JP2005010377A - 光学位相差素子 - Google Patents
光学位相差素子 Download PDFInfo
- Publication number
- JP2005010377A JP2005010377A JP2003173466A JP2003173466A JP2005010377A JP 2005010377 A JP2005010377 A JP 2005010377A JP 2003173466 A JP2003173466 A JP 2003173466A JP 2003173466 A JP2003173466 A JP 2003173466A JP 2005010377 A JP2005010377 A JP 2005010377A
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- convex portion
- convex
- refractive index
- convex structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 99
- 239000011248 coating agent Substances 0.000 claims abstract description 132
- 238000000576 coating method Methods 0.000 claims abstract description 132
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 230000000737 periodic effect Effects 0.000 claims description 23
- 239000010408 film Substances 0.000 description 119
- 239000010410 layer Substances 0.000 description 42
- 230000014509 gene expression Effects 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 230000010287 polarization Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007567 mass-production technique Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Liquid Crystal (AREA)
- Optical Head (AREA)
Abstract
【課題】広い波長域の光に対して安定した位相遅延差を発生させることができる光学位相差素子を提供すること。
【解決手段】断面視略矩形状の凸部11が、設計波長より短い周期Tで配列された凹凸構造を上面に有し、且つ凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっている基板部10の凹凸構造上に、少なくとも基板部10のうち凸部11の上面に第1被覆膜が形成されるように凸部11より高い屈折率n2を有する被覆膜20を設ける。
【選択図】 図1
【解決手段】断面視略矩形状の凸部11が、設計波長より短い周期Tで配列された凹凸構造を上面に有し、且つ凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっている基板部10の凹凸構造上に、少なくとも基板部10のうち凸部11の上面に第1被覆膜が形成されるように凸部11より高い屈折率n2を有する被覆膜20を設ける。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、複屈折波長板又は光学位相板と呼ばれる光学位相差素子に関する。
【0002】
【従来の技術】
光学位相差素子は、入射光の偏光成分毎に異なる位相遅延を与える光学素子であって、光ディスクのピックアップ、光通信における光アイソレータ、偏光解析による表面分析装置、偏光の合成・分離を行う液晶表示素子など様々な分野に応用されており、これらの分野において、必要且つ不可欠なデバイスとなってきている。
【0003】
特に、光ディスクのピックアップなどに備えられる光学位相差素子においては、偏光ビームスプリッタと共に用いられることにより、光エネルギーの利用効率を高めることができ、同時に光アイソレータとしても機能する。CDやDVDでは、異なる波長(780nm及び650nm)のレーザー光が用いられるが、近年では、これらを1つの光学システムで実現する装置が提案されている。また、光通信における光アイソレータにおいても、光信号の多重化のため広い波長域の光を通し得る。したがって、光学位相差素子としては、広い波長域の光に対して安定した位相遅延差を発生させるものが求められてきている。
【0004】
光学位相差素子には、方解石、雲母、水晶のような自然界に存在する複屈折率結晶により形成されたものや、複屈折ポリマーにより形成されたもの、使用波長より短い人工的に周期構造を設けて形成されたものなどがある。
【0005】
複屈折率結晶のものとしては、結晶軸と平行にカットされた平板状のものがある。このカット面に対し垂直に入射した光は、常光線と呼ばれる光成分と、異常光線と呼ばれる光成分とに分けられる。常光線と異常光線とでは、伝播速度が異なるので、両光線が光学位相差素子内を伝播するにつれて、両光線間で位相遅延量に差が生じる。この位相遅延の差は光学位相差素子内の伝播距離に比例するので、光学位相差素子の厚さを制御することで、目標値となる位相遅延量の差が得られる。しかし、複屈折率結晶の光学位相差素子は、結晶を用いるため非常に高価であるという欠点がある。
【0006】
複屈折ポリマーのものでも、原理的には上述した複屈折率結晶のものと同じである。この場合は、光学位相差素子を構成するポリマーの平均的な分子方向とそれに垂直な方向との間で表れる複屈折率を利用する。このようなポリマーの偏った配列は、プラスティック材料に特定方向の力をかけながら薄板にするだけで製造することができるので、大きなサイズのものであっても安価に得ることができる。しかし、複屈折ポリマーのものは、光学的性質や耐久性が複屈折率結晶のものに比べて劣っており、高性能な光学素子への応用には不十分なものとなっている。
【0007】
人工的に周期構造を設けて形成されたものとしては、透明の誘電体基板上に周期的な凹凸構造が設けられたものがある。該凹凸構造の周期は使用波長より短くなっている。該凹凸構造に対し垂直に入射した光の伝播速度は、凹凸構造の溝方向に平行な偏光成分と、それに垂直な偏光成分との間で異なるので、両成分間で位相遅延差が生じる。この場合、この位相遅延差は凹凸構造の深さに比例する。したがって、この深さを制御することで、所望の位相遅延差が得られる。このような微細な周期的凹凸構造が設けられた光学位相差素子は、1983年にD.C. Flandersによって実現されている(非特許文献1参照)。
【0008】
上記凹凸構造(表面レリーフ格子)は、フォトレジストにより形成された格子パターンを用いて、電気鋳造により金型を製造しておき、該金型に熱可塑性樹脂を注入することにより製造される。即ち、成形による量産化が可能である。さらに、成形により製造される光学素子であれば、レンズのように曲面状に湾曲した表面を有するものであっても、該素子を構成する表面に上記のような周期的凹凸構造を組み込み、一つの光学位相差素子として製造することができる。
【0009】
しかしながら、上記凹凸構造を有する光学位相差素子においては、位相遅延差が凹凸構造の深さの他、材料の屈折率等に強く依存し、特に、材料の屈折率が高いほど複屈折が強くなる。ガラスやプラスティックなどの光学材料の屈折率は1.5程度なので、これらを用いて実用的な光学位相差素子を実現するには、非常に深い凹凸構造が必要となる。例えば、ガラス基板を使ってHe−Neレーザー光(波長λ=632.8 nm)に対応する位相遅延差1/4λの光学位相差素子を実現する場合、凹凸構造の周期を400nm、凸部の線幅を200nmとすると、深さが約1800 nmとなる。このような構造を射出成形やプレス成形によって製造すると、熱可塑性樹脂がうまく剥離されず、金型内に残留してしまうなどの問題が発生した。
【0010】
また、このような光学位相差素子を製造する方法として、誘電体基板に直接フォトレジストの格子パターンを形成し、これをマスクとしてエッチングする方法もある。しかしながら、この方法には、エッチングに耐えうる厚みを備えたレジストパターンの形成が困難である、紫外線露光装置や電子ビーム描画装置及びプラズマエッチング装置など高価な装置が必要となる、製造に長時間を要するなどの問題があった。
【0011】
また、屈折率の高い光学材料に凹凸構造を形成することにより、浅い凹凸構造でも大きな位相遅れを実現し得る光学位相差素子も考案されている。しかし、高屈折率の光学材料は成形加工に適さないため、生産性が悪く、コストが高くなるという欠点があった。
【0012】
この問題に対処すべく、基板誘電体に溝の深さを浅くした表面レリーフ格子を設け、前記基板誘電体より屈折率の高い誘電体材料を、表面レリーフ格子上に被覆或いは充填して形成された光学位相差素子が提案されている(特許文献1参照)。
【0013】
【非特許文献1】
ディー.シー.フランダース(D.C. Flanders)著,「人工的な異方性を有する誘電体としてのサブマイクロメーター周期のグレーティング(”Submicrometer periodicity gratings as artificial anisotropic dielectrics”)」,第42巻第6号、アプライド・フィジックス・レター(Applied Physics Letter),1983年3月15日,p.492〜494
【0014】
【特許文献1】
特公平7−99402号公報
【0015】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の光学位相差素子では、複屈折の強さが入射する波長に殆ど依存しないという問題があった。位相遅延差は複屈折の強さと波長の比に比例するので、その光学位相差素子に対して設計時に使用を想定した光の波長(以下、設計波長という)の近傍において十分な位相遅延差が生じるように構成されていても、設計波長の近傍から離れた他の波長域では十分な位相遅延差が得られないのが通常であった。
【0016】
本発明は、上記課題を解決するためになされたものであり、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる光学位相差素子を提供することを目的としている。
【0017】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る光学位相差素子は、断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、前記被覆膜が、少なくとも前記基板部のうち前記凸部の上面に形成された第1被覆膜を有し、前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0018】
上記光学位相差素子によれば、凸部占有率t/Tが0.6から0.9までのいずれかの値となっているので、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる、いわゆるアクロマティックな光学位相差素子を実現することができる。
【0019】
また、前記被覆膜が、前記基板部のうち、前記凹凸構造の凹部の底面に形成された第2被覆膜を有し、該第2被覆膜の前記凹部の底面からの高さD2と前記凸部の高さD1との差である被覆高差D2−D1が、設計波長をλ、前記第2被覆膜の屈折率をn2、0以上の任意の整数をNとしたとき、数式1で示される範囲内のいずれかの値となっていることが望ましい。
【0020】
2Nλ/4n2 <D2−D1<(2N+1)λ/4n2 … 数式1
上記光学位相差素子によれば、上記被覆高差D2−D1が上記数式1の範囲内となっているので、設計波長λに対して凹凸構造での反射を抑制することができる。
【0021】
また、本発明に係る他の光学位相差素子は、断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、前記被覆膜が、前記凸部の上面に形成された第1被覆膜と、前記凹凸構造の凹部の底面に形成された第2被覆膜と、前記凸部の側面に形成された第3被覆膜とを有し、前記第2被覆膜及び前記第3被覆膜の膜厚が、前記第1被覆膜の膜厚より薄くなっており、前記第1被覆膜が、前記凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て前記第1被覆膜の上端に至るまで周期方向の幅が滑らかに変化した形状となっており、前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.4から0.6までのいずれかの値となっており、前記最大幅t1と前記凹凸構造の周期Tとの比である第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0022】
上記光学位相差素子によれば、凹凸構造における凸部占有率t/Tが製造し易い0.4から0.6の値であっても、第1被覆膜占有率t1/Tを0.6から0.9までのいずれかの値とすることにより、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。
【0023】
また、前記被覆膜各部の幅が高さ方向で滑らかに変化した形状となるので、有効屈折率が徐々に変化する構造となり、反射光を抑制することができる。
【0024】
【発明の実施の形態】
以下、本発明に係る実施形態について、光学位相差素子として入射光λに対してλ/4の位相遅延差を発生させる1/4波長板を例に、添付図面を参照しつつ詳細に説明をする。
【0025】
図1は、本発明の第1の実施形態に係る光学位相差素子を模式的に示した断面図である。図示した断面構造は、紙面垂直方向に連続しており、畝状の表面形状が形成されている。
【0026】
図示のように、本発明の第1の実施形態に係る光学位相差素子100は、断面視略矩形状の凸部11が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部10と、凸部11の屈折率n1より高い屈折率n2を有し、前記凹凸構造上に形成された被覆膜20とを備えている。
【0027】
基板部10は、本実施形態では、石英ガラス(屈折率1.46)により構成されているが、プラスティックや光硬化性樹脂など透過率の高い他の誘電体基板で構成することもできる。
【0028】
基板部10の上面に形成された凹凸構造の周期Tは、使用する光の波長λより短くなっており、本実施形態では、凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっている。また、周期Tは300nm、又は180nmに設定し、He−Neレーザー光(波長633nm)及びGaAlAs半導体レーザー光(波長780nm)を設計波長として、これらの近傍の波長域を使用光として想定しているが、設計波長及び周期Tの値はこれに制限されない。
【0029】
このような凹凸構造は、コスト面及び生産性を考慮すると、射出成形やプレス成型などの量産技術により形成されることが望ましいが、格子パターンを形成したフォトレジストをマスクとしたエッチング処理によっても形成可能である。また、図1では、凸部11が基板部10の本体と同じ材質に形成されているが、基板上に誘電体層を形成し、これをエッチングによりパターニングするなどして、凸部11を基板部10の本体と異なる材質としてもよい。
【0030】
被覆膜20は、基板部10のうち凸部11の上面に形成された第1被覆膜21と、凹部12の上面に形成された第2被覆膜22とを有している。本実施形態では、第1被覆膜21と第2被覆膜22とを同じ条件で同時に形成しており、第1被覆膜21と第2被覆膜22とが同じ高さD2となっているが、凹凸の形状効果等により成膜条件に差が生じ、異なる高さとなっていてもよい。ただし、本実施形態では、凹部の底面からの高さである第2被覆膜22の高さD2は、凸部11の高さD1より低くなっている。
【0031】
被覆膜20は、本実施形態では、Si3N4(屈折率2.1)又はシリコン(Si)(屈折率3.5)により構成されているが、ZTO、TiO2など屈折率の高い他の誘電体基板で構成することもできる。被覆膜20は、電子ビーム蒸着法、スパッタ法、イオンビーム蒸着法などにより形成される。
【0032】
このように基板部10の凹凸構造上に基板部10とは屈折率の異なる膜を設けることにより、図1に示すような第1〜3の実効層からなる三層構造が形成される。第1の実効層(j=1)は、第1被覆膜21(屈折率n2)及び空気(屈折率1.0)、第2の実効層(j=2)は、凸部11(屈折率n1)及び空気(屈折率1.0)、第3の実効層(j=3)は、凸部11(屈折率n1)及び第2被覆膜22(屈折率n2)によってそれぞれ構成される。
【0033】
凹凸構造の周期Tは、上述のように入射光に対する回折波を発生させないくらいに短いので、第1〜3の実効層のそれぞれは、人工的な複屈折による光学的異方性を具備した薄膜と見なすことができる。凹凸構造の溝と平行な方向に振動する光波(TE波)と溝に垂直な方向に振動する光波(TM波)とを含む光が各実効層に入射すると、TE波とTM波とは、それぞれ異なる有効屈折率(実効屈折率)を有する。以下では、j(=1〜3)を第1〜3の実効層に対応させて、第1〜3の実効層におけるTE波、TM波の有効屈折率を、nTE(j), nTM(j)と表し、各実効層の光学的異方性により、透過光に対して、偏光方向とそれに垂直な方向とで異なる位相遅延が発生する詳細を説明する。
【0034】
まず、周期Tは、各実効層に垂直に入射した光の各実効層における光の波長λより短くなっており、この垂直入射時に0次光以外の回折光が発生しない。このような周期Tの条件は、凸部11の屈折率n1、被覆膜20の有効屈折率nTE(j), nTM(j)を用いて下記の数式11で与えられる。
【0035】
T < λ/max[n1,nTE(j), nTM(j)] … 数式11
被覆膜20の屈折率n2の値が大きい場合、必要な位相遅延差を発生させるための凹凸構造の深さは浅くするが、有効屈折率nTE(j), nTM(j)の値も大きくなるため、数式11に示すように、必要な周期Tは短くなるのがわかる。
【0036】
本実施形態では、周期Tが数式11を満足するので、凹凸構造に垂直に入射した光は高次の回折光を発生させず、透過した光は入射光と同じ方向に向けられる。凹凸構造内では、TE波の有効屈折率nTE(j)の値がTM波の有効屈折率 nTM(j)の値よりも大きくなっているので、TE波はTM波よりも遅い速度で凹凸構造を通過する。これにより、同位相で入射した光波は凹凸構造を通過する際に偏光方向とそれに垂直な方向とで異なる位相遅延を生じる。この際、TE波とTM波間との間で発生した位相遅延差δφは、数式13に示すようにTE波とTM波に対する2つの有効屈折率nTE(j)及び nTM(j)の差をδn(j)として、数式12で与えられる。1/4波長板では、その値は、0.5πラジアン、1/2波長板ではπラジアンとなる。
【0037】
δφ = 2π/λ(δn(1)D2+δn(2)(D1−D2)+δn(3)D2) … 数式12
δn(j) = nTE(j)− nTM(j) … 数式13
本実施形態のように、凹凸構造上に高屈折率の被覆膜20を形成して、δn(1)及びδn(3)の値が大きい三層構造とすることにより、数式12に示すように、凹凸構造の深さD1を深くしなくても大きな位相遅延差を得ることができる。
【0038】
実効層全体におけるTE波及びTM波に対する有効屈折率nTE(j)及び nTM(j)は、各実効層における有効屈折率nTE0(j)及び nTM0(j)を用いて、次式で表される。式中fは、凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tを略記したものである。
第1の実効層(j=1)
【0039】
【数14】
【0040】
【数15】
【0041】
第2の実効層(j=2)
【0042】
【数16】
【0043】
【数17】
【0044】
第3の実効層(j=3)
【0045】
【数18】
【0046】
【数19】
【0047】
数式14〜数式19を「Rytovの2次近似式」と呼ばれる式に適用することにより、数式20及び21に示す有効屈折nTE(j)及び nTM(j)を得ることができる(参考文献:S. M. Rytov, ”Electromagnetic Properties of Finely Stratified Medium, Journal of Experimental and Theoretical Physics USSR, vol.29 (1955) 605−616)。
【0048】
【数20】
【0049】
【数21】
【0050】
ここで、n3及びn4は、j=1の場合、n3=1、n4=n2、j=2の場合、n3=1.0、n4=n1、j=3の場合、n3=n2、n4=n1となる。
【0051】
図2(a)及び(b)は、図1に示した光学位相差素子において、凸部占有率t/Tを変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。光学位相差素子としては、凸部占有率t/Tの値が上述した0.6〜0.9の範囲を越える0.4及び0.5のものも比較のために示している。
【0052】
これらのグラフにおいて、凸部11の屈折率n1は、上述のように石英ガラスの屈折率の1.46である。また、図2(a)においては、周期Tを300nmとし、被覆膜20の屈折率n2が2.1となっており、図2(b)においては、周期Tを180nmとし、被覆膜20の屈折率n2が3.5となっている。
【0053】
図示のように、ここに示した光学位相差素子は、He−Neレーザー光の波長である633nmの入射光に対して90°(0.5πラジアン)の位相遅延差δφを発生させる1/4波長板となっているが、凸部占有率t/Tの値が小さいものでは、入射光の波長λが長くなるにつれて位相遅延差δφが減少している。
【0054】
凸部11の周期方向の幅tは凹部12の周期方向の幅と同じ幅に形成され、凸部占有率t/Tは0.5とされるのが一般的であるが、凸部占有率t/Tが0.5を越えるものではこの位相遅延差低下の傾向が改善されており、位相遅延差δφが入射光の波長に依存しない、又は、ほぼ依存しないようになっている。例えば、t/Tが0.5の場合、位相変調量は入射光の波長に強く依存しているが、t/T>0.7になると、位相遅延差δφは入射光の波長λの変化に対して余り変化しなくなっている。
【0055】
第1の実施形態に係る光学位相差素子100においては、凸部占有率t/Tが、0.6から0.9までのいずれかの値となっており、上記効果を奏する。したがって、位相遅延差δφの入射光の波長λに対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができ、1つの光学位相差素子を広い波長域の用途に適用することができる。
【0056】
尚、図2に示されているように、凸部占有率t/Tは、0.7から0.9までのいずれかの値となっていることがより望ましく、0.8から0.9までのいずれかの値となっていることがさらに望ましい。これにより、位相遅延差δφを入射光の波長λの変換に対してより変動しないものとすることができ、広い波長域の光に対してより安定した位相遅延差を発生させることができる。
【0057】
図3は、本発明の第2の実施形態に係る光学位相差素子を模式的に示した断面図である。
【0058】
図示のように、本発明の第2の実施形態に係る光学位相差素子100Aは、基板部10と、被覆膜20Aとを備えているが、基板部10については、第1の実施形態に示したものと同様であるので、その詳細な説明を省略する。
【0059】
本実施形態においても、被覆膜20Aは、基板部10のうち凸部11の上面に形成された第1被覆膜21Aと、凹部12の上面に形成された第2被覆膜22Aとを有し、第1の実施形態に示したものと同様に形成される。しかし、本実施形態では、凹部の底面からの高さである第2被覆膜22Aの高さD2は、凸部11の高さD1より高くなっている。
【0060】
本実施形態では、第2被覆膜22Aの凹部12の底面からの高さD2と凸部11の高さD1との差である被覆高差D2−D1が、設計波長をλ、第2被覆膜22Aの屈折率をn2、0以上の任意の整数をNとしたとき、数式1で示される範囲内のいずれかの値となっている。
【0061】
2Nλ/4n2 <D2−D1<(2N+1)λ/4n2 … 数式1
本実施形態においても、第1の実施形態の場合と同様に、図3に示すような第1〜3の実効層からなる三層構造が形成される。第1の実効層(j=1)が、第1被覆膜21A(屈折率n2)及び空気(屈折率1.0)、第3の実効層(j=3)が、凸部11(屈折率n1)及び第2被覆膜22A(屈折率n2)によって構成されているのは同様である。しかし、第2の実効層(j=2)は、第1被覆膜21A(屈折率n2)及び第2被覆膜22A(屈折率n2)、即ち被覆膜20Aだけで構成された均一な層となる。
【0062】
この第2の実効層には光学的異方性がなく、層の厚さが偏光成分間の位相遅延差に影響を与えないので、被覆高差D2−D1の値を調整しても1/4波長の位相遅延差を保持することができる。被覆高差D2−D1が数式1で示される範囲のいずれかの値となっているので、TE波及びTM波に対して界面での反射を打ち消すことができる。したがって、本実施形態に係る光学位相差素子100Aによれば、設計波長λに対して凹凸構造での反射を抑制することができる。以下、これについて説明する。
【0063】
光学位相差素子100Aに光が入射すると、第1〜3の実効層の上面となる界面1〜3、及び第3の実効層の下面となる界面4の4つの界面において反射が起こる。被覆膜20Aの屈折率n2の値が大きい程、この反射が強くなり、透過率が低下する。以下では、界面1に入射する光(電場)の振幅をA0、界面1からの反射光の振幅をB0とし、第1〜3の各実効層内を伝播する入射光の振幅をA1〜3、反射光の振幅をB 1〜3とし、界面4に入射する光の振幅をA4とする。
【0064】
界面1からの反射光の振幅B0は、各界面での反射の総和として生じるものであり、その値は各界面での反射率と界面間の光学距離とで決まる。特に、界面間の光学距離は光波の干渉効果に関係するので、各実効層の膜厚を調節することにより、干渉効果を制御して反射光を抑制することができる。反射光の強さを示す振幅B0は、多層膜干渉理論を用いて概算される。
【0065】
まず、界面1より上方では、入射と反射との光波が存在するので、界面1より上方における電場E0は数式22で表すことができる。各実効層における電場Ejは、同様に数式23で表すことができる。ここで、njの値はその実効層における屈折率であり、数式20及び数式21に示した有効屈折率nTE(j)及びnTM(j)となる。ただし、第2の実効層においてはn2となる。また、式中のzは、図3において基板部10の上面に対して垂直上向きに示されたz軸上の変位を表す。
【0066】
【数22】
【0067】
【数23】
【0068】
一方、各界面における電場Ej(zj)、及びその伝播方向の微分は連続でなければならないので、z=zjにおいて数式24及び25の境界条件が満足される。
【0069】
Ej(zj) = Ej−1(zj) … 数式24
dEj−1(z)/dz = dEj(z)/dz (z=zj)… 数式25
上記の数式22〜数式25を用いて、界面1からの反射光の振幅B0を、TE波に対しては数式26〜30、TM波に対しては数式31〜35のように計算することができる。通常、両者の振幅B0は異なる値となっている。
【0070】
【数26】
【0071】
【数27】
【0072】
【数28】
【0073】
【数29】
【0074】
【数30】
【0075】
【数31】
【0076】
【数32】
【0077】
【数33】
【0078】
【数34】
【0079】
【数35】
【0080】
上記数式26〜30、及び数式31〜35を用い、He−Neレーザー光(波長633nm)に適した1/4波長板である本実施形態に係る光学位相差素子100Aの場合を計算する。基板部10の屈折率n1は1.46、凹凸構造の周期Tは320 nm、凸部占有率t/Tは0.6、凸部11の高さD1は325 nmである。
【0081】
被覆膜20Aの屈折率n2が2.2の場合、1/4波長板とするためには、第1被覆膜21A及び第2被覆膜22Aの高さD2は325 nmであればよい。しかしながら、この場合、上述した界面での反射のために、TE波の透過率は87%、TM波の透過率は90%になってしまう。これに対し、本実施形態では、D1が325 nmであるのに対し、上記数式1を満足するようにD2は345 nmとしている。
【0082】
図4は、第2被覆膜22Aの高さD2を変化させたときの界面1からの反射光のTE波及びTM波に対する振幅B0の依存性を示したグラフである。
【0083】
図示のように、第2被覆膜22Aの高さD2が本実施形態である345 nmの場合、TE波とTM波の透過率が共に95%以上となり、反射を5%以下に抑制することができるのがわかる。
【0084】
図5は、本発明の第3の実施形態に係る光学位相差素子を模式的に示した断面図である。
【0085】
図示のように、本発明の第3の実施形態に係る光学位相差素子100Bは、基板部10Bと、被覆膜20Bとを備えている。
【0086】
基板部10Bについては、凸部11Bの周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.4から0.6までのいずれかの値となっている。その他の点では第1の実施形態と同様であるので、その詳細な説明を省略する。
【0087】
被覆膜20Bは、第1の実施形態の場合と同様に、凸部11Bより高い屈折率を有して凹凸構造上に形成されており、凸部11Bの上面に形成された第1被覆膜21Bと、凹凸構造の凹部12Bの底面に形成された第2被覆膜22Bとを有する。本実施形態では、さらに凸部11Bの側面に形成された第3被覆膜23Bを有する。
【0088】
図5に示したような構造は、スパッタリング法などの指向性の弱い成膜方法により、基板部10Bの凹凸構造上に被覆膜20Bを成長させることによって得られる。このような成膜方法では、凹部12Bの底面及び凸部11Bの側面に比べて、凸部の上面の方が膜が成長し易いので、第2被覆膜22B及び第3被覆膜23Bの膜厚は、第1被覆膜21Bの膜厚より薄くなっている。また、凸部の上面に形成される膜は成長と共に、その周期方向の幅が広くなり、最大幅t1を越えると狭くなって縮小している。したがって第1被覆膜21Bは、凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て第1被覆膜21Bの上端に至るまで周期方向の幅が滑らかに変化した形状となっている。最大幅t1と凹凸構造の周期Tとの比である第1被覆膜占有率t1/Tは、0.6から0.9までのいずれかの値となっている。
【0089】
本実施形態では、被覆膜20Bが曲面状に形成されているため厳密ではないが、第1の実施形態の場合と同様に、図5に示すような第1〜3の実効層からなる三層構造が形成されると近似することができる。即ち、第1の実効層(j=1)は、第1被覆膜21B(屈折率n2)及び空気(屈折率1.0)、第2の実効層(j=2)は、凸部11B(屈折率n1)及び空気(屈折率1.0)、第3の実効層(j=3)は、凸部11B(屈折率n1)及び第2被覆膜22B(屈折率n2)によって概ね構成される。
【0090】
したがって、位相遅延差δφについても、第1〜3の実効層に基づき、数式12の場合と同様に数式36で求めることができる。ここで、D2は、第1被覆膜21の高さ、D4は、第2被覆膜22Bの高さ、D3は、凸部11の高さD1と第2被覆膜22Bの高さD4との差をそれぞれ示している。
【0091】
【数36】
【0092】
本実施形態に係る光学位相差素子10Bにおいては、第1及び第3の実効層における位相遅延差δn(1)及びδn(3)に比べて、第2の実効層における位相遅延差δn(2)の値は小さい。また、第1被覆膜21の高さD2及び凸部11の高さD1と第2被覆膜22Bの高さD4との差D3と比べて、第2被覆膜22Bの高さD4の値は小さい。したがって、本実施形態に係る光学位相差素子10Bにおける位相遅延差においては、第1の実効層による複屈折効果が支配的となる。
【0093】
本実施形態に係る光学位相差素子100Bによれば、基板部10が屈折率の低い誘電体基板であっても、また、その上面に形成された凹凸構造における凸部占有率t/Tが製造し易い0.4から0.6の値であっても、第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となるように、屈折率の高い第1被覆膜21Bを凹凸構造上に形成することができる。したがって、第1の実施形態の場合と同様に、位相遅延差δφの入射光の波長λに対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。さらに、基板部10の凸部占有率t/Tを0.5前後とすることができるので、製造が容易となり、成型などに有利である。
【0094】
また、被覆膜20B各部の幅が高さ方向で滑らかに変化する形状となるので、有効屈折率が徐々に変化する構造となり、反射光を抑制することができる。
【0095】
図6は、図5に示した光学位相差素子を近似的に示した光学位相差素子の断面図であり、図7は、図6に示した光学位相差素子において、被覆膜の屈折率を変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【0096】
図6に示した光学位相差素子100Cは、位相遅延差δφの計算を容易にするために、図5に示した光学位相差素子100Bにおける被覆膜20Bを被覆膜20Cに近似したものとなっている。詳細には、第1被覆膜21Bを5つの第1被覆膜部22C1〜22C5に分割し、第2被覆膜22Bを第2被覆膜22Cに、第3被覆膜23Bを第3被覆膜23Cにそれぞれ近似している。
【0097】
尚、凸部占有率t/Tは0.5とし、第1被覆膜部22C1及び22C5の幅は0.7T、第1被覆膜部22C2及び22C4の幅は0.75T、第1被覆膜部22C3の幅は0.8Tとして、第1被覆膜占有率t1/Tを0.7から0.8まで変化させた。また、第3被覆膜23Cの幅は0.1Tとした。さらに、第2被覆膜22Cの高さD4を0.2D2とし、被覆膜20Cの屈折率には2.0、2.5及び3.0を適用し、凹凸構造の周期Tは320nm、250nm及び210nmとしている。
【0098】
図示のように、図2に示した第1の実施形態の場合と同様に、入射光の波長λが長くなるにつれて位相遅延差δφが減少する傾向が見られる。図中黒丸で示した水晶の位相板は従来の技術を示しており、本実施形態に係る光学位相差素子100Cによれば、これと比べて位相遅延差低下の傾向が改善されており、位相遅延差δφが入射光の波長に依存し難くなっている。
【0099】
以上本発明の実施形態について詳細に説明したが、本発明は上記実施形態に制限されるものではなく種々の変更が可能である。例えば、本発明は、入射光λに対してλ、λ/2など、λ/4以外の位相遅延差を発生させる波長板にも適用可能である。また、設計波長、周期T等についても種々の変更が可能である。
【0100】
【実施例】
光学位相差素子の一例として、He−Neレーザーに使用する1/4波長板を作成した。基板部10を1.46の低い屈折率を持つ石英ガラス基板で構成し、上面には周期Tが320nm、線幅tが140nm、深さD1が500nmの凹凸構造を作成した。次いで、スパッタ装置を用いて、被覆膜として屈折率n2が2.03のZn2SnO4(ZTO)を凹凸構造上に500nmの厚さで堆積した。
【0101】
図8(a)は、石英ガラス基板上に形成した凹凸構造の断面電子顕微鏡写真であり、図8(b)は、図8(a)に示した凹凸構造上にZTO膜を被覆させて形成した光学位相差素子表面の畝状構造の断面電子顕微鏡写真である。
【0102】
上記のようにして製造した光学位相差素子にHe−Neレーザー光(波長633nm)と
Ti:サファイアレーザー光(波長780nm)とを透過させて光学特性を測定した。TE波とTM 波との間の位相遅延差は、He−Neレーザー光では約86度であり、Ti:サファイアレーザー光では約78度であった。また、He−Neレーザー光でのTE波、TM波の透過率は、それぞれ90.6%及び88.2%であった。
【0103】
【発明の効果】
本発明に係る光学位相差素子は、上面に凹凸構造を有する基板部と、前記凹凸構造の凸部の上面に形成された屈折率の高い第1被覆膜を有し、凸部占有率t/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0104】
また、本発明に係る他の光学位相差素子は、上面に凹凸構造を有する基板部と、前記凹凸構造の凸部の上面に形成された第1被覆膜と、第1被覆膜より薄い凹部底面に形成された第2被覆膜と、前記凸部側面に形成された第3被覆膜とを有し、前記第1被覆膜が、前記凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て前記第1被覆膜の上端に至るまで周期方向の幅が滑らかに縮小した形状となっており、凸部占有率t/Tが0.4から0.6までのいずれかの値、第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0105】
これらの構造に基づき、本発明に係る光学位相差素子によれば、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。したがって、従来の光学位相差素子では実現できなかった広帯域の光学位相差素子を実現することができる。
【0106】
また、凹凸構造に被覆膜を形成した構造となっているので、製造が容易であり、特に凹凸構造に成形により製造することにより低価格を実現し量産性に優れている。また、成形製造により曲面状に湾曲したレンズや反射部材等の光学素子の表面に適用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図2】(a)及び(b)は、図1に示した光学位相差素子において、凸部占有率t/Tを変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【図3】本発明の第2の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図4】第2被覆膜の高さD2を変化させたときの界面1からの反射光のTE波及びTM波に対する振幅B0の依存性を示したグラフである。
【図5】本発明の第3の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図6】図5に示した光学位相差素子を近似的に示した断面図である。
【図7】図6に示した光学位相差素子において、被覆膜の屈折率を変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【図8】(a)は、石英ガラス基板上に形成した凹凸構造の断面電子顕微鏡写真であり、(b)は、(a)に示した凹凸構造上にZTO膜を被覆させて形成した光学位相差素子表面の畝状構造の断面電子顕微鏡写真である。
【符号の説明】
10、10B 基板部
11、11B 凸部
12、12B 凹部
20、20A、20B、20C 被覆膜
21、21A、21B、21C 第1被覆膜
22、22A、22B、22C 第2被覆膜
23B、23C 第3被覆膜
100、100A、100B、100C 光学位相差素子
【発明の属する技術分野】
本発明は、複屈折波長板又は光学位相板と呼ばれる光学位相差素子に関する。
【0002】
【従来の技術】
光学位相差素子は、入射光の偏光成分毎に異なる位相遅延を与える光学素子であって、光ディスクのピックアップ、光通信における光アイソレータ、偏光解析による表面分析装置、偏光の合成・分離を行う液晶表示素子など様々な分野に応用されており、これらの分野において、必要且つ不可欠なデバイスとなってきている。
【0003】
特に、光ディスクのピックアップなどに備えられる光学位相差素子においては、偏光ビームスプリッタと共に用いられることにより、光エネルギーの利用効率を高めることができ、同時に光アイソレータとしても機能する。CDやDVDでは、異なる波長(780nm及び650nm)のレーザー光が用いられるが、近年では、これらを1つの光学システムで実現する装置が提案されている。また、光通信における光アイソレータにおいても、光信号の多重化のため広い波長域の光を通し得る。したがって、光学位相差素子としては、広い波長域の光に対して安定した位相遅延差を発生させるものが求められてきている。
【0004】
光学位相差素子には、方解石、雲母、水晶のような自然界に存在する複屈折率結晶により形成されたものや、複屈折ポリマーにより形成されたもの、使用波長より短い人工的に周期構造を設けて形成されたものなどがある。
【0005】
複屈折率結晶のものとしては、結晶軸と平行にカットされた平板状のものがある。このカット面に対し垂直に入射した光は、常光線と呼ばれる光成分と、異常光線と呼ばれる光成分とに分けられる。常光線と異常光線とでは、伝播速度が異なるので、両光線が光学位相差素子内を伝播するにつれて、両光線間で位相遅延量に差が生じる。この位相遅延の差は光学位相差素子内の伝播距離に比例するので、光学位相差素子の厚さを制御することで、目標値となる位相遅延量の差が得られる。しかし、複屈折率結晶の光学位相差素子は、結晶を用いるため非常に高価であるという欠点がある。
【0006】
複屈折ポリマーのものでも、原理的には上述した複屈折率結晶のものと同じである。この場合は、光学位相差素子を構成するポリマーの平均的な分子方向とそれに垂直な方向との間で表れる複屈折率を利用する。このようなポリマーの偏った配列は、プラスティック材料に特定方向の力をかけながら薄板にするだけで製造することができるので、大きなサイズのものであっても安価に得ることができる。しかし、複屈折ポリマーのものは、光学的性質や耐久性が複屈折率結晶のものに比べて劣っており、高性能な光学素子への応用には不十分なものとなっている。
【0007】
人工的に周期構造を設けて形成されたものとしては、透明の誘電体基板上に周期的な凹凸構造が設けられたものがある。該凹凸構造の周期は使用波長より短くなっている。該凹凸構造に対し垂直に入射した光の伝播速度は、凹凸構造の溝方向に平行な偏光成分と、それに垂直な偏光成分との間で異なるので、両成分間で位相遅延差が生じる。この場合、この位相遅延差は凹凸構造の深さに比例する。したがって、この深さを制御することで、所望の位相遅延差が得られる。このような微細な周期的凹凸構造が設けられた光学位相差素子は、1983年にD.C. Flandersによって実現されている(非特許文献1参照)。
【0008】
上記凹凸構造(表面レリーフ格子)は、フォトレジストにより形成された格子パターンを用いて、電気鋳造により金型を製造しておき、該金型に熱可塑性樹脂を注入することにより製造される。即ち、成形による量産化が可能である。さらに、成形により製造される光学素子であれば、レンズのように曲面状に湾曲した表面を有するものであっても、該素子を構成する表面に上記のような周期的凹凸構造を組み込み、一つの光学位相差素子として製造することができる。
【0009】
しかしながら、上記凹凸構造を有する光学位相差素子においては、位相遅延差が凹凸構造の深さの他、材料の屈折率等に強く依存し、特に、材料の屈折率が高いほど複屈折が強くなる。ガラスやプラスティックなどの光学材料の屈折率は1.5程度なので、これらを用いて実用的な光学位相差素子を実現するには、非常に深い凹凸構造が必要となる。例えば、ガラス基板を使ってHe−Neレーザー光(波長λ=632.8 nm)に対応する位相遅延差1/4λの光学位相差素子を実現する場合、凹凸構造の周期を400nm、凸部の線幅を200nmとすると、深さが約1800 nmとなる。このような構造を射出成形やプレス成形によって製造すると、熱可塑性樹脂がうまく剥離されず、金型内に残留してしまうなどの問題が発生した。
【0010】
また、このような光学位相差素子を製造する方法として、誘電体基板に直接フォトレジストの格子パターンを形成し、これをマスクとしてエッチングする方法もある。しかしながら、この方法には、エッチングに耐えうる厚みを備えたレジストパターンの形成が困難である、紫外線露光装置や電子ビーム描画装置及びプラズマエッチング装置など高価な装置が必要となる、製造に長時間を要するなどの問題があった。
【0011】
また、屈折率の高い光学材料に凹凸構造を形成することにより、浅い凹凸構造でも大きな位相遅れを実現し得る光学位相差素子も考案されている。しかし、高屈折率の光学材料は成形加工に適さないため、生産性が悪く、コストが高くなるという欠点があった。
【0012】
この問題に対処すべく、基板誘電体に溝の深さを浅くした表面レリーフ格子を設け、前記基板誘電体より屈折率の高い誘電体材料を、表面レリーフ格子上に被覆或いは充填して形成された光学位相差素子が提案されている(特許文献1参照)。
【0013】
【非特許文献1】
ディー.シー.フランダース(D.C. Flanders)著,「人工的な異方性を有する誘電体としてのサブマイクロメーター周期のグレーティング(”Submicrometer periodicity gratings as artificial anisotropic dielectrics”)」,第42巻第6号、アプライド・フィジックス・レター(Applied Physics Letter),1983年3月15日,p.492〜494
【0014】
【特許文献1】
特公平7−99402号公報
【0015】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の光学位相差素子では、複屈折の強さが入射する波長に殆ど依存しないという問題があった。位相遅延差は複屈折の強さと波長の比に比例するので、その光学位相差素子に対して設計時に使用を想定した光の波長(以下、設計波長という)の近傍において十分な位相遅延差が生じるように構成されていても、設計波長の近傍から離れた他の波長域では十分な位相遅延差が得られないのが通常であった。
【0016】
本発明は、上記課題を解決するためになされたものであり、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる光学位相差素子を提供することを目的としている。
【0017】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る光学位相差素子は、断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、前記被覆膜が、少なくとも前記基板部のうち前記凸部の上面に形成された第1被覆膜を有し、前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0018】
上記光学位相差素子によれば、凸部占有率t/Tが0.6から0.9までのいずれかの値となっているので、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる、いわゆるアクロマティックな光学位相差素子を実現することができる。
【0019】
また、前記被覆膜が、前記基板部のうち、前記凹凸構造の凹部の底面に形成された第2被覆膜を有し、該第2被覆膜の前記凹部の底面からの高さD2と前記凸部の高さD1との差である被覆高差D2−D1が、設計波長をλ、前記第2被覆膜の屈折率をn2、0以上の任意の整数をNとしたとき、数式1で示される範囲内のいずれかの値となっていることが望ましい。
【0020】
2Nλ/4n2 <D2−D1<(2N+1)λ/4n2 … 数式1
上記光学位相差素子によれば、上記被覆高差D2−D1が上記数式1の範囲内となっているので、設計波長λに対して凹凸構造での反射を抑制することができる。
【0021】
また、本発明に係る他の光学位相差素子は、断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、前記被覆膜が、前記凸部の上面に形成された第1被覆膜と、前記凹凸構造の凹部の底面に形成された第2被覆膜と、前記凸部の側面に形成された第3被覆膜とを有し、前記第2被覆膜及び前記第3被覆膜の膜厚が、前記第1被覆膜の膜厚より薄くなっており、前記第1被覆膜が、前記凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て前記第1被覆膜の上端に至るまで周期方向の幅が滑らかに変化した形状となっており、前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.4から0.6までのいずれかの値となっており、前記最大幅t1と前記凹凸構造の周期Tとの比である第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0022】
上記光学位相差素子によれば、凹凸構造における凸部占有率t/Tが製造し易い0.4から0.6の値であっても、第1被覆膜占有率t1/Tを0.6から0.9までのいずれかの値とすることにより、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。
【0023】
また、前記被覆膜各部の幅が高さ方向で滑らかに変化した形状となるので、有効屈折率が徐々に変化する構造となり、反射光を抑制することができる。
【0024】
【発明の実施の形態】
以下、本発明に係る実施形態について、光学位相差素子として入射光λに対してλ/4の位相遅延差を発生させる1/4波長板を例に、添付図面を参照しつつ詳細に説明をする。
【0025】
図1は、本発明の第1の実施形態に係る光学位相差素子を模式的に示した断面図である。図示した断面構造は、紙面垂直方向に連続しており、畝状の表面形状が形成されている。
【0026】
図示のように、本発明の第1の実施形態に係る光学位相差素子100は、断面視略矩形状の凸部11が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部10と、凸部11の屈折率n1より高い屈折率n2を有し、前記凹凸構造上に形成された被覆膜20とを備えている。
【0027】
基板部10は、本実施形態では、石英ガラス(屈折率1.46)により構成されているが、プラスティックや光硬化性樹脂など透過率の高い他の誘電体基板で構成することもできる。
【0028】
基板部10の上面に形成された凹凸構造の周期Tは、使用する光の波長λより短くなっており、本実施形態では、凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっている。また、周期Tは300nm、又は180nmに設定し、He−Neレーザー光(波長633nm)及びGaAlAs半導体レーザー光(波長780nm)を設計波長として、これらの近傍の波長域を使用光として想定しているが、設計波長及び周期Tの値はこれに制限されない。
【0029】
このような凹凸構造は、コスト面及び生産性を考慮すると、射出成形やプレス成型などの量産技術により形成されることが望ましいが、格子パターンを形成したフォトレジストをマスクとしたエッチング処理によっても形成可能である。また、図1では、凸部11が基板部10の本体と同じ材質に形成されているが、基板上に誘電体層を形成し、これをエッチングによりパターニングするなどして、凸部11を基板部10の本体と異なる材質としてもよい。
【0030】
被覆膜20は、基板部10のうち凸部11の上面に形成された第1被覆膜21と、凹部12の上面に形成された第2被覆膜22とを有している。本実施形態では、第1被覆膜21と第2被覆膜22とを同じ条件で同時に形成しており、第1被覆膜21と第2被覆膜22とが同じ高さD2となっているが、凹凸の形状効果等により成膜条件に差が生じ、異なる高さとなっていてもよい。ただし、本実施形態では、凹部の底面からの高さである第2被覆膜22の高さD2は、凸部11の高さD1より低くなっている。
【0031】
被覆膜20は、本実施形態では、Si3N4(屈折率2.1)又はシリコン(Si)(屈折率3.5)により構成されているが、ZTO、TiO2など屈折率の高い他の誘電体基板で構成することもできる。被覆膜20は、電子ビーム蒸着法、スパッタ法、イオンビーム蒸着法などにより形成される。
【0032】
このように基板部10の凹凸構造上に基板部10とは屈折率の異なる膜を設けることにより、図1に示すような第1〜3の実効層からなる三層構造が形成される。第1の実効層(j=1)は、第1被覆膜21(屈折率n2)及び空気(屈折率1.0)、第2の実効層(j=2)は、凸部11(屈折率n1)及び空気(屈折率1.0)、第3の実効層(j=3)は、凸部11(屈折率n1)及び第2被覆膜22(屈折率n2)によってそれぞれ構成される。
【0033】
凹凸構造の周期Tは、上述のように入射光に対する回折波を発生させないくらいに短いので、第1〜3の実効層のそれぞれは、人工的な複屈折による光学的異方性を具備した薄膜と見なすことができる。凹凸構造の溝と平行な方向に振動する光波(TE波)と溝に垂直な方向に振動する光波(TM波)とを含む光が各実効層に入射すると、TE波とTM波とは、それぞれ異なる有効屈折率(実効屈折率)を有する。以下では、j(=1〜3)を第1〜3の実効層に対応させて、第1〜3の実効層におけるTE波、TM波の有効屈折率を、nTE(j), nTM(j)と表し、各実効層の光学的異方性により、透過光に対して、偏光方向とそれに垂直な方向とで異なる位相遅延が発生する詳細を説明する。
【0034】
まず、周期Tは、各実効層に垂直に入射した光の各実効層における光の波長λより短くなっており、この垂直入射時に0次光以外の回折光が発生しない。このような周期Tの条件は、凸部11の屈折率n1、被覆膜20の有効屈折率nTE(j), nTM(j)を用いて下記の数式11で与えられる。
【0035】
T < λ/max[n1,nTE(j), nTM(j)] … 数式11
被覆膜20の屈折率n2の値が大きい場合、必要な位相遅延差を発生させるための凹凸構造の深さは浅くするが、有効屈折率nTE(j), nTM(j)の値も大きくなるため、数式11に示すように、必要な周期Tは短くなるのがわかる。
【0036】
本実施形態では、周期Tが数式11を満足するので、凹凸構造に垂直に入射した光は高次の回折光を発生させず、透過した光は入射光と同じ方向に向けられる。凹凸構造内では、TE波の有効屈折率nTE(j)の値がTM波の有効屈折率 nTM(j)の値よりも大きくなっているので、TE波はTM波よりも遅い速度で凹凸構造を通過する。これにより、同位相で入射した光波は凹凸構造を通過する際に偏光方向とそれに垂直な方向とで異なる位相遅延を生じる。この際、TE波とTM波間との間で発生した位相遅延差δφは、数式13に示すようにTE波とTM波に対する2つの有効屈折率nTE(j)及び nTM(j)の差をδn(j)として、数式12で与えられる。1/4波長板では、その値は、0.5πラジアン、1/2波長板ではπラジアンとなる。
【0037】
δφ = 2π/λ(δn(1)D2+δn(2)(D1−D2)+δn(3)D2) … 数式12
δn(j) = nTE(j)− nTM(j) … 数式13
本実施形態のように、凹凸構造上に高屈折率の被覆膜20を形成して、δn(1)及びδn(3)の値が大きい三層構造とすることにより、数式12に示すように、凹凸構造の深さD1を深くしなくても大きな位相遅延差を得ることができる。
【0038】
実効層全体におけるTE波及びTM波に対する有効屈折率nTE(j)及び nTM(j)は、各実効層における有効屈折率nTE0(j)及び nTM0(j)を用いて、次式で表される。式中fは、凸部11の周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tを略記したものである。
第1の実効層(j=1)
【0039】
【数14】
【0040】
【数15】
【0041】
第2の実効層(j=2)
【0042】
【数16】
【0043】
【数17】
【0044】
第3の実効層(j=3)
【0045】
【数18】
【0046】
【数19】
【0047】
数式14〜数式19を「Rytovの2次近似式」と呼ばれる式に適用することにより、数式20及び21に示す有効屈折nTE(j)及び nTM(j)を得ることができる(参考文献:S. M. Rytov, ”Electromagnetic Properties of Finely Stratified Medium, Journal of Experimental and Theoretical Physics USSR, vol.29 (1955) 605−616)。
【0048】
【数20】
【0049】
【数21】
【0050】
ここで、n3及びn4は、j=1の場合、n3=1、n4=n2、j=2の場合、n3=1.0、n4=n1、j=3の場合、n3=n2、n4=n1となる。
【0051】
図2(a)及び(b)は、図1に示した光学位相差素子において、凸部占有率t/Tを変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。光学位相差素子としては、凸部占有率t/Tの値が上述した0.6〜0.9の範囲を越える0.4及び0.5のものも比較のために示している。
【0052】
これらのグラフにおいて、凸部11の屈折率n1は、上述のように石英ガラスの屈折率の1.46である。また、図2(a)においては、周期Tを300nmとし、被覆膜20の屈折率n2が2.1となっており、図2(b)においては、周期Tを180nmとし、被覆膜20の屈折率n2が3.5となっている。
【0053】
図示のように、ここに示した光学位相差素子は、He−Neレーザー光の波長である633nmの入射光に対して90°(0.5πラジアン)の位相遅延差δφを発生させる1/4波長板となっているが、凸部占有率t/Tの値が小さいものでは、入射光の波長λが長くなるにつれて位相遅延差δφが減少している。
【0054】
凸部11の周期方向の幅tは凹部12の周期方向の幅と同じ幅に形成され、凸部占有率t/Tは0.5とされるのが一般的であるが、凸部占有率t/Tが0.5を越えるものではこの位相遅延差低下の傾向が改善されており、位相遅延差δφが入射光の波長に依存しない、又は、ほぼ依存しないようになっている。例えば、t/Tが0.5の場合、位相変調量は入射光の波長に強く依存しているが、t/T>0.7になると、位相遅延差δφは入射光の波長λの変化に対して余り変化しなくなっている。
【0055】
第1の実施形態に係る光学位相差素子100においては、凸部占有率t/Tが、0.6から0.9までのいずれかの値となっており、上記効果を奏する。したがって、位相遅延差δφの入射光の波長λに対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができ、1つの光学位相差素子を広い波長域の用途に適用することができる。
【0056】
尚、図2に示されているように、凸部占有率t/Tは、0.7から0.9までのいずれかの値となっていることがより望ましく、0.8から0.9までのいずれかの値となっていることがさらに望ましい。これにより、位相遅延差δφを入射光の波長λの変換に対してより変動しないものとすることができ、広い波長域の光に対してより安定した位相遅延差を発生させることができる。
【0057】
図3は、本発明の第2の実施形態に係る光学位相差素子を模式的に示した断面図である。
【0058】
図示のように、本発明の第2の実施形態に係る光学位相差素子100Aは、基板部10と、被覆膜20Aとを備えているが、基板部10については、第1の実施形態に示したものと同様であるので、その詳細な説明を省略する。
【0059】
本実施形態においても、被覆膜20Aは、基板部10のうち凸部11の上面に形成された第1被覆膜21Aと、凹部12の上面に形成された第2被覆膜22Aとを有し、第1の実施形態に示したものと同様に形成される。しかし、本実施形態では、凹部の底面からの高さである第2被覆膜22Aの高さD2は、凸部11の高さD1より高くなっている。
【0060】
本実施形態では、第2被覆膜22Aの凹部12の底面からの高さD2と凸部11の高さD1との差である被覆高差D2−D1が、設計波長をλ、第2被覆膜22Aの屈折率をn2、0以上の任意の整数をNとしたとき、数式1で示される範囲内のいずれかの値となっている。
【0061】
2Nλ/4n2 <D2−D1<(2N+1)λ/4n2 … 数式1
本実施形態においても、第1の実施形態の場合と同様に、図3に示すような第1〜3の実効層からなる三層構造が形成される。第1の実効層(j=1)が、第1被覆膜21A(屈折率n2)及び空気(屈折率1.0)、第3の実効層(j=3)が、凸部11(屈折率n1)及び第2被覆膜22A(屈折率n2)によって構成されているのは同様である。しかし、第2の実効層(j=2)は、第1被覆膜21A(屈折率n2)及び第2被覆膜22A(屈折率n2)、即ち被覆膜20Aだけで構成された均一な層となる。
【0062】
この第2の実効層には光学的異方性がなく、層の厚さが偏光成分間の位相遅延差に影響を与えないので、被覆高差D2−D1の値を調整しても1/4波長の位相遅延差を保持することができる。被覆高差D2−D1が数式1で示される範囲のいずれかの値となっているので、TE波及びTM波に対して界面での反射を打ち消すことができる。したがって、本実施形態に係る光学位相差素子100Aによれば、設計波長λに対して凹凸構造での反射を抑制することができる。以下、これについて説明する。
【0063】
光学位相差素子100Aに光が入射すると、第1〜3の実効層の上面となる界面1〜3、及び第3の実効層の下面となる界面4の4つの界面において反射が起こる。被覆膜20Aの屈折率n2の値が大きい程、この反射が強くなり、透過率が低下する。以下では、界面1に入射する光(電場)の振幅をA0、界面1からの反射光の振幅をB0とし、第1〜3の各実効層内を伝播する入射光の振幅をA1〜3、反射光の振幅をB 1〜3とし、界面4に入射する光の振幅をA4とする。
【0064】
界面1からの反射光の振幅B0は、各界面での反射の総和として生じるものであり、その値は各界面での反射率と界面間の光学距離とで決まる。特に、界面間の光学距離は光波の干渉効果に関係するので、各実効層の膜厚を調節することにより、干渉効果を制御して反射光を抑制することができる。反射光の強さを示す振幅B0は、多層膜干渉理論を用いて概算される。
【0065】
まず、界面1より上方では、入射と反射との光波が存在するので、界面1より上方における電場E0は数式22で表すことができる。各実効層における電場Ejは、同様に数式23で表すことができる。ここで、njの値はその実効層における屈折率であり、数式20及び数式21に示した有効屈折率nTE(j)及びnTM(j)となる。ただし、第2の実効層においてはn2となる。また、式中のzは、図3において基板部10の上面に対して垂直上向きに示されたz軸上の変位を表す。
【0066】
【数22】
【0067】
【数23】
【0068】
一方、各界面における電場Ej(zj)、及びその伝播方向の微分は連続でなければならないので、z=zjにおいて数式24及び25の境界条件が満足される。
【0069】
Ej(zj) = Ej−1(zj) … 数式24
dEj−1(z)/dz = dEj(z)/dz (z=zj)… 数式25
上記の数式22〜数式25を用いて、界面1からの反射光の振幅B0を、TE波に対しては数式26〜30、TM波に対しては数式31〜35のように計算することができる。通常、両者の振幅B0は異なる値となっている。
【0070】
【数26】
【0071】
【数27】
【0072】
【数28】
【0073】
【数29】
【0074】
【数30】
【0075】
【数31】
【0076】
【数32】
【0077】
【数33】
【0078】
【数34】
【0079】
【数35】
【0080】
上記数式26〜30、及び数式31〜35を用い、He−Neレーザー光(波長633nm)に適した1/4波長板である本実施形態に係る光学位相差素子100Aの場合を計算する。基板部10の屈折率n1は1.46、凹凸構造の周期Tは320 nm、凸部占有率t/Tは0.6、凸部11の高さD1は325 nmである。
【0081】
被覆膜20Aの屈折率n2が2.2の場合、1/4波長板とするためには、第1被覆膜21A及び第2被覆膜22Aの高さD2は325 nmであればよい。しかしながら、この場合、上述した界面での反射のために、TE波の透過率は87%、TM波の透過率は90%になってしまう。これに対し、本実施形態では、D1が325 nmであるのに対し、上記数式1を満足するようにD2は345 nmとしている。
【0082】
図4は、第2被覆膜22Aの高さD2を変化させたときの界面1からの反射光のTE波及びTM波に対する振幅B0の依存性を示したグラフである。
【0083】
図示のように、第2被覆膜22Aの高さD2が本実施形態である345 nmの場合、TE波とTM波の透過率が共に95%以上となり、反射を5%以下に抑制することができるのがわかる。
【0084】
図5は、本発明の第3の実施形態に係る光学位相差素子を模式的に示した断面図である。
【0085】
図示のように、本発明の第3の実施形態に係る光学位相差素子100Bは、基板部10Bと、被覆膜20Bとを備えている。
【0086】
基板部10Bについては、凸部11Bの周期方向の幅tと凹凸構造の周期Tとの比である凸部占有率t/Tが0.4から0.6までのいずれかの値となっている。その他の点では第1の実施形態と同様であるので、その詳細な説明を省略する。
【0087】
被覆膜20Bは、第1の実施形態の場合と同様に、凸部11Bより高い屈折率を有して凹凸構造上に形成されており、凸部11Bの上面に形成された第1被覆膜21Bと、凹凸構造の凹部12Bの底面に形成された第2被覆膜22Bとを有する。本実施形態では、さらに凸部11Bの側面に形成された第3被覆膜23Bを有する。
【0088】
図5に示したような構造は、スパッタリング法などの指向性の弱い成膜方法により、基板部10Bの凹凸構造上に被覆膜20Bを成長させることによって得られる。このような成膜方法では、凹部12Bの底面及び凸部11Bの側面に比べて、凸部の上面の方が膜が成長し易いので、第2被覆膜22B及び第3被覆膜23Bの膜厚は、第1被覆膜21Bの膜厚より薄くなっている。また、凸部の上面に形成される膜は成長と共に、その周期方向の幅が広くなり、最大幅t1を越えると狭くなって縮小している。したがって第1被覆膜21Bは、凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て第1被覆膜21Bの上端に至るまで周期方向の幅が滑らかに変化した形状となっている。最大幅t1と凹凸構造の周期Tとの比である第1被覆膜占有率t1/Tは、0.6から0.9までのいずれかの値となっている。
【0089】
本実施形態では、被覆膜20Bが曲面状に形成されているため厳密ではないが、第1の実施形態の場合と同様に、図5に示すような第1〜3の実効層からなる三層構造が形成されると近似することができる。即ち、第1の実効層(j=1)は、第1被覆膜21B(屈折率n2)及び空気(屈折率1.0)、第2の実効層(j=2)は、凸部11B(屈折率n1)及び空気(屈折率1.0)、第3の実効層(j=3)は、凸部11B(屈折率n1)及び第2被覆膜22B(屈折率n2)によって概ね構成される。
【0090】
したがって、位相遅延差δφについても、第1〜3の実効層に基づき、数式12の場合と同様に数式36で求めることができる。ここで、D2は、第1被覆膜21の高さ、D4は、第2被覆膜22Bの高さ、D3は、凸部11の高さD1と第2被覆膜22Bの高さD4との差をそれぞれ示している。
【0091】
【数36】
【0092】
本実施形態に係る光学位相差素子10Bにおいては、第1及び第3の実効層における位相遅延差δn(1)及びδn(3)に比べて、第2の実効層における位相遅延差δn(2)の値は小さい。また、第1被覆膜21の高さD2及び凸部11の高さD1と第2被覆膜22Bの高さD4との差D3と比べて、第2被覆膜22Bの高さD4の値は小さい。したがって、本実施形態に係る光学位相差素子10Bにおける位相遅延差においては、第1の実効層による複屈折効果が支配的となる。
【0093】
本実施形態に係る光学位相差素子100Bによれば、基板部10が屈折率の低い誘電体基板であっても、また、その上面に形成された凹凸構造における凸部占有率t/Tが製造し易い0.4から0.6の値であっても、第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となるように、屈折率の高い第1被覆膜21Bを凹凸構造上に形成することができる。したがって、第1の実施形態の場合と同様に、位相遅延差δφの入射光の波長λに対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。さらに、基板部10の凸部占有率t/Tを0.5前後とすることができるので、製造が容易となり、成型などに有利である。
【0094】
また、被覆膜20B各部の幅が高さ方向で滑らかに変化する形状となるので、有効屈折率が徐々に変化する構造となり、反射光を抑制することができる。
【0095】
図6は、図5に示した光学位相差素子を近似的に示した光学位相差素子の断面図であり、図7は、図6に示した光学位相差素子において、被覆膜の屈折率を変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【0096】
図6に示した光学位相差素子100Cは、位相遅延差δφの計算を容易にするために、図5に示した光学位相差素子100Bにおける被覆膜20Bを被覆膜20Cに近似したものとなっている。詳細には、第1被覆膜21Bを5つの第1被覆膜部22C1〜22C5に分割し、第2被覆膜22Bを第2被覆膜22Cに、第3被覆膜23Bを第3被覆膜23Cにそれぞれ近似している。
【0097】
尚、凸部占有率t/Tは0.5とし、第1被覆膜部22C1及び22C5の幅は0.7T、第1被覆膜部22C2及び22C4の幅は0.75T、第1被覆膜部22C3の幅は0.8Tとして、第1被覆膜占有率t1/Tを0.7から0.8まで変化させた。また、第3被覆膜23Cの幅は0.1Tとした。さらに、第2被覆膜22Cの高さD4を0.2D2とし、被覆膜20Cの屈折率には2.0、2.5及び3.0を適用し、凹凸構造の周期Tは320nm、250nm及び210nmとしている。
【0098】
図示のように、図2に示した第1の実施形態の場合と同様に、入射光の波長λが長くなるにつれて位相遅延差δφが減少する傾向が見られる。図中黒丸で示した水晶の位相板は従来の技術を示しており、本実施形態に係る光学位相差素子100Cによれば、これと比べて位相遅延差低下の傾向が改善されており、位相遅延差δφが入射光の波長に依存し難くなっている。
【0099】
以上本発明の実施形態について詳細に説明したが、本発明は上記実施形態に制限されるものではなく種々の変更が可能である。例えば、本発明は、入射光λに対してλ、λ/2など、λ/4以外の位相遅延差を発生させる波長板にも適用可能である。また、設計波長、周期T等についても種々の変更が可能である。
【0100】
【実施例】
光学位相差素子の一例として、He−Neレーザーに使用する1/4波長板を作成した。基板部10を1.46の低い屈折率を持つ石英ガラス基板で構成し、上面には周期Tが320nm、線幅tが140nm、深さD1が500nmの凹凸構造を作成した。次いで、スパッタ装置を用いて、被覆膜として屈折率n2が2.03のZn2SnO4(ZTO)を凹凸構造上に500nmの厚さで堆積した。
【0101】
図8(a)は、石英ガラス基板上に形成した凹凸構造の断面電子顕微鏡写真であり、図8(b)は、図8(a)に示した凹凸構造上にZTO膜を被覆させて形成した光学位相差素子表面の畝状構造の断面電子顕微鏡写真である。
【0102】
上記のようにして製造した光学位相差素子にHe−Neレーザー光(波長633nm)と
Ti:サファイアレーザー光(波長780nm)とを透過させて光学特性を測定した。TE波とTM 波との間の位相遅延差は、He−Neレーザー光では約86度であり、Ti:サファイアレーザー光では約78度であった。また、He−Neレーザー光でのTE波、TM波の透過率は、それぞれ90.6%及び88.2%であった。
【0103】
【発明の効果】
本発明に係る光学位相差素子は、上面に凹凸構造を有する基板部と、前記凹凸構造の凸部の上面に形成された屈折率の高い第1被覆膜を有し、凸部占有率t/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0104】
また、本発明に係る他の光学位相差素子は、上面に凹凸構造を有する基板部と、前記凹凸構造の凸部の上面に形成された第1被覆膜と、第1被覆膜より薄い凹部底面に形成された第2被覆膜と、前記凸部側面に形成された第3被覆膜とを有し、前記第1被覆膜が、前記凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て前記第1被覆膜の上端に至るまで周期方向の幅が滑らかに縮小した形状となっており、凸部占有率t/Tが0.4から0.6までのいずれかの値、第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となっていることを特徴とする。
【0105】
これらの構造に基づき、本発明に係る光学位相差素子によれば、位相遅延差の入射光の波長に対する変動を抑制して、広い波長域の光に対して安定した位相遅延差を発生させることができる。したがって、従来の光学位相差素子では実現できなかった広帯域の光学位相差素子を実現することができる。
【0106】
また、凹凸構造に被覆膜を形成した構造となっているので、製造が容易であり、特に凹凸構造に成形により製造することにより低価格を実現し量産性に優れている。また、成形製造により曲面状に湾曲したレンズや反射部材等の光学素子の表面に適用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図2】(a)及び(b)は、図1に示した光学位相差素子において、凸部占有率t/Tを変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【図3】本発明の第2の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図4】第2被覆膜の高さD2を変化させたときの界面1からの反射光のTE波及びTM波に対する振幅B0の依存性を示したグラフである。
【図5】本発明の第3の実施形態に係る光学位相差素子を模式的に示した断面図である。
【図6】図5に示した光学位相差素子を近似的に示した断面図である。
【図7】図6に示した光学位相差素子において、被覆膜の屈折率を変化させたときの位相遅延差δφの入射光の波長λに対する依存性を示したグラフである。
【図8】(a)は、石英ガラス基板上に形成した凹凸構造の断面電子顕微鏡写真であり、(b)は、(a)に示した凹凸構造上にZTO膜を被覆させて形成した光学位相差素子表面の畝状構造の断面電子顕微鏡写真である。
【符号の説明】
10、10B 基板部
11、11B 凸部
12、12B 凹部
20、20A、20B、20C 被覆膜
21、21A、21B、21C 第1被覆膜
22、22A、22B、22C 第2被覆膜
23B、23C 第3被覆膜
100、100A、100B、100C 光学位相差素子
Claims (3)
- 断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、
前記被覆膜が、少なくとも前記基板部のうち前記凸部の上面に形成された第1被覆膜を有し、
前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.6から0.9までのいずれかの値となっていることを特徴とする光学位相差素子。 - 前記被覆膜が、前記基板部のうち、前記凹凸構造の凹部の底面に形成された第2被覆膜を有し、
該第2被覆膜の前記凹部の底面からの高さD2と前記凸部の高さD1との差である被覆高差D2−D1が、設計波長をλ、前記第2被覆膜の屈折率をn2、0以上の任意の整数をNとしたとき、数式1で示される範囲内のいずれかの値となっていることを特徴とする請求項1記載の光学位相差素子。
2Nλ/4n2 <D2−D1<(2N+1)λ/4n2 … 数式1 - 断面視略矩形状の凸部が、設計波長より短い周期Tで配列された凹凸構造を上面に有する基板部と、前記凸部より高い屈折率を有し、前記凹凸構造上に形成された被覆膜とを備えた光学位相差素子であって、
前記被覆膜が、前記凸部の上面に形成された第1被覆膜と、前記凹凸構造の凹部の底面に形成された第2被覆膜と、前記凸部の側面に形成された第3被覆膜とを有し、
前記第2被覆膜及び前記第3被覆膜の膜厚が、前記第1被覆膜の膜厚より薄くなっており、
前記第1被覆膜が、前記凸部の周期方向の幅tより広い最大幅t1を周期方向に有する拡張部を含み、前記凸部の上面から前記拡張部を経て前記第1被覆膜の上端に至るまで周期方向の幅が滑らかに変化した形状となっており、
前記凸部の周期方向の幅tと前記凹凸構造の周期Tとの比である凸部占有率t/Tが0.4から0.6までのいずれかの値となっており、
前記最大幅t1と前記凹凸構造の周期Tとの比である第1被覆膜占有率t1/Tが0.6から0.9までのいずれかの値となっていることを特徴とする光学位相差素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173466A JP2005010377A (ja) | 2003-06-18 | 2003-06-18 | 光学位相差素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173466A JP2005010377A (ja) | 2003-06-18 | 2003-06-18 | 光学位相差素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005010377A true JP2005010377A (ja) | 2005-01-13 |
Family
ID=34097269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003173466A Pending JP2005010377A (ja) | 2003-06-18 | 2003-06-18 | 光学位相差素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005010377A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007058106A (ja) * | 2005-08-26 | 2007-03-08 | Nippon Zeon Co Ltd | 偏光分離フィルム、偏光分離フィルムの製造方法、および液晶表示装置 |
WO2007077652A1 (ja) * | 2005-12-28 | 2007-07-12 | Nalux Co., Ltd. | 偏光素子およびその製造方法 |
WO2007142179A1 (ja) * | 2006-06-07 | 2007-12-13 | Konica Minolta Holdings, Inc. | 四分の一波長板及び光ピックアップ装置 |
JP2008107394A (ja) * | 2006-10-23 | 2008-05-08 | Ricoh Co Ltd | 光学素子および光学装置 |
US8854731B2 (en) | 2010-04-28 | 2014-10-07 | Osaka Prefecture University Public Corporation | Carbon dioxide laser light optical component |
JP2015139585A (ja) * | 2014-01-29 | 2015-08-03 | サミー株式会社 | 遊技機の基板ケースユニット |
WO2016056277A1 (ja) * | 2014-10-10 | 2016-04-14 | Jx日鉱日石エネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
JP2017138464A (ja) * | 2016-02-03 | 2017-08-10 | Jxtgエネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
TWI697702B (zh) * | 2015-10-05 | 2020-07-01 | 日商捷客斯能源股份有限公司 | 光學相位差構件及投影機 |
CN115079322A (zh) * | 2022-06-30 | 2022-09-20 | 歌尔光学科技有限公司 | 光栅结构及其加工方法、镜片及头戴显示设备 |
-
2003
- 2003-06-18 JP JP2003173466A patent/JP2005010377A/ja active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007058106A (ja) * | 2005-08-26 | 2007-03-08 | Nippon Zeon Co Ltd | 偏光分離フィルム、偏光分離フィルムの製造方法、および液晶表示装置 |
JP4696783B2 (ja) * | 2005-08-26 | 2011-06-08 | 日本ゼオン株式会社 | 偏光分離フィルム、偏光分離フィルムの製造方法、および液晶表示装置 |
WO2007077652A1 (ja) * | 2005-12-28 | 2007-07-12 | Nalux Co., Ltd. | 偏光素子およびその製造方法 |
WO2007142179A1 (ja) * | 2006-06-07 | 2007-12-13 | Konica Minolta Holdings, Inc. | 四分の一波長板及び光ピックアップ装置 |
US8000210B2 (en) | 2006-06-07 | 2011-08-16 | Konica Minolta Holdings, Inc. | Quarter-wave plate, and optical pickup device |
JP5218050B2 (ja) * | 2006-06-07 | 2013-06-26 | コニカミノルタホールディングス株式会社 | 四分の一波長板及び光ピックアップ装置 |
JP2008107394A (ja) * | 2006-10-23 | 2008-05-08 | Ricoh Co Ltd | 光学素子および光学装置 |
US8854731B2 (en) | 2010-04-28 | 2014-10-07 | Osaka Prefecture University Public Corporation | Carbon dioxide laser light optical component |
JP2015139585A (ja) * | 2014-01-29 | 2015-08-03 | サミー株式会社 | 遊技機の基板ケースユニット |
KR20170080571A (ko) | 2014-10-10 | 2017-07-10 | 제이엑스티지 에네루기 가부시키가이샤 | 광학 위상차 부재, 광학 위상차 부재를 포함하는 복합 광학 부재, 및 광학 위상차 부재의 제조 방법 |
WO2016056277A1 (ja) * | 2014-10-10 | 2016-04-14 | Jx日鉱日石エネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
JPWO2016056277A1 (ja) * | 2014-10-10 | 2017-07-20 | Jxtgエネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
JP2019049717A (ja) * | 2014-10-10 | 2019-03-28 | Jxtgエネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
US10408984B2 (en) | 2014-10-10 | 2019-09-10 | Jx Nippon Oil And Energy Corporation | Optical phase difference component, composite optical component, incorporating optical phase difference component, and method for manufacturing optical phase difference component |
KR102369856B1 (ko) * | 2014-10-10 | 2022-03-02 | 에네오스 가부시키가이샤 | 광학 위상차 부재, 광학 위상차 부재를 포함하는 복합 광학 부재, 및 광학 위상차 부재의 제조 방법 |
TWI697702B (zh) * | 2015-10-05 | 2020-07-01 | 日商捷客斯能源股份有限公司 | 光學相位差構件及投影機 |
JP2017138464A (ja) * | 2016-02-03 | 2017-08-10 | Jxtgエネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
WO2017135220A1 (ja) * | 2016-02-03 | 2017-08-10 | Jxエネルギー株式会社 | 光学位相差部材、光学位相差部材を備える複合光学部材、及び光学位相差部材の製造方法 |
CN115079322A (zh) * | 2022-06-30 | 2022-09-20 | 歌尔光学科技有限公司 | 光栅结构及其加工方法、镜片及头戴显示设备 |
CN115079322B (zh) * | 2022-06-30 | 2024-03-12 | 歌尔光学科技有限公司 | 光栅结构及其加工方法、镜片及头戴显示设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5748368A (en) | Polarization optical element | |
US7079202B2 (en) | Multi-layer diffraction type polarizer and liquid crystal element | |
CN106772741B (zh) | 一种采用单一渐变材料光栅实现导模共振滤波的方法 | |
CN106054287B (zh) | 一种可见光波段变换的光学器件结构单元及光学器件 | |
CN103308968B (zh) | 光学元件及其制造方法 | |
CN104849791B (zh) | 一种亚波长反射式一维金属波片及其制备方法 | |
Chou et al. | Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates | |
JP3711446B2 (ja) | 波長フィルタ | |
JP2005010377A (ja) | 光学位相差素子 | |
Tan et al. | Active broadband manipulation of terahertz photonic spin based on gyrotropic pancharatnam-berry metasurface | |
JP2001051122A (ja) | 複屈折性周期構造体、位相板、回折格子型の偏光ビームスプリッタ及びそれらの作製方法 | |
CN105759332B (zh) | 一种动态调控导模共振滤波器反射光谱带宽大小的方法 | |
JP4999401B2 (ja) | 表面に微細凹凸形状をもつ光学素子の製造方法 | |
JP4078527B2 (ja) | 1次元フォトニック結晶への反射防止膜の構造およびその形成方法 | |
CN204758858U (zh) | 一种亚波长反射式一维金属波片 | |
JP2005099099A (ja) | 波長板 | |
JP2007101856A (ja) | 光学位相差素子及びその製造方法 | |
JP4975162B2 (ja) | 紫外線用自己クローニングフォトニック結晶 | |
JP4178583B2 (ja) | 反射防止膜 | |
Röhlig et al. | Simultaneous occurrence and compensating effects of multi‐type disorder in two‐dimensional photonic structures | |
JP2007101859A (ja) | 偏光分離素子およびその製造方法 | |
Tolmachev | Optical properties of one-dimensional photonic crystals obtained by micromatchining silicon (a review) | |
JP2007304629A (ja) | 2次元あるいは3次元フォトニック結晶への反射防止膜の構造およびその形成方法 | |
Mouldi et al. | Design of optical devices based on hybrid periodic/Fibonacci photonic crystal in the visible and the near infrared domains | |
CN114637154B (zh) | 一种用于光学相控阵的级联周期性极化电光晶体结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090722 |