JP2005005572A - Method for manufacturing solid-state electrolytic capacitor element - Google Patents
Method for manufacturing solid-state electrolytic capacitor element Download PDFInfo
- Publication number
- JP2005005572A JP2005005572A JP2003169098A JP2003169098A JP2005005572A JP 2005005572 A JP2005005572 A JP 2005005572A JP 2003169098 A JP2003169098 A JP 2003169098A JP 2003169098 A JP2003169098 A JP 2003169098A JP 2005005572 A JP2005005572 A JP 2005005572A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor element
- reducing agent
- sintering
- vacuum
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title abstract description 6
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 23
- 239000011261 inert gas Substances 0.000 claims abstract description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 11
- 239000011777 magnesium Substances 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 5
- 239000011575 calcium Substances 0.000 claims abstract description 5
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 5
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 5
- 239000011734 sodium Substances 0.000 claims abstract description 5
- 239000002253 acid Substances 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 12
- 239000001301 oxygen Substances 0.000 abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 239000004411 aluminium Substances 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 8
- 229910052715 tantalum Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- WTKKCYNZRWIVKL-UHFFFAOYSA-N tantalum Chemical compound [Ta+5] WTKKCYNZRWIVKL-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサに用いる焼結体素子の製造方法に関するものである。
【0002】
【従来の技術】
一般に、固体電解コンデンサ素子は、陽極導出リードを植設した、弁作用金属粉末からなる成形体を高温高真空中で焼結するか、または成形体焼結後、陽極導出リードを溶接することにより、多孔質焼結体素子を形成し、該素子に陽極酸化を行って誘電体酸化皮膜層を形成し、この表面に固体電解質層、カーボン層、陰極銀層を被覆して構成する。
【0003】
コンデンサを高容量化するためには、弁作用金属の微粉末化が最も有効で、弁作用金属の表面積を増大させることができる。しかし、かかる微粉末による焼結体素子を形成する時、焼結温度が高くなるほど、弁作用金属粉末同士の焼結が進行しやすく、焼結体素子の表面積が減少するため、コンデンサを構成した時の静電容量が低下してしまう。
【0004】
一方、コンデンサを高容量化するために行われる弁作用金属の表面積増大に伴い、弁作用金属表面に吸着される酸素量が増加するため、焼結体素子全体の酸素濃度が増大し、誘電体酸化皮膜の欠陥部が増加するので、コンデンサを構成した際、漏れ電流が高くなる。
【0005】
この焼結体素子の酸素濃度を低減させることにより、誘電体酸化皮膜の欠陥部減少を図ることができ、漏れ電流の低減、耐電圧の向上、寿命試験での信頼性向上が可能となる。
【0006】
従来の酸素濃度低減方法として、加圧成形した素子に対して、処理温度を2段階に変化させて還元剤共存下で焼結処理を行うものがあった(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平11−111575号公報(第2−5頁)
【0008】
【発明が解決しようとする課題】
上記の焼結処理では、成形体に対する焼結を2段階とし、前段の焼結を温度1000℃、真空度1×10−1〜9×10−1Paの真空中、後段の焼結を温度1300〜1400℃、真空度1×10−3〜9×10−3Paの高真空中または不活性ガス中で行うか、または、前段の焼結は行わず、後段の焼結のみ、温度1300〜1400℃、真空度1×10−3〜9×10−3Paの高真空中または不活性ガス中で行っていたため、高温下での焼結の進行に伴い焼結体素子の表面積が減少し、静電容量が通常の真空中での焼結と同等レベルにまで低下することが問題となっていた。
【0009】
【課題を解決するための手段】
本発明は、弁作用金属成形体に対して、不活性ガスを用いた還元雰囲気中で、従来の焼結温度よりも低温で焼結し、一旦真空にした後、再び不活性ガスで冷却することにより、上記課題を解決するものである。
【0010】
すなわち、弁作用金属粉末を加圧成形して成形体素子とし、該成形体素子を還元剤とともに不活性ガス中において温度800〜1200℃で焼結した後、該焼結体素子を真空中に放置し、次いで不活性ガス中で室温まで冷却し、酸で洗浄してコンデンサ素子とすることを特徴とする固体電解コンデンサ素子の製造方法である。
【0011】
また、上記還元剤が、マグネシウム、ナトリウム、カルシウム、アルミニウム、リチウム、炭素であることを特徴とする固体電解コンデンサ素子の製造方法である。
【0012】
さらに、上記還元剤の混合量が、コンデンサ素子重量に対し1.0〜20.0wt%であることを特徴とする固体電解コンデンサ素子の製造方法である。
【0013】
【発明の実施の形態】
陽極導出リードを植設した状態または植設しない状態で、タンタル、ニオブ等の弁作用金属粉末を加圧成形して成形体素子とし、
▲1▼該成形体素子を還元剤とともに不活性ガス中において温度800〜1200℃で焼結した後、
▲2▼該焼結体素子を真空度0.9Pa以下の真空中に放置して還元剤を取り除き、
▲3▼次いで再び不活性ガス雰囲気に置き換えて、焼結体素子の酸化を抑えつつ室温まで冷却し、
▲4▼酸で洗浄し残留還元剤の除去を行って、コンデンサ素子とする。
上記還元剤は、マグネシウム、ナトリウム、カルシウム、アルミニウム、リチウム、炭素とし、混合量は、コンデンサ素子重量に対し1.0〜20.0wt%とする。
【0014】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
【0015】
[実施例1a]
酸素含有量が4000ppmのタンタル粉末120mgをW3.5mm×L4.5mm×T1.5mmの直方体に加圧成形して成形体素子を作製し、該素子重量に対し10.0wt%のマグネシウムとともに、アルゴンガス中において、800℃で90分間熱処理し、焼結を行った。
その後、炉内を減圧してアルゴンガスを排出し、真空度0.133Paの真空状態にして還元剤を取り除き、再びアルゴンガスで常圧にした後、室温まで冷却して素子が酸化するのを抑制した。更に、この焼結体素子を硫酸で洗浄して残留還元剤の除去を行い、コンデンサ素子を作製した。
【0016】
[その他の実施例]
タンタルまたはニオブ粉末を用い、焼結条件(温度、還元剤量)を表1、表2の条件とし、それ以外は上記実施例1aと同様の方法でコンデンサ素子を作製した。
([表1]実施例2a〜6a:タンタル素子、[表2]実施例1b〜6b:ニオブ素子)。
【0017】
[比較例1a〜4a、1b〜4b]
還元温度、還元剤量を表1、表2の条件とし、それ以外は実施例と同様の方法でコンデンサ素子を作製した。
([表1]比較例1a〜4a:タンタル素子、[表2]比較例1b〜4b:ニオブ素子)
【0018】
(従来例1a、1b)
上記実施例と同様の方法で素子を加圧成形した後、従来例1a,1bは素子重量に対し10.0wt%のマグネシウムと成形体素子を、アルゴンガス中において1000℃で90分間熱処理し、焼結を行った。
次いで、アルゴンガス中において1300℃で20分間熱処理した。
その後、アルゴンガス雰囲気のまま室温まで冷却した。更に、この焼結体素子を硫酸中で洗浄して還元剤の除去を行い、コンデンサ素子を作製した。
([表1]従来例1a:タンタル素子、[表2]従来例1b:ニオブ素子)
【0019】
(従来例2a、2b)
実施例と同様の方法で素子を加圧成形した後、成形体素子を1.33×10−3Paの真空中において1000℃で90分間熱処理し、焼結を行った。
次いで、真空度はそのままで温度を1300℃に上げ、20分間熱処理した。その後、真空度はそのままとし、室温まで冷却し、大気を導入して常圧に戻した。
([表1]従来例2a:タンタル素子、[表2]従来例2b:ニオブ素子)
【0020】
(従来例3a、3b)
実施例と同様の方法で素子を加圧成形した後、成形体素子を1.33×10−3Paの真空中において1300℃で20分間熱処理し、真空度はそのままで室温まで冷却し、大気を導入して常圧に戻した。
([表1]従来例3a:タンタル素子、[表2]従来例3b:ニオブ素子)
【0021】
上記コンデンサ素子を、EIAJ RC−2361A(日本電子機械工業会規格)に示された方法にて、30Vで2時間保持して陽極酸化を行い、誘電体酸化皮膜を形成した。
そして、このように構成されたコンデンサ素子に対し、バイアス電圧1.5Vにて静電容量の測定を行った。また、21Vの電圧を印加して2分間充電した後、漏れ電流を測定した。
【0022】
上記のようにして作製したコンデンサ素子について、CV値、酸素濃度、漏れ電流値を調査した。その結果を表1、および表2に示す。
【0023】
【表1】
【0024】
【表2】
【0025】
表1、表2より、従来例2a、2b、3a、3bのように、真空度1.33×10−3Paの高真空中で焼結を行う場合、素子の酸化を抑制するために高真空ポンプ(油拡散ポンプ、ターボ分子ポンプ等)が必要となるが、本発明では、真空度を、0.9Pa以下にすればよいため、低真空ポンプ(ロータリーポンプ等)のみでよい。
【0026】
表1、表2の結果から明らかなように、本発明の焼結処理を実施した多孔質陽極素子は、従来例と比べ、焼結温度が低くてすむため、CV値を従来例の1.3〜1.5倍にまで上げることができた。
更に、従来例のコンデンサ素子に比べて酸素濃度が低減した結果、漏れ電流値の低減をも図ることができた。
【0027】
比較例1a、1bのように熱処理温度を800℃未満とすると、CV値は増加するが、酸素濃度も増加するため、漏れ電流が増大するという問題があり、また、比較例4a、4bのように1200℃を超えると酸素濃度は低くなるが、焼結が進行して静電容量が低下するという問題があるため、焼結温度は800〜1200℃が適当である。
【0028】
比較例2a、2bのようにマグネシウム量を1.0wt%未満とすると、還元剤量が不十分なため、酸素濃度低減効果が損なわれるという問題点があり、また、比較例4のようにマグネシウム量を20.0wt%より多くしても、酸素濃度低減効果は増大しないため、マグネシウム量は1.0〜20.0wt%が良好である。
【0029】
今回の実施例では、成形体素子を製作する際、タンタルまたはニオブ粉末にバインダーを混合しなかったが、成形性を向上させるためにバインダーを混合した場合は、加圧成形後に上記バインダーを除去した後、還元雰囲気中で焼結を行えばよい。
【0030】
また、還元剤として素子重量に対して1.0〜20.0wt%のマグネシウムを用いたが、ナトリウム、カルシウム、アルミニウム、リチウム、炭素等を還元剤に用いる場合は、マグネシウムに相当する量だけ用いて焼結を行えばよい。
【0031】
【発明の効果】
上記したように本発明によれば、不活性ガスを用いた還元雰囲気中において、通常の焼結温度よりも低温で焼結を行い、次に一旦真空にして還元剤を排出後、再び不活性ガス雰囲気にして冷却することにより、高温下での焼結の進行に伴う焼結体素子の表面積が減少することなく、CV値を向上させることができ、酸素濃度が少なく、漏れ電流を低減させたコンデンサ素子を得ることができ、その結果、コンデンサの漏れ電流特性の改善、静電容量の向上を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sintered body element used for a solid electrolytic capacitor.
[0002]
[Prior art]
In general, a solid electrolytic capacitor element is obtained by sintering a molded body made of a valve-acting metal powder in which an anode lead is implanted, or by welding the anode lead after sintering the molded body. A porous sintered body element is formed, the element is anodized to form a dielectric oxide film layer, and the surface is covered with a solid electrolyte layer, a carbon layer, and a cathode silver layer.
[0003]
In order to increase the capacity of the capacitor, pulverization of the valve metal is most effective, and the surface area of the valve metal can be increased. However, when forming a sintered body element using such fine powder, the higher the sintering temperature, the easier the sintering of valve action metal powders progresses, and the surface area of the sintered body element is reduced. Capacitance at the time decreases.
[0004]
On the other hand, the amount of oxygen adsorbed on the surface of the valve metal increases as the surface area of the valve metal increases in order to increase the capacity of the capacitor. Since the defective portion of the oxide film increases, the leakage current increases when the capacitor is configured.
[0005]
By reducing the oxygen concentration of the sintered body element, it is possible to reduce the defective portion of the dielectric oxide film, and it is possible to reduce the leakage current, improve the withstand voltage, and improve the reliability in the life test.
[0006]
As a conventional method for reducing the oxygen concentration, there is a method in which a pressure-molded element is subjected to a sintering treatment in the presence of a reducing agent by changing the treatment temperature in two stages (see, for example, Patent Document 1).
[0007]
[Patent Document 1]
JP 11-1111575 A (page 2-5)
[0008]
[Problems to be solved by the invention]
In the above-mentioned sintering treatment, the green compact is sintered in two stages, the former stage sintering is performed at a temperature of 1000 ° C., the vacuum degree is 1 × 10 −1 to 9 × 10 −1 Pa, and the latter stage sintering is performed at a temperature. 1300 to 1400 ° C., vacuum degree 1 × 10 −3 to 9 × 10 −3 Pa in high vacuum or inert gas, or no pre-stage sintering, only post-stage sintering, temperature 1300 Since it was performed in a high vacuum or in an inert gas at ˜1400 ° C. and a vacuum degree of 1 × 10 −3 to 9 × 10 −3 Pa, the surface area of the sintered body element decreased with the progress of sintering at high temperature However, there has been a problem that the capacitance is reduced to a level equivalent to that of sintering in a normal vacuum.
[0009]
[Means for Solving the Problems]
The present invention sinters the valve action metal molded body in a reducing atmosphere using an inert gas at a temperature lower than the conventional sintering temperature, once evacuated, and then cooled again with the inert gas. This solves the above-mentioned problem.
[0010]
That is, the valve action metal powder is pressure-molded to form a molded body element, which is sintered together with a reducing agent in an inert gas at a temperature of 800 to 1200 ° C., and then the sintered body element is placed in a vacuum. The solid electrolytic capacitor element manufacturing method is characterized in that the capacitor element is left standing, then cooled to room temperature in an inert gas, and washed with an acid to form a capacitor element.
[0011]
The reducing agent is magnesium, sodium, calcium, aluminum, lithium, or carbon, and is a method for producing a solid electrolytic capacitor element.
[0012]
Furthermore, the amount of the reducing agent mixed is 1.0 to 20.0 wt% with respect to the weight of the capacitor element.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In a state where the anode lead is implanted or not implanted, a valve element metal powder such as tantalum or niobium is pressure-molded to form a molded body element.
(1) After sintering the shaped body element together with a reducing agent in an inert gas at a temperature of 800 to 1200 ° C.,
(2) Leave the sintered body in a vacuum of 0.9 Pa or less to remove the reducing agent,
(3) Next, it is replaced again with an inert gas atmosphere and cooled to room temperature while suppressing oxidation of the sintered body element.
(4) Wash with acid to remove the residual reducing agent to obtain a capacitor element.
The reducing agent is magnesium, sodium, calcium, aluminum, lithium, and carbon, and the mixing amount is 1.0 to 20.0 wt% with respect to the capacitor element weight.
[0014]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0015]
[Example 1a]
120 mg of tantalum powder having an oxygen content of 4000 ppm is pressure-molded into a rectangular parallelepiped of W3.5 mm × L4.5 mm × T1.5 mm to produce a molded body element, together with 10.0 wt% magnesium with respect to the element weight, argon In the gas, it heat-processed for 90 minutes at 800 degreeC, and sintered.
After that, the inside of the furnace is depressurized, the argon gas is discharged, the vacuum is reduced to 0.133 Pa, the reducing agent is removed, and the pressure is returned to normal pressure with argon gas. Suppressed. Further, this sintered body element was washed with sulfuric acid to remove the residual reducing agent, thereby producing a capacitor element.
[0016]
[Other Examples]
Using tantalum or niobium powder, the sintering conditions (temperature, amount of reducing agent) were set as shown in Tables 1 and 2, and capacitor elements were produced in the same manner as in Example 1a.
([Table 1] Examples 2a to 6a: tantalum elements, [Table 2] Examples 1b to 6b: niobium elements).
[0017]
[Comparative Examples 1a to 4a, 1b to 4b]
Capacitor elements were produced in the same manner as in the Examples except that the reduction temperature and the amount of reducing agent were the conditions shown in Tables 1 and 2.
([Table 1] Comparative examples 1a to 4a: tantalum elements, [Table 2] Comparative examples 1b to 4b: niobium elements)
[0018]
(Conventional example 1a, 1b)
After pressure-molding the element in the same manner as in the above example, Conventional Examples 1a and 1b were heat-treated for 90 minutes at 1000 ° C. in argon gas with 10.0 wt% magnesium and the molded body element, Sintering was performed.
Subsequently, it heat-processed in argon gas at 1300 degreeC for 20 minutes.
Then, it cooled to room temperature with argon gas atmosphere. Further, this sintered body element was washed in sulfuric acid to remove the reducing agent, thereby producing a capacitor element.
([Table 1] Conventional Example 1a: Tantalum Element, [Table 2] Conventional Example 1b: Niobium Element)
[0019]
(Conventional example 2a, 2b)
After pressure-molding the element by the same method as in the example, the molded body element was heat-treated at 1000 ° C. for 90 minutes in a vacuum of 1.33 × 10 −3 Pa and sintered.
Next, the temperature was raised to 1300 ° C. while maintaining the degree of vacuum, and heat treatment was performed for 20 minutes. Thereafter, the degree of vacuum was kept as it was, the temperature was cooled to room temperature, and the atmosphere was introduced to return to normal pressure.
([Table 1] Conventional Example 2a: Tantalum Element, [Table 2] Conventional Example 2b: Niobium Element)
[0020]
(Conventional example 3a, 3b)
After pressure-molding the element by the same method as in the examples, the molded body element was heat-treated at 1300 ° C. for 20 minutes in a vacuum of 1.33 × 10 −3 Pa, cooled to room temperature while maintaining the degree of vacuum, and the atmosphere Was returned to normal pressure.
([Table 1] Conventional Example 3a: Tantalum Element, [Table 2] Conventional Example 3b: Niobium Element)
[0021]
The capacitor element was anodized by holding it at 30 V for 2 hours by the method shown in EIAJ RC-2361A (Japan Electronic Machinery Manufacturers Association Standard) to form a dielectric oxide film.
Then, the capacitance of the thus configured capacitor element was measured at a bias voltage of 1.5V. Moreover, after applying the voltage of 21V and charging for 2 minutes, the leakage current was measured.
[0022]
The capacitor element produced as described above was examined for CV value, oxygen concentration, and leakage current value. The results are shown in Tables 1 and 2.
[0023]
[Table 1]
[0024]
[Table 2]
[0025]
From Tables 1 and 2, when sintering is performed in a high vacuum with a degree of vacuum of 1.33 × 10 −3 Pa as in Conventional Examples 2a, 2b, 3a, and 3b, it is high in order to suppress element oxidation. A vacuum pump (oil diffusion pump, turbo molecular pump, etc.) is required, but in the present invention, the degree of vacuum only needs to be 0.9 Pa or less, so only a low vacuum pump (rotary pump, etc.) is required.
[0026]
As is clear from the results of Tables 1 and 2, the porous anode element subjected to the sintering treatment of the present invention requires a lower sintering temperature than that of the conventional example. It was able to increase to 3 to 1.5 times.
Furthermore, as a result of the reduced oxygen concentration compared to the conventional capacitor element, the leakage current value could be reduced.
[0027]
When the heat treatment temperature is less than 800 ° C. as in Comparative Examples 1a and 1b, the CV value increases, but the oxygen concentration also increases, so there is a problem that the leakage current increases, and as in Comparative Examples 4a and 4b. If the temperature exceeds 1200 ° C., the oxygen concentration becomes low, but the sintering temperature is lowered due to the progress of sintering, so that the sintering temperature is suitably 800 to 1200 ° C.
[0028]
When the amount of magnesium is less than 1.0 wt% as in Comparative Examples 2a and 2b, there is a problem that the effect of reducing the oxygen concentration is impaired because the amount of reducing agent is insufficient, and magnesium as in Comparative Example 4 is also present. Even if the amount is more than 20.0 wt%, the effect of reducing the oxygen concentration does not increase, so the magnesium amount is preferably 1.0 to 20.0 wt%.
[0029]
In this example, when the molded body element was manufactured, the binder was not mixed with the tantalum or niobium powder, but when the binder was mixed in order to improve the moldability, the binder was removed after the pressure molding. Thereafter, sintering may be performed in a reducing atmosphere.
[0030]
Moreover, although 1.0-20.0 wt% magnesium was used as the reducing agent with respect to the element weight, when sodium, calcium, aluminum, lithium, carbon, or the like is used as the reducing agent, only the amount corresponding to magnesium is used. Sintering may be performed.
[0031]
【The invention's effect】
As described above, according to the present invention, in a reducing atmosphere using an inert gas, sintering is performed at a temperature lower than the normal sintering temperature, and then the vacuum is once evacuated and the reducing agent is discharged. By cooling in a gas atmosphere, the CV value can be improved without decreasing the surface area of the sintered body element accompanying the progress of sintering at high temperature, the oxygen concentration is low, and the leakage current is reduced. As a result, it is possible to improve the leakage current characteristics and the capacitance of the capacitor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003169098A JP2005005572A (en) | 2003-06-13 | 2003-06-13 | Method for manufacturing solid-state electrolytic capacitor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003169098A JP2005005572A (en) | 2003-06-13 | 2003-06-13 | Method for manufacturing solid-state electrolytic capacitor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005005572A true JP2005005572A (en) | 2005-01-06 |
Family
ID=34094340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003169098A Pending JP2005005572A (en) | 2003-06-13 | 2003-06-13 | Method for manufacturing solid-state electrolytic capacitor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005005572A (en) |
-
2003
- 2003-06-13 JP JP2003169098A patent/JP2005005572A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6350406B1 (en) | Method of manufacturing anode unit for solid electrolytic capacitor, anode unit for solid electrolytic capacitor, continuous sintering apparatus, and method of manufacturing secondary particles of valve-action metal powder | |
JP4275187B2 (en) | Electrolytic capacitor | |
US6447570B1 (en) | Sintered Tantalum and Niobium capacitor pellets doped with Nitrogen, and method of making the same | |
JP4275044B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP5684453B2 (en) | Method for heat treatment of metal powder and product produced thereby | |
JP5411156B2 (en) | Capacitor element manufacturing method | |
CN1309513C (en) | Tantalum and tantalum nitride powder mixtures for electrolytic capactitors substrates | |
JP2004349658A (en) | Electrolytic capacitor | |
US6689185B2 (en) | Niobium powder for capacitor, sintered body using the powder and capacitor using the same | |
KR20110013527A (en) | Process for producing electrolytic capacitors having a low leakage current | |
EP1264321B1 (en) | Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body | |
JP2005005572A (en) | Method for manufacturing solid-state electrolytic capacitor element | |
JP2008182056A (en) | Solid electrolytic capacitor | |
JP3547484B2 (en) | Manufacturing method of capacitor element | |
WO2013118371A1 (en) | Solid electrolytic capacitor | |
TWI266661B (en) | Niobium powder and solid electrolytic capacitor | |
EP2866237A1 (en) | Capacitor element | |
JP4366259B2 (en) | Method for manufacturing element for solid electrolytic capacitor | |
JP3503971B2 (en) | Manufacturing method of capacitor element | |
JP4596541B2 (en) | Anode body for solid electrolytic capacitor and solid electrolytic capacitor | |
JPH0869946A (en) | Manufacture of capacitor element | |
JPH11111575A (en) | Method for producing porous anode body in solid electrolytic capacitor | |
JP4648202B2 (en) | Method for manufacturing anode element for solid electrolytic capacitor | |
WO2015016066A1 (en) | Positive electrode body for solid electrolytic capacitor elements and method for producing same | |
JP2004238670A (en) | Electrode material for capacitor, its manufacturing method, and electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051212 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20080509 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081027 |