidence amount D s of the ground 1 after liquefaction is obtained by setting the layer thickness H of the liquefied layer to the maximum value (ε vr ) max of the residual volume strain of the sand after liquefaction, as shown in Equation (9). Can be predicted by multiplying.
[0021]
[Equation 9]
Figure 2005023671
[0022]
In consideration of the predicted subsidence amount of the ground 1 caused by liquefaction accompanying the occurrence of an earthquake or the like calculated by the method described above, the subsidence amount of the structure 4 accompanying the subsidence of the ground 1 is set to be within an allowable range. As shown in FIG. 1, the ground improvement body 6 whose thickness is determined is constructed in the surface layer 3 immediately below the structure 4. However, the height position is not necessarily limited to this, and as shown in FIGS. 2 (a) and 2 (b), it is located on the same axis as the structure 4 and is composed of a liquefied layer. As long as it is disposed in the surface layer 3, it may be disposed at any height position.
[0023]
Further, as shown in FIG. 2 (c), the ground improvement body 6 may be configured to be divided into two layers and constructed in layers in the surface layer 3 with a predetermined separation interval. These do not necessarily need to be divided into two layers, so long as the combined layer thickness ensures a layer thickness that can keep the amount of settlement of the structure 4 accompanying the settlement of the ground 1 within an allowable range. Alternatively, it may be constructed by dividing vertically into a plurality.
In other words, the ground improvement body 6 can be constructed in any way as long as it is located in the surface layer 3 composed of a liquefied layer and is coaxial with the construction position of the structure 4 in the vertical direction. good.
[0024]
Thus, the settlement reduction structure of the structure 4 is located on the inner side of the surface layer 3 made of the liquefied layer of the ground 1 on which the structure 4 is constructed, at a position that is coaxial with the structure 4 in the vertical direction. A plan view section including the construction area of the structure 4 and a ground having a layer thickness that can suppress the settlement of the structure 4 to an allowable settlement even when the ground 1 sinks after the surface layer 3 is liquefied. The improved body 6 is constructed.
[0025]
As a result, even when liquefaction occurs uniformly in the surface layer 3 due to an earthquake or the like and volume distortion occurs, and the subsidence of the ground 1 in an amount proportional to the layer thickness of the surface layer 3 occurs over the entire region, the structure 4 Since the subsidence amount of the ground 1 in the located region can be reduced as compared with other regions, the subsidence amount of the structure 4 accompanying the subsidence of the ground 1 can be kept within an allowable range.
In addition, the ground improvement body 6 having a higher rigidity than the other regions is disposed at a position coaxial with the structure 4 in the vertical direction inside the surface layer 3 made of the liquefied layer. Since the vertical load of the structure 4 is equalized through the ground improvement body 6, it is possible to suppress the uneven settlement that is harmful to the structure 4.
[0026]
(Second Embodiment)
In the first embodiment, the case where the surface layer 3 is formed of a liquefied layer is taken as an example, and the settlement reduction structure of the structure 4 is described in detail. However, the ground 1 to which this structure is applied is not necessarily limited to this. It is not particular.
For example, as shown in FIG. 7 (a), a surface layer 3 made of a non-liquefied layer and a liquefied layer such as a sand layer which is located directly under the surface layer 3 and is liable to be liquefied due to the occurrence of an earthquake. When the structure 4 is constructed on the ground 1 having the intermediate layer 2, the ground improvement body 6 may be constructed in the intermediate layer 2 on the same axis in the vertical direction of the structure 4.
These ground improvement bodies 6 need only satisfy the above-mentioned cross-sectional view and layer thickness in plan view, and the arrangement height thereof is also inward of the intermediate layer 2 as shown in FIGS. 7 (a) to (c). If so, any of the vicinity of the upper end portion, the intermediate portion, and the vicinity of the lower end portion may be used. Further, as shown in FIG. 7 (d), the ground improvement body 6 may be vertically divided into a plurality of layers and arranged in layers inside the intermediate layer 2 with a predetermined spacing.
[0027]
【The invention's effect】
3. The structure for reducing settlement of structures according to claim 1 or 2, wherein either the surface layer or an intermediate layer located immediately below the surface layer is composed of a liquefied layer that may be liquefied during an earthquake. A structure for reducing settlement of a structure constructed at the top, wherein the structure includes a cross-sectional view including at least a construction area of the structure, and when the ground is submerged after liquefaction of the liquefied layer A ground improvement body having a layer thickness that can suppress the allowable subsidence amount is constructed horizontally in the liquefied layer on the vertical axis of the structure.
Alternatively, the ground improvement body is vertically divided into a plurality of layers, and is constructed in layers with a predetermined spacing in the liquefied layer.
As a result, even when liquefaction occurs uniformly in the liquefied layer due to an earthquake or the like, volume distortion occurs, and even when the ground subsidence in an amount proportional to the thickness of the liquefied layer occurs over the entire area, Since the amount of ground subsidence in the located region can be reduced as compared with other regions, the amount of subsidence of the structure accompanying the ground subsidence can be kept within an allowable range.
In addition, since the ground improvement body having higher rigidity compared to other regions is disposed at a position coaxial with the structure in the vertical direction inside the liquefaction layer, the ground improvement body is Accordingly, the vertical load of the structure is equalized, so that it is possible to suppress the uneven settlement that is harmful to the structure.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a ground subsidence reduction method according to the present invention.
FIG. 2 is a diagram showing another example of ground subsidence reduction construction method according to the present invention.
FIG. 3 is a graph showing the maximum shear strain dependence of the relative compression index of sand according to the present invention.
FIG. 4 is a graph showing the fine particle content and N value correction coefficient according to the present invention.
FIG. 5 is a graph showing a prediction chart of maximum shear strain generated during liquefaction according to the present invention.
FIG. 6 is a diagram showing a maximum volume strain prediction chart after liquefaction according to the present invention.
FIG. 7 is a diagram showing another example of ground subsidence reduction construction method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground 2 Intermediate layer 3 Surface layer 4 Structure 5 Foundation 6 Ground improvement body

Claims (2)

表層、もしくは該表層の直下に位置する中間層の何れかが、地震時に液状化する可能性のある液状化層により構成されている地盤の、上部に構築される構造物の沈下低減構造であって、
少なくとも構造物の構築面積を内包する平面視断面と、前記液状化層の液状化後に地盤が沈下した際にも、前記構造物を許容沈下量に抑えることのできる層厚を有する地盤改良体が、前記構造物の鉛直同軸上で、液状化層中に水平に構築されることを特徴とする構造物の沈下低減構造。
Either the surface layer or the intermediate layer located directly below the surface layer is a structure that reduces the settlement of the structure built on top of the ground that is composed of a liquefied layer that may liquefy during an earthquake. And
A cross-sectional view including at least a construction area of the structure, and a ground improvement body having a layer thickness that can suppress the structure to an allowable subsidence amount even when the ground sinks after liquefaction of the liquefied layer. A structure for reducing settlement of a structure, wherein the structure is constructed horizontally in the liquefied layer on the vertical axis of the structure.
請求項1に記載の構造物の沈下低減構造において、
前記地盤改良体が、複数層に鉛直分割されて、前記液状化層内で所定の離間間隔をもって層状に構築されることを特徴とする構造物の沈下低減構造。
In the structure for reducing settlement of a structure according to claim 1,
The subsidence reduction structure for a structure, wherein the ground improvement body is vertically divided into a plurality of layers and is built in layers with a predetermined spacing in the liquefied layer.
JP2003190993A 2003-07-03 2003-07-03 Structure settlement reduction structure Pending JP2005023671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190993A JP2005023671A (en) 2003-07-03 2003-07-03 Structure settlement reduction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190993A JP2005023671A (en) 2003-07-03 2003-07-03 Structure settlement reduction structure

Publications (1)

Publication Number Publication Date
JP2005023671A true JP2005023671A (en) 2005-01-27

Family

ID=34188722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190993A Pending JP2005023671A (en) 2003-07-03 2003-07-03 Structure settlement reduction structure

Country Status (1)

Country Link
JP (1) JP2005023671A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051486A (en) * 2005-08-19 2007-03-01 Railway Technical Res Inst Sheet pile combined direct foundation and its construction method
KR100794283B1 (en) * 2006-07-26 2008-01-14 한대천 Building ground construction method
JP2009062794A (en) * 2007-09-10 2009-03-26 Penta Ocean Construction Co Ltd Improved ground and ground improvement method
JP2014118794A (en) * 2012-12-19 2014-06-30 Ohbayashi Corp Evaluation method and design method for liquefaction countermeasure construction
JP2015017398A (en) * 2013-07-10 2015-01-29 安伸 ▲吉▼本 Vibration attenuating system and construction method for the same
JP2016113846A (en) * 2014-12-17 2016-06-23 清水建設株式会社 Finite sliding bearing, seismically isolated foundation structure, construction method of finite sliding bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051486A (en) * 2005-08-19 2007-03-01 Railway Technical Res Inst Sheet pile combined direct foundation and its construction method
KR100794283B1 (en) * 2006-07-26 2008-01-14 한대천 Building ground construction method
JP2009062794A (en) * 2007-09-10 2009-03-26 Penta Ocean Construction Co Ltd Improved ground and ground improvement method
JP2014118794A (en) * 2012-12-19 2014-06-30 Ohbayashi Corp Evaluation method and design method for liquefaction countermeasure construction
JP2015017398A (en) * 2013-07-10 2015-01-29 安伸 ▲吉▼本 Vibration attenuating system and construction method for the same
JP2016113846A (en) * 2014-12-17 2016-06-23 清水建設株式会社 Finite sliding bearing, seismically isolated foundation structure, construction method of finite sliding bearing

Similar Documents

Publication Publication Date Title
Ostadan Seismic soil pressure for building walls: An updated approach
JP2005023671A (en) Structure settlement reduction structure
Falsone et al. Effects of near-fault earthquakes on existing bridge performances
Navarrete et al. Influence of RC jacketing on the seismic vulnerability of RC bridges
Kolate et al. Analysis and design of RCC box culvert
CN113565920A (en) Vibration isolation system for weakening influence of vibration on precision equipment and determination method
JP2005083174A (en) Structure to prevent liquefaction of foundation ground of structure
JP4742331B2 (en) Liquefaction countermeasure structure
Sawamura et al. Experimental study on damage morphology and critical state of three-hinge precast arch culvert through shaking table tests
JP4370359B1 (en) Liquefaction prevention structure
JP2003020659A (en) Ground seismic isolation structure using soft ground
JP6529317B2 (en) Liquefaction countermeasure structure
JP5030299B2 (en) Liquefaction resistant structure of sandy ground
Žák et al. Local and equivalent stress intensity factors for tortuous cracks under remote mode II loading
JP3571619B2 (en) Building vibration level prediction method and building design method
Wang et al. Elastic stiffness of circular footings on clay overlying sand under general loading
JP6474753B2 (en) Construction method of ground vibration prevention structure
Kibboua et al. Comparison between fragility curves of RC bridge piers designed by old and recent Algerian codes
Kheyroddin et al. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story
JP2005105602A (en) Structure to prevent liquefaction of foundation ground of structure
EP3249127A3 (en) Pre-slab comprising at least one inclusion and method for manufacturing a floor using such a pre-slab
JP2013155559A (en) Liquefaction damage reducing structure for construction
Baghery Buckling of linear structures above the surface and/or underground
JP5282963B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP2005083175A (en) Structure to prevent liquefaction of foundation ground of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060301

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080513

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721