[go: up one dir, main page]

JP2005004022A - Anti-reflection coating - Google Patents

Anti-reflection coating Download PDF

Info

Publication number
JP2005004022A
JP2005004022A JP2003168725A JP2003168725A JP2005004022A JP 2005004022 A JP2005004022 A JP 2005004022A JP 2003168725 A JP2003168725 A JP 2003168725A JP 2003168725 A JP2003168725 A JP 2003168725A JP 2005004022 A JP2005004022 A JP 2005004022A
Authority
JP
Japan
Prior art keywords
refractive index
antireflection film
optical
index material
center wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168725A
Other languages
Japanese (ja)
Inventor
Kenji Kameda
健二 亀田
Koji Watanabe
晃司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2003168725A priority Critical patent/JP2005004022A/en
Publication of JP2005004022A publication Critical patent/JP2005004022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光学部品を2種類の媒質との間で当該光学部品の光学特性を最適化する反射防止膜を提供する。
【解決手段】光学屈折率が1.45〜1.52の基材1に高屈折率材料と低屈折率材料とを交互に積層形成した反射防止膜2において、第1層を高屈折率材料で設計中心波長に対し0.038〜0.140λの光学膜厚に形成し、第2層を低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、第3層を高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、第4層を低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成した反射防止膜。
【選択図】 図1
The present invention provides an antireflection film that optimizes optical characteristics of an optical component between two types of media.
In an antireflection film 2 in which a high refractive index material and a low refractive index material are alternately laminated on a base material 1 having an optical refractive index of 1.45 to 1.52, the first layer is made of a high refractive index material. The second layer is formed of a low refractive index material with an optical film thickness of 0.058 to 0.062λ with respect to the design center wavelength. The third layer is formed of a high refractive index material with an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength, and the fourth layer is formed of a low refractive index material with a thickness of 0.167 to the design center wavelength. An antireflection film formed to an optical film thickness of 0.177λ.
[Selection] Figure 1

Description

【0001】
【産業上の利用分野】
この発明は、反射防止膜に関し、特に、光学部品を2種類の媒質との間で当該光学部品の光学特性を最適化する反射防止膜に関する。
【0002】
【従来の技術】
光が屈折率の異なる2媒質を伝播する場合、伝播してきた光の一部はこの2媒質の境界面において反射する。一方の媒質を空気とし、他方の媒質をガラスとした場合、空気とガラスとの間の境界面においては約4%の光が反射する。
光学部品は、この反射損失或いは戻り光に影響されて最適な光学特性が得られない場合が多々ある。これに対応して、光学部品の光の入射面とこの入射光が伝播してきた媒質せある入射側媒質との間の境界面において生起する光反射を防止し、或は当該光学部品から光が出射する出射面と出射光がこれから伝播して行こうとしている出射側媒質との間の境界面において生起する光反射を防止するに、ARコートという反射防止膜をこれらの境界面に形成することが一般に行われている。
ところで、従来の光伝播における反射防止技術においては、反射防止膜は、一般に、光学部品の入射側媒質或いは出射側媒質の内の一方のみを条件としてこれに対応して形成されている(特許文献1 参照)。
【0003】
【特許文献1】特許第2638806号 明細書
【0004】
【発明が解決しようとする課題】
しかし、従来の光伝播における反射防止技術は、上述した通り、光学部品の入射側媒質或いは出射側媒質の内の一方のみを条件としてこれに対応して設計形成されているので、当然に、光学部品と入射側媒質或いは出射側媒質の内の何れか一方との間のみについて反射防止条件を満足しているに過ぎない。即ち、光が入射側媒質を伝播して光学部品に入射するという一つの条件、或いは光が光学部品から出射側媒質に出射するという一つの条件の内の一方の条件に対してのみ、当該光学部品の光学特性を最適化する反射防止膜を設計形成しているに過ぎない。
【0005】
この発明は、光学部品に対して対空気の条件を満足する反射防止膜の特性を有すると共に、この光学部品或いはこの光学部品と同等の屈折率を有する光学部品にこの反射防止膜と同等の反射防止膜を形成して、両光学部品の反射防止膜同士を突き合わせ接触することでも対光学部品の条件を満足する反射防止膜の特性を有する反射防止膜を構成する。即ち、この発明は、反射を防止されるべき光学部品とその光学面にイオンビームスパッタ法で多層反射防止膜を成膜形成することにより、対空気の条件で、またこれを2個向かい合わせに突き合わせ接触することで対光学部品の条件で、光学部品に対して2種類の媒質間の条件で当該光学部品の光学特性を最適化する反射防止膜を提供するものである。
【0006】
【課題を解決するための手段】
請求項1:光学屈折率が1.45〜1.52の基材1に高屈折率材料と低屈折率材料とを交互に積層形成した反射防止膜2において、第1層を高屈折率材料で設計中心波長に対し0.038〜0.140λの光学膜厚に形成し、第2層を低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、第3層を高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、第4層を低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成した反射防止膜を構成した。
【0007】
そして、請求項2:請求項1に記載される反射防止膜において、基材をシングルモード光ファイバ端面とした反射防止膜を構成した。
また、請求項3:請求項2に記載される反射防止膜において、シングルモード光ファイバを2個準備し、一方のシングルモード光ファイバの反射防止膜と他方のシングルモード光ファイバの反射防止膜とを突き合わせ接触した反射防止膜を構成した。
【0008】
ここで、請求項4:端面に高屈折率材料と低屈折率材料とを交互に成膜して反射防止膜を形成した光学屈折率が1.45〜1.52のシングルモード光ファイバを2個準備し、ここで、反射防止膜は第1層を高屈折率材料で設計中心波長に対して0.038〜0.140λの光学膜厚に形成し、第2層を低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、第3層を高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、第4層を低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成したものであり、一方のシングルモード光ファイバの反射防止膜と他方のシングルモード光ファイバの反射防止膜とを突き合わせ接触させ、両シングルモード光ファイバの他端を光源或いはフォトダイオードに光結合した光学部品組み立て体を構成した。
【0009】
【発明の実施の形態】
この発明の実施の形態を図の実施例を参照して説明する。
図1を参照して第1の実施例を説明するに、反射を防止されるべき光学部品1と、その光学面にイオンビームスパッタ法で成膜形成した誘電体多層膜より成る反射防止膜2により構成する。
反射防止膜2が形成される光学部品1としては、光学屈折率が1.45〜1.52の基材が使用される。光学部品1に高屈折率材料Taと低屈折率材料SiOを交互に成膜積層して反射防止膜2を形成する。ここで、反射防止膜2の第1層は高屈折率材料で設計中心波長に対して0.038〜0.140λの光学膜厚に形成し、第2層は低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、第3層は高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、第4層は低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成する。ここで、反射防止膜2の層数を4層としているが、層数を更に増加しても光学部品の光学特性改善の効果が必ずしも増大するとは限らない。
【0010】
ここで、光学部品1に反射防止膜2を介して入射光3が到来した場合、光学部品1と入射媒質である空気との間の境界面における光の反射は、図2に示される通り、反射防止膜2の光透過帯域1150〜1450nm内において、殆どなくなる。
光学部品1から反射防止膜2を介して出射光4が空気に出射伝播する場合においても、入射する場合と同様に、光学部品1と出射媒質である空気との間の境界面における光の反射は殆どなくなる。なお、反射防止膜の全4層の膜厚を上述した範囲内で変化させると、図2における最上側の曲線と最下側の曲線とにより限定される領域内において変化する光学特性が得られる。
【0011】
図3を参照して第2の実施例を説明するに、光学部品1とその光学面に成膜形成した反射防止膜2は第1の実施例における光学部品1および反射防止膜2そのものである。第2の実施例は、更に、第1の実施例における光学部品1と同等の第2の光学部品1’とその光学面に成膜形成した第1の実施例における反射防止膜2と同等の第2の反射防止膜2’とを具備する。そして、光学部品1の反射防止膜2と第2の光学部品1’の第2の反射防止膜2’とを突き合わせ接触する。
【0012】
ここで、入射光3が光学部品1に第2の反射防止膜2’、反射防止膜2を介して第2の光学部品1’から到来した場合、光学部品1と入射側媒質である第2の光学部品1’との間の境界面における光の反射は、図4に示される通り、第2の反射防止膜2’および反射防止膜2の光透過帯域内において、殆どなくなる。
即ち、従来の反射防止膜である場合、光学部品1は入射側媒質を空気としてこれとの間で当該光学部品1の光学特性が最適化されているところから、図3の如く入射側媒質が空気とは異なる第2の光学部品1’であると、反射防止の特性が得られなくなる。しかし、この第2の実施例においては光学部品1と第2の光学部品1’との間に反射防止膜2および第2の反射防止膜2’が介在することにより、光学部品1と空気とは異なる入射側媒質である光学部品1’との関係においても反射防止の特性は維持され、反射防止膜の光透過帯域内の光の反射は殆どなくなる。なお、反射防止膜の全4層の膜厚を上述した範囲内で変化させると、図4における最上側の曲線と最下側の曲線とにより限定される領域内において変化する光学特性が得られる。
【0013】
出射光4が光学部品1から反射防止膜2、第2の反射防止膜2’を介して空気とは異なる出射側媒質である第2の光学部品1’に出射、伝播する場合においても、入射する場合と同様、光学部品1と出射側媒質である第2の反射防止膜2’との間の境界面における光の反射は殆どなくなる。
図5を参照して第3の実施例を説明するに、これは第1の実施例における光学部品1をシングルモード光ファイバ6とした例に相当する。このシングルモード光ファイバ6の端面に先の条件で反射防止膜2をイオンビームスパッタ法で成膜形成したものにより構成される。
【0014】
光源5から出射したシングルモード光ファイバ6に対する入射光3をフォトダイオード7で受光する場合、シングルモード光ファイバ6の端面における反射損失は反射防止膜2の透過波長帯域において殆どなくなる。
図6を参照して第4の実施例を説明するに、これは第2の実施例における光学部品1をシングルモード光ファイバ6とし、光学部品1’をシングルモード光ファイ6’とした例に相当する。そして、一方のシングルモード光ファイバ6の反射防止膜2と他方のシングルモード光ファイバ6’の反射防止膜2’とを突き合わせ接触し、両シングルモード光ファイバ6、6’の他端を光源5とフォトダイオード7に光結合している。この第4の実施例の場合も、図3の第2の実施例と同様、両シングルモード光ファイバの境界面において反射損失は殆どなくなる。
【0015】
【発明の効果】
上述した通りであって、この発明は、反射を防止されるべき光学部品と、その光学面にイオンビームスパッタ法で上述した条件で成膜形成した誘電体多層膜より成る反射防止膜とを構成として具備することにより、光通信技術分野で使用されている波長帯域850〜1650nmにおいて、対空気の条件で、またこれを2個向かい合わせに接触させることで対光学部品の条件で、光学部品に対して2種類の媒質間の条件で光学特性を最適化させる反射防止膜を提供することができる。
【図面の簡単な説明】
【図1】第1の実施例を説明する図。
【図2】第1の実施例の光波長に対する反射率を示す図。
【図3】第2の実施例を説明する図。
【図4】第2の実施例の光波長に対する反射率を示す図。
【図5】第3の実施例を説明する図。
【図6】第4の実施例を説明する図。
【符号の説明】
1 光学部品 1’第2の光学部品
2 反射防止膜 2’第2の反射防止膜
3 入射光 4 出射光
5 光源 6 シングルモード光ファイバ
6’シングルモード光ファイ
7 フォトダイオード
[0001]
[Industrial application fields]
The present invention relates to an antireflection film, and more particularly to an antireflection film that optimizes optical characteristics of an optical component between two types of media.
[0002]
[Prior art]
When light propagates through two media having different refractive indexes, part of the propagated light is reflected at the boundary surface between the two media. When one medium is air and the other medium is glass, about 4% of light is reflected at the interface between the air and glass.
In many cases, optical components are affected by this reflection loss or return light, and optimal optical characteristics cannot be obtained. Correspondingly, light reflection that occurs at the boundary surface between the light incident surface of the optical component and the incident side medium through which the incident light has propagated is prevented, or light from the optical component is prevented. In order to prevent light reflection occurring at the boundary surface between the outgoing exit surface and the outgoing side medium from which the outgoing light is going to propagate, an antireflection film called an AR coat is formed on these boundary surfaces. Is generally done.
By the way, in the conventional antireflection technology for light propagation, the antireflection film is generally formed corresponding to only one of the incident side medium and the output side medium of the optical component (Patent Document). 1).
[0003]
[Patent Document 1] Japanese Patent No. 2638806 Specification
[Problems to be solved by the invention]
However, as described above, the conventional antireflection technology in light propagation is designed and formed corresponding to only one of the incident side medium and the output side medium of the optical component. The antireflection condition is only satisfied between the part and one of the incident side medium and the output side medium. That is, only for one of the conditions in which light propagates through the incident side medium and enters the optical component, or in the one condition in which light exits from the optical component to the output side medium, the optical Only anti-reflective coatings that optimize the optical properties of the components are designed and formed.
[0005]
The present invention has the characteristics of an antireflection film that satisfies the air-to-air condition for an optical component, and the optical component or an optical component having a refractive index equivalent to that of the optical component has a reflection equivalent to that of the antireflection film. An antireflection film having the characteristics of an antireflection film that satisfies the conditions of the optical component is formed by forming an antireflection film and bringing the antireflection films of both optical components into contact with each other. That is, according to the present invention, an optical component to be prevented from being reflected and a multilayer antireflection film are formed on the optical surface by ion beam sputtering, so that two of them are face-to-air and facing each other. An antireflection film is provided that optimizes the optical characteristics of the optical component under butt contact with the optical component under conditions between the two types of media.
[0006]
[Means for Solving the Problems]
Claim 1 In an antireflection film 2 in which a high refractive index material and a low refractive index material are alternately laminated on a substrate 1 having an optical refractive index of 1.45 to 1.52, the first layer is made of a high refractive index material. The second layer is formed of a low refractive index material with an optical film thickness of 0.058 to 0.062λ with respect to the design center wavelength. The third layer is formed of a high refractive index material with an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength, and the fourth layer is formed of a low refractive index material with a thickness of 0.167 to the design center wavelength. An antireflection film formed with an optical film thickness of 0.177λ was constructed.
[0007]
And, in the antireflection film according to the second aspect of the present invention, an antireflection film having the base material as a single-mode optical fiber end face is formed.
According to a third aspect of the present invention, in the antireflection film according to the second aspect, two single mode optical fibers are prepared, an antireflection film of one single mode optical fiber, and an antireflection film of the other single mode optical fiber, An anti-reflection film that was in contact with each other was constructed.
[0008]
Here, the present invention provides a single mode optical fiber having an optical refractive index of 1.45 to 1.52 in which an antireflection film is formed by alternately forming a high refractive index material and a low refractive index material on the end face. Here, the first layer of the antireflection film is made of a high refractive index material with an optical film thickness of 0.038 to 0.140λ with respect to the design center wavelength, and the second layer is made of a low refractive index material. An optical film thickness of 0.058 to 0.062λ with respect to the design center wavelength is formed, and a third layer is formed of a high refractive index material with an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength. The fourth layer is made of a low refractive index material and has an optical film thickness of 0.167 to 0.177λ with respect to the design center wavelength, and the antireflection film of one single mode optical fiber and the other single mode light. Both single-mode optical fibers are brought into contact with the antireflection coating of the fiber. And forming the optical component assembly optically coupled to the other end of the light source or photodiodes.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the examples of the drawings.
The first embodiment will be described with reference to FIG. 1. An optical component 1 to be prevented from being reflected and an antireflection film 2 comprising a dielectric multilayer film formed on the optical surface thereof by ion beam sputtering. It consists of.
As the optical component 1 on which the antireflection film 2 is formed, a substrate having an optical refractive index of 1.45 to 1.52 is used. The antireflective film 2 is formed by alternately depositing the high refractive index material Ta 2 O 5 and the low refractive index material SiO 2 on the optical component 1. Here, the first layer of the antireflection film 2 is made of a high refractive index material and has an optical film thickness of 0.038 to 0.140λ with respect to the design center wavelength, and the second layer is made of a low refractive index material and the design center wavelength. The third layer is formed of a high refractive index material and has an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength. The layer is made of a low refractive index material and has an optical film thickness of 0.167 to 0.177λ with respect to the design center wavelength. Here, the number of layers of the antireflection film 2 is four, but even if the number of layers is further increased, the effect of improving the optical characteristics of the optical component does not necessarily increase.
[0010]
Here, when the incident light 3 arrives at the optical component 1 through the antireflection film 2, the reflection of the light at the boundary surface between the optical component 1 and the air that is the incident medium is as shown in FIG. In the light transmission band of 1150 to 1450 nm of the antireflection film 2, it almost disappears.
Even when the outgoing light 4 is emitted and propagated from the optical component 1 through the antireflection film 2 to the air, the light is reflected at the interface between the optical component 1 and the air as the outgoing medium, as in the case of the incident light. Is almost gone. If the film thicknesses of all four layers of the antireflection film are changed within the above-described range, optical characteristics that change within a region defined by the uppermost curve and the lowermost curve in FIG. 2 can be obtained. .
[0011]
The second embodiment will be described with reference to FIG. 3. The optical component 1 and the antireflection film 2 formed on the optical surface thereof are the optical component 1 and the antireflection film 2 themselves in the first embodiment. . The second example is further equivalent to the second optical component 1 ′ equivalent to the optical component 1 in the first example and the antireflection film 2 in the first example formed on the optical surface thereof. And a second antireflection film 2 ′. Then, the antireflection film 2 of the optical component 1 and the second antireflection film 2 ′ of the second optical component 1 ′ are brought into butt contact.
[0012]
Here, when the incident light 3 arrives at the optical component 1 from the second optical component 1 ′ via the second antireflection film 2 ′ and the antireflection film 2, the optical component 1 and the second medium that is the incident side medium. The reflection of light at the interface with the optical component 1 ′ is almost eliminated within the light transmission band of the second antireflection film 2 ′ and the antireflection film 2 as shown in FIG.
That is, in the case of the conventional antireflection film, the optical component 1 uses the incident side medium as air and the optical characteristics of the optical component 1 are optimized between them. When the second optical component 1 ′ is different from air, the antireflection characteristic cannot be obtained. However, in the second embodiment, the antireflection film 2 and the second antireflection film 2 ′ are interposed between the optical component 1 and the second optical component 1 ′, so that the optical component 1, air, The antireflection characteristic is maintained even in the relationship with the optical component 1 ′ which is a different incident side medium, and light reflection within the light transmission band of the antireflection film is almost eliminated. When the film thicknesses of all four layers of the antireflection film are changed within the above-described range, optical characteristics that change within a region limited by the uppermost curve and the lowermost curve in FIG. 4 can be obtained. .
[0013]
Even when the emitted light 4 is emitted and propagated from the optical component 1 through the antireflection film 2 and the second antireflection film 2 ′ to the second optical component 1 ′ that is an exit side medium different from air, the incident light 4 is incident. As in the case of the above, the reflection of light at the boundary surface between the optical component 1 and the second antireflection film 2 ′ that is the exit side medium is almost eliminated.
The third embodiment will be described with reference to FIG. 5. This corresponds to an example in which the optical component 1 in the first embodiment is a single mode optical fiber 6. The antireflection film 2 is formed on the end face of the single mode optical fiber 6 by the ion beam sputtering method under the above conditions.
[0014]
When the incident light 3 emitted from the light source 5 to the single mode optical fiber 6 is received by the photodiode 7, the reflection loss at the end face of the single mode optical fiber 6 is almost eliminated in the transmission wavelength band of the antireflection film 2.
A fourth embodiment will be described with reference to FIG. 6. This is an example in which the optical component 1 in the second embodiment is a single mode optical fiber 6 and the optical component 1 ′ is a single mode optical fiber 6 ′. Equivalent to. Then, the antireflection film 2 of one single mode optical fiber 6 and the antireflection film 2 ′ of the other single mode optical fiber 6 ′ are brought into contact with each other, and the other ends of both the single mode optical fibers 6 and 6 ′ are connected to the light source 5. Are optically coupled to the photodiode 7. In the case of the fourth embodiment as well, like the second embodiment of FIG. 3, there is almost no reflection loss at the interface between both single mode optical fibers.
[0015]
【The invention's effect】
As described above, the present invention comprises an optical component to be prevented from being reflected and an antireflection film comprising a dielectric multilayer film formed on the optical surface by the ion beam sputtering method under the conditions described above. In the wavelength band 850 to 1650 nm used in the field of optical communication technology, the optical component can be applied to the optical component under the condition of the air component by contacting the two in a face-to-face relationship. On the other hand, it is possible to provide an antireflection film that optimizes optical characteristics under conditions between two types of media.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a first embodiment;
FIG. 2 is a graph showing the reflectance with respect to the light wavelength in the first embodiment.
FIG. 3 is a diagram illustrating a second embodiment.
FIG. 4 is a diagram showing the reflectance with respect to the light wavelength of the second embodiment.
FIG. 5 is a diagram for explaining a third embodiment;
FIG. 6 is a diagram for explaining a fourth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical component 1 '2nd optical component 2 Antireflection film 2' 2nd antireflection film 3 Incident light 4 Outgoing light 5 Light source 6 Single mode optical fiber 6 'Single mode optical fiber 7 Photodiode

Claims (4)

光学屈折率が1.45〜1.52の基材に高屈折率材料と低屈折率材料とを交互に積層形成した反射防止膜において、
第1層を高屈折率材料で設計中心波長に対して0.038〜0.140λの光学膜厚に形成し、
第2層を低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、
第3層を高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、
第4層を低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成した、
ことを特徴とする反射防止膜。
In an antireflection film in which a high refractive index material and a low refractive index material are alternately laminated on a substrate having an optical refractive index of 1.45 to 1.52,
The first layer is formed of a high refractive index material with an optical film thickness of 0.038 to 0.140λ with respect to the design center wavelength,
The second layer is formed of a low refractive index material with an optical film thickness of 0.058 to 0.062λ with respect to the design center wavelength,
The third layer is formed of a high refractive index material with an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength,
The fourth layer is formed of a low refractive index material with an optical film thickness of 0.167 to 0.177λ with respect to the design center wavelength.
An antireflection film characterized by that.
請求項1に記載される反射防止膜において、
基材をシングルモード光ファイバ端面としたことを特徴とする反射防止膜。
The antireflection film according to claim 1,
An antireflection film characterized in that the base material is a single-mode optical fiber end face.
請求項2に記載される反射防止膜において、
シングルモード光ファイバを2個準備し、一方のシングルモード光ファイバの反射防止膜と他方のシングルモード光ファイバの反射防止膜とを突き合わせ接触したことを特徴とする反射防止膜。
The antireflection film according to claim 2,
An antireflection film prepared by preparing two single mode optical fibers and contacting the antireflection film of one single mode optical fiber with the antireflection film of the other single mode optical fiber.
端面に高屈折率材料と低屈折率材料とを交互に成膜して反射防止膜を形成した光学屈折率が1.45〜1.52のシングルモード光ファイバを2個準備し、
ここで、反射防止膜は第1層を高屈折率材料で設計中心波長に対して0.038〜0.140λの光学膜厚に形成し、第2層を低屈折率材料で設計中心波長に対して0.058〜0.062λの光学膜厚に形成し、第3層を高屈折率材料で設計中心波長に対して0.129〜0.137λの光学膜厚に形成し、第4層を低屈折率材料で設計中心波長に対して0.167〜0.177λの光学膜厚に形成したものであり、
一方のシングルモード光ファイバの反射防止膜と他方のシングルモード光ファイバの反射防止膜とを突き合わせ接触させ、
両シングルモード光ファイバの他端を光源或いはフォトダイオードに光結合した、ことを特徴とする光学部品組み立て体。
Two single-mode optical fibers having an optical refractive index of 1.45 to 1.52 in which an antireflection film is formed by alternately forming a high refractive index material and a low refractive index material on an end face are prepared,
Here, the antireflection film has a first layer made of a high refractive index material with an optical film thickness of 0.038 to 0.140λ with respect to the design center wavelength, and a second layer made of a low refractive index material to the design center wavelength. On the other hand, an optical film thickness of 0.058 to 0.062λ is formed, and a third layer is formed of a high refractive index material to an optical film thickness of 0.129 to 0.137λ with respect to the design center wavelength. Is formed with an optical film thickness of 0.167 to 0.177λ with respect to the design center wavelength with a low refractive index material,
The antireflection film of one single mode optical fiber and the antireflection film of the other single mode optical fiber are brought into butt contact with each other,
An optical component assembly in which the other ends of both single-mode optical fibers are optically coupled to a light source or a photodiode.
JP2003168725A 2003-06-13 2003-06-13 Anti-reflection coating Pending JP2005004022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168725A JP2005004022A (en) 2003-06-13 2003-06-13 Anti-reflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168725A JP2005004022A (en) 2003-06-13 2003-06-13 Anti-reflection coating

Publications (1)

Publication Number Publication Date
JP2005004022A true JP2005004022A (en) 2005-01-06

Family

ID=34094081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168725A Pending JP2005004022A (en) 2003-06-13 2003-06-13 Anti-reflection coating

Country Status (1)

Country Link
JP (1) JP2005004022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164263A (en) * 2013-02-27 2014-09-08 Ricoh Opt Ind Co Ltd Optical element having sub-wavelength structure and method for manufacturing the same
JP2015227963A (en) * 2014-06-02 2015-12-17 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164263A (en) * 2013-02-27 2014-09-08 Ricoh Opt Ind Co Ltd Optical element having sub-wavelength structure and method for manufacturing the same
JP2015227963A (en) * 2014-06-02 2015-12-17 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US12204124B2 (en) Optical filter and imaging device
US8456741B2 (en) Optical module having three or more optically transparent layers
JP2002311235A (en) Composite light diffusion compensating element and light diffusion compensating method using the same
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
JPWO2001086328A1 (en) Optical component and its dispersion compensation method
CN112764135A (en) Narrow-band antireflection film with extremely low residual reflection
JP2006126233A (en) Eyeglass lens with anti-reflection coating
JPWO2021105978A5 (en)
JP2005004022A (en) Anti-reflection coating
CN103647207B (en) Preparation method of reflective film for laser resonator cavity mirror
US20210333437A1 (en) Anti-reflective coatings and methods of forming
KR100543708B1 (en) Optical mode converter using omni-directional reflector
JP2001100024A (en) Multilayered optical filter
JP2004085915A (en) Wavelength dispersion generator, polygon mirror used in the wavelength dispersion generator, and method of manufacturing the same
JP3741692B2 (en) Anti-reflection coating
US20040075908A1 (en) Multilayer mirror
WO2022052268A1 (en) Lens and lens assembly
CN115047571B (en) Coating structure of photodetector chip
CN221485715U (en) Light transmission device and head-mounted display device
US11631963B2 (en) Optical device with coating for operation in multiple environments
JP3728594B2 (en) 2-wavelength optical multiplexer / demultiplexer module
WO2018049312A1 (en) Thin film anti-reflection coating for optical fibers in contact
JP2002122732A (en) Optical dispersion compensating device
JP2008009125A (en) Wavelength separating film and filter for optical communication using the same
JPH10232312A (en) Optical branching filter

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218