JP2004359871A - Preparation process of highly concentrated alkyl ether sulfate - Google Patents
Preparation process of highly concentrated alkyl ether sulfate Download PDFInfo
- Publication number
- JP2004359871A JP2004359871A JP2003161243A JP2003161243A JP2004359871A JP 2004359871 A JP2004359871 A JP 2004359871A JP 2003161243 A JP2003161243 A JP 2003161243A JP 2003161243 A JP2003161243 A JP 2003161243A JP 2004359871 A JP2004359871 A JP 2004359871A
- Authority
- JP
- Japan
- Prior art keywords
- alkyl ether
- ether sulfate
- concentration
- producing
- specific gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 alkyl ether sulfate Chemical class 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 230000005484 gravity Effects 0.000 claims abstract description 25
- 150000005215 alkyl ethers Chemical class 0.000 claims abstract description 14
- 238000005670 sulfation reaction Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 230000019635 sulfation Effects 0.000 claims abstract description 11
- 238000011437 continuous method Methods 0.000 claims abstract description 6
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 30
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 13
- 230000001180 sulfating effect Effects 0.000 abstract 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 31
- 238000006386 neutralization reaction Methods 0.000 description 31
- 239000003054 catalyst Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 241000894007 species Species 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 7
- 239000013530 defoamer Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 1
- FDQGNLOWMMVRQL-UHFFFAOYSA-N Allobarbital Chemical compound C=CCC1(CC=C)C(=O)NC(=O)NC1=O FDQGNLOWMMVRQL-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Landscapes
- Detergent Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高品質で、かつ、ハンドリングに有利な高濃度アルキルエーテルサルフェートの効率的な製造方法に関する。
【0002】
【従来の技術】
従来より、アルキルエーテルサルフェートは、油に対する洗浄力が高く、生分解性が良好であることから、主たる洗浄成分として台所洗剤やシャンプー等に幅広く使用されている。
【0003】
このアルキルエーテルサルフェートは、通常20〜30%のハンドリングし易い濃度で製造され取り扱われているが、近年、台所洗剤等において濃縮型製品が主流となってきており、その高濃度化が求められている。
【0004】
アルキルエーテルサルフェートの高濃度化における課題としては、アルキルエーテルを常法である槽型あるいは薄膜流下型反応器による硫酸化時、または、微量の未反応SO3やSO2を気液分離するサイクロンにおいて、気体を巻き込むことで中和工程において粘度上昇を引き起こすことである。
【0005】
この課題を解決するため、例えば、高濃度化のために、一般的なアニオン活性剤に見られる比較的低粘度領域であるニ−ト相(活性剤濃度55〜75%)を有効に活用し、
(1)高級アルコール又は高級アルコールエトキシレート硫酸の中和工程時もしくは中和後に平均分子量300〜6000のポリエチレングリコールを該硫酸化物の有効成分に対して0.1〜25質量%以下添加することを特徴とする低粘度界面活性剤の製造方法(特許文献1参照)が知られ、また、エチレンオキサイド付加モル数の異なる複数の分子種を含む混合物からなるアルキルエーテルサルフェートにおいて、エチレンオキサイド付加モル数が最も多く存在する分子種の閉める割合が55〜75質量%で、更に上記混合物中の1,4−ジオキサン含有量が30ppm以下となるアルキルエーテルサルフェートの製造方法等(特許文献2参照)が知られ、
(2)中和の必要量に対し、過剰なアルカリ物質を添加することにより、10Pa・s以下の粘度であるスラリーを得る製造方法(特許文献3参照)が知られ、(3)中和時に硫酸あるいは硫酸ナトリウムを添加することにより、粘度を低減する製造方法(特許文献4参照)が知られている。
また、低ジオキサン含量のアルキルエーテルサルフェート等の製造方法として、ポリオキシエチレンアルキルエーテルを常法により硫酸化し、得られた反応生成物を50℃以下、減圧なしし不活性ガス気流下に薄膜蒸発させた後、中和することを特徴とする製造方法(特許文献5参照)などが知られている。
【0006】
【特許文献1】
特開昭50−116383号公報(特許請求の範囲、実施例等)
【特許文献2】
特開2001−316352号公報(特許請求の範囲、実施例等)
【特許文献3】
特開昭52−80285号公報(特許請求の範囲、実施例等)
【特許文献4】
特開昭53−5089号公報(特許請求の範囲、実施例等)
【特許文献5】
特開昭63−246357号公報(特許請求の範囲、実施例等)
【0007】
しかしながら、上記特許文献1に記載される製造方法では、配合時に他の成分が含まれることは、配合組成物に制約を加えることになるという課題があり、また、上記特許文献2に記載される製造方法等では、特に平均EO付加モル数が1〜3のように少ない場合や、あるいは、EO付加モル分布が非常に狭いアルキルエーテルサルフェートの場合には、液晶構造が密になるために、減粘剤がミセル構造の中に十分に入りこめず、粘度低下効果(2〜5Pa・s)はあるものの二相分離など、安定性に課題がある。
【0008】
更に、上記特許文献3に記載される製造方法では、配合時に過剰なアルカリ物質を中和することが求められる場合には、副生物として芒硝などが多量に生成し、製品の安定性を損なう場合があるなどの課題があり、また、上記特許文献4に記載される製造方法では、低温時には硫酸ナトリウムが晶析し、スラリー粘度が著しく上昇するため、品質劣化が懸念される高温での取り扱いや保管管理が要求される点に課題がある。
また、上記特許文献5に記載される製造方法は、副生するジオキサン低減のための高真空(1〜20torr)、長時間処理するものであり、本願発明とはその目的、技術思想が相違するものであり、更に、単に硫酸化物中の気体を除去するだけでは、本願発明の高品質で、かつ、ハンドリングに有利な高濃度アルキルエーテルサルフェートが得られないものである。
【0009】
【発明が解決しようとする課題】
本発明は、上記従来の課題等に鑑み、これを解消しようとするものであり、減粘剤等を添加することなしに、ハンドリング可能な高濃度のアルキルエーテルサルフェート、特に、特定のEO付加モル分布をもつアルキルエーテルサルフェートを効率的に製造する高濃度のアルキルエーテルサルフェートの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記従来の課題について鋭意研究を行った結果、55〜75%に存在するニート相と呼ばれる比較的粘度の低い領域を活用しても、種々の添加剤(減粘剤)を使用せざるを得なかった原因が、中和に持ち込まれる気体(泡)にあることに着目し、この量をコントロールすることにより、ハンドリング可能な物性にある領域を有効に活用できることを見い出し、本発明を完成するに至ったものである。
本発明は、次の(1)〜(5)に存する。
(1) 下記一般式(I)で表されるアルキルエーテルサルフェートを製造する方法であって、アルキルエーテルの硫酸化後、減圧下で含有する気体を除去(脱泡)した後、外部冷却装置を備えた密閉型連続方式で中和することを特徴とする高濃度アルキルエーテルサルフェートの製造方法。
【化2】
(2) 減圧下で含有する気体を除去した後の硫酸化物の見かけ比重を0.95以上とする上記(1)記載の高濃度アルキルエーテルサルフェートの製造方法。
(3) 得られるアルキルエーテルサルフェートの見かけ比重は1.0以上であり、かつ、粘度は10Pa・s以下となる上記(1)又は(2)記載の高濃度アルキルエーテルサルフェートの製造方法。
(4) 得られるアルキルエーテルサルフェートは、最も多く存在する分子種のEO付加モル数をnA(1以上の整数、すなわちnA≠0)としたとき、EO付加モル数が(nA−1)〜(nA+1)の範囲である分子種の占める割合が55〜75質量%である上記(1)〜(3)の何れか一つに記載の高濃度アルキルエーテルサルフェートの製造方法。
(5) 上記(4)記載のアルキルエーテルサルフェートにおいて、nAの分子種の占める割合が、19〜35重量%である高濃度アルキルエーテルサルフェートの製造方法。
【0011】
【発明の実施形態】
以下に、本発明の実施形態を詳しく説明する。
本発明の高濃度アルキルエーテルサルフェートの製造方法は、下記一般式(I)で表されるアルキルエーテルサルフェートを製造する方法であって、アルキルエーテルの硫酸化後、減圧下で含有する気体を除去した後、外部冷却装置を備えた密閉型連続方式で中和することを特徴とするものである。
【化3】
【0012】
本発明方法では、上述の如く、上記一般式(I)で表されるアルキルエーテルサルフェートを製造する方法に際し、アルキルエーテルの硫酸化後、減圧下で含有する気体を除去(脱泡)した後、外部冷却装置を備えた密閉型連続方式で中和することを特徴とするものであり、上記除去(脱泡)工程、密閉型連続方式での中和工程以外の製造条件等は常法又は本願出願人による先行出願となる特開2001−316352号公報に準拠するものである。従って、以下に、本願発明の特徴を中心に詳述する。
【0013】
本発明方法において、原料となるアルキルエーテル〔R1O(CH2CH2O)nH、R1及びnは上記(I)と同じ〕としては、▲1▼入手可能な高級アルコール、例えば、商品名「ダイアドール」(三菱化学社製)、「ドバノール」(三菱化学社製)、「ネオドール」(シェル社製)や「サフォール」(サソール社製)などの合成アルコールなどが挙げられ、また、▲2▼天然アルコールである、例えば、商品名「コノール20P」(新日本理化社製)、「C1214」(P&G社製)、「CO1270A」(P&G社製)などが使用できる。
また、上記▲1▼及び/又は▲2▼の混合物をアルカリ触媒、あるいは、特に限定されないが特開2000−61304号公報等の複合金属酸化物である固体触媒、例えば、アルコキシル化触媒の存在下で、EO(エチレンオキサイド)又はPO(プロピレンオキサイド)を平均1〜6モル、好ましくは、2〜3モル付加して得られるものも用いることができる。
【0014】
本発明方法では、まず、上記原料となるアルキルエーテルの硫酸化を行う。
硫酸化反応器としては、特に限定されるものではないが、薄膜流下型反応器を用いることが色調等品質の面で好適である。
この硫酸化反応後のサイクロンから出た直後の比重は、多量の気体を巻き込んでいるため、通常、比重は0.65〜0.75(硫酸化物の真比重は、約1.0〜1.04であるのに対し)である。
得られた硫酸化物は、直ちに品温30℃以下で冷却することにより、副生成物であるジオキサンの生成量を抑制できるため、硫酸化物の一部を冷却し、反応器下部へ戻すリサイクル冷却方法を採用し、こうして得られた硫酸化物についても、その比重は0.65〜0.75であった。
【0015】
本発明方法では、高品質で、かつ、ハンドリング可能な高濃度のアルキルエーテルサルフェートを得るために、上記で得られた硫酸化物は、減圧下で含有する気体を除去(脱泡)することが必要である。
減圧下で含有する気体を除去(脱泡)しない場合は、目的の高品質で、かつ、ハンドリング可能な高濃度アルキルエーテルサルフェートは得られないものである。
得られた硫酸化物を減圧下で含有する気体を除去(脱泡)する手段としては、真空脱泡装置を通過させることにより行うことができる。
用いることができる真空脱泡装置は、特に限定しないが、例えば、真空式連続脱気装置(宇野澤組鐵工所社製)、真空式脱泡装置(ターボ工業社製)等の市販の装置を用いることができる。
【0016】
真空脱泡装置を使用する場合には、真空度は水封式の真空ポンプを用い、例えば、温度25℃下で、20〜50torr(20〜50mmHg)程度の圧力条件(減圧下)で2〜5分程度行うことで目的の脱泡は可能であり、大掛かりな装置を必要としない点で好ましい。
上記手段等で減圧下で含有する気体を除去(脱泡)した後の硫酸化物の見かけ比重は、本発明の効果を更に発揮せしめる点から、0.95以上とすることが好ましく、より好ましくは、1.0以上にすることが望ましい。
見かけ比重を0.95以上とするためには、上記圧力条件、温度、時間、脱泡装置内ディスク回転数などを好適に組合わせることにより調整することができる。
上記条件下で真空脱泡装置を使用した場合による通過後の見かけ比重は、0.95〜1.04であった。
【0017】
本発明方法では、上記脱泡後の硫酸化物を、高濃度のアルカリ水溶液を用い、外部冷却装置を備えた密閉型連続中和方式(以下、「クローズド中和」という)を用いて中和を行うことが必要である。
このクローズド中和を上記脱泡後の硫酸化物に対して連続して行うことにより、目的の高品質で、かつ、ハンドリング可能な高濃度アルキルエーテルサルフェートは得られることとなる。なお、クローズド中和以外の方式、例えば、撹拌槽が開口したオープン撹拌槽では、本発明の効果を発揮する高濃度アルキルエーテルサルフェートは得られないものである。
この外部冷却装置を備えた密閉型連続中和装置としては、例えば、図1に示すような、酸及びアルカリ供給ポンプ、ミキシングポンプ、熱交換機、抜き出しポンプからなる装置等を用いることができる。
中和温度は、中和物の分解及び臭気の点から、100℃以下、より好ましくは80℃以下である。また、中和温度の下限は、特に限定されないが、20℃である。
【0018】
このように構成される本発明方法では、上述の如く、硫酸化した後の硫酸化物を減圧下で含有する気体を除去(脱泡)すること、好ましくは更に見かけ比重を0.95以上に調整した後、続いて、外部冷却装置を備えた密閉型連続方式での中和を併用することにより、はじめて、見かけ比重が1.0以上となり、かつ、粘度が(50℃)10Pa・s以下となるハンドリング可能な活性剤濃度55%以上の高濃度のアルキルエーテルサルフェートを効率的に製造することができるものとなる。
なお、硫酸化で混入した気体を除去しない場合には、外部冷却装置を備えた密閉型連続方式での中和を行っても、中和物スラリーの粘度は、15Pa・s以上になり、目的のハンドリング可能な高濃度のアルキルエーテルサルフェートは得られないものである。
【0019】
また、本発明方法で得られるアルキルエーテルサルフェートは、EO付加モル数の異なる複数の分子種を含む混合物であるが、好ましくは、最も多く存在する分子種のEO付加モル数をnA(1以上の整数、すなわちnA≠0)としたとき、EO付加モル数が(nA−1)〜(nA+1)の範囲である分子種の占める割合が55〜75重量%であること、更に好ましくは、nAの分子種の占める割合が、19〜35重量%であることを満足するシャープなEO付加モル分布をもつものとすることが望ましい。
【0020】
このようなシャープなEO付加モル分布をもつアルキルエーテルサルフェートでは、泡質が良好となり、また、皮膚刺激性が低い点で好ましい。このシャープなEO付加モル分布をもつアルキルエーテルサルフェートの調整は、例えば、上述の高級アルコール、天然アルコールを特定の触媒の存在下で、EOを平均1〜6モル、好ましくは、2〜3モル付加して得られる原料を用いることにより製造することができ、KOH等のアルカリ触媒を用いるとEO付加モル分布は、ブロードとなるが、複合金属酸化物触媒である固体触媒、例えば、アルコキシル化触媒を用いるとEO付加モル分布は、非常にシャープとなるものが得られる。
このシャープなEO付加モル分布をもつアルキルエーテルサルフェートは、洗浄剤組成物に配合した際に、洗浄力、泡性能、保存安定性及びマイルド性等の全ての機能で、同EO付加モル数のアルカリ触媒で製造したブロードなEO付加モル分布をもつものと比較し、格段に優れたものとなる。
【0021】
本発明によれば、気体(空気)を除去し、かつ、クローズド中和を併用して行うことにより、初めて、有効成分の濃度の高い(55重量%以上)アルキルエーテルサルフェート(スラリー)を、ハンドリングの比較的容易な10Pa・s以下、4〜9Pa・s(使用ベースアルコール種、EO付加モル数により変化)で取り扱うことが可能となり、これにより、貯槽効率、移送効率を大幅に改善できると共に、高品質の高濃度アルキルエーテルサルフェートを効率的に製造することができることとなる。
【0022】
【実施例】
次に、本発明を実施例及び比較例に基づいて具体的かつ詳細に説明するが本発明は下記実施例によって限定されるものではない。
【0023】
〔実施例1〜4及び比較例1〜3〕
(実施例1)
下記に記載の方法により製造した。すなわち、下記〔(1)〕に記載のアルコキシル化触媒を調製した後、この触媒の存在下で天然アルコールにEO付加し〔下記(2)参照〕、次いで、反応生成物(反応粗製物)から触媒を分離して〔下記(3)参照〕、得たアルキルエーテルを硫酸化し〔下記(4)参照〕、次いで、この硫酸化物の脱泡〔下記(5)参照〕、中和〔下記(6)参照〕して高濃度アルキルエーテルサルフェートを得た。
【0024】
(1)アルコキシル化触媒
硝酸マグネシウム6水和物68.03g、硝酸アルミニウム9水和物47.69gおよび硝酸マンガン6水和物24.33gを、450gの脱イオン水に溶解し、これを溶液Aとした。一方、炭酸ナトリウム13.47gを450gの脱イオン水で溶解し、これを溶液Bとした。前記溶液Aと溶液Bとを、予め1800gの脱イオン水を仕込んだ触媒調製槽に、2mol/リットル(L)のNaOH水溶液によりpHを9、温度を40℃に保ちながら1時間で滴下し、滴下終了後、1時間熟成させた。母液を濾過により除き、沈殿を6000gの脱イオン水で洗浄し、噴霧乾燥することにより30gの複合水酸化物を得た。この複合水酸化物を、窒素雰囲気下800℃で3時間焼成して、Mg、Al、Mnの複合酸化物触媒(アルコキシル化触媒)19gを得た。
【0025】
(2)EO付加
前記触媒0.5g、直鎖ドデカノール(新日本理化社製、商品名「コノール20P」)207.9gおよび直鎖/分岐混合トリデカノール(三菱化学社製、商品名「ダイアドール13」;直鎖率49%)831.5gを、オートクレーブ中に仕込み、オートクレーブ内を窒素ガスで置換した。攪拌しながら100℃まで昇温し減圧下(6.65kPa到達)で脱水した後、オートクレーブ内に窒素ガスを導入して常圧まで戻し、160℃まで昇温した。続いて、温度を180℃、圧力を0.5MPaaに維持しながら、EO460.6g(平均EO付加モル数2相当)を導入し、同温度で平衡圧に達するまで攪拌を継続して反応を完結させた。その後、80℃に冷却して反応生成物(反応粗製物)を得た。
【0026】
(3)反応生成物(反応粗製物)からの触媒の分離
撹拌機を備えた1Lの四つ口フラスコに、上記反応生成物400gを入れ45℃に加温した。ついで、ボディフィード用濾過助剤(商品名:KCフロックW−50S、日本製紙株式会社製)2g(反応生成物に対し0.5%)を添加し、45℃で30分間撹拌し、混合液Aを得た。
この混合液Aからプレコート用液として100gを別の四つ口フラスコ(500mL;撹拌機付き)に移し、45℃に加温した。上記プレコート用液にプレコート用濾過助剤として0.625g(0.5kg/cm2相当)の商品名KCフロックW−50Sと0.625g(0.5kg/cm2相当)の商品名ハイフロスーパーセル(Celite社製)とを添加し、45℃で30分間撹拌し、プレコート用液Bを得た。
セルロースとポリエステルの2層フィルターを濾材とする加圧濾過器(内径4cm)を用いて45℃、窒素圧0.2MPaで前記プレコート用液Bを濾過し、プレコート層を形成させた。但し、最初に出てくる分の約20mLの濾液については、若干の濾過助剤の漏れが見られたため再度濾過器を通過させた。前記プレコート用液Bの濾液が十分な清澄度を持つことを確認後、前記混合液Aを、前記濾過器にかけたところ、十分な清澄度を持つ濾液が得られた。
以上の操作により得られたろ液(前記プレコート用液Bの濾液および前記混合液Aの濾液を合わせたもの)を、精製アルキルエーテルとした。
【0027】
(4)アルキルエーテルの硫酸化
前記精製アルキルエーテルを、薄膜型流下式スルホン化反応器(内径10mm×2.5m、外部ジャケット付き:30〜40℃温水を通水)内部に、温度45℃および供給速度約146〜149g/minの条件で供給し、前記反応器内部を薄膜状に流下させた。続いて、50℃に加温したSO3ガス(濃度約7〜8%、窒素ガス希釈)を、SO3として40g/minの供給速度で前記反応器内に導入し硫酸化を行った。さらに、この硫酸化物はサイクロンを通すことで、未反応のSO3とSO2を気液分離し、熱交換器を通しながら、リサイクル冷却を行った。
【0028】
(5)硫酸化物の脱泡
上記硫酸化物を市販の真空遠心脱泡器(宇野澤組鐵工所社製)に連続で通液し、温度25℃、圧力20〜50torr、時間5分で脱泡を行った。
【0029】
(6)中和
上記脱泡された硫酸化物を外部冷却装置を備えた密閉型連続中和装置(図1参照)で50℃以下を保ちながら、19.3%の苛性ソーダで中和を行うことによって、66%の高濃度アルキルエーテルサルフェートを得た。
【0030】
(実施例2)
上記実施例1のEO付加のところで、平均EO付加モル数を3にした以外は、実施例1と同様の操作を行った。
(実施例3)
上記実施例1のEO付加のところで、触媒としてKOHを対アルコール0.05%使用する以外は、実施例1と同様の方法で行った。
(実施例4)
上記実施例3のEO付加のところで、平均EO付加モル数を3にする以外は、上記実施例3と同様の方法で行った。
【0031】
(比較例1)
上記実施例1で硫酸化物を脱泡器に通さず、オープン攪拌槽装置で中和を行う以外は、上記実施例1と同様の方法で行った。
(比較例2)
上記実施例1でオープン攪拌槽装置で中和を行う以外は、上記実施例1と同様の方法で行った。
(比較例3)
上記実施例1の脱泡器を通さない以外は、上記実施例1と同様の方法で行った。
【0032】
上記実施例1〜4及び比較例1〜3で得られた高濃度アルキルエーテルサルフェートにおいて、途中の硫酸化後の比重、脱泡器の有無、脱泡後の比重、中和方式の有無、中和後の比重、得られたアルキルエーテルサルフェートの粘度及び流動性について、下記表1に示す。
上記(1)硫酸化後の比重、脱泡後の比重、中和後の比重、(2)得られたアルキルエーテルサルフェートの粘度、(3)流動性の評価は、下記方法により行った。
また、上記実施例1〜4及び比較例1〜3で得られたアルキルエーテルサルフェートの付加モル分布を、高速液体クロマトグラフィー(HLPC)により測定した。この付加モル分布を下記表2に示す。
【0033】
(1)硫酸化後の比重、脱泡後の比重、中和後の比重は、予め水を満たして重量を測定した計量カップを用い、各サンプルの重量比より見かけ比重を測定した。
(2)得られたアルキルエーテルサルフェートの粘度は、50℃において、東機会産業社製、BH型粘度計(NO.6ローター、20rpm、1分)を用いて測定した。
(3)流動性は、粘度、中和圧力、抜き出しポンプ圧などにより、下記評価基準で評価した。
評価基準:
○:粘度が10Pa・s以下で、かつ、圧力上昇が見られない。
△:粘度が15Pa・s以下で、かつ、圧力上昇が少ない。
×:粘度が15Pa・s以上で、かつ、圧力上昇が認められる。
【0034】
【表1】
【0035】
【表2】
【0036】
上記表1及び表2の結果から明らかなように、本発明範囲となる実施例1〜4は、本発明の範囲外となる比較例1〜3に較べて、高品質で、かつ、ハンドリングに有利な高濃度アルキルエーテルサルフェートを効率的に製造できることが判明した。
これに対して、比較例1の脱泡器を使用せず、オープン撹拌槽で中和を行ったもの、比較例2の脱泡器を使用しても、オープン撹拌槽で中和を行ったもの、比較例3の脱泡器を使用せず、密閉型連続中和方式で行ったものは、粘度が15Pa・s以上となるので、流動性が悪く目的のハンドリング可能な高濃度のアルキルエーテルサルフェートが得られないことが判った。
【0037】
【発明の効果】
本発明方法によれば、高品質で、かつ、ハンドリングに有利な高濃度アルキルエーテルサルフェートの効率的に製造することができる製造方法が提供される。
【図面の簡単な説明】
【図1】外部冷却装置を備えた密閉型連続中和装置の一例を示す概略図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an efficient method for producing a high-quality alkyl ether sulfate which is high in quality and advantageous in handling.
[0002]
[Prior art]
BACKGROUND ART Alkyl ether sulfates have been widely used in kitchen detergents, shampoos, and the like as main cleaning components because of their high detergency against oil and good biodegradability.
[0003]
This alkyl ether sulfate is usually manufactured and handled at a concentration of 20 to 30% that is easy to handle. However, in recent years, concentrated products have become the mainstream in kitchen detergents and the like, and a higher concentration is required. I have.
[0004]
The problem with increasing the concentration of alkyl ether sulfates is that when the alkyl ether is sulfated by a conventional tank-type or thin-film falling-type reactor, or in a cyclone for gas-liquid separation of a small amount of unreacted SO 3 or SO 2 . In addition, the entrainment of gas causes an increase in viscosity in the neutralization step.
[0005]
In order to solve this problem, for example, in order to increase the concentration, a neat phase (activator concentration of 55 to 75%), which is a relatively low viscosity region found in a general anion activator, is effectively used. ,
(1) Adding polyethylene glycol having an average molecular weight of 300 to 6000 to the active ingredient of the sulfated oxide in an amount of 0.1 to 25% by mass or less during or after the neutralization step of the higher alcohol or higher alcohol ethoxylate sulfuric acid. A method for producing a characteristic low-viscosity surfactant (see Patent Document 1) is known, and in an alkyl ether sulfate comprising a mixture containing a plurality of molecular species having different ethylene oxide addition mole numbers, the ethylene oxide addition mole number is low. A method for producing an alkyl ether sulfate in which the closing ratio of the most abundant molecular species is 55 to 75% by mass and the content of 1,4-dioxane in the above mixture is 30 ppm or less is known (see Patent Document 2). ,
(2) A production method for obtaining a slurry having a viscosity of 10 Pa · s or less by adding an excessive amount of an alkali substance to a necessary amount of neutralization (see Patent Document 3) is known. There is known a production method in which the viscosity is reduced by adding sulfuric acid or sodium sulfate (see Patent Document 4).
Further, as a method for producing an alkyl ether sulfate having a low dioxane content, polyoxyethylene alkyl ether is sulfated by a conventional method, and the obtained reaction product is subjected to thin film evaporation under an inert gas stream at a temperature of 50 ° C. or less without a reduced pressure. After that, a production method characterized by neutralization is known (see Patent Document 5).
[0006]
[Patent Document 1]
JP-A-50-116383 (Claims, Examples, etc.)
[Patent Document 2]
JP 2001-316352 A (Claims, Examples, etc.)
[Patent Document 3]
JP-A-52-80285 (Claims, Examples, etc.)
[Patent Document 4]
JP-A-53-5089 (claims, examples, etc.)
[Patent Document 5]
JP-A-63-246357 (Claims, Examples, etc.)
[0007]
However, in the production method described in Patent Document 1, there is a problem that inclusion of other components at the time of blending imposes restrictions on the blended composition, and is described in Patent Document 2 described above. In the production method and the like, particularly when the average number of moles of added EO is as small as 1 to 3 or in the case of alkyl ether sulfate having a very narrow distribution of moles of added EO, the liquid crystal structure becomes dense, so that the reduction occurs. The adhesive does not sufficiently enter the micellar structure and has a viscosity lowering effect (2 to 5 Pa · s) but has a problem in stability such as two-phase separation.
[0008]
Furthermore, in the production method described in Patent Document 3, when it is required to neutralize an excessive alkali substance at the time of compounding, a large amount of sodium sulfate and the like are generated as by-products, which impairs the stability of the product. In addition, in the production method described in Patent Document 4 described above, sodium sulfate is crystallized at a low temperature, and the viscosity of the slurry is significantly increased. There is a problem in that storage management is required.
Further, the production method described in Patent Document 5 is a method in which high vacuum (1 to 20 torr) for reducing dioxane produced as a by-product is performed for a long time, and its purpose and technical idea are different from those of the present invention. Furthermore, simply removing the gas in the sulfate cannot provide the high-quality alkyl ether sulfate of the present invention that is high in quality and advantageous in handling.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned conventional problems and the like, and is intended to solve the problem. A high-concentration alkyl ether sulfate, particularly a specific EO addition mole, which can be handled without adding a thickener or the like. It is an object of the present invention to provide a method for producing a high-concentration alkyl ether sulfate, which efficiently produces an alkyl ether sulfate having a distribution.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above-mentioned conventional problems. As a result, various additives (thickeners) were used even when utilizing a relatively low viscosity region called a neat phase existing at 55 to 75%. Focusing on the gas (bubbles) brought into the neutralization, the cause that forced the use of is to find that by controlling this amount, it is possible to effectively utilize the area in the physical properties that can be handled, The present invention has been completed.
The present invention resides in the following (1) to (5).
(1) A method for producing an alkyl ether sulfate represented by the following general formula (I), wherein after the alkyl ether is sulfated, a gas contained therein is removed under reduced pressure (defoaming), and then an external cooling device is provided. A method for producing high-concentration alkyl ether sulfate, wherein neutralization is carried out by a closed continuous method provided.
Embedded image
(2) The method for producing a high-concentration alkyl ether sulfate according to (1), wherein the apparent specific gravity of the sulfate after removing the gas contained under reduced pressure is 0.95 or more.
(3) The method for producing a high-concentration alkyl ether sulfate according to the above (1) or (2), wherein the apparent specific gravity of the obtained alkyl ether sulfate is 1.0 or more and the viscosity is 10 Pa · s or less.
(4) The alkyl ether sulfate obtained has a molar number of EO addition of (nA-1) to (nA-1), where nA (an integer of 1 or more, that is, nA ≠ 0) is the number of moles of EO addition of the molecular species which is most frequently present. The method for producing a high-concentration alkyl ether sulfate according to any one of the above (1) to (3), wherein the proportion of the molecular species in the range of (nA + 1) is 55 to 75% by mass.
(5) A method for producing a high-concentration alkyl ether sulfate, wherein the proportion of nA molecular species in the alkyl ether sulfate according to (4) is 19 to 35% by weight.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing a high-concentration alkyl ether sulfate according to the present invention is a method for producing an alkyl ether sulfate represented by the following general formula (I). After sulfation of the alkyl ether, the contained gas is removed under reduced pressure. Thereafter, neutralization is performed by a closed continuous method provided with an external cooling device.
Embedded image
[0012]
In the method of the present invention, as described above, in the method for producing the alkyl ether sulfate represented by the general formula (I), after the sulfation of the alkyl ether, the contained gas is removed under reduced pressure (defoaming), The neutralization is carried out by a closed continuous method provided with an external cooling device. The production conditions other than the above-mentioned removal (defoaming) step and the neutralization step in the closed continuous method are determined by a conventional method or the present invention. This is based on Japanese Patent Application Laid-Open No. 2001-316352, which is a prior application filed by the applicant. Therefore, the following description will focus on the features of the present invention.
[0013]
In the method of the present invention, as the alkyl ether [R 1 O (CH 2 CH 2 O) n H, R 1 and n are the same as those in the above (I)] as the raw material, (1) an available higher alcohol, for example, Trade names include synthetic alcohols such as "Diadoll" (Mitsubishi Chemical), "Dovanol" (Mitsubishi Chemical), "Neodor" (Shell), and "Safour" (Sassole). {Circle around (2)} Natural alcohols such as “Conol 20P” (manufactured by Nippon Rika), “C1214” (manufactured by P & G), and “CO1270A” (manufactured by P & G) can be used.
Further, the mixture of the above (1) and / or (2) is treated with an alkali catalyst or a solid catalyst which is a composite metal oxide such as, but not limited to, JP-A-2000-61304, for example, an alkoxylation catalyst. In addition, those obtained by adding EO (ethylene oxide) or PO (propylene oxide) on average of 1 to 6 mol, preferably 2 to 3 mol can also be used.
[0014]
In the method of the present invention, first, the alkyl ether as the raw material is sulfated.
The sulfation reactor is not particularly limited, but it is preferable to use a thin-film falling reactor in terms of quality such as color tone.
Since the specific gravity immediately after leaving the cyclone after the sulfation reaction involves a large amount of gas, the specific gravity is usually 0.65 to 0.75 (the true specific gravity of the sulfate is about 1.0 to 1.0. 04).
Since the obtained sulfate is immediately cooled at a product temperature of 30 ° C. or lower, the amount of dioxane which is a by-product can be suppressed, and therefore, a part of the sulfate is cooled and returned to the lower part of the reactor. And the specific gravity of the thus obtained sulfated oxide was 0.65 to 0.75.
[0015]
In the method of the present invention, in order to obtain a high-quality and high-concentration alkyl ether sulfate that can be handled, it is necessary to remove (defoam) the contained gas from the sulfate obtained above under reduced pressure. It is.
If the contained gas is not removed (defoamed) under reduced pressure, the desired high-quality and handleable high-concentration alkyl ether sulfate cannot be obtained.
Means for removing (defoaming) a gas containing the obtained sulfate under reduced pressure can be performed by passing through a vacuum defoaming device.
Vacuum deaerators that can be used are not particularly limited, and commercially available devices such as a vacuum continuous deaerator (made by Unosawa Kumi Iron Works) and a vacuum deaerator (made by Turbo Kogyo) are used. Can be used.
[0016]
When a vacuum defoaming device is used, the degree of vacuum is, for example, 2 to 50 torr (20 to 50 mmHg) at a temperature of 25 ° C. using a water-sealed vacuum pump. By performing the reaction for about 5 minutes, the desired defoaming is possible, which is preferable in that a large-scale device is not required.
The apparent specific gravity of the sulfate after removing (defoaming) the gas contained under reduced pressure by the above means or the like is preferably 0.95 or more, more preferably from the viewpoint of further exerting the effects of the present invention. , 1.0 or more.
The apparent specific gravity can be adjusted to 0.95 or more by suitably combining the above pressure conditions, temperature, time, disk rotation speed in the defoaming apparatus, and the like.
The apparent specific gravity after passage when using the vacuum defoaming device under the above conditions was 0.95 to 1.04.
[0017]
In the method of the present invention, the defoamed sulfate is neutralized using a high-concentration alkaline aqueous solution and using a closed continuous neutralization system equipped with an external cooling device (hereinafter, referred to as “closed neutralization”). It is necessary to do.
By continuously performing the closed neutralization on the sulfur oxide after the defoaming, an intended high-quality, highly-conductable alkyl ether sulfate that can be handled is obtained. It should be noted that a high-concentration alkyl ether sulfate exhibiting the effects of the present invention cannot be obtained by a method other than the closed neutralization, for example, in an open stirring tank having an open stirring tank.
As the closed-type continuous neutralization device provided with the external cooling device, for example, a device including an acid and alkali supply pump, a mixing pump, a heat exchanger, and a removal pump as shown in FIG. 1 can be used.
The neutralization temperature is 100 ° C. or lower, more preferably 80 ° C. or lower, from the viewpoint of decomposition of the neutralized product and odor. The lower limit of the neutralization temperature is not particularly limited, but is 20 ° C.
[0018]
In the method of the present invention thus configured, as described above, the gas containing the sulfated oxide after the sulfation is removed (defoamed) under reduced pressure, and preferably the apparent specific gravity is further adjusted to 0.95 or more. After that, subsequently, by using together with neutralization in a closed continuous type equipped with an external cooling device, the apparent specific gravity becomes 1.0 or more and the viscosity becomes (50 ° C.) 10 Pa · s or less for the first time. Thus, a high-concentration alkyl ether sulfate having a handleable activator concentration of 55% or more can be efficiently produced.
In addition, when the gas mixed by the sulfation is not removed, the viscosity of the neutralized material slurry becomes 15 Pa · s or more even if the neutralization is performed in a closed continuous type equipped with an external cooling device. Cannot be obtained at a high concentration of alkyl ether sulfate which can be handled.
[0019]
Although the alkyl ether sulfate obtained by the method of the present invention is a mixture containing a plurality of molecular species having different EO addition mole numbers, preferably, the EO addition mole number of the most abundant molecular species is nA (1 or more). When an integer, that is, nA ≠ 0), the proportion of molecular species having an EO addition mole number in the range of (nA-1) to (nA + 1) is 55 to 75% by weight, and more preferably nA. It is desirable to have a sharp EO addition molar distribution that satisfies the ratio of the molecular species to be 19 to 35% by weight.
[0020]
Alkyl ether sulfates having such a sharp EO addition molar distribution are preferable in that foam quality is good and skin irritation is low. The alkyl ether sulfate having a sharp EO addition molar distribution can be prepared, for example, by adding the above higher alcohol or natural alcohol to EO in an average of 1 to 6 mol, preferably 2 to 3 mol, in the presence of a specific catalyst. When an alkali catalyst such as KOH is used, the EO addition molar distribution becomes broad, but a solid catalyst which is a composite metal oxide catalyst, for example, an alkoxylation catalyst is used. When used, the EO addition molar distribution can be very sharp.
Alkyl ether sulfates having this sharp EO addition molar distribution have the same EO addition mole number in all functions such as detergency, foaming performance, storage stability and mildness when incorporated into a detergent composition. Compared to those having a broad EO addition molar distribution produced by the catalyst, the results are much better.
[0021]
According to the present invention, an alkyl ether sulfate (slurry) having a high concentration of an active ingredient (55% by weight or more) can be handled for the first time by removing gas (air) and performing closed neutralization in combination. Can be handled at 10 Pa · s or less, which is relatively easy, and 4 to 9 Pa · s (varies depending on the type of base alcohol used and the number of moles of EO added), thereby greatly improving the storage efficiency and the transfer efficiency, High quality and high concentration alkyl ether sulfate can be efficiently produced.
[0022]
【Example】
Next, the present invention will be described specifically and in detail based on examples and comparative examples, but the present invention is not limited to the following examples.
[0023]
[Examples 1 to 4 and Comparative Examples 1 to 3]
(Example 1)
It was manufactured by the method described below. That is, after preparing an alkoxylation catalyst described in the following [(1)], EO is added to a natural alcohol in the presence of the catalyst [see (2) below], and then a reaction product (reaction crude product) is produced. The catalyst is separated [see (3) below], the obtained alkyl ether is sulfated [see (4) below], then defoaming of this sulfate (see (5) below), neutralization [see (6) below] ) To obtain a high-concentration alkyl ether sulfate.
[0024]
(1) Alkoxylation catalyst 68.03 g of magnesium nitrate hexahydrate, 47.69 g of aluminum nitrate nonahydrate and 24.33 g of manganese nitrate hexahydrate were dissolved in 450 g of deionized water, and this was dissolved in solution A. And On the other hand, 13.47 g of sodium carbonate was dissolved in 450 g of deionized water to obtain a solution B. The solution A and the solution B were dropped into a catalyst preparation tank previously charged with 1800 g of deionized water in 1 hour while maintaining the pH at 9 and the temperature at 40 ° C. with a 2 mol / L (L) aqueous NaOH solution, After completion of the dropwise addition, the mixture was aged for 1 hour. The mother liquor was removed by filtration, and the precipitate was washed with 6000 g of deionized water and spray dried to obtain 30 g of a composite hydroxide. The composite hydroxide was calcined at 800 ° C. for 3 hours under a nitrogen atmosphere to obtain 19 g of a composite oxide catalyst (alkoxylation catalyst) of Mg, Al, and Mn.
[0025]
(2) EO addition 0.5 g of the above catalyst, 207.9 g of linear dodecanol (trade name "Conol 20P" manufactured by Shin Nippon Rika Co., Ltd.) and tridecanol mixed with linear / branched (trade name "Diadol 13" manufactured by Mitsubishi Chemical Corporation) "; Linear chain ratio 49%) was charged into an autoclave, and the inside of the autoclave was replaced with nitrogen gas. After the temperature was raised to 100 ° C. with stirring and dehydrated under reduced pressure (attained 6.65 kPa), nitrogen gas was introduced into the autoclave to return to normal pressure, and the temperature was raised to 160 ° C. Subsequently, while maintaining the temperature at 180 ° C. and the pressure at 0.5 MPaa, 460.6 g of EO (corresponding to an average number of moles of EO added of 2) was introduced, and stirring was continued until the equilibrium pressure was reached at the same temperature to complete the reaction. I let it. Thereafter, the reaction product was cooled to 80 ° C. to obtain a reaction product (reaction crude product).
[0026]
(3) Separation of catalyst from reaction product (reaction crude) 400 g of the above reaction product was placed in a 1 L four-necked flask equipped with a stirrer and heated to 45 ° C. Next, 2 g (0.5% based on the reaction product) of a filter aid for body feed (trade name: KC Floc W-50S, manufactured by Nippon Paper Industries Co., Ltd.) was added, and the mixture was stirred at 45 ° C. for 30 minutes. A was obtained.
From this mixture A, 100 g of a precoating solution was transferred to another four-necked flask (500 mL; equipped with a stirrer) and heated to 45 ° C. 0.625 g (equivalent to 0.5 kg / cm 2 ) of trade name KC Floc W-50S and 0.625 g (equivalent to 0.5 kg / cm 2 ) of Hyflo Super Cell as filter aids for precoat in the above precoat liquid (Manufactured by Celite) and stirred at 45 ° C. for 30 minutes to obtain a precoating liquid B.
The precoating liquid B was filtered at 45 ° C. and a nitrogen pressure of 0.2 MPa using a pressure filter (inner diameter: 4 cm) using a two-layer filter of cellulose and polyester as a filter material to form a precoat layer. However, about 20 mL of the filtrate which appeared first, the filter aid was passed through the filter again because some leakage of the filter aid was observed. After confirming that the filtrate of the precoat liquid B had sufficient clarity, the mixture A was applied to the filter to obtain a filtrate having sufficient clarity.
The filtrate (combination of the filtrate of the precoating solution B and the filtrate of the mixed solution A) obtained by the above operation was used as purified alkyl ether.
[0027]
(4) Sulfation of alkyl ether The purified alkyl ether was put into a thin-film flow-down type sulfonation reactor (inner diameter 10 mm x 2.5 m, equipped with an outer jacket: 30 to 40 ° C hot water was passed) at a temperature of 45 ° C. The reactor was fed at a feed rate of about 146 to 149 g / min, and the inside of the reactor was allowed to flow down in a thin film form. Subsequently, SO 3 gas (concentration: about 7 to 8%, diluted with nitrogen gas) heated to 50 ° C. was introduced into the reactor at a supply rate of 40 g / min as SO 3 to perform sulfation. Further, this sulfate was passed through a cyclone to separate unreacted SO 3 and SO 2 into gas and liquid, and was recycled and cooled while passing through a heat exchanger.
[0028]
(5) Defoaming of sulfates The above sulfates are continuously passed through a commercially available vacuum centrifugal defoamer (manufactured by Unosawa Gumi Iron Works), and degassed at a temperature of 25 ° C, a pressure of 20 to 50 torr, and a time of 5 minutes. Was done.
[0029]
(6) Neutralization Neutralizing the defoamed sulfate with 19.3% caustic soda while maintaining the temperature at 50 ° C. or lower in a closed continuous neutralizer equipped with an external cooling device (see FIG. 1). Gave a high concentration of 66% alkyl ether sulfate.
[0030]
(Example 2)
The same operation as in Example 1 was performed except that the average number of moles of EO added was 3 in the EO addition in Example 1 above.
(Example 3)
The procedure was the same as in Example 1 except that KOH was used as a catalyst in an amount of 0.05% of alcohol at the time of adding EO in Example 1 above.
(Example 4)
Example 3 was carried out in the same manner as in Example 3 except that the average number of moles of EO added was 3 in the EO addition.
[0031]
(Comparative Example 1)
Example 1 was carried out in the same manner as in Example 1 except that the sulfate was not passed through the defoamer and neutralization was performed in an open stirring tank device.
(Comparative Example 2)
Example 1 was carried out in the same manner as in Example 1 except that neutralization was performed with an open stirring tank device.
(Comparative Example 3)
Except not passing through the defoamer of the above-mentioned Example 1, it carried out by the same method as the above-mentioned Example 1.
[0032]
In the high-concentration alkyl ether sulfates obtained in the above Examples 1 to 4 and Comparative Examples 1 to 3, specific gravity after mid-sulfation, presence or absence of a defoamer, specific gravity after defoaming, presence or absence of a neutralization method, medium The specific gravity after the addition, the viscosity and the fluidity of the obtained alkyl ether sulfate are shown in Table 1 below.
The following methods were used to evaluate (1) the specific gravity after sulfation, the specific gravity after defoaming, the specific gravity after neutralization, (2) the viscosity of the obtained alkyl ether sulfate, and (3) the fluidity.
Further, the addition molar distribution of the alkyl ether sulfates obtained in Examples 1 to 4 and Comparative Examples 1 to 3 was measured by high performance liquid chromatography (HLPC). This additional molar distribution is shown in Table 2 below.
[0033]
(1) The specific gravity after sulfation, the specific gravity after defoaming, and the specific gravity after neutralization were determined by measuring the apparent specific gravity from the weight ratio of each sample using a measuring cup which was previously filled with water and weighed.
(2) The viscosity of the obtained alkyl ether sulfate was measured at 50 ° C. by using a BH type viscometer (NO. 6 rotor, 20 rpm, 1 minute) manufactured by Toseki Sangyo Sangyo Co., Ltd.
(3) The fluidity was evaluated according to the following evaluation criteria based on viscosity, neutralization pressure, extraction pump pressure and the like.
Evaluation criteria:
:: The viscosity is 10 Pa · s or less, and no pressure rise is observed.
Δ: The viscosity is 15 Pa · s or less, and the pressure rise is small.
×: Viscosity is 15 Pa · s or more, and pressure rise is observed.
[0034]
[Table 1]
[0035]
[Table 2]
[0036]
As is clear from the results of Tables 1 and 2, Examples 1 to 4 that fall within the scope of the present invention are higher in quality and handling than Comparative Examples 1 to 3 that fall outside the scope of the present invention. It has been found that advantageous high concentration alkyl ether sulfates can be efficiently produced.
On the other hand, the neutralization was performed in the open stirring tank without using the defoamer of Comparative Example 1, and the neutralization was performed in the open stirring tank even when the defoamer of Comparative Example 2 was used. The high-concentration alkyl ether of Comparative Example 3, which was prepared by using a closed continuous neutralization method without using the defoamer, had a viscosity of 15 Pa · s or more, and had poor fluidity and could be handled for the purpose. It turned out that sulfate could not be obtained.
[0037]
【The invention's effect】
According to the method of the present invention, there is provided a production method capable of efficiently producing a high-quality alkyl ether sulfate which is high in quality and advantageous in handling.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a closed type continuous neutralization device provided with an external cooling device.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161243A JP4201649B2 (en) | 2003-06-05 | 2003-06-05 | Method for producing high concentration alkyl ether sulfate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161243A JP4201649B2 (en) | 2003-06-05 | 2003-06-05 | Method for producing high concentration alkyl ether sulfate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004359871A true JP2004359871A (en) | 2004-12-24 |
JP4201649B2 JP4201649B2 (en) | 2008-12-24 |
Family
ID=34053754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003161243A Expired - Fee Related JP4201649B2 (en) | 2003-06-05 | 2003-06-05 | Method for producing high concentration alkyl ether sulfate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4201649B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156590A (en) * | 2006-12-01 | 2008-07-10 | Lion Corp | Liquid detergent composition for kitchen |
JP2008156589A (en) * | 2006-12-01 | 2008-07-10 | Lion Corp | Liquid detergent composition |
WO2011077652A1 (en) | 2009-12-22 | 2011-06-30 | 花王株式会社 | Liquid cooling method |
JP2011148763A (en) * | 2009-12-22 | 2011-08-04 | Kao Corp | Method for cooling liquid |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107253924B (en) * | 2017-06-09 | 2019-11-12 | 常州大学 | A kind of preparation method of MES powder surfactant |
-
2003
- 2003-06-05 JP JP2003161243A patent/JP4201649B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156590A (en) * | 2006-12-01 | 2008-07-10 | Lion Corp | Liquid detergent composition for kitchen |
JP2008156589A (en) * | 2006-12-01 | 2008-07-10 | Lion Corp | Liquid detergent composition |
WO2011077652A1 (en) | 2009-12-22 | 2011-06-30 | 花王株式会社 | Liquid cooling method |
JP2011148763A (en) * | 2009-12-22 | 2011-08-04 | Kao Corp | Method for cooling liquid |
US8961657B2 (en) | 2009-12-22 | 2015-02-24 | Kao Corporation | Method for cooling liquid |
US9459049B2 (en) | 2009-12-22 | 2016-10-04 | Kao Corporation | Method for cooling liquid |
EP3159641A1 (en) | 2009-12-22 | 2017-04-26 | Kao Corporation | Method for cooling liquid |
Also Published As
Publication number | Publication date |
---|---|
JP4201649B2 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1926173A (en) | Composition containing alcoholate alkoxy group and use thereof | |
CN101928389B (en) | Method for preparing glycidol ether terminated propenol polyoxyethylene ether | |
JPH08169861A (en) | Production of fatty acid polyoxyalkylene alkyl ether | |
EP2165996B1 (en) | Novel ether compound | |
JP4201649B2 (en) | Method for producing high concentration alkyl ether sulfate | |
CN103183820B (en) | A kind of method preparing the polyoxy second/propylene ether of oligomeric second/content of propylene glycol | |
JP2010275537A (en) | Water-soluble cutting liquid | |
JP2003183383A (en) | Manufacturing method of cyclic ether adduct of alcohol with less smell | |
CN101052608A (en) | Process for preparing an alkoxylated alcohol or phenol | |
GB2174992A (en) | Preparation of phosphoric ester | |
JP5172627B2 (en) | Process for producing polyoxyalkylene adduct | |
JP2686894B2 (en) | Process for producing etherified products of polyether polyol | |
EP0427088A2 (en) | Improved method for the preparation of methyl ethers of polyether polyols employing dimethylsulfate as a methylating agent | |
CN102197020B (en) | Process for producing sulfuric acid ester salt | |
CN1934165A (en) | Process of sulfating select polymers | |
JP2002179788A (en) | Preparation of alkenyl polyether | |
JPH1171328A (en) | Production of fatty acid polyoxyalkylenealkyl ether, and composite metal oxide catalyst used for the production | |
JP3005629B2 (en) | Method for producing etherified polyoxyalkylene compound | |
JP2001261816A (en) | Process for preparation of alkylene oxide adduct containing little unreacted alkylene oxide | |
JPH09262456A (en) | Purifying method of nonionic surfactant | |
JPH0352836A (en) | Preparation of nonionic surface active agent containing little alkylene oxide and dioxane-1,4 using metal alcolate as catalyst | |
JP3567031B2 (en) | Antifoam dispersant for photosensitive resin industry | |
JP6967939B2 (en) | Liquid cleaner | |
WO2022114218A1 (en) | Compound, precursor compound thereof, surfactant composition, and detergent composition | |
JPH10296007A (en) | Antiforming agent for phosphoric acid preparation process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4201649 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |