JP2004523928A - Method for determining reference magnetization in layered systems - Google Patents
Method for determining reference magnetization in layered systems Download PDFInfo
- Publication number
- JP2004523928A JP2004523928A JP2002581537A JP2002581537A JP2004523928A JP 2004523928 A JP2004523928 A JP 2004523928A JP 2002581537 A JP2002581537 A JP 2002581537A JP 2002581537 A JP2002581537 A JP 2002581537A JP 2004523928 A JP2004523928 A JP 2004523928A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetization
- layer system
- magnetic field
- reference magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3218—Exchange coupling of magnetic films via an antiferromagnetic interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F41/303—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
- H01F41/304—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation using temporary decoupling, e.g. involving blocking, Néel or Curie temperature transitions by heat treatment in presence/absence of a magnetic field
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hall/Mr Elements (AREA)
Abstract
本発明は、材料技術の領域に関連しかつ例えば磁気センサ技術における素子に使用することができる、参照磁化を確定するための方法に関する。本発明の課題は、参照方向が数および空間方向に関して任意に選択することができる、層系における参照磁化を確定するための方法を提供することである。この課題は、層系における参照磁化を確定するための方法において、硬磁性層および/または軟磁性層を幾何学的に構造化しかつ1段階または多段階の熱処理の前または間または後で硬磁性層および/または軟磁性層を少なくとも1つの反強磁性層上に被着することによって少なくとも1つの層系を製造する、ここで温度上昇は少なくとも結合温度を上回るまで実施されかつ引き続いて層系が冷却されるようにしたことによって解決される。The invention relates to a method for determining a reference magnetization, which relates to the area of material technology and can be used, for example, for elements in magnetic sensor technology. It is an object of the present invention to provide a method for determining a reference magnetization in a layer system, in which the reference direction can be chosen arbitrarily in terms of number and spatial direction. The object is to provide a method for determining a reference magnetization in a layer system in which a hard magnetic layer and / or a soft magnetic layer are geometrically structured and a hard magnetic layer is formed before, during or after one or more stages of heat treatment. Producing at least one layer system by depositing a layer and / or a soft magnetic layer on at least one antiferromagnetic layer, wherein the temperature increase is performed at least above the coupling temperature and subsequently the layer system It is solved by making it cool.
Description
【技術分野】
【0001】
発明の適用分野
本発明は、材料技術の分野に関連しかつ例えば、マグネット・センソトロニック(磁気センサ技術)またはスピン・エレクトロニック、例えばGMRセンサまたはMRAMメモリセルにおける素子に使用されると有利である、参照磁化を確定するための方法に関する。
【0002】
従来の技術
磁気的な層系における磁化を固定するために強磁性磁石と反強磁性磁石(Antiferromagnet=AFM)または人工の反強磁性磁石(Artical Anti Ferromagnet=AAF)との間の交換結合を利用することが公知である。
【0003】
マグネット・センソトロニックまたはスピン・エレクトロニックにおける素子は大抵の場合空間固定の参照磁化方向を必要とする。このためにしばしば、いわゆる「アンカー層」に対する磁気結合が利用される。このアンカー層は、硬質磁石と、自然または人工の反強磁性磁石とから成っていてよい。強磁性磁石とアンカー層との間の交換結合によって、強磁性層の磁化方向が空間的に固定される。
【0004】
このアンカー層自体は同様に、磁気的に配向されなければならない。このためにアンカー層の材料特性次第でこれまで次の方法が利用される;
外部磁界中での層析出
外部磁界中での熱的な後処理
局所的なレーザ照射後の磁界冷却。
【0005】
これら3つすべての場合において効果的な磁界冷却(field cooling)が実施され、すなわち系:強磁性磁石/アンカー層は磁界が加えられていて臨界結合温度(ブロッキング温度TB)の上方ではある状態から結合された状態に移行する。これにより、磁界によって強制的に行われる、強磁性層の均質な磁化が直接的な交換結合により反強磁性層のスピン配置中に刻印される。外部磁界強度が結合磁界強度以下である場合には、強磁性層の調整設定された均質な磁化は維持され、従って参照磁化として用いられる。
【0006】
上に列記した方法のうち最後に述べた方法だけが、レーザビームのフォーカスの領域における参照磁化を局所的に変えることができる。
【0007】
この公知の方法の欠点は、レーザ法を除いて、複数の参照方向を任意の方向において相互に同時に実現することができないことにある。このことは例えば角度センサのような複雑な磁気電気素子の作動には必要である。
【0008】
そして最終的にはAFMを配向する後からの工程が必要でありかつマイクロ小型化するには限界がある。
【0009】
更に、軟磁性の層エレメントにおいて、磁化がエレメントエッジに沿って配向されて漂遊磁界が回避されるようにすることが公知である。これにより、磁束は閉じられた配置構成となる。ヴァン・デン・バーク(van den Berg)が発見したように、磁化はエレメントの内部においても隣接して位置するエレメントエッジに対して平行状態を維持する。2つのエレメントエッジに対して同じ距離を有している点において異なった磁気領域が衝突する。これにより、磁区壁によって分離されている均質な磁区を有する状態が生じる。
【0010】
相互に別個のエレメントは距離が十分小さい場合にはその漂遊磁界を介して相互作用をすることが周知である。エネルギー的に有利な状態に達するために、隣接するエレメントは、閉じられた磁束に近くかつ僅かな漂遊磁界しか引き起こさない磁化配置をとる。
【0011】
発明の開示
本発明の課題は、参照方向を数および空間方向に関して任意に選択することができるようにした、層系における参照磁化を確定するための方法を提供することである。
【0012】
この課題は各請求項に記載の発明によって解決される。実施形態は従属請求項の対象である。
【0013】
本発明の層系における参照磁化を確定するための方法では、硬磁性層および/または軟磁性層を幾何学的に構造化しかつ1段階または多段階の熱処理の前または間または後で硬磁性層および/または軟磁性層が少なくとも1つの反強磁性層上に直接接触するようにすることによって少なくとも1つの硬磁性層および/または軟磁性層層が製造される。その際熱処理は少なくとも結合温度を上回る熱上昇によって実施される。引き続いて層系が冷却される。
【0014】
有利には層系は磁界の印加なしに冷却され、これにより消磁された状態または残留磁気状態が障害を受けずに参照磁化として覚え込まされる。
【0015】
更に有利には、熱処理後層系は外部の磁界中で冷却されて、磁界によって変えられた消磁された状態または残留磁化状態が参照磁化として覚え込まされる。
【0016】
有利には、ラテラル方向の拡がりがミクロおよびナノ領域にありかつ層厚がナノメータ領域にある層が製造される。
【0017】
同じまたは異なった組成を有する複数の層を結合温度以上に加熱しかつ引き続いて磁界をかけずに冷却しても有利である。
【0018】
本発明によれば、参照磁化を確定するための方法は異方性磁気抵抗効果または巨大磁気抵抗効果またはトンネル磁気抵抗効果またはスピン注入抵抗効果に基づいている磁気抵抗効果センサ素子または磁気抵抗効果スイッチング素子、または巨大磁気抵抗効果またはトンネル磁気抵抗効果またはスピン注入抵抗効果に基づいている能動磁気電気素子へ適用される。
【0019】
本発明の方法では初めに、硬磁性および/または軟磁性層が幾何学的に構造化される。このことはマイクロエレクトロニクスから公知の方法、例えばリソグラフィー方法によって行うことができる。この幾何学的な構造化によってこれらの幾何学的なエレメントの形状、数および配置が相互に決められる。この工程は硬磁性および/または軟磁性層の磁化方向に決定的に作用する。というのは、ヴァン・デン・ベルクの発見された原理に相応して幾何学的な形状を選択することによってそれぞれの形状内に磁化方向が決定されるからである。形状内に磁区が形成され、その磁化は隣接するエッジに対して平行に配向されている。択一的に、隣接するエレメントの漂遊磁界相互作用を所望の磁区パターンの形成のために利用することができる。
【0020】
このようにして、数、形状および/または配置によって、1つの層系の中に相互に任意の数の参照方向および任意に異なった参照方向を製造することができる。
【0021】
幾何学的な構造化に従って、結合温度を上回る加熱によって、温度上昇により自由になる硬磁性および/または軟磁性の層の磁化配置(コンフィギュレーション)を磁区エレメントに相応して調整設定することができることになる。引き続く、磁界をかけない冷却の際に、反強磁性層が硬磁性および/または軟磁性の層の磁化配置を引き受ける。これにより、層系は統一のとれた磁化形態を有している。
【0022】
本発明の方法によれば、硬磁性および/または軟磁性の層に対してだけ熱処理が行われかつ冷却中または冷却後に初めて反強磁性層に被着されるようにすることも可能である。ここでも反強磁性層は硬磁性および/または軟磁性の層の磁化配置を引き受ける。
【0023】
硬磁性および/または軟磁性の層が反強磁性層の製造後に初めて被着されるかまたはそうすることができる場合には、これらの構造化は例えばマスク交換法またはリソグラフィーによりコントロールされるイオンエッチングによって行うことができる。
【0024】
熱処理期間中に反強磁性層が存在する場合には、反強磁性磁石の磁化は印加される磁界によって決められず、交換結合された強磁性層の磁化によって決められる。
【0025】
本発明によれば、熱処理の期間に磁界を印加することも可能である。その際減衰する交番磁界を使用すれば、ヴァン・デン・ベルクの記述によるパターンの調整設定を一層効果的にする。十分大きい直流磁界を使用すれば、意図して残留磁化状態を引き起こすことができる。
【0026】
本発明の方法の別の利点は、硬磁性および/または軟磁性の層の磁区パターンが温度が比較的高い場合にも維持され、従ってこの方法は、例えばPtMnおよび類似の物質の場合のように、反強磁性状態を生成するための温度処理ともコンパチブルであることにある。
【0027】
更に、本発明の方法により確定される参照磁化は再生可能である(自己治癒)ことも有利である。このことは、層結合体を結合温度以上に新たに加熱することによって初めて実現可能である。これにより、結合温度以上で破壊された磁化が再び調整設定されかつ冷却後に再び参照磁化として用いることができる。
【0028】
磁気電気素子が小型化されていれば、本発明の方法は申し分なく使用することができる。というのは、広範囲なスケール領域にわたって使用可能であるからである。サブマイクロメータ領域において殊に、参照磁化の信頼できる確定を実現可能である。
【0029】
発明を実施するための最良の方法
次に本発明を複数の実施例に基づいて詳細に説明する。
【0030】
その際示されているのは:
図1は強磁性層および反強磁性層の典型的な磁化配置、すなわち
a) 熱処理の前
b) T>TBの場合、ただしはTBは結合温度
c) 熱処理後
(層は分かり易くするために別個に示されている)
および
図2は4つの楕円で似て構造化されているエレメントのカー顕微鏡撮影を示し、その際黒のエレメントでは下方への磁化を示しかつ白のエレメントでは上方への磁化を示している。
【0031】
例1
360°のGMR角度センサのために相互に直角である参照磁化が必要とされる。このためにシリコンにまず10nmの厚さのFeMn層がアンカー層としてかつその上に100nmの厚さの強磁性のNi81Fe19層が析出される。リソグラフィー技術を用いて辺長24μmの方形が構造化される。強磁性層はこの構造の外側では完全に除去されなければならない。それから200℃で熱処理が行われる。200℃の温度に達したとき、1kA/cmの最大振幅の減衰していく磁界中で試料が消磁されかつ引き続いて磁界作用なしに室温に冷却される。今や層系は図1に示されているように安定した磁化配置を示す。
【0032】
例2
磁気抵抗効果型磁界センサは有利にはホイートストーンブリッジ回路において実現される。ホイートストーンブリッジの個別エレメントのお互いに逆の信号を実現するために、相互に反平行の参照磁化が必要とされる。10nmのFeMnおよび100nmのNi81Fe19層から成る2重層がシリコン基板上にスパッタリングされる。層析出の間、240A/cmの強度の均質磁界が加えられる。引き続くリソグラフィーステップで100μm×20μmのラテラル方向の寸法を有する楕円形の形状の4つのエレメントが構造化される。これらエレメントは相互に平行でありかつ層析出の間に磁界方向に配向されかつ30μmの間隔を以て隣接配置されている。次いで200℃で熱処理が行われる。200℃に達すると、試料は1kA/cmの最大振幅の減衰していく、エレメント軸線に対して対角線上に配向されている磁界中で消磁されかつ引き続いて磁界作用なしに室温に冷却される。今や層系は図2に示されているように安定した磁化配置を示す。
【図面の簡単な説明】
【0033】
【図1】強磁性層および反強磁性層の典型的な磁化配置を説明する略図である。
【0034】
【図2】4つの楕円に似て構造化されている要素のカー顕微鏡撮影を示す略図である。【Technical field】
[0001]
The present invention relates to the field of materials technology and is advantageously used, for example, for elements in magnet-sensotronic (magnetic sensor technology) or spin-electronics, for example GMR sensors or MRAM memory cells, The present invention relates to a method for determining a reference magnetization.
[0002]
Utilizing exchange coupling between ferromagnetic magnets and antiferromagnetic magnets (Antiferromagnet = AFM) or artificial antiferromagnetic magnets (Artical Anti Ferromagnet = AAF) to fix the magnetization in magnetic layer systems It is known to
[0003]
Devices in magnet sensotronic or spin electronic often require a spatially fixed reference magnetization direction. For this purpose, a magnetic coupling to the so-called "anchor layer" is often used. This anchor layer may consist of a hard magnet and a natural or artificial antiferromagnetic magnet. The exchange direction between the ferromagnetic magnet and the anchor layer spatially fixes the magnetization direction of the ferromagnetic layer.
[0004]
This anchor layer itself must likewise be magnetically oriented. To this end, the following methods have hitherto been used, depending on the material properties of the anchor layer;
Layer deposition in external magnetic field Thermal post-treatment in external magnetic field Magnetic field cooling after local laser irradiation.
[0005]
These in all three cases be implemented effective magnetic field cooling (field Cooling), i.e. systems: conditions that are above the ferromagnetic magnet / anchor layer have a magnetic field is applied critical bonding temperature (blocking temperature T B) To the combined state. Thereby, the homogeneous magnetization of the ferromagnetic layer, forced by the magnetic field, is imprinted in the spin configuration of the antiferromagnetic layer by direct exchange coupling. When the external magnetic field strength is equal to or less than the coupling magnetic field strength, the adjusted and uniform magnetization of the ferromagnetic layer is maintained and is therefore used as the reference magnetization.
[0006]
Only the last of the methods listed above can locally change the reference magnetization in the region of focus of the laser beam.
[0007]
A disadvantage of this known method is that, apart from the laser method, multiple reference directions cannot be realized simultaneously with one another in any direction. This is necessary for the operation of complex magneto-electric elements such as, for example, angle sensors.
[0008]
Finally, a process after the orientation of the AFM is required, and there is a limit to miniaturization of the micro size.
[0009]
It is furthermore known that in soft magnetic layer elements, the magnetization is oriented along the element edges so that stray magnetic fields are avoided. This results in a closed arrangement of the magnetic flux. As discovered by van den Berg, magnetization remains parallel to adjacent element edges even inside the element. Different magnetic regions collide at having the same distance to the two element edges. This results in a state having homogeneous magnetic domains separated by magnetic domain walls.
[0010]
It is well known that mutually distinct elements interact when their distance is small enough via their stray magnetic fields. In order to reach an energetically favorable state, the neighboring elements adopt a magnetization arrangement which is close to the closed magnetic flux and causes only a small stray magnetic field.
[0011]
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a method for determining a reference magnetization in a layer system, in which the reference direction can be chosen arbitrarily in terms of number and spatial direction.
[0012]
This problem is solved by the invention described in each claim. Embodiments are the subject of the dependent claims.
[0013]
In the method for determining the reference magnetization in the layer system according to the invention, the hard magnetic layer and / or the soft magnetic layer is geometrically structured and the hard magnetic layer is formed before, during or after one or more stages of heat treatment. At least one hard magnetic layer and / or soft magnetic layer is manufactured by bringing the soft magnetic layer into direct contact with the at least one antiferromagnetic layer. In this case, the heat treatment is carried out with a heat rise at least above the bonding temperature. Subsequently, the layer system is cooled.
[0014]
The layer system is preferably cooled without the application of a magnetic field, so that the demagnetized state or the remanent magnetic state is recorded without disturbance as reference magnetization.
[0015]
More preferably, after the heat treatment, the layer system is cooled in an external magnetic field and the demagnetized or remanent state changed by the magnetic field is remembered as the reference magnetization.
[0016]
Advantageously, layers are produced whose lateral extent is in the micro and nano range and the layer thickness is in the nanometer range.
[0017]
It is also advantageous to heat several layers of the same or different composition above the bonding temperature and subsequently cool them without a magnetic field.
[0018]
According to the invention, the method for determining the reference magnetization is a magnetoresistive sensor element or a magnetoresistive switching based on anisotropic or giant magnetoresistance or tunnel or spin injection resistance. Applied to devices or active magneto-electric devices based on giant magnetoresistance, tunnel magnetoresistance or spin injection resistance.
[0019]
In the method according to the invention, first the hard magnetic and / or soft magnetic layer is geometrically structured. This can be done by methods known from microelectronics, for example lithographic methods. This geometric structuring determines the shape, number and arrangement of these geometric elements. This step has a decisive effect on the magnetization direction of the hard magnetic and / or soft magnetic layer. This is because the direction of magnetization is determined in each shape by choosing a geometric shape in accordance with Van den Berg's discovered principle. Magnetic domains are formed in the shape, the magnetization of which is oriented parallel to adjacent edges. Alternatively, stray field interactions of adjacent elements can be used to form the desired magnetic domain pattern.
[0020]
In this way, any number of reference directions and optionally different reference directions can be produced in a layer system, depending on the number, shape and / or arrangement.
[0021]
According to the geometrical structuring, the magnetization configuration of the hard magnetic and / or soft magnetic layers, which is freed by the increase in temperature by heating above the coupling temperature, can be set in accordance with the magnetic domain element. become. Upon subsequent cooling without applying a magnetic field, the antiferromagnetic layer assumes the magnetization configuration of the hard and / or soft magnetic layers. Thus, the layer system has a uniform magnetization form.
[0022]
According to the method of the invention, it is also possible that the heat treatment is carried out only on the hard and / or soft magnetic layer and is only applied to the antiferromagnetic layer during or after cooling. Again, the antiferromagnetic layer assumes the magnetization configuration of the hard and / or soft magnetic layers.
[0023]
If hard- and / or soft-magnetic layers are applied or can be applied only after the production of the antiferromagnetic layer, their structuring may be effected, for example, by ion exchange controlled by mask exchange or lithography. Can be done by
[0024]
If the antiferromagnetic layer is present during the heat treatment, the magnetization of the antiferromagnetic magnet is not determined by the applied magnetic field, but by the magnetization of the exchange-coupled ferromagnetic layer.
[0025]
According to the present invention, it is also possible to apply a magnetic field during the heat treatment. The use of a decaying alternating magnetic field at this time makes the pattern adjustment settings described by Van den Berg more effective. If a sufficiently large DC magnetic field is used, a residual magnetization state can be intentionally induced.
[0026]
Another advantage of the method of the present invention is that the magnetic domain pattern of the hard and / or soft magnetic layers is maintained even at relatively high temperatures, so that the method is, for example, as with PtMn and similar materials It is also compatible with temperature processing for generating an antiferromagnetic state.
[0027]
Furthermore, it is advantageous that the reference magnetization determined by the method of the invention is reproducible (self-healing). This can only be achieved by newly heating the layer assembly above the bonding temperature. Thereby, the magnetization destroyed above the coupling temperature is adjusted and set again, and can be used again as the reference magnetization after cooling.
[0028]
If the magnetoelectric element is miniaturized, the method of the present invention can be used satisfactorily. Because it can be used over a wide range of scales. In the submicrometer range, in particular, a reliable determination of the reference magnetization can be realized.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in detail based on several embodiments.
[0030]
At that time it shows:
Figure 1 is an exemplary magnetization alignment of the ferromagnetic layer and antiferromagnetic layer, namely a) if the previous b) T> T B of the heat treatment, but the T B is a bond temperature c) after the heat treatment (layers clarity Shown separately for
2 and FIG. 2 show Kerr microscopy images of a similarly structured element with four ellipses, with the black element showing downward magnetization and the white element showing upward magnetization.
[0031]
Example 1
A mutually perpendicular reference magnetization is required for a 360 ° GMR angle sensor. For this purpose, a 10 nm thick FeMn layer is first deposited on silicon as an anchor layer and a 100 nm thick ferromagnetic Ni 81 Fe 19 layer is deposited thereon. Using a lithography technique, a square with a side length of 24 μm is structured. The ferromagnetic layer must be completely removed outside this structure. Then, heat treatment is performed at 200 ° C. When a temperature of 200 ° C. is reached, the sample is demagnetized in a decaying magnetic field with a maximum amplitude of 1 kA / cm and subsequently cooled to room temperature without magnetic field action. The layer system now shows a stable magnetization configuration as shown in FIG.
[0032]
Example 2
The magnetoresistive field sensor is preferably implemented in a Wheatstone bridge circuit. In order to realize mutually opposite signals of the individual elements of the Wheatstone bridge, mutually antiparallel reference magnetizations are required. Double layer consisting of FeMn and 100 nm Ni 81 Fe 19 layer of 10nm is sputtered on a silicon substrate. During layer deposition, a homogeneous magnetic field with an intensity of 240 A / cm is applied. In a subsequent lithography step, four elliptical shaped elements having a lateral dimension of 100 μm × 20 μm are structured. These elements are parallel to one another and are oriented in the direction of the magnetic field during the deposition of the layers and are arranged adjacent to one another with a spacing of 30 μm. Next, heat treatment is performed at 200 ° C. Upon reaching 200 ° C., the sample is demagnetized in a decaying magnetic field with a maximum amplitude of 1 kA / cm, oriented diagonally to the element axis and subsequently cooled to room temperature without magnetic field action. The layer system now shows a stable magnetization configuration as shown in FIG.
[Brief description of the drawings]
[0033]
FIG. 1 is a schematic diagram illustrating a typical magnetization arrangement of a ferromagnetic layer and an antiferromagnetic layer.
[0034]
FIG. 2 is a schematic diagram showing a Kerr micrograph of an element structured like four ellipses.
Claims (11)
硬磁性層および/または軟磁性層を幾何学的に構造化しかつ1段階または多段階の熱処理の前または間または後で該硬磁性層および/または軟磁性層を少なくとも1つの反強磁性層上に被着することによって少なくとも1つの層系を製造する、ここで温度上昇は少なくとも結合温度を上回るまで実施されかつ引き続いて層系が冷却される
層系における参照磁化を確定するための方法。A method for determining a reference magnetization in a layer system, comprising:
Geometrically structuring the hard magnetic layer and / or the soft magnetic layer and placing the hard magnetic layer and / or the soft magnetic layer on at least one antiferromagnetic layer before or during or after one or more heat treatment steps; Producing the at least one layer system by depositing the at least one layer system, wherein the temperature increase is carried out at least above the bonding temperature and the layer system is subsequently cooled to determine the reference magnetization in the layer system.
請求項1記載の方法。2. The method according to claim 1, wherein the layer system is cooled without the application of a magnetic field.
請求項1記載の方法。2. The layer system according to claim 1, wherein the layer system is cooled while a magnetic field is being applied, wherein the magnetization arrangement of the hard magnetic and / or soft magnetic layer and / or the antiferromagnetic layer is changed depending on a desired reference magnetization. Method.
請求項1記載の方法。The method of claim 1 wherein the layer is made to remember a magnetic field.
請求項1記載の方法。2. The method according to claim 1, wherein the layer has a lateral dimension in the micro and nano range and a layer thickness in the nanometer range.
請求項1記載の方法。The method according to claim 1, wherein the layers having the same or different composition are heated above the bonding temperature and subsequently cooled without applying a magnetic field.
請求項1記載の方法。2. The method of claim 1, wherein the method generates a square, square, triangle, circular structuring or a shape derived therefrom.
請求項1記載の方法。The method according to claim 1, wherein the heat treatment is performed until completely penetrated.
請求項1記載の方法。The method according to claim 1, wherein the geometric structuring is performed two-dimensionally or three-dimensionally.
請求項1記載の方法。2. The method according to claim 1, wherein the hard magnetic layer and / or the soft magnetic layer are geometrically structured and deposited on the antiferromagnetic layer, followed by a one-step heat treatment with cooling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10119381 | 2001-04-12 | ||
PCT/DE2002/001302 WO2002084680A1 (en) | 2001-04-12 | 2002-04-05 | Method for defining reference magnetizations in layer systems |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004523928A true JP2004523928A (en) | 2004-08-05 |
Family
ID=7682096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002581537A Pending JP2004523928A (en) | 2001-04-12 | 2002-04-05 | Method for determining reference magnetization in layered systems |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1377993A1 (en) |
JP (1) | JP2004523928A (en) |
DE (1) | DE10215506A1 (en) |
WO (1) | WO2002084680A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008277834A (en) * | 2007-05-02 | 2008-11-13 | Magic Technologies Inc | Magnetic angle sensor, magnetic tunnel junction element, and method of manufacturing magnetic angle sensor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004032483A1 (en) * | 2004-07-05 | 2006-01-26 | Infineon Technologies Ag | Production of localized magnetization in magnetic sensors used in angular measurement systems, whereby magnetization is achieved by local resistive heating above the blocking temperature and then application of an aligning field |
DE102007040183A1 (en) * | 2007-08-25 | 2009-03-05 | Sensitec Naomi Gmbh | Magnetic field sensor, for external and especially terrestrial magnetic fields, has parallel magnetized strip layers with contacts for current/voltage for measurement signals from their output difference |
US9529060B2 (en) | 2014-01-09 | 2016-12-27 | Allegro Microsystems, Llc | Magnetoresistance element with improved response to magnetic fields |
JP6763887B2 (en) | 2015-06-05 | 2020-09-30 | アレグロ・マイクロシステムズ・エルエルシー | Spin valve magnetoresistive sensor with improved response to magnetic field |
US11022661B2 (en) | 2017-05-19 | 2021-06-01 | Allegro Microsystems, Llc | Magnetoresistance element with increased operational range |
US10620279B2 (en) | 2017-05-19 | 2020-04-14 | Allegro Microsystems, Llc | Magnetoresistance element with increased operational range |
US11719771B1 (en) | 2022-06-02 | 2023-08-08 | Allegro Microsystems, Llc | Magnetoresistive sensor having seed layer hysteresis suppression |
US12320870B2 (en) | 2022-07-19 | 2025-06-03 | Allegro Microsystems, Llc | Controlling out-of-plane anisotropy in an MR sensor with free layer dusting |
US12359904B2 (en) | 2023-01-26 | 2025-07-15 | Allegro Microsystems, Llc | Method of manufacturing angle sensors including magnetoresistance elements including different types of antiferromagnetic materials |
US12352832B2 (en) | 2023-01-30 | 2025-07-08 | Allegro Microsystems, Llc | Reducing angle error in angle sensor due to orthogonality drift over magnetic-field |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1074658A (en) * | 1996-06-28 | 1998-03-17 | Victor Co Of Japan Ltd | Manufacture of spin valve magnetoresistive effect device |
JP3456409B2 (en) * | 1998-03-23 | 2003-10-14 | Tdk株式会社 | Method for manufacturing thin-film magnetic head |
-
2002
- 2002-04-05 EP EP02761865A patent/EP1377993A1/en not_active Withdrawn
- 2002-04-05 DE DE10215506A patent/DE10215506A1/en not_active Ceased
- 2002-04-05 WO PCT/DE2002/001302 patent/WO2002084680A1/en not_active Application Discontinuation
- 2002-04-05 JP JP2002581537A patent/JP2004523928A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008277834A (en) * | 2007-05-02 | 2008-11-13 | Magic Technologies Inc | Magnetic angle sensor, magnetic tunnel junction element, and method of manufacturing magnetic angle sensor |
Also Published As
Publication number | Publication date |
---|---|
DE10215506A1 (en) | 2002-10-24 |
WO2002084680A1 (en) | 2002-10-24 |
EP1377993A1 (en) | 2004-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6972221B2 (en) | Magnetoresistive sensor | |
Cowburn | Property variation with shape in magnetic nanoelements | |
JP4971501B2 (en) | Reconfigurable magnetic logic circuit array and method for manufacturing and operating reconfigurable magnetic logic circuit array | |
US6501678B1 (en) | Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems | |
Ross et al. | Magnetic behavior of lithographically patterned particle arrays | |
Adeyeye et al. | Magnetic properties of arrays of “holes” in Ni 80 Fe 20 films | |
US7160738B2 (en) | Magnetic annealing sequences for patterned MRAM synthetic antiferromagnetic pinned layers | |
TWI313001B (en) | ||
US7005691B2 (en) | Magnetoresistance element and magnetoresistance storage element and magnetic memory | |
JP6219819B2 (en) | Magnetostrictive layer system | |
JP2009085953A (en) | Method of manufacturing magnetic device and method of manufacturing magnetic field angle sensor | |
CN1513120A (en) | Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring magnetic field | |
CN107046095A (en) | Magnetic sensor device and the method for the magnetic sensor device with magnetic resistance structure | |
JP2004523928A (en) | Method for determining reference magnetization in layered systems | |
Ünal et al. | Ferrimagnetic DyCo 5 nanostructures for bits in heat-assisted magnetic recording | |
JP3558951B2 (en) | Magnetic memory element and magnetic memory using the same | |
Fassbender et al. | Ion irradiation of exchange bias systems for magnetic sensor applications | |
CN112993149A (en) | Storage unit | |
US7060509B2 (en) | Method for defining reference magnetizations in layer systems | |
Huang et al. | Control of double-vortex domain configurations in a shape-engineered trilayer nanomagnet system | |
Wang et al. | Locally reconfigurable exchange bias for tunable spintronics by pulsed current injection | |
JPH11126931A (en) | Magnetoresistance effect element and its manufacture | |
US20240230797A9 (en) | Spin valve device and method for forming a spin valve device | |
Dey et al. | Shape-dependent switching behavior of exchange-coupled nanomagnet stacks | |
US20070166839A1 (en) | Method for fabricating magnetoresistance multi-layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090423 |