[go: up one dir, main page]

JP2004356442A - Group iii nitride system compound semiconductor light emitting element - Google Patents

Group iii nitride system compound semiconductor light emitting element Download PDF

Info

Publication number
JP2004356442A
JP2004356442A JP2003153300A JP2003153300A JP2004356442A JP 2004356442 A JP2004356442 A JP 2004356442A JP 2003153300 A JP2003153300 A JP 2003153300A JP 2003153300 A JP2003153300 A JP 2003153300A JP 2004356442 A JP2004356442 A JP 2004356442A
Authority
JP
Japan
Prior art keywords
layer
light emitting
doped
thickness
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003153300A
Other languages
Japanese (ja)
Inventor
Tetsuya Taki
瀧  哲也
Kazuki Nishijima
和樹 西島
Yasuhisa Ushida
泰久 牛田
Masanobu Senda
昌伸 千田
Masaki Kojima
勝紀 小島
Takashi Ohashi
貴志 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2003153300A priority Critical patent/JP2004356442A/en
Publication of JP2004356442A publication Critical patent/JP2004356442A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the electrostatic withstanding voltage of a group III nitride system compound semiconductor light emitting element without deteriorating its light emitting characteristic. <P>SOLUTION: A multiple layer (electrostatic withstanding voltage enhancing layer) 105 comprising five stacked pairs of 3-nm thick non-doped In<SB>0.03</SB>Ga<SB>0.97</SB>N layers 1051 and 20 nm thick non-doped GaN layers 1052 is formed to a negative electrode side of a light emitting layer 106 of a multiquantum well structure comprising three stacked pairs of 3 nm thick non-doped In<SB>0.2</SB>Ga<SB>0.8</SB>N well layers 1061 and 20 nm thick non-doped barrier layers 1062. The multiple layer (electrostatic withstanding voltage enhancing layer) 105 plays a role of extending an applied voltage over a wide range of an n electrode side of the light emitting layer without concentrating the applied voltage onto part of the n electrode side of the light emitting layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はIII族窒化物系化合物半導体発光素子に関する。本発明は静電耐圧の高いIII族窒化物系化合物半導体発光素子構造を提供するものである。
【0002】
【従来の技術】
緑、青乃至紫外領域の発光素子としてIII族窒化物系化合物半導体発光素子は汎用されつつあるが、発光強度以外のIII族窒化物系化合物半導体発光素子の諸特性は尚改善の余地がある。特に静電耐圧については、ガリウム・ヒ素系の発光素子やインジウム・リン系の発光素子に比較して格段に低く、大幅な静電耐圧の向上が期待されている。ここにおいて、III族窒化物系化合物半導体発光素子の静電耐圧の向上のため、下記のような提案がされている。
【0003】
【特許文献1】特開平11−191639号公報
【特許文献2】特開2000−68594号公報
【特許文献3】特開2000−244072号公報
【特許文献4】特開2001−203385号公報
【0004】
【発明が解決しようとする課題】
これらの技術を以てしても尚III族窒化物系化合物半導体発光素子の静電耐圧は十分でなく、また、発光強度や駆動電圧に対し、静電耐圧はトレードオフの関係にある。
【0005】
そこで本発明は上記従来技術に対し、発光強度や駆動電圧を悪化させることなく静電耐圧を向上させることを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の手段によれば、多重量子井戸構造の発光層を有するIII族窒化物系化合物半導体発光素子において、発光層のn電極側に、ノンドープのInGa1−xN(0<x<1)から成る層とノンドープのGaNから成る層との多重層を有し、前記多重量子井戸構造の発光層の井戸層は少なくともインジウム(In)を含むIII族窒化物系化合物半導体AlGa1−y−zInN(0≦y<1, 0<z≦1)から成り、前記多重層を形成するInGa1−xN(0<x<1)から成る層のインジウム(In)の組成xは、前記多重量子井戸構造の発光層の井戸層のインジウム(In)の組成zよりも小さいことを特徴とする。
【0007】
また、請求項2に記載の手段によれば、前記ノンドープのInGa1−xN(0<x<1)から成る層のインジウム(In)の組成xは、0.02以上0.07以下であることを特徴とする。また、請求項3に記載の手段によれば、前記ノンドープのInGa1−xN(0<x<1)から成る層の厚さは0.5nm以上6nm以下であることを特徴とする。また、請求項4に記載の手段によれば、前記ノンドープのInGa1−xN(0<x<1)から成る層の厚さの前記発光層の井戸層の厚さに対する比は、0.1以上2以下であることを特徴とする。また、請求項5に記載の手段によれば、前記ノンドープのGaNから成る層の厚さの前記発光層の障壁層の厚さに対する比は、0.5以上4以下であることを特徴とする。また、請求項6に記載の手段によれば、前記多重層の前記ノンドープのInGa1−xN(0<x<1)から成る層の数は1以上7以下であることを特徴とする。
【0008】
【作用及び発明の効果】
以下の実施例に示す通り、本願発明の発光層を形成するインジウム(In)を含むIII族窒化物系化合物半導体AlGa1−y−zInN(0≦y<1, 0<z≦1)から成る井戸層よりもインジウム(In)の組成の小さいノンドープのInGa1−xN(0<x<1)から成る層と、ノンドープのGaNから成る層との多重層を発光層のn電極側に設けることで、静電耐圧が向上し、発光強度や駆動電圧の悪化しないIII族窒化物系化合物半導体発光素子を得ることができた。このような効果を生ずる作用については、印加電圧が発光層のn電極側の一部に集中することなく、発光層のn電極側の広い範囲に広がる作用を本願発明の多重層が奏するものと考えられる。
【0009】
【発明の実施の形態】
本発明の好ましい実施の形態について説明する。まず、本願で用いる「ノンドープ」の語は、意図的に当該層を形成する際にドーパント不純物を導入しないの意に留まり、何らかの技術的理由で「ドーパント」が混入するものを排除するものではない。当該技術的理由としては近接する層からのマイグレーションや、異なる層を形成する境界時における導入原料の切り替えが完全でないことによるコンタミネーション、或いは製造装置の洗浄不良等により「常に」微量に生成するコンタミネーションがあげられる。これら意図的でなく「ドーパント」が混入した層は、実質的には本願で言う「ノンドープ層」に包含されるものとする。
【0010】
発光層を構成する多重量子井戸構造は、少なくともインジウム(In)を含むIII族窒化物系化合物半導体AlGa1−y−zInN(0≦y<1, 0<z≦1)から成る井戸層を含むものである。発光層の構成は、例えばドープされた、又はアンドープのGa1−zInN(0<z≦1)から成る井戸層と、当該井戸層よりもバンドギャップの大きい任意の組成のIII族窒化物系化合物半導体AlGaInNから成る障壁層が挙げられる。好ましい例としてはアンドープのGa1−zInN(0<z≦1)の井戸層とアンドープのGaNから成る障壁層である。
【0011】
本発明の主たる特徴である発光層のn電極側に設けられる多重層は、発光層を形成する少なくともインジウム(In)を含むIII族窒化物系化合物半導体AlGa1−y−zInN(0≦y<1, 0<z≦1)から成る井戸層のインジウム(In)の組成zよりも小さいインジウム(In)の組成xのノンドープのInGa1−xN(0<x<1)から成る層とノンドープのGaNから成る層により形成される。このとき、当該多重層を形成するノンドープのInGa1−xN(0<x<1)から成る層のインジウム(In)の組成xは、0.02以上0.07以下、より好ましくは0.03以上0.05以下が好ましい。
【0012】
発光層のn電極側に設けられる多重層のノンドープのInGa1−xN(0<x<1)から成る層の膜厚は、0.5nm以上6nm以下であることが好ましく、0.5nm以上4nm以下であることがより好ましい。以下に発光特性を記すが、ノンドープのInGa1−xN(0<x<1)から成る層の膜厚が6nmを越えると駆動電圧Vfが大幅に上昇することが判明している。0.5nm未満となると、その膜厚の調整が困難となるので、避けるべきである。一方、当該多重層のノンドープのGaNから成る層は、少なくとも10〜40nmの範囲では素子特性に大きな変化を生じないことが判明している。多重層のノンドープのInGa1−xN(0<x<1)から成る層の厚さの発光層の井戸層の厚さに対する比は、0.1以上2以下とすることが望ましい。より望ましくは発光層の井戸層の厚さ以下に多重層のノンドープのInGa1−xN(0<x<1)から成る層の厚さを調節する。一方、多重層のノンドープのGaNから成る層の厚さの発光層の障壁層の厚さに対する比は、0.5以上4以下であることが望ましい。より望ましくは発光層の障壁層の厚さ以上に多重層のノンドープのGaNから成る層の厚さを調節することが望ましい。
【0013】
発光層のn電極側に設けられる多重層のノンドープのInGa1−xN(0<x<1)から成る層の数は1以上7以下とすることが望ましく、より好ましくは1以上5以下とすると良い。
【0014】
本発明に係るIII族窒化物系化合物半導体発光素子は、上記の発明の主たる構成に係る限定の他は、任意の構成を取ることができる。また、発光素子は発光ダイオード(LED)、レーザダイオード(LD)、フォトカプラその他の任意の発光素子として良い。特に本発明に係るIII族窒化物系化合物半導体発光素子の製造方法としては任意の製造方法を用いることができる。
【0015】
具体的には、結晶成長させる基板としては、サファイヤ、スピネル、Si、SiC、ZnO、MgO或いは、III族窒化物系化合物単結晶等を用いることができる。III族窒化物系化合物半導体層を結晶成長させる方法としては、分子線気相成長法(MBE)、有機金属気相成長法(MOCVD)、ハライド気相成長法(HDVPE)、液相成長法等が有効である。
【0016】
電極形成層等のIII族窒化物半導体層は、少なくともAlGaIn1−x−yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)にて表される2元系、3元系若しくは4元系の半導体から成るIII族窒化物系化合物半導体で形成することができる。また、これらのIII族元素の一部は、ボロン(B)、タリウム(Tl)で置き換えても良く、また、窒素(N)の一部をリン(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)で置き換えても良い。
【0017】
更に、これらの半導体を用いてn型のIII族窒化物系化合物半導体層を形成する場合には、n型不純物として、Si、Ge、Se、Te、C等を添加し、p型不純物としては、Zn、Mg、Be、Ca、Sr、Ba等を添加することができる。
【0018】
以上の本発明の手段により、前記の課題を効果的、或いは合理的に解決することができる。
【0019】
〔実施例〕
図1に、本発明の実施例に係る半導体発光素子100の模式的な断面図を示す。半導体発光素子100では、図1に示す様に、厚さ約300μmのサファイヤ基板101の上に、窒化アルミニウム(AlN)から成る膜厚約15nmのバッファ層102が成膜され、その上にノンドープのGaNから成る膜厚約500nmの層103が成膜され、その上にシリコン(Si)を1×1018/cmドープしたGaNから成る膜厚約5μmのn型コンタクト層104(高キャリヤ濃度n層)が形成されている。
【0020】
また、このn型コンタクト層104の上には、膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051と膜厚20nmのノンドープGaNから成る層1052とを5ペア積層した多重層(静電耐圧向上層)105が形成されている。更にその上には、膜厚3nmのノンドープIn0.2Ga0.8Nから成る井戸層1061と膜厚20nmのノンドープGaNから成る障壁層1062とを3ペア積層して多重量子井戸構造の発光層106が形成されている。
【0021】
更に、この発光層106の上には、Mgを2×1019/cmドープした膜厚25nmのp型Al0.15Ga0.85Nから成るp型層107が形成されており、また、p型層107の上には、Mgを8×1019ドープした膜厚100nmのp型GaNから成るp型コンタクト層108を形成した。
【0022】
又、p型コンタクト層108の上には金属蒸着による透光性薄膜p電極110が、n型コンタクト層104上にはn電極140が形成されている。透光性薄膜p電極110は、p型コンタクト層108に直接接合する膜厚約1.5nmのコバルト(Co)より成る第1層111と、このコバルト膜に接合する膜厚約6nmの金(Au)より成る第2層112とで構成されている。
【0023】
厚膜p電極120は、膜厚約18nmのバナジウム(V)より成る第1層121と、膜厚約15μmの金(Au)より成る第2層122と、膜厚約10nmのアルミニウム(Al)より成る第3層123とを透光性薄膜p電極110の上から順次積層させることにより構成されている。
【0024】
多層構造のn電極140は、n型コンタクト層104の一部露出された部分の上から、膜厚約18nmのバナジウム(V)より成る第1層141と膜厚約100nmのアルミニウム(Al)より成る第2層142とを積層させることにより構成されている。
【0025】
また、最上部には、SiO膜より成る保護膜130が形成されている。
サファイヤ基板101の底面に当たる外側の最下部には、膜厚約500nmのアルミニウム(Al)より成る反射金属層150が、金属蒸着により成膜されている。尚、この反射金属層150は、Rh、Ti、W等の金属の他、TiN、HfN等の窒化物でも良い。
【0026】
〔実施例に対する他の多重層構成との比較〕
上記実施例についての静電耐圧、駆動電圧Vf、全放射束(発光強度)を、多重層構成を一部変更した場合と比較して以下、図に説明する。尚、静電耐圧はマシーンモデル式により0Ω、200F、30nsのパルス電圧により測定した。
【0027】
図2(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051の膜厚に関し、1.5nmから10nmの場合を示した図である。ノンドープIn0.03Ga0.97Nから成る層1051は、膜厚を1.5nmから3nmとした素子の場合に静電耐圧を高く、駆動電圧Vfを低くできるが、膜厚を10nmとした素子の場合は静電耐圧が若干低く、駆動電圧Vfが高くなってしまう結果が得られた。一方、全放射束(発光強度)については膜厚に対して大きく左右されなかった。
【0028】
図3(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚3nmのノンドープIn0.03Ga0.97N(In組成3%)から成る層1051のIn組成に関し、0.01(1%)から0.08(8%)の場合を示した図である。ノンドープInGaNから成る層1051は、In組成を0.03(3%)から0.05(5%)とした素子の場合に駆動電圧Vfを低くできるが、In組成を0.01(1%)又は0.08(8%)とした素子の場合は駆動電圧Vfが高くなってしまう結果が得られた。一方、全放射束(発光強度)については膜厚に対して大きく左右されなかった。静電耐圧については駆動電圧Vfが好適な範囲で、若干向上した。
【0029】
図4(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚20nmのノンドープGaNから成る層1052にシリコン(Si)を1×1018/cmドープした素子の場合とともに示した図である。GaNから成る層1052はノンドープとした素子の場合に駆動電圧を低くできるが、シリコンを(Si)を1×1018/cmドープした素子の場合は駆動電圧Vfが高くなってしまう結果が得られた。一方、静電耐圧と全放射束(発光強度)は、ドープ/ノンドープの違いに対して大きく左右されなかった。
【0030】
図5(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051にシリコン(Si)を1×1018/cmドープした素子の場合とともに示した図である。In0.03Ga0.97Nから成る層1051はノンドープとした場合に静電耐圧を高く、駆動電圧を低くできるが、シリコン(Si)を1×1018/cmドープした素子の場合は静電耐圧が低く、駆動電圧Vfが高くなってしまう結果が得られた。一方、全放射束(発光強度)は、ドープ/ノンドープの違いに対して大きく左右されなかった。
【0031】
図6(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051と膜厚20nmのノンドープGaNから成る層1052のペア数を3ペアから10ペアとした素子の場合について示した図である。多重層105は、その構成が3ペア、5ペアのときに静電耐圧を高く、駆動電圧Vfを低くできるが、その構成を10ペアとした素子の場合は静電耐圧が低く、駆動電圧Vfが高くなってしまう結果が得られた。一方、全放射束(発光強度)は、ペア数の違いに対して大きく左右されなかった。
【0032】
図7(a)、(b)、(c)はそれぞれ、上記実施例の素子についての静電耐圧、駆動電圧Vf、全放射束を、膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051と膜厚20nmのノンドープGaNから成る層1052の構成を膜厚3nmのノンドープIn0.03Ga0.97Nから成る層と膜厚20nmのノンドープAl0.2Ga0.8Nから成る層とした素子の場合、及び膜厚3nmのノンドープGaNから成る層と膜厚20nmのノンドープAl0.2Ga0.8Nとした素子の場合とともに示した図である。多重層105は、その構成が膜厚3nmのノンドープIn0.03Ga0.97Nから成る層1051と膜厚20nmのノンドープGaNから成る層1052の構成のときに静電耐圧を高く、駆動電圧を低くできるが、上記他の2構成とした素子の場合は静電耐圧が低く、駆動電圧Vfが高くなってしまう結果が得られた。一方、全放射束(発光強度)は、多重層105を構成する2層の組成の違いに対して大きく左右されなかった。
【0033】
本発明は、上記実施例に限定されるものではなく他に様々な変形が考えられる。例えば、各III族窒化物系化合物半導体層として、任意の混晶比の2元乃至4元系のAlGaInNとしても良い。より具体的には、「AlGaIn1−x−yN(0≦x≦1,0≦y≦1,0≦x+y≦1)」成る一般式で表される2元、3元(GaInN,AlInN,AlGaN)或いは4元(AlGaInN)のIII族窒化物系化合物半導体等を用いることもできる。また、そられの化合物のNの一部をP、As等のV族元素で置換しても良い。また、上記実施例では保護膜130を形成したが、保護膜130は省略しても良い。また、本例ではサファイア基板裏面に反射金属層を形成し、p電極側に透光性薄膜p電極を設けたが、フリップチップタイプとするためには、サファイア基板裏面から光を取り出す構造とするために、サファイア基板裏面の反射金属層を形成せず、p電極側を光反射層を兼ねる電極層を設けても良い。
【図面の簡単な説明】
【図1】本発明の実施例に係る半導体発光素子100の断面図。
【図2】(a)、(b)、(c)はそれぞれ、ノンドープIn0.03Ga0.97Nから成る層1051の膜厚と静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【図3】(a)、(b)、(c)はそれぞれ、ノンドープInGaNから成る層1051のIn組成と静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【図4】(a)、(b)、(c)はそれぞれ、GaNから成る層1052にシリコンをドープした場合としない場合についての静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【図5】(a)、(b)、(c)はそれぞれ、In0.03Ga0.97Nから成る層1051にシリコンをドープした場合としない場合についての静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【図6】(a)、(b)、(c)はそれぞれ、多重層105のペア数と静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【図7】(a)、(b)、(c)はそれぞれ、多重層105を構成する2層の組成と静電耐圧、駆動電圧Vf、全放射束の関係を示した特性図。
【符号の説明】
100 … 半導体発光素子
101 … サファイヤ基板
102 … バッファ層
103 … ノンドープGaN層
104 … 高キャリア濃度n
105 … 多重層(静電耐圧向上層)
106 … 発光層
107 … p型半導体層
108 … p型コンタクト層
110 … 透光性薄膜p電極
120 … p電極
130 … 保護膜
140 … n電極
150 … 反射金属層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a group III nitride compound semiconductor light emitting device. The present invention provides a group III nitride compound semiconductor light emitting device having a high electrostatic withstand voltage.
[0002]
[Prior art]
Group III nitride-based compound semiconductor light-emitting devices have been widely used as light-emitting devices in the green, blue, or ultraviolet region, but there is still room for improvement in various characteristics of the group III nitride-based compound semiconductor light-emitting devices other than the emission intensity. In particular, the electrostatic withstand voltage is much lower than that of a gallium / arsenic-based light-emitting element or an indium / phosphorus-based light-emitting element, and a significant improvement in electrostatic withstand voltage is expected. Here, the following proposals have been made to improve the electrostatic withstand voltage of a group III nitride compound semiconductor light emitting device.
[0003]
[Patent Document 1] JP-A-11-191639 [Patent Document 2] JP-A-2000-68594 [Patent Document 3] JP-A-2000-244072 [Patent Document 4] JP-A-2001-203385 [0004] ]
[Problems to be solved by the invention]
Even with these techniques, the electrostatic breakdown voltage of the group III nitride compound semiconductor light emitting device is not sufficient, and the electrostatic breakdown voltage has a trade-off relationship with the light emission intensity and the driving voltage.
[0005]
Accordingly, an object of the present invention is to improve the electrostatic withstand voltage without deteriorating the light emission intensity and the driving voltage with respect to the above prior art.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, according to the means of claim 1, in a group III nitride compound semiconductor light emitting device having a light emitting layer of a multiple quantum well structure, non-doped In is provided on the n electrode side of the light emitting layer. It has a multi-layer of a layer made of xGa 1-xN (0 <x <1) and a layer made of non-doped GaN, and the well layer of the light emitting layer having the multiple quantum well structure contains at least indium (In). group III nitride compound semiconductor Al y Ga 1-y-z In z N (0 ≦ y <1, 0 <z ≦ 1) consists, In x Ga 1-x N (0 forming the multi-layer < The composition x of indium (In) in the layer composed of x <1) is smaller than the composition z of indium (In) in the well layer of the light emitting layer having the multiple quantum well structure.
[0007]
Further, according to the means described in claim 2, the composition x of indium (In) layer of the non-doped In x Ga 1-x N ( 0 <x <1) is 0.02 or more 0.07 It is characterized by the following. Further, according to the means described in claim 3, wherein the thickness of the layer made of the non-doped In x Ga 1-x N ( 0 <x <1) is 0.5nm or more 6nm or less . According to a fourth aspect of the present invention, the ratio of the thickness of the non-doped In x Ga 1-x N (0 <x <1) to the thickness of the well layer of the light emitting layer is as follows: It is 0.1 or more and 2 or less. According to a fifth aspect of the present invention, a ratio of the thickness of the non-doped GaN layer to the thickness of the barrier layer of the light emitting layer is 0.5 or more and 4 or less. . Moreover, said the According to the measures of claim 6, the number of layers consisting of the said non-doped multiple layer In x Ga 1-x N ( 0 <x <1) is 1 to 7 I do.
[0008]
[Action and effect of the invention]
As shown in the examples below, III nitride compound containing indium (In) to form a light emitting layer of the present invention a semiconductor Al y Ga 1-y-z In z N (0 ≦ y <1, 0 <z ≦ 1) a layer comprising a well layer of low doped compositions of indium (in) than in x Ga 1-x N ( 0 <x <1) made of light-emitting multiple layers of a layer consisting of undoped GaN By providing the layer on the n-electrode side, it was possible to obtain a group III nitride-based compound semiconductor light-emitting device in which the electrostatic breakdown voltage was improved and the emission intensity and the driving voltage were not deteriorated. Regarding the effect of producing such an effect, the multi-layer of the present invention exerts an effect that the applied voltage spreads over a wide range on the n-electrode side of the light-emitting layer without being concentrated on a part of the light-emitting layer on the n-electrode side. Conceivable.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will be described. First, the term "non-doped" used in the present application merely means that dopant impurities are not intentionally introduced when the layer is intentionally formed, and does not exclude those in which "dopant" is mixed for some technical reason. . The technical reasons include migration from an adjacent layer, contamination due to incomplete switching of introduced materials at the boundary between different layers, or contamination that is always generated in a very small amount due to poor cleaning of manufacturing equipment. Nations are given. These layers into which “dopants” are unintentionally mixed are substantially included in the “non-doped layer” referred to in the present application.
[0010]
A multiple quantum well structure forming the light emitting layer is at least indium III nitride compound containing (In) semiconductor Al y Ga 1-y-z In z N (0 ≦ y <1, 0 <z ≦ 1) Including a well layer. Structure of the light-emitting layer, for example doped, or a well layer made of Ga 1-z In z N ( 0 <z ≦ 1) undoped, III group nitride of any composition larger band gap than the well layer Barrier layer made of a compound-based compound semiconductor AlGaInN. Preferred examples are the barrier layer comprising a well layer and an undoped GaN undoped Ga 1-z In z N ( 0 <z ≦ 1).
[0011]
Multiple layer provided on the n-electrode side of the light-emitting layer which is a main feature of the present invention, at least indium (an In) III nitride compound including semiconductor Al to form a light emitting layer y Ga 1-y-z In z N Non-doped In x Ga 1-x N (0 <x <) with a composition x of indium (In) smaller than the composition z of indium (In) in the well layer composed of (0 ≦ y <1, 0 <z ≦ 1) 1) and a layer made of non-doped GaN. In this case, the composition x of indium layers of undoped In x Ga 1-x N ( 0 <x <1) to form the multi-layer (In) are 0.02 to 0.07, more preferably It is preferably from 0.03 to 0.05.
[0012]
The film thickness of the non-doped a In x Ga 1-x N of the multi-layer provided on the n-electrode side of the light-emitting layer (0 <x <1) layer is preferably at 0.5nm or more 6nm or less, 0. More preferably, it is 5 nm or more and 4 nm or less. Although referred emission characteristics below, undoped In x Ga 1-x N ( 0 <x <1) film thickness of a layer consisting of more than 6nm and the driving voltage Vf is found to significantly increase. If the thickness is less than 0.5 nm, it is difficult to adjust the thickness of the film. On the other hand, it has been found that the multi-layered layer made of non-doped GaN does not cause a significant change in device characteristics at least in the range of 10 to 40 nm. Ratio undoped In x Ga 1-x N thickness of the thickness of the light-emitting layer of the well layer of the layer made of (0 <x <1) the multiple layer is preferably 0.1 to 2. More desirably adjusting the thickness of the layer made of undoped In x Ga 1-x N of the multi-layer below the thickness of the well layer of the light-emitting layer (0 <x <1). On the other hand, it is desirable that the ratio of the thickness of the multilayer non-doped GaN layer to the thickness of the light-emitting layer of the barrier layer is 0.5 or more and 4 or less. More preferably, it is desirable to adjust the thickness of the multilayer non-doped GaN layer to be equal to or greater than the thickness of the barrier layer of the light emitting layer.
[0013]
The number of non-doped In x Ga 1-x N (0 <x <1) layers of the multi-layer provided on the n-electrode side of the light emitting layer is desirably 1 or more, and more preferably 1 or more. It is better to do the following.
[0014]
The group III nitride-based compound semiconductor light-emitting device according to the present invention can have any configuration other than the above-described limitation of the main configuration of the invention. The light emitting element may be a light emitting diode (LED), a laser diode (LD), a photocoupler, or any other light emitting element. In particular, any manufacturing method can be used as a method for manufacturing the group III nitride compound semiconductor light emitting device according to the present invention.
[0015]
Specifically, sapphire, spinel, Si, SiC, ZnO, MgO, a group III nitride-based compound single crystal, or the like can be used as a substrate for crystal growth. As a method for growing a group III nitride-based compound semiconductor layer, a molecular beam vapor deposition (MBE), a metalorganic vapor phase epitaxy (MOCVD), a halide vapor phase epitaxy (HDVPE), a liquid phase epitaxy, or the like can be used. Is valid.
[0016]
Group III nitride semiconductor layer of the electrode forming layer and the like is expressed by at least Al x Ga y In 1-x -y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) 2 It can be formed of a group III nitride compound semiconductor composed of a ternary, ternary, or quaternary semiconductor. Some of these group III elements may be replaced with boron (B) or thallium (Tl), and some of nitrogen (N) may be replaced with phosphorus (P), arsenic (As), antimony (Sb). ) And bismuth (Bi).
[0017]
Further, when an n-type group III nitride compound semiconductor layer is formed using these semiconductors, Si, Ge, Se, Te, C, etc. are added as n-type impurities, and p-type impurities are added. , Zn, Mg, Be, Ca, Sr, Ba and the like can be added.
[0018]
By the means of the present invention described above, the above problems can be effectively or rationally solved.
[0019]
〔Example〕
FIG. 1 is a schematic sectional view of a semiconductor light emitting device 100 according to an embodiment of the present invention. In the semiconductor light emitting device 100, as shown in FIG. 1, a buffer layer 102 having a thickness of about 15 nm made of aluminum nitride (AlN) is formed on a sapphire substrate 101 having a thickness of about 300 μm. A layer 103 made of GaN having a thickness of about 500 nm is formed, and an n-type contact layer 104 made of GaN doped with silicon (Si) at 1 × 10 18 / cm 3 and having a thickness of about 5 μm (high carrier concentration n + Layer) is formed.
[0020]
Further, on the n-type contact layer 104, a multilayer structure in which five pairs of a layer 1051 made of non-doped In 0.03 Ga 0.97 N and a layer 1052 made of non-doped GaN having a thickness of 20 nm are stacked. (Electrostatic breakdown voltage improving layer) 105 is formed. Further thereon, three pairs of a well layer 1061 made of non-doped In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer 1062 made of non-doped GaN having a thickness of 20 nm are laminated to emit light having a multiple quantum well structure. A layer 106 is formed.
[0021]
Further, a p-type layer 107 made of p-type Al 0.15 Ga 0.85 N doped with Mg at 2 × 10 19 / cm 3 and having a thickness of 25 nm is formed on the light-emitting layer 106. On the p-type layer 107, a p-type contact layer 108 of 100 nm-thick p-type GaN doped with 8 × 10 19 Mg was formed.
[0022]
A translucent thin-film p-electrode 110 is formed on the p-type contact layer 108 by metal deposition, and an n-electrode 140 is formed on the n-type contact layer 104. The translucent thin-film p-electrode 110 has a first layer 111 made of cobalt (Co) having a thickness of about 1.5 nm directly bonded to the p-type contact layer 108 and a gold ( Au) and the second layer 112 made of Au).
[0023]
The thick p-electrode 120 includes a first layer 121 of vanadium (V) having a thickness of about 18 nm, a second layer 122 of gold (Au) having a thickness of about 15 μm, and aluminum (Al) having a thickness of about 10 nm. And a third layer 123 made of light-transmitting thin-film p-electrode 110.
[0024]
The n-electrode 140 having a multilayer structure is composed of a first layer 141 of vanadium (V) having a thickness of about 18 nm and aluminum (Al) having a thickness of about 100 nm from a part of the n-type contact layer 104 which is partially exposed. And a second layer 142 made of these layers.
[0025]
Further, a protective film 130 made of a SiO 2 film is formed on the uppermost portion.
A reflection metal layer 150 made of aluminum (Al) having a thickness of about 500 nm is formed by metal evaporation at the lowermost portion on the outside corresponding to the bottom surface of the sapphire substrate 101. The reflective metal layer 150 may be made of a metal such as Rh, Ti, and W, or a nitride such as TiN and HfN.
[0026]
[Comparison with Other Multi-Layer Configurations for Example]
The electrostatic withstand voltage, drive voltage Vf, and total radiant flux (emission intensity) of the above embodiment will be described below with reference to the drawings in comparison with the case where the multilayer structure is partially changed. The electrostatic withstand voltage was measured using a machine model equation with a pulse voltage of 0Ω, 200 F, and 30 ns.
[0027]
FIGS. 2A, 2B, and 2C respectively show the electrostatic breakdown voltage, drive voltage Vf, and total radiant flux of the device of the above-described embodiment by using a non-doped In 0.03 Ga 0.97 N film having a thickness of 3 nm. Is a diagram showing a case where the film thickness of a layer 1051 made of 1.5 nm to 10 nm. The layer 1051 made of non-doped In 0.03 Ga 0.97 N can have a high electrostatic withstand voltage and a low driving voltage Vf in the case of an element having a thickness of 1.5 nm to 3 nm, but has a thickness of 10 nm. In the case of the element, a result was obtained in which the electrostatic withstand voltage was slightly lower and the drive voltage Vf was higher. On the other hand, the total radiant flux (emission intensity) was not significantly affected by the film thickness.
[0028]
3 (a), (b) and (c) show the electrostatic breakdown voltage, drive voltage Vf and total radiant flux of the device of the above embodiment, respectively, using a non-doped In 0.03 Ga 0.97 N film having a thickness of 3 nm. FIG. 10 is a diagram showing a case where the In composition of a layer 1051 made of (3% In composition) is 0.01 (1%) to 0.08 (8%). The layer 1051 made of non-doped InGaN can lower the driving voltage Vf in the case of an element having an In composition of 0.03 (3%) to 0.05 (5%), but has an In composition of 0.01 (1%). Alternatively, in the case of the element set to 0.08 (8%), the result that the drive voltage Vf becomes high was obtained. On the other hand, the total radiant flux (emission intensity) was not significantly affected by the film thickness. The electrostatic withstand voltage was slightly improved in a preferable range of the drive voltage Vf.
[0029]
4 (a), (b) and (c) show the electrostatic breakdown voltage, drive voltage Vf and total radiant flux of the device of the above embodiment, respectively. FIG. 2 is a diagram showing the case of a device doped with 1 × 10 18 / cm 3 . The driving voltage of the layer 1052 made of GaN can be lowered in the case of a non-doped element, but the driving voltage Vf is increased in the case of an element doped with silicon (Si) at 1 × 10 18 / cm 3. Was done. On the other hand, the electrostatic withstand voltage and the total radiant flux (emission intensity) were not significantly affected by the difference between doping / non-doping.
[0030]
FIGS. 5A, 5B, and 5C respectively show the electrostatic breakdown voltage, drive voltage Vf, and total radiant flux of the device of the above-described embodiment by using a non-doped In 0.03 Ga 0.97 N film having a thickness of 3 nm. FIG. 6 is a diagram showing a case where a layer 1051 made of silicon is doped with silicon (Si) at 1 × 10 18 / cm 3 . The layer 1051 made of In 0.03 Ga 0.97 N can have a high electrostatic withstand voltage and a low driving voltage when it is non-doped. However, in the case of a device doped with silicon (Si) at 1 × 10 18 / cm 3, The result that the electrostatic withstand voltage was low and the drive voltage Vf was high was obtained. On the other hand, the total radiant flux (emission intensity) was not significantly affected by the difference between doped and non-doped.
[0031]
FIGS. 6A, 6B, and 6C respectively show the electrostatic breakdown voltage, drive voltage Vf, and total radiant flux of the device of the above-described embodiment by using a non-doped In 0.03 Ga 0.97 N film having a thickness of 3 nm. FIG. 10 is a diagram showing a case where the number of pairs of a layer 1051 made of GaN and a layer 1052 made of non-doped GaN having a thickness of 20 nm is 3 to 10 pairs. The multi-layer 105 has a high electrostatic withstand voltage and a low driving voltage Vf when the configuration is composed of three pairs or five pairs. Was obtained. On the other hand, the total radiant flux (emission intensity) was not largely affected by the difference in the number of pairs.
[0032]
FIGS. 7A, 7B, and 7C respectively show the electrostatic breakdown voltage, the driving voltage Vf, and the total radiant flux of the device of the above-described embodiment by using a non-doped In 0.03 Ga 0.97 N film having a thickness of 3 nm. The structure of the layer 1051 made of non-doped GaN and the layer 1052 made of non-doped GaN having a thickness of 20 nm is changed to the layer made of non-doped In 0.03 Ga 0.97 N having a thickness of 3 nm and the non-doped Al 0.2 Ga 0.8 N having a thickness of 20 nm. FIG. 7 is a diagram showing the case of a device having a layer made of non-doped GaN and a device having a layer of non-doped GaN having a thickness of 3 nm and non-doped Al 0.2 Ga 0.8 N having a thickness of 20 nm. The multi-layer 105 has a high electrostatic withstand voltage and a high driving voltage when its configuration is composed of a layer 1051 made of non-doped In 0.03 Ga 0.97 N having a thickness of 3 nm and a layer 1052 made of non-doped GaN having a thickness of 20 nm. However, in the case of an element having the other two configurations, a result was obtained in which the electrostatic withstand voltage was low and the drive voltage Vf was high. On the other hand, the total radiant flux (emission intensity) was not significantly affected by the difference in the composition of the two layers constituting the multilayer 105.
[0033]
The present invention is not limited to the above embodiment, and various other modifications are possible. For example, each group III nitride-based compound semiconductor layer may be a binary to quaternary AlGaInN having an arbitrary mixed crystal ratio. More specifically, "Al x Ga y In 1-x -y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1) " made general formula binary represented, 3-way (GaInN, AlInN, AlGaN) or a quaternary (AlGaInN) group III nitride compound semiconductor can also be used. Further, a part of N of the compound may be replaced with a group V element such as P or As. In the above embodiment, the protective film 130 is formed, but the protective film 130 may be omitted. In this example, a reflective metal layer is formed on the back surface of the sapphire substrate, and a light-transmitting thin film p-electrode is provided on the p-electrode side. For this purpose, an electrode layer serving also as a light reflecting layer may be provided on the p-electrode side without forming the reflective metal layer on the back surface of the sapphire substrate.
[Brief description of the drawings]
FIG. 1 is a sectional view of a semiconductor light emitting device 100 according to an embodiment of the present invention.
FIGS. 2A, 2B, and 2C respectively show the relationship between the thickness of a layer 1051 made of non-doped In 0.03 Ga 0.97 N, electrostatic withstand voltage, drive voltage Vf, and total radiant flux. FIG.
FIGS. 3A, 3B, and 3C are characteristic diagrams showing the relationship between the In composition of a layer 1051 made of non-doped InGaN, electrostatic withstand voltage, drive voltage Vf, and total radiant flux, respectively.
4 (a), (b), and (c) show the relationship between the electrostatic withstand voltage, the driving voltage Vf, and the total radiant flux when the layer 1052 made of GaN is and is not doped with silicon, respectively. Characteristic diagram.
FIGS. 5A, 5B, and 5C respectively show an electrostatic withstand voltage, a driving voltage Vf, and a driving voltage when a layer 1051 made of In 0.03 Ga 0.97 N is doped with silicon; FIG. 4 is a characteristic diagram showing a relationship between total radiant fluxes.
FIGS. 6A, 6B, and 6C are characteristic diagrams showing the relationship among the number of pairs of the multilayer 105, electrostatic withstand voltage, drive voltage Vf, and total radiant flux, respectively.
FIGS. 7A, 7B, and 7C are characteristic diagrams showing the relationship between the composition of the two layers constituting the multilayer 105, the electrostatic withstand voltage, the driving voltage Vf, and the total radiant flux, respectively.
[Explanation of symbols]
Reference Signs List 100 semiconductor light emitting element 101 sapphire substrate 102 buffer layer 103 non-doped GaN layer 104 high carrier concentration n + layer 105 multilayer (electrostatic breakdown voltage improving layer)
106 light-emitting layer 107 p-type semiconductor layer 108 p-type contact layer 110 translucent thin-film p-electrode 120 p-electrode 130 protective film 140 n-electrode 150 reflective metal layer

Claims (6)

多重量子井戸構造の発光層を有するIII族窒化物系化合物半導体発光素子において、
発光層のn電極側に、ノンドープのInGa1−xN(0<x<1)から成る層とノンドープのGaNから成る層との多重層を有し、
前記多重量子井戸構造の発光層の井戸層は少なくともインジウム(In)を含むIII族窒化物系化合物半導体AlGa1−y−zInN(0≦y<1, 0<z≦1)から成り、
前記多重層を形成するInGa1−xN(0<x<1)から成る層のインジウム(In)の組成xは、前記多重量子井戸構造の発光層の井戸層のインジウム(In)の組成zよりも小さいことを特徴とするIII族窒化物系化合物半導体発光素子。
In a group III nitride compound semiconductor light emitting device having a light emitting layer of a multiple quantum well structure,
On the n-electrode side of the light emitting layer, there is provided a multi-layer of a layer made of non - doped In x Ga 1-x N (0 <x <1) and a layer made of non-doped GaN,
The group III nitride compound well layer of the light emitting layer contains at least indium (In) of the multi-quantum well structure semiconductor Al y Ga 1-y-z In z N (0 ≦ y <1, 0 <z ≦ 1) Consisting of
The composition x of indium (In) in the layer composed of In x Ga 1-x N (0 <x <1) forming the multiple layer is the same as that of indium (In) in the well layer of the light emitting layer having the multiple quantum well structure. A group III nitride-based compound semiconductor light-emitting device characterized by having a composition smaller than z.
前記ノンドープのInGa1−xN(0<x<1)から成る層のインジウム(In)の組成xは、0.02以上0.07以下であることを特徴とする請求項1に記載のIII族窒化物系化合物半導体発光素子。The composition x of indium (In) layer of the non-doped In x Ga 1-x N ( 0 <x <1) is claimed in claim 1, characterized in that 0.02 to 0.07 III-nitride-based compound semiconductor light-emitting device. 前記ノンドープのInGa1−xN(0<x<1)から成る層の厚さは0.5nm以上6nm以下であることを特徴とする請求項1又は請求項2に記載のIII族窒化物系化合物半導体発光素子。3. The group III nitride according to claim 1, wherein a thickness of the non-doped layer of In x Ga 1-x N (0 <x <1) is 0.5 nm or more and 6 nm or less. 4. Compound semiconductor light emitting device. 前記ノンドープのInGa1−xN(0<x<1)から成る層の厚さの前記発光層の井戸層の厚さに対する比は、0.1以上2以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のIII族窒化物系化合物半導体発光素子。The ratio of the thickness of said non-doped In x Ga 1-x N ( 0 <x <1) layer of thickness the light emitting layer of the well layer is characterized in that 0.1 to 2 The group III nitride compound semiconductor light emitting device according to claim 1. 前記ノンドープのGaNから成る層の厚さの前記発光層の障壁層の厚さに対する比は、0.5以上4以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のIII族窒化物系化合物半導体発光素子。4. The light emitting device according to claim 1, wherein a ratio of a thickness of the non-doped GaN layer to a thickness of the barrier layer of the light emitting layer is 0.5 or more and 4 or less. 13. The group III nitride compound semiconductor light emitting device according to claim 1. 前記多重層の前記ノンドープのInGa1−xN(0<x<1)から成る層の数は1以上7以下であることを特徴とする請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体発光素子。Any one of claims 1 to 5, wherein the number of layers consisting of the said non-doped multiple layer In x Ga 1-x N ( 0 <x <1) is 1 to 7 A group III nitride compound semiconductor light emitting device according to item 1.
JP2003153300A 2003-05-29 2003-05-29 Group iii nitride system compound semiconductor light emitting element Withdrawn JP2004356442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153300A JP2004356442A (en) 2003-05-29 2003-05-29 Group iii nitride system compound semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153300A JP2004356442A (en) 2003-05-29 2003-05-29 Group iii nitride system compound semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2004356442A true JP2004356442A (en) 2004-12-16

Family

ID=34048292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153300A Withdrawn JP2004356442A (en) 2003-05-29 2003-05-29 Group iii nitride system compound semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2004356442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190963A (en) * 2004-12-30 2006-07-20 Ind Technol Res Inst Light emitting diode and structure thereof
JP2006237254A (en) * 2005-02-24 2006-09-07 Toyoda Gosei Co Ltd Semiconductor device and manufacturing method thereof
JP2007305851A (en) * 2006-05-12 2007-11-22 Hitachi Cable Ltd Nitride semiconductor light emitting device
JP2013183126A (en) * 2012-03-05 2013-09-12 Sharp Corp Nitride semiconductor light-emitting element and method of manufacturing nitride semiconductor light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190963A (en) * 2004-12-30 2006-07-20 Ind Technol Res Inst Light emitting diode and structure thereof
JP2006237254A (en) * 2005-02-24 2006-09-07 Toyoda Gosei Co Ltd Semiconductor device and manufacturing method thereof
JP4645225B2 (en) * 2005-02-24 2011-03-09 豊田合成株式会社 Manufacturing method of semiconductor device
JP2007305851A (en) * 2006-05-12 2007-11-22 Hitachi Cable Ltd Nitride semiconductor light emitting device
JP2013183126A (en) * 2012-03-05 2013-09-12 Sharp Corp Nitride semiconductor light-emitting element and method of manufacturing nitride semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JP3551101B2 (en) Nitride semiconductor device
TWI585995B (en) Semiconductor light-emitting element
JP5195798B2 (en) Manufacturing method of semiconductor light emitting device
JP5145617B2 (en) N-type nitride semiconductor laminate and semiconductor device using the same
JP2000349337A (en) Nitride semiconductor device
JP2008508720A5 (en)
JPH08228025A (en) Nitride semiconductor light emitting element
JP2007116158A (en) Nitride semiconductor light emitting device
CN102201515A (en) Semiconductor light-emitting device
JP4853198B2 (en) Group III nitride compound semiconductor light emitting device
JPH11340509A (en) Nitride semiconductor element
CN111066161A (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor light emitting element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP2005268601A (en) Compound semiconductor light emitting device
US20090057692A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP4815732B2 (en) Nitride semiconductor device
JP4292925B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP5510183B2 (en) Nitride semiconductor light emitting device
JP2005051170A (en) Group iii nitride compound semiconductor light emitting element
JP5162809B2 (en) Nitride semiconductor device
JP6917953B2 (en) Nitride semiconductor light emitting device
JP2004356442A (en) Group iii nitride system compound semiconductor light emitting element
JP2006310488A (en) Group iii nitride-based semiconductor light emitting device and its manufacturing method
JP4645225B2 (en) Manufacturing method of semiconductor device
TWI704699B (en) Nitride semiconductor light-emitting element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080522