[go: up one dir, main page]

JP2004353022A - Hot-dip Zn-Al alloy-plated steel material and method for producing the same - Google Patents

Hot-dip Zn-Al alloy-plated steel material and method for producing the same Download PDF

Info

Publication number
JP2004353022A
JP2004353022A JP2003150516A JP2003150516A JP2004353022A JP 2004353022 A JP2004353022 A JP 2004353022A JP 2003150516 A JP2003150516 A JP 2003150516A JP 2003150516 A JP2003150516 A JP 2003150516A JP 2004353022 A JP2004353022 A JP 2004353022A
Authority
JP
Japan
Prior art keywords
plating
mass
based alloy
steel material
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003150516A
Other languages
Japanese (ja)
Other versions
JP3728298B2 (en
Inventor
Shintaro Yamanaka
晋太郎 山中
Masahiro Yamamoto
正弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003150516A priority Critical patent/JP3728298B2/en
Publication of JP2004353022A publication Critical patent/JP2004353022A/en
Application granted granted Critical
Publication of JP3728298B2 publication Critical patent/JP3728298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

【課題】フラックス法による均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材及びその製造方法を提供する。
【解決手段】Al:0.1〜15質量%を含み、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき鋼材において、前記溶融Zn−Al系合金めっき層がMn:0.05〜1質量%、及び、Mg:0.1〜15質量%を含み、そのめっき付着量が300g/m〜1000g/mであることを特徴とする溶融Zn−Al系合金めっき鋼材、及びその製造方法である。
【選択図】 なし
The present invention provides a hot-dip Zn-Al-based alloy-plated steel material having a uniform, high adhesion amount and high corrosion resistance by a flux method, and a method for producing the same.
In a hot-dip Zn-Al-based alloy-plated steel material containing 0.1 to 15% by mass of Al and the balance being Zn and unavoidable impurities, the molten Zn-Al-based alloy-plated layer has an Mn: 0.05 to 1 wt%, and, Mg: 0.1 to 15 includes a mass%, the melting Zn-Al alloy coated steel material, characterized in that the coating weight is 300g / m 2 ~1000g / m 2 , and The manufacturing method.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、フラックス法による均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材及びその製造方法に関する。
【0002】
【従来の技術】
従来から、送電鉄塔、橋梁、道路用資材、建築金物、建築・土木用材料等の分野においては、経済性、耐久性、作業性等の観点から溶融Znめっき鋼材が多く用いられている。また、最近ではZnめっきよりも耐食性に優れるとのことからZn−Al合金めっきも使われつつある。これらZnめっきやZn−Al合金めっきにおいては、通常、めっきの付着量とその耐食性は比例関係にあり、めっきが厚いほど地鉄の露出に至るまでに長時間を要すため、耐食性は向上する。すなわち、Zn−Al合金めっきの耐食性がZnめっきの2倍あったとしても、Zn−Al合金めっきの付着量がZnめっきの半分しかない場合、その耐食性は同等となる。
【0003】
めっき付着量に影響を及ぼす因子としては、めっき浴の粘度や濡れ付着力、めっき時間、めっき温度、めっき浴からの素材の引き上げ速度、めっきのワイピング(たれきり)等が挙げられるが、これらの内、めっき浴の粘度や濡れ付着力の影響はそれほど大きくはない。また、めっき浴からの素材の引き上げ速度については、薄鋼板のめっきのような連続式においては、引き上げ速度の変更は容易であるが、フラックス式めっきのようなバッチ式のめっきにおいては、引き上げ速度の変更は難しい。めっきのワイピングについては、加工済の鋼材や溶接をした鋼材、また小物等の複雑な形状の素材をめっきする場合が多いフラックス式のめっきにおいては、均一なめっき付着量を得ることは難しく、そもそもワイピングはめっきの付着量を減少させる方向に作用するため、均一で高付着量のめっきを得るには不向きである。
【0004】
これらの理由のため、フラックス式めっきにおいては、めっき時間とめっき浴の温度によって、めっきの付着量を制御する場合が多い。めっき時間とめっき浴の温度は、地鉄とめっきの界面に生成するFe−Zn系合金層の厚みに特に大きな影響を与え、めっき時間が長いか、めっき温度が高いと合金層は厚くなり、結果としてめっきの付着量は大きくなる。ところで、この合金層の厚みは、めっき浴の組成によっても大きく異なる。例えば、浴中のAl量が0.02質量%以下であるようなZnめっきにおいては、めっき時間を長くするか、めっき温度を高くすることで、Fe−Zn系合金層は成長し、600g/m程度の厚いめっきも可能である。
【0005】
ところが、Alを0.1質量%以上含むようなZn−Alめっき浴では、Fe−Al系合金層が初期に生成し、これがFe−Zn系合金層の成長を妨げるために、めっき付着量が大きくなりにくい。このFe−Al系合金層は非常に安定で、例えば530℃程度までめっき温度を高くしても安定で、Fe−Zn系合金層の成長を抑制するため、めっき付着量は大きくならない。比較的高濃度のAlを含むめっき浴の場合、例えば、質量%で、10%以上Alを含むめっき浴の場合は、めっき浴温度を高くすることで、Fe−Al系合金層自体が成長するため、めっき付着量は大きくなる。しかし、めっきが不均一、つまり、局所的に厚くなり、外観が不良となるため、製品として適さない。
【0006】
また、めっき時間を長くしたとしても、Fe−Zn系合金層は成長しにくい。かなり長い時間、例えば、1時間程度めっき浴に浸漬したときは、めっき付着量が大きくなる場合もあるが、やはり不均一なめっきで、外観が不良となるため、製品として適さない。このように、高付着量で均一なZn−Al合金めっきを得ることは困難で、これまでに十分に検討されてはいない。これまでに知られている高付着量のZn−Al系合金めっきを得る方法としては次のようなものがある。例えば、通常のAlをほとんど含まない純Znめっきを行い、Fe−Zn系合金層を成長させた後に、Zn−Al系合金めっきを行うという2段めっき処理が一部で採用されている。しかしながら、この方法では、めっき浴を2槽有する必要があること、また、2回のめっき操作による作業時間の増加や維持管理費、設置場所の増加といった種々の欠点がある。
【0007】
特開平5−106002号公報(特許文献1)では、Zn−Al合金めっき浴中に1.5〜10質量%の銅を添加することで、比較的厚いZn−Al合金めっきが得られる方法が提案されている。しかし、この方法では、めっき浴の組成が変動しやすく、めっき品質にばらつきが出ることが懸念される。また、特開平9−25134号公報(特許文献2)では、鋼材を所定のフラックス処理した後に、Al濃度10〜20質量%からなるZnめっき浴に、めっき温度430〜520℃、めっき時間0.5〜10分の条件でめっきすることで、めっき厚み(めっき付着量)450g/m以上の厚めっきが得られるとされている。ところが、この方法では、Al濃度が10質量%以下のめっき浴の場合には適用できず、また、特殊なフラックスを使用する必要があるため、汎用性がない。
【0008】
特開平11−350095号公報(特許文献3)では、所定のフラックス処理をした後に、溶融フラックス層を有するZn−Alめっき浴に浸漬することで、高付着量のめっきが得られるとされている。ところが、この方法においても、Al含有量が30〜70質量%であるめっき浴を主対象としていることのほか、特殊なフラックスを使用しており、汎用性がないこと、また、溶融フラックス層を必要とし、その劣化に対する交換、補充に対する作業に労力を要すること、また、フラックス中に弗化物を含んでいるため作業環境の悪化が懸念されること等、種々の問題点がある。
【0009】
さらに、特開平8−283925号公報(特許文献4)では、鋼材の表面粗度を一定の範囲内とし、さらに、めっき浴中に一定の鉄分成分を含ませることによって、高付着量で均一なZn−Al−Siめっきを得られるとされている。しかしながら、この方法は、Al−Siめっきを対象としており、めっき浴温が580℃以上と高いため、Znを主体とするめっきの場合には不適である。
【0010】
一方、特開平5−117830号公報(特許文献5)には、その付着量は明言されてはいないが、溶融Zn−Alめっき浴に特定量のMnを添加することで、不めっきを防止し、かつ表面にざらつきのない溶融Zn合金めっきが得られると記載されている。しかしながら、この方法では不めっきのないのめっきを得ることは可能であるが、Mnはめっきの耐食性を低下させる傾向にあるため、腐食環境の厳しい場所や長期耐久性を必要とされる場合には、適当でない。
以上のように、高付着量のZn−Al合金めっきを得る方法として、数種の方法が見出されているものの、作業性や作業環境、品質、また、耐久性といった面で問題点がある。また、高付着量のめっきができたとしても、安定的に均一な合金めっきを得ることは難しい。
【0011】
【引用文献】
(1)特許文献1(特開平5−106002号公報)
(2)特許文献2(特開平9−25134号公報)
(3)特許文献3(特開平11−350095号公報)
(4)特許文献4(特開平8−283925号公報)
(5)特許文献5(特開平5−117830号公報)
【0012】
【発明が解決しようとする課題】
本発明は、このようなZn−Al合金めっきにおける従来の諸問題を解決し、フラックス法による、均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記の従来の技術が抱える問題点を解決し、種々の組成のZn−Al系合金めっきについて、均一で高付着量かつ高耐食性のめっきを安定的に得る方法について鋭意検討を重ねた結果、めっき層中にMn及びMgを複合添加することで、均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材を実現できることが分かり、本発明に至った。
【0014】
すなわち、本発明は以下の内容を要旨とする。
(1)Al:0.1〜15質量%を含み、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき鋼材において、前記溶融Zn−Al系合金めっき層がMn:0.05〜1質量%、及び、Mg:0.1〜15質量%を含み、そのめっき付着量が300g/m〜1000g/mであることを特徴とする溶融Zn−Al系合金めっき鋼材。
(2)前記溶融Zn−Al系合金めっき層が、さらに、Si:0.05〜0.2質量%含有することを特徴とする(1)に記載の溶融Zn−Al系合金めっき鋼材。
【0015】
(3)フラックス処理をした鋼材を溶融Zn−Al系合金めっき浴に浸漬して溶融Zn−Al系合金めっき鋼材を製造する方法であって、前記溶融Zn−Al系合金めっき浴が、Al:0.1〜15質量%、Mn:0.05〜1質量%、及びMg:0.1〜15質量%を含有し、残部がZn及び不可避的不純物からなり、該めっき浴温が430〜550℃であることを特徴とする溶融Zn−Al系合金めっき鋼材の製造方法。
(4)前記溶融Zn−Al系合金めっき浴が、さらに、Si:0.05〜0.2質量%含有することを特徴とする(3)に記載の溶融Zn−Al系合金めっき鋼材の製造方法にある。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明における鋼材のめっき層中の成分について説明する。
本発明において、めっき層中のMnは、Zn−Al系合金めっきの付着量を大きくし、また、めっきを均一にさせる効果があり、0.05〜1質量%の範囲とする必要がある。Mnが0.05質量%未満ではその効果が不十分で、めっき付着量が300g/m未満の薄く不均一なめっきとなる。逆に、1質量%を超えると、めっき層と鋼材の密着性が低下するほか、耐食性が低下する傾向にあり、さらに、多量のドロスを形成し、めっき作業に問題を生じる。好ましいMnの範囲は0.1〜0.5質量%、より好ましくは0.2〜0.4質量%の範囲である。
【0017】
Mgは、Mnと複合添加することで、Zn−Al系合金めっき層の耐食性を低下させずに、めっき付着量を大きくさせる効果があり、0.1〜15質量%の範囲とする必要がある。その機構については明言をし得ないが、0.1質量%未満では耐食性を向上させる効果に乏しく、15質量%を超えると耐食性は向上するものの、めっき層が脆くなり、加工性が低下するからである。そのため、本発明におけるMgの範囲を0.1〜15質量%とする。好ましい範囲は、0.5〜3質量%である。
【0018】
Alは、めっき層の耐食性を向上させる効果がある。本発明においては、めっき層中のAlの範囲を0.1〜15質量%としているが、その理由は次の通りである。Alが0.1質量%未満では、耐食性を向上させる効果に乏しい。また、Alが0.1質量%未満では、めっき層と地鉄界面に生成する合金層はFe−Zn系合金が主体であり、Alが0.05質量%を超すと、めっき層と地鉄界面に生成する合金層は非成長型のFe−Al系合金層が主体である。
【0019】
本発明においては、Mn及びMgによってFe−Al系合金層の制御を行っているために、その下限値を0.1質量%とした。Alが15質量%を超えた場合においても、Mn及びMgによるFe−Al系合金層の制御の効果は認められるが、外観が粗悪となる他、Mn及びMgの多量添加が必要となり、加工性が低下すること等の問題が生じるため、その上限値を15質量%とした。上記の問題を解決すれば、15質量%を超えるAlを含有する溶融Zn−Al系合金めっきにおいても、本発明を応用することは可能である。好ましいAlの範囲は、0.2〜12質量%である。
【0020】
本発明のめっきには、さらにSiを含ませることができる。Siは、めっきの耐食性及び加工性をさらに向上させる作用がある。この作用を効果的に得るには、本発明におけるSiの範囲を0.05〜0.2質量%の範囲とすることが好ましい。本発明のめっき付着量は300g/m〜1000g/mであることが必要である。300g/m未満では耐食性に劣る。1000g/mより大きい場合は、めっきと鋼材の密着性が低下するため不適である。
【0021】
本発明における被めっき材である鋼材の種類は限定されない。普通鋼、低合金鋼、高合金鋼、鋳物等、その鋼成分には限定されるものではなく、また、その形状についても、板、鋼管、形鋼、線材や、溶接やボルト等で接合した組み合わせ鋼材、ボルト、ナット等の小物等、また、鉄塔、橋梁部材等の鋼製部材にも適用でき、めっき浴に浸漬し、めっき処理が可能なものであれば何でも良い。但し、鋼成分によっては、めっき付着量に影響を与えるため、事前にめっき条件を決めておく必要がある。
【0022】
本発明の鋼材を製造するには、まず鋼材表面を公知の方法で前処理を行う。前処理としては、例えば一般的に行われている塩酸、硫酸等による酸洗のほか、ショットブラスト、グリッドブラスト、サンドブラスト、グラインダー処理等を実施することができる。鋼材の表面が十分に清浄化されれば、これら前処理の処理条件は何ら問わない。例えば、塩酸や硫酸による酸洗の条件としては、水溶液濃度:10〜20質量%、浴温:常温〜80℃、酸洗時間:5〜30分といった例を挙げることができる。
【0023】
次いで、フラックス処理をする。ここで言うフラックス処理とは、鋼材表面にフラックスを塗布、付着させる処理のことであり、フラックスの成分やその処理方法等については特に限定するものではなく、従来から知られている方法で良い。例えば、フラックス成分としては、塩化亜鉛、塩化アンモニウム、塩化マグネシウム、塩化リチウム、塩化錫、塩化カリウム、塩化カルシウム、塩化鉛、塩化ナトリウム、塩化アンチモン、塩化インジウム、塩化ビスマス、塩化カドミウム等の塩化物や、アルカリ金属、アルカリ土類金属のフッ化物、ケイフッ化物、フッ化水素物等を挙げることができる。
【0024】
処理方法としては、乾式フラックス、湿式フラックス、溶融フラックス等を挙げることができる。乾式フラックスとは、前記フラックスを水溶液として、鋼材に付着させた後、乾燥し、その後めっき浴に浸漬するものである。湿式フラックスとは、前記フラックスをめっき浴上に浮遊させて、適当な厚みのフラックス層を形成させ、このフラックス層を介して鋼材をめっき浴に浸漬するものである。溶融フラックスとは、前記フラックス自体を溶融させた浴に鋼材を浸漬した後に、めっき浴に浸漬するものである。
【0025】
フラックス処理した鋼材は、Al:0.1〜15質量%、Mn:0.05〜1質量%、Mg:0.1〜15質量%、残部がZn及び不可避的不純物を含有する浴温430〜550℃のZn−Al系合金めっき浴に浸漬する。上記組成のめっき浴に浸漬することで、本発明の、Al:0.1〜15質量%、Mn:0.05〜1質量%、Mg:0.1〜15質量%を含み、残部がZn及び不可避的不純物からなる、めっき付着量が300g/m〜1000g/mの溶融Zn−Al系合金めっき鋼材を得ることができる。
【0026】
めっき浴温を430〜550℃の範囲に規定した理由は、この範囲外のめっき浴温度では本発明の溶融Zn−Al系合金めっき鋼材が得られないばかりか、その他種々の問題を生じるからである。すなわち、めっき浴温が430℃未満では、めっき浴の流動性が低下して、不均一で外観が劣悪なめっきとなりやすく、また、めっき付着量が大きくならない。また、550℃を超える場合は、めっき浴中に多量のドロスが発生し、操業に困難をきたすだけでなく、このドロスが被めっき材の表面に付着し、外観が不良のめっきとなりやすい。また、めっき付着量が極度に多くなりやすい。さらに、めっき釜の寿命も短くなる。好ましいめっき温度は450〜500℃の範囲である。
【0027】
被めっき材をめっき浴に浸漬する時間は特に規定しないが、1分以上30分以内であることが望ましい。この範囲内であれば、本発明の溶融Zn−Al系合金めっき鋼材を一層安定的に得ることができる。前記めっき浴には、さらに、Si:0.05〜0.2質量%含ませることができる。めっき浴中に上記範囲のSiを含ませることで、均一で高付着量、高耐食性、かつ密着性に優れた溶融Zn−Al系合金めっき鋼材を得ることができる。
【0028】
また、このZn−Al系合金めっき浴には、例えば、Fe、Pb、Cd、Sn、Cu、Sb、Bi、Ag、Ni、As等が不可避的不純物として混入していても問題はない。被めっき材をめっき浴へ浸漬する速度は何ら規定するものではない。例えば、鋼管の連続めっきにおけるテーラーウィルソン方式のように、鋼管をめっき浴に落下させるような速い浸漬速度でも良いし、あるいは、鉄塔部材のような大型鋼製部材をめっきする場合のように、クレーンで被めっき材を吊り上げた後、ゆっくりとめっき浴に浸漬させるような遅い浸漬速度でもよい。
【0029】
被めっき材をめっき浴から取り出す速度も特に規定するものでない。テーラーウィルソン方式のように0.7〜2m/秒程度の高速で取り出しても良いし、あるいはクレーンを用いた場合のように0.2m/秒程度の低速で取り出しても良い。さらにめっき後の外観を良好にさせるため、必要に応じて水冷や湯冷による冷却を行っても良い。
以上の手順、条件で処理することで、均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材を得ることができる。
【0030】
【実施例】
以下、本発明を実施例により、さらに詳細に説明する。
(実施例1)
大きさが50mm×100mm×厚さ2.3mmの黒皮付き普通鋼熱延鋼材を、15%塩酸中に30分間浸漬した後、引き上げ、スケール残りがないことを確認した。次いで、乾式フラックス処理を行った。乾式フラックス処理は、ZnCl:200g/l、NHCl:40g/lからなる液温70℃のフラックスに鋼材を10秒間浸漬した後に引き上げ、200℃に設定した電気オーブンの中で5分間乾燥させる処理とした。その後、表2に示す組成のZn合金めっき浴(Zn−0.2質量%Al−0.5質量%Mgめっき浴、又はZn−10質量%Al−3質量%Mgめっき浴を基準に、Mn、Siを添加)に2分間浸漬し、引き上げ後、湯冷して試験片を作製した。
【0031】
このようにして得られた試験片のめっき付着量は、めっきを塩酸で溶解し、その前後の質量変化から求めた。また、塩酸溶解によって得られためっき層を溶かし込んだ溶液を用い、ICP発光分析でそのめっき組成を分析した。また、その外観を目視観察し、下記基準で評価した。可以上の評点を合格とした。
良:表面が平滑で、めっき欠陥が全く無い。
可:凹凸がやや大きく、めっきやけが若干認められる。
劣:不めっきやピンホール、ドロス付着等が存在、又は、凹凸がやや多く、めっきやけが試験片面積の50%以上存在する。
なお、ここでいうめっきやけとは合金層がめっき表層まで成長していることである。
【0032】
また、90°折り曲げ試験を行い、めっきの密着性を目視観察による下記基準で評価した。可以上の評点を合格とした。
良:加工部にめっき割れが全く無い。
可:加工部に割れが僅かに存在。
劣:割れが加工部全面に存在、又は、加工部のめっきが剥離。
【0033】
耐食性については、塩水噴霧試験(35℃、5%NaCl)を2000時間実施した後のめっきの平均腐食減量を求め、下記基準で評価し、可以上の判定であれば合格とした。
優:めっき平均腐食減量率が0.1g/m/hr未満
良:めっき平均腐食減量率が0.1〜0.5g/m/hr
可:めっき平均腐食減量率が0.5〜1.0g/m/hr
劣:めっき平均腐食減量率が1.0g/m/hr超え、又は、めっきが消耗し赤錆が発生
これらの試験結果を表1に示す。
【0034】
【表1】

Figure 2004353022
【0035】
No.1〜No.6は、Zn−0.2質量%Al−0.5質量%Mgめっき浴を基準に、Mnを0.05〜0.8質量%含ませた場合である。得られためっき層中の成分は、いずれも本発明の範囲内であり、めっき付着量、外観、密着性、耐食性のいずれも良好である。特に、めっき層がMnを0.1〜0.5質量%の範囲で含む場合は、さらにその性能は向上し、Mnを0.3質量%含む場合は、一層その性能は良くなる。No.6は、No.4を基準にめっき層中にSiを0.1質量%含ませた場合であり、耐食性が向上することが分かる。No.7〜No.10は、Zn−10質量%Al−3質量%Mgめっき浴を基準に、Mnを0.1〜0.8質量%含ませた場合である。得られためっき層中の成分は、いずれも本発明の範囲内であり、特にMnを0.1〜0.5質量%の範囲で含む場合は、めっき付着量、外観、密着性、耐食性のいずれも良好で、Mnを0.3質量%含む場合はその性能はさらに良い。
【0036】
(比較例)
大きさが50mm×100mm×厚さ2.3mmの黒皮付き普通鋼熱延鋼材を、15%塩酸中に30分間浸漬した後、引き上げ、スケール残りがないことを確認した。次いで、乾式フラックス処理を行った。乾式フラックス処理は、ZnCl:200g/l、NHCl:40g/lからなる液温70℃のフラックスに鋼材を10秒間浸漬した後に引き上げ、200℃に設定した電気オーブンの中で5分間乾燥させる処理とした。その後、表2に示す組成のZn系合金めっき浴に2分間浸漬し、引き上げ後、湯冷して試験片を作製した。
このようにして得られた試験片のめっき付着量、外観、めっき密着性、耐食性は、実施例1と同様の方法にて評価し、結果を表2に示した。
【0037】
【表2】
Figure 2004353022
【0038】
No.11は、めっき層中にAl、Mn、Mg、Siのいずれも含まないZnめっきをした場合である。耐食性に劣るため不適である。No.12は、めっき層中にAlを0.4質量%含む場合である。めっき付着量が少なく(300g/m未満)、耐食性に劣る(赤錆が発生)ため不適である。No.13は、めっき層中にAl:0.4質量%、Mn:0.1質量%を、No.14はめっき層中にAl:0.4質量%、Mn:1.0質量%を含む場合である。いずれもめっき付着量は多くなるものの、耐食性に劣る(めっき平均腐食減量が1.0g/m/hr以上)ため不適である。
【0039】
No.15は、めっき層中にAl:0.4質量%、Mg:0.2質量%を、No.16は、めっき層中にAl:0.4質量%、Mg:10質量%を含む場合である。いずれもめっき付着量が少なく(300g/m未満)、耐食性に劣る(赤錆が発生)ため不適である。No.17は、めっき層中にAl:0.4質量%、Mn:0.1質量%、Mg:20質量%含む場合である。めっき付着量は多く、耐食性も良好であるが、めっきの密着性に劣るため不適である。No.18は、めっき層中にAl:0.4質量%、Mn:2.5質量%、Mg:0.5質量%含む場合である。耐食性は良好であるが、めっき付着量が極度に多く(1000g/mより多い)、密着性に劣るため不適である。
【0040】
No.19、No.20は、それぞれ、めっき層中にMn:0.1質量%、Mg:0.5質量%を含み、いずれも本発明の範囲内であるが、Alのみが本発明の範囲外である場合、すなわち、Al:0.06質量%(No.9)、Al:22質量%(No.10)である場合である。Alが0.06質量%の場合、めっき付着量が極度に多く(1000g/mより多い)、さらに耐食性に劣るため不適である。また、Alが22質量%である場合は、めっきの付着量及び耐食性は良好であるが、外観が不均一で劣るため不適である。
【0041】
(実施例2)
大きさが50mm×100mm×厚さ2.3mmの黒皮付き普通鋼熱延鋼材を、15%塩酸中に30分間浸漬した後、引き上げ、スケール残りがないことを確認した。次いで、乾式フラックス処理を行った。乾式フラックス処理は、ZnCl:200g/l、NHCl:40g/lからなる液温70℃のフラックスに鋼材を10秒間浸漬した後に引き上げ、200℃に設定した電気オーブンの中で5分間乾燥させる処理とした。その後、表3に示す組成のZn系合金めっき浴(Zn−0.2質量%Al−0.3質量%Mnめっき浴を基準に、Mg、Siを添加)に2分間浸漬し、引き上げ後、湯冷して試験片を作製した。
このようにして得られた試験片のめっき付着量、外観、めっき密着性、耐食性は、実施例1と同様の方法にて評価し、結果を表3に示した。
【0042】
【表3】
Figure 2004353022
【0043】
No.21、No.22、は、Zn−0.2質量%Al−0.3質量%Mnめっき浴を基準に、Mgを0.1〜0.5質量%含ませた場合である。得られためっき層の組成は、いずれも本発明の範囲内であり、また、めっき付着量、外観、密着性、耐食性のいずれも良好である。特に、めっき層がMgを0.5質量%含む場合は、さらにその性能は向上する。No.23〜25は、Zn−10質量%Al−0.3質量%Mnめっき浴を基準に、Mgを0.1〜3.0質量%含ませた場合である。得られためっき層の成分は、いずれも本発明の範囲内で、特に、Mgを0.5〜3.0質量%の範囲で含む場合は、めっき付着量、外観、密着性、耐食性のいずれも良好で、Mgを3.0質量%含む場合はその性能はさらに良い。
【0044】
(実施例3)
大きさが50mm×100mm×厚さ2.3mmの黒皮付き普通鋼熱延鋼材を、15%塩酸中に30分間浸漬した後、引き上げ、スケール残りがないことを確認した。次いで、乾式フラックス処理を行った。乾式フラックス処理は、ZnCl:200g/l、NHCl:40g/lからなる液温70℃のフラックスに鋼材を10秒間浸漬した後に引き上げ、200℃に設定した電気オーブンの中で5分間乾燥させる処理とした。その後、表4に示す組成のZn系合金めっき浴(Zn−0.2質量%Al−0.3質量%Mn−0.5質量%Mgめっき浴)に2分間浸漬し、引き上げ後、湯冷して試験片を作製した。なお、めっき浴の温度は、410〜600℃の間で種々、変化させた。また、一部の試験材は、そのめっき付着量を変化させるために、めっき浴への浸漬時間を最長90分まで変化させた。このようにして得られた試験片のめっき付着量、外観、めっき密着性、耐食性は、実施例1と同様の方法にて評価し、結果を表4に示した。
【0045】
【表4】
Figure 2004353022
【0046】
No.26〜32は、めっき浴温度を変えた場合である。めっき浴温が、本発明の範囲外である場合(No.26および27)、得られためっきの付着量が本発明の範囲外となり、また、外観が不良となるため不適である。めっき浴温が、本発明の範囲内の430〜550℃である場合(No.28〜32)、得られためっき組成は、いずれも本発明の範囲内であり、また、めっき付着量、外観、密着性、耐食性のいずれも良好である。特に、めっき浴温が450〜550℃の場合(No.29、30)は、いっそう良好となる。
【0047】
No.33〜35は、めっき時間を変えて、めっき付着量を意図的に変化させた場合である。めっき時間が本発明の範囲外の30秒(0.5分)である場合(No.33)、めっき付着量が300g/m未満となるため不適である。また、めっき時間が本発明の範囲外の90分である場合(No.34)、めっき付着量が1000g/mより多くなり、外観及び密着性に劣るため不適である。一方、No.35は、めっき時間を30分とした場合であり、めっき付着量、外観、密着性、耐食性のいずれも良好である。
【0048】
【発明の効果】
以上、本発明の溶融Zn−Al系合金めっき鋼材は、従来は不可能であった、フラックス法による均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材を実現したものである。すなわち、Zn−Al系合金めっき中にMn及びMgを含ませ、めっき浴温を所定の範囲内とすることで、均一で高付着量、高耐食性かつ外観が良好な溶融Zn−Al系合金めっき鋼材を提供することができる。また、本発明の製造方法によれば、従来のめっき設備を改造することなく、めっき浴組成を変更するだけで、均一で高付着量かつ高耐食性の溶融Zn−Al系合金めっき鋼材を安価、簡便に製造することができる。このため、長期耐久性が求められる送電鉄塔、橋梁、道路用資材、建築金物等、建築・土木用材料等にこの鋼材を適用することで、これら施設のメンテナンスフリーが実現でき、産業上の価値は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-dip Zn—Al-based alloy-plated steel material having a uniform, high adhesion amount and high corrosion resistance by a flux method, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in the fields of power transmission towers, bridges, road materials, building hardware, construction and civil engineering materials, hot-dip galvanized steel materials have been widely used from the viewpoints of economy, durability, workability, and the like. In recent years, Zn-Al alloy plating is being used because it has better corrosion resistance than Zn plating. In these Zn plating and Zn-Al alloy plating, the amount of plating and its corrosion resistance are generally in a proportional relationship, and the thicker the plating, the longer it takes to reach the exposure of the ground iron, the better the corrosion resistance. . That is, even if the corrosion resistance of the Zn—Al alloy plating is twice as large as that of the Zn plating, the corrosion resistance is equivalent if the amount of the Zn—Al alloy plating is only half that of the Zn plating.
[0003]
Factors affecting the plating adhesion amount include the viscosity and wet adhesion of the plating bath, the plating time, the plating temperature, the speed of lifting the material from the plating bath, the wiping of the plating, and the like. Of these, the influence of the viscosity of the plating bath and the wet adhesion is not so large. Regarding the pulling speed of the material from the plating bath, it is easy to change the pulling speed in a continuous type such as plating of a thin steel sheet, but in a batch type plating such as a flux type plating, the pulling speed is not changed. Is difficult to change. Regarding wiping of plating, it is difficult to obtain a uniform coating weight with flux-type plating, which is often used to plate processed steel materials, welded steel materials, and materials with complicated shapes such as small items. Since wiping acts in the direction of decreasing the amount of plating, it is not suitable for obtaining uniform and high-plating plating.
[0004]
For these reasons, in flux plating, the amount of plating is often controlled by the plating time and the temperature of the plating bath. The plating time and the temperature of the plating bath have a particularly large effect on the thickness of the Fe-Zn-based alloy layer generated at the interface between the base iron and the plating, and when the plating time is long or the plating temperature is high, the alloy layer becomes thick, As a result, the amount of plating increases. By the way, the thickness of the alloy layer greatly varies depending on the composition of the plating bath. For example, in Zn plating in which the amount of Al in the bath is 0.02% by mass or less, by increasing the plating time or increasing the plating temperature, the Fe-Zn-based alloy layer grows to 600 g / m 2 about the thick plating is also possible.
[0005]
However, in a Zn-Al plating bath containing 0.1% by mass or more of Al, an Fe-Al-based alloy layer is initially formed, which hinders the growth of the Fe-Zn-based alloy layer. It is hard to grow. This Fe-Al-based alloy layer is extremely stable, for example, is stable even when the plating temperature is increased to about 530 ° C. Since the growth of the Fe-Zn-based alloy layer is suppressed, the amount of plating does not increase. In the case of a plating bath containing a relatively high concentration of Al, for example, in the case of a plating bath containing 10% or more Al by mass%, the Fe-Al-based alloy layer itself grows by increasing the plating bath temperature. Therefore, the amount of plating increases. However, the plating is not uniform, that is, the plating becomes locally thick and the appearance is poor, so that it is not suitable as a product.
[0006]
Further, even if the plating time is lengthened, the Fe—Zn-based alloy layer does not easily grow. When immersed in a plating bath for a considerably long period of time, for example, about one hour, the amount of plating applied may increase, but it is also unsuitable as a product due to uneven plating and poor appearance. As described above, it is difficult to obtain a uniform Zn-Al alloy plating with a high adhesion amount, and it has not been sufficiently studied so far. There are the following methods for obtaining a Zn-Al-based alloy plating with a high adhesion amount which has been known so far. For example, a two-stage plating process in which ordinary pure Zn plating containing almost no Al is performed, a Zn—Al-based alloy plating is performed after an Fe—Zn-based alloy layer is grown, is partially adopted. However, this method has various disadvantages such as the necessity of having two plating baths, an increase in work time, maintenance and management costs, and an increase in installation locations due to two plating operations.
[0007]
JP-A-5-106002 (Patent Document 1) discloses a method in which a relatively thick Zn-Al alloy plating can be obtained by adding 1.5 to 10% by mass of copper to a Zn-Al alloy plating bath. Proposed. However, in this method, the composition of the plating bath is likely to fluctuate, and there is a concern that the plating quality varies. Further, in Japanese Patent Application Laid-Open No. 9-25134 (Patent Document 2), after a steel material is subjected to a predetermined flux treatment, a plating temperature of 430 to 520 ° C. and a plating time of 0.degree. It is stated that by plating under conditions of 5 to 10 minutes, a thick plating having a plating thickness (plating adhesion amount) of 450 g / m 2 or more can be obtained. However, this method cannot be applied to a plating bath having an Al concentration of 10% by mass or less, and has a lack of versatility since a special flux needs to be used.
[0008]
Japanese Patent Application Laid-Open No. 11-350095 (Patent Document 3) states that after performing a predetermined flux treatment, immersion in a Zn-Al plating bath having a molten flux layer allows plating with a high adhesion amount to be obtained. . However, also in this method, in addition to the plating bath having an Al content of 30 to 70% by mass, a special flux is used, and there is no versatility. There are various problems such as the necessity, labor for replacement and replenishment for the deterioration, and work environment deterioration due to the fact that the flux contains fluoride.
[0009]
Further, in Japanese Patent Application Laid-Open No. 8-283925 (Patent Document 4), the surface roughness of a steel material is kept within a certain range, and further, a certain iron component is contained in a plating bath, so that a high adhesion amount and uniformity are obtained. It is said that Zn-Al-Si plating can be obtained. However, this method is intended for Al-Si plating and the plating bath temperature is as high as 580 ° C. or higher, and is not suitable for plating mainly composed of Zn.
[0010]
On the other hand, Japanese Patent Application Laid-Open No. 5-117830 (Patent Document 5) does not specify the amount of deposition, but non-plating is prevented by adding a specific amount of Mn to a molten Zn-Al plating bath. It is described that a hot-dip Zn alloy plating having no surface roughness can be obtained. However, although it is possible to obtain plating free from non-plating by this method, Mn tends to reduce the corrosion resistance of the plating, so in a severely corrosive environment or when long-term durability is required. Not suitable.
As described above, although several methods have been found as methods for obtaining a Zn-Al alloy plating with a high adhesion amount, there are problems in terms of workability, work environment, quality, and durability. . Further, even if a plating with a high adhesion amount can be performed, it is difficult to stably obtain a uniform alloy plating.
[0011]
[References]
(1) Patent Document 1 (JP-A-5-106002)
(2) Patent Document 2 (Japanese Patent Application Laid-Open No. 9-25134)
(3) Patent Document 3 (Japanese Patent Application Laid-Open No. 11-350095)
(4) Patent Document 4 (Japanese Patent Laid-Open No. 8-283925)
(5) Patent Document 5 (JP-A-5-117830)
[0012]
[Problems to be solved by the invention]
The present invention solves the conventional problems in such Zn-Al alloy plating and provides a molten Zn-Al-based alloy plated steel material having a uniform, high coating weight and high corrosion resistance by a flux method, and a method for producing the same. With the goal.
[0013]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have solved the above-mentioned problems of the conventional technology, and have earnestly studied a method for stably obtaining a uniform, high coating amount and high corrosion resistance plating of Zn-Al based alloy platings of various compositions. As a result, it was found that by adding Mn and Mg in the plating layer in a composite manner, it is possible to realize a hot-dip Zn—Al-based alloy plated steel material having a uniform, high adhesion amount and high corrosion resistance.
[0014]
That is, the present invention has the following contents.
(1) In a hot-dip Zn-Al-based alloy-plated steel material containing 0.1 to 15% by mass of Al and the balance being Zn and inevitable impurities, the molten Zn-Al-based alloy-plated layer has a Mn: 0.05 to 1 wt%, and, Mg: 0.1 to 15 includes a mass%, the melting Zn-Al alloy coated steel material, characterized in that the coating weight is 300g / m 2 ~1000g / m 2 .
(2) The hot-dip Zn-Al-based alloy-plated steel material according to (1), wherein the hot-dip Zn-Al-based alloy-plated layer further contains 0.05 to 0.2% by mass of Si.
[0015]
(3) A method for producing a hot-dip Zn-Al-based alloy-plated steel material by immersing a steel material subjected to a flux treatment in a hot-dip Zn-Al-based alloy-plating bath, wherein the hot-dip Zn-Al-based alloy-plated bath contains Al: 0.1 to 15% by mass, Mn: 0.05 to 1% by mass, and Mg: 0.1 to 15% by mass, the balance being Zn and unavoidable impurities, and the plating bath temperature being 430 to 550. C., a method for producing a hot-dip Zn—Al-based alloy-plated steel material.
(4) The production of a hot-dip Zn-Al-based alloy-plated steel material according to (3), wherein the hot-dip Zn-Al-based alloy-plating bath further contains Si: 0.05 to 0.2% by mass. In the way.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the components in the plating layer of the steel according to the present invention will be described.
In the present invention, Mn in the plating layer has the effect of increasing the adhesion amount of the Zn-Al-based alloy plating and making the plating uniform, and needs to be in the range of 0.05 to 1% by mass. If the Mn content is less than 0.05% by mass, the effect is insufficient, resulting in a thin and non-uniform plating having a coating weight of less than 300 g / m 2 . Conversely, if it exceeds 1% by mass, the adhesion between the plating layer and the steel material is reduced, and the corrosion resistance tends to be reduced. Further, a large amount of dross is formed, which causes a problem in the plating operation. The preferred range of Mn is 0.1 to 0.5% by mass, more preferably 0.2 to 0.4% by mass.
[0017]
Mg, when added in combination with Mn, has the effect of increasing the plating adhesion amount without deteriorating the corrosion resistance of the Zn-Al-based alloy plating layer, and needs to be in the range of 0.1 to 15% by mass. . The mechanism cannot be stated clearly, but if it is less than 0.1% by mass, the effect of improving the corrosion resistance is poor. If it exceeds 15% by mass, the corrosion resistance is improved, but the plating layer becomes brittle and the workability is reduced. It is. Therefore, the range of Mg in the present invention is set to 0.1 to 15% by mass. A preferred range is from 0.5 to 3% by mass.
[0018]
Al has an effect of improving the corrosion resistance of the plating layer. In the present invention, the range of Al in the plating layer is 0.1 to 15% by mass, for the following reason. If Al is less than 0.1% by mass, the effect of improving corrosion resistance is poor. When Al is less than 0.1% by mass, the alloy layer formed at the interface between the plating layer and the base iron is mainly composed of a Fe—Zn-based alloy. When Al exceeds 0.05% by mass, the plating layer and the base iron The alloy layer generated at the interface is mainly a non-growth type Fe-Al alloy layer.
[0019]
In the present invention, since the Fe-Al-based alloy layer is controlled by Mn and Mg, the lower limit is set to 0.1% by mass. Even when Al exceeds 15% by mass, the effect of controlling the Fe-Al-based alloy layer by Mn and Mg is recognized, but the appearance becomes poor, and a large amount of Mn and Mg must be added, and the workability is increased. Therefore, the upper limit was set to 15% by mass. If the above problems are solved, the present invention can be applied to hot-dip Zn-Al-based alloy plating containing Al exceeding 15% by mass. The preferred range of Al is 0.2 to 12% by mass.
[0020]
The plating of the present invention may further contain Si. Si has the effect of further improving the corrosion resistance and workability of the plating. To obtain this effect effectively, the range of Si in the present invention is preferably set to a range of 0.05 to 0.2% by mass. Coating weight of the present invention is required to have a 300g / m 2 ~1000g / m 2 . If it is less than 300 g / m 2 , the corrosion resistance is poor. If it is more than 1000 g / m 2, it is not suitable because the adhesion between the plating and the steel material is reduced.
[0021]
The type of steel material to be plated in the present invention is not limited. Common steel, low alloy steel, high alloy steel, castings, etc. are not limited to their steel components, and their shapes are also joined by plates, steel pipes, shaped steels, wires, welds, bolts, etc. It can also be applied to steel materials such as combined steel materials, bolts and nuts, and steel members such as steel towers and bridge members. Any material can be used as long as it can be immersed in a plating bath and plated. However, depending on the steel composition, the amount of plating is affected, so it is necessary to determine plating conditions in advance.
[0022]
In order to manufacture the steel material of the present invention, first, the surface of the steel material is pretreated by a known method. As the pretreatment, for example, shot blasting, grid blasting, sand blasting, grinder treatment, or the like can be performed in addition to the generally performed pickling with hydrochloric acid, sulfuric acid, or the like. As long as the surface of the steel material is sufficiently cleaned, the processing conditions for these pretreatments are not limited. For example, conditions for pickling with hydrochloric acid or sulfuric acid include an aqueous solution concentration of 10 to 20% by mass, a bath temperature of normal temperature to 80 ° C., and a pickling time of 5 to 30 minutes.
[0023]
Next, a flux treatment is performed. The flux treatment referred to herein is a treatment for applying and attaching a flux to the surface of a steel material, and there is no particular limitation on the components of the flux and the treatment method, and any conventionally known method may be used. For example, the flux components include chlorides such as zinc chloride, ammonium chloride, magnesium chloride, lithium chloride, tin chloride, potassium chloride, calcium chloride, lead chloride, sodium chloride, antimony chloride, indium chloride, bismuth chloride, cadmium chloride and the like. , Alkali metal, alkaline earth metal fluorides, silicon fluorides, hydrogen fluorides and the like.
[0024]
Examples of the treatment method include a dry flux, a wet flux, and a molten flux. The dry flux means that the flux is applied as an aqueous solution to a steel material, dried, and then immersed in a plating bath. The wet flux is a method in which the flux is floated on a plating bath to form a flux layer having an appropriate thickness, and a steel material is immersed in the plating bath via the flux layer. The molten flux is obtained by immersing a steel material in a bath in which the flux itself is melted, and then immersing the steel material in a plating bath.
[0025]
The steel material subjected to the flux treatment is as follows: Al: 0.1 to 15% by mass; Mn: 0.05 to 1% by mass; Mg: 0.1 to 15% by mass; Immerse in a 550 ° C. Zn—Al-based alloy plating bath. By being immersed in the plating bath having the above composition, the composition of the present invention contains Al: 0.1 to 15% by mass, Mn: 0.05 to 1% by mass, and Mg: 0.1 to 15% by mass, with the balance being Zn. and inevitable impurities, the amount of plating adhesion can be obtained molten Zn-Al alloy coated steel 300g / m 2 ~1000g / m 2 .
[0026]
The reason why the plating bath temperature is specified in the range of 430 to 550 ° C. is that if the plating bath temperature is out of this range, not only the hot-dip Zn—Al alloy plated steel material of the present invention cannot be obtained, but also various other problems occur. is there. That is, when the plating bath temperature is lower than 430 ° C., the fluidity of the plating bath is reduced, and the plating tends to be uneven and the appearance is poor, and the amount of plating does not increase. On the other hand, when the temperature exceeds 550 ° C., a large amount of dross is generated in the plating bath, which causes difficulties in the operation, and the dross adheres to the surface of the material to be plated, and the plating tends to be poor in appearance. In addition, the amount of plating tends to be extremely large. Furthermore, the life of the plating pot is shortened. Preferred plating temperatures are in the range of 450-500 ° C.
[0027]
The time for immersing the material to be plated in the plating bath is not particularly limited, but is preferably 1 minute or more and 30 minutes or less. Within this range, the hot-dip Zn—Al-based alloy-plated steel material of the present invention can be obtained more stably. The plating bath may further contain Si: 0.05 to 0.2% by mass. By including Si in the above range in the plating bath, a hot-dip Zn—Al-based alloy-plated steel material that is uniform and has a high adhesion amount, high corrosion resistance, and excellent adhesion can be obtained.
[0028]
Further, there is no problem even if, for example, Fe, Pb, Cd, Sn, Cu, Sb, Bi, Ag, Ni, As, or the like is mixed in the Zn-Al-based alloy plating bath as inevitable impurities. The speed at which the material to be plated is immersed in the plating bath is not specified at all. For example, as in the Taylor-Wilson method in continuous plating of steel pipes, a high immersion speed such as dropping a steel pipe into a plating bath may be used, or, as in the case of plating a large steel member such as a steel tower member, a crane. After the material to be plated is lifted by the method described above, a slow immersion speed such that the material is slowly immersed in the plating bath may be used.
[0029]
The speed at which the material to be plated is removed from the plating bath is not particularly specified. It may be taken out at a high speed of about 0.7 to 2 m / sec as in the Taylor-Wilson system, or may be taken out at a low speed of about 0.2 m / sec as in the case of using a crane. Furthermore, in order to improve the appearance after plating, cooling by water cooling or hot water cooling may be performed as necessary.
By performing the treatment under the above procedures and conditions, it is possible to obtain a hot-dip Zn—Al-based alloy-plated steel material that is uniform, has a high adhesion amount and high corrosion resistance.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
(Example 1)
A hot-rolled steel plate with black scale having a size of 50 mm × 100 mm × 2.3 mm in thickness was immersed in 15% hydrochloric acid for 30 minutes, then pulled up, and it was confirmed that there was no scale residue. Next, a dry flux treatment was performed. In the dry flux treatment, the steel material is immersed in a flux composed of ZnCl 2 : 200 g / l and NH 4 Cl: 40 g / l at a liquid temperature of 70 ° C. for 10 seconds, then pulled up, and dried in an electric oven set at 200 ° C. for 5 minutes. The processing was performed. Thereafter, based on a Zn alloy plating bath having a composition shown in Table 2 (Zn-0.2 mass% Al-0.5 mass% Mg plating bath, or Zn-10 mass% Al-3 mass% Mg plating bath, , Si added) for 2 minutes, and after pulling up, cooling with hot water to prepare a test piece.
[0031]
The coating weight of the test piece thus obtained was determined from the change in mass before and after dissolving the plating with hydrochloric acid. The plating composition was analyzed by ICP emission spectrometry using a solution in which the plating layer obtained by dissolving hydrochloric acid was dissolved. The appearance was visually observed and evaluated according to the following criteria. A grade higher than or equal to acceptable was passed.
Good: The surface is smooth and there is no plating defect.
Acceptable: Irregularities are slightly large and plating and burns are slightly observed.
Poor: non-plating, pinholes, dross adhesion, etc. are present, or irregularities are somewhat large, and plating or injuries are present at 50% or more of the test piece area.
The term “burning” as used herein means that the alloy layer has grown to the plating surface layer.
[0032]
Further, a 90 ° bending test was performed, and the adhesion of the plating was evaluated by visual observation according to the following criteria. A grade higher than or equal to acceptable was passed.
Good: There is no plating crack in the processed part.
Acceptable: Cracks slightly exist in the processed part.
Poor: Cracks were present all over the processed part, or plating on the processed part was peeled off.
[0033]
Regarding the corrosion resistance, the average corrosion weight loss of the plating after performing the salt spray test (35 ° C., 5% NaCl) for 2000 hours was evaluated and evaluated according to the following criteria.
Excellent: Average plating weight loss rate of less than 0.1 g / m 2 / hr Good: Average plating weight loss rate of 0.1 to 0.5 g / m 2 / hr
Acceptable: average corrosion weight loss rate of plating is 0.5 to 1.0 g / m 2 / hr
Inferior: The average corrosion weight loss rate of plating exceeded 1.0 g / m 2 / hr, or the plating was consumed and red rust was generated. Table 1 shows the test results.
[0034]
[Table 1]
Figure 2004353022
[0035]
No. 1 to No. No. 6 is a case where Mn is contained in an amount of 0.05 to 0.8% by mass based on a Zn-0.2% by mass Al-0.5% by mass Mg plating bath. All the components in the obtained plating layer are within the scope of the present invention, and all of the coating weight, appearance, adhesion, and corrosion resistance are good. In particular, when the plating layer contains Mn in the range of 0.1 to 0.5% by mass, the performance is further improved. When the plating layer contains 0.3% by mass of Mn, the performance is further improved. No. No. 6 is No. 4 shows the case where 0.1% by mass of Si is contained in the plating layer, which indicates that the corrosion resistance is improved. No. 7-No. No. 10 is a case where Mn is contained in an amount of 0.1 to 0.8% by mass based on a Zn-10% by mass Al-3% by mass Mg plating bath. The components in the obtained plating layer are all within the range of the present invention. In particular, when Mn is contained in the range of 0.1 to 0.5% by mass, the coating weight, appearance, adhesion, and corrosion resistance Both are good, and when Mn is contained at 0.3% by mass, the performance is further improved.
[0036]
(Comparative example)
A hot-rolled steel plate with black scale having a size of 50 mm × 100 mm × 2.3 mm in thickness was immersed in 15% hydrochloric acid for 30 minutes, then pulled up, and it was confirmed that there was no scale residue. Next, a dry flux treatment was performed. In the dry flux treatment, the steel material is immersed in a flux composed of ZnCl 2 : 200 g / l and NH 4 Cl: 40 g / l at a liquid temperature of 70 ° C. for 10 seconds, then pulled up, and dried in an electric oven set at 200 ° C. for 5 minutes. The processing was performed. Then, it was immersed in a Zn-based alloy plating bath having the composition shown in Table 2 for 2 minutes, pulled up, and cooled with hot water to produce a test piece.
The coating weight, appearance, plating adhesion, and corrosion resistance of the test pieces thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0037]
[Table 2]
Figure 2004353022
[0038]
No. No. 11 is a case where Zn plating which does not contain any of Al, Mn, Mg and Si in the plating layer was performed. Unsuitable due to poor corrosion resistance. No. No. 12 is a case where 0.4% by mass of Al is contained in the plating layer. This is unsuitable because the coating weight is small (less than 300 g / m 2 ) and the corrosion resistance is poor (red rust is generated). No. No. 13 contained 0.4% by mass of Al and 0.1% by mass of Mn in the plating layer. No. 14 is a case where the plating layer contains 0.4% by mass of Al and 1.0% by mass of Mn. In any case, although the plating adhesion amount is large, it is unsuitable because of poor corrosion resistance (average corrosion weight loss of plating is 1.0 g / m 2 / hr or more).
[0039]
No. No. 15 contained 0.4% by mass of Al and 0.2% by mass of Mg in the plating layer. No. 16 is a case where the plating layer contains 0.4% by mass of Al and 10% by mass of Mg. All of them are unsuitable because of low plating adhesion amount (less than 300 g / m 2 ) and poor corrosion resistance (generation of red rust). No. 17 is a case where the plating layer contains Al: 0.4% by mass, Mn: 0.1% by mass, and Mg: 20% by mass. Although the plating amount is large and the corrosion resistance is good, it is not suitable because of poor adhesion of the plating. No. No. 18 is a case where the plating layer contains 0.4% by mass of Al, 2.5% by mass of Mn, and 0.5% by mass of Mg. Although corrosion resistance is good, it is unsuitable because the amount of plating is extremely large (greater than 1000 g / m 2 ) and the adhesion is poor.
[0040]
No. 19, no. 20 each include 0.1% by mass of Mn and 0.5% by mass of Mg in the plating layer, and both are within the scope of the present invention, but when only Al is out of the scope of the present invention, That is, this is the case where Al: 0.06% by mass (No. 9) and Al: 22% by mass (No. 10). If the Al content is 0.06% by mass, the coating weight is extremely large (greater than 1000 g / m 2 ) and the corrosion resistance is poor. Further, when the content of Al is 22% by mass, the adhesion amount of the plating and the corrosion resistance are good, but the appearance is uneven and poor, which is not suitable.
[0041]
(Example 2)
A hot-rolled steel plate with black scale having a size of 50 mm × 100 mm × 2.3 mm in thickness was immersed in 15% hydrochloric acid for 30 minutes, then pulled up, and it was confirmed that there was no scale residue. Next, a dry flux treatment was performed. In the dry flux treatment, the steel material is immersed in a flux composed of ZnCl 2 : 200 g / l and NH 4 Cl: 40 g / l at a liquid temperature of 70 ° C. for 10 seconds, then pulled up, and dried in an electric oven set at 200 ° C. for 5 minutes. The processing was performed. Then, it was immersed for 2 minutes in a Zn-based alloy plating bath having the composition shown in Table 3 (based on the Zn-0.2% by mass Al-0.3% by mass Mn plating bath and adding Mg and Si). A test piece was prepared by cooling with hot water.
The coating weight, appearance, plating adhesion, and corrosion resistance of the test pieces thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0042]
[Table 3]
Figure 2004353022
[0043]
No. 21, no. No. 22 is a case where Mg was contained in an amount of 0.1 to 0.5% by mass based on a Zn-0.2% by mass Al-0.3% by mass Mn plating bath. The compositions of the obtained plating layers are all within the range of the present invention, and all of the plating adhesion amount, appearance, adhesion, and corrosion resistance are good. In particular, when the plating layer contains 0.5% by mass of Mg, the performance is further improved. No. Nos. 23 to 25 are cases where Mg is contained in an amount of 0.1 to 3.0% by mass based on a Zn-10% by mass Al-0.3% by mass Mn plating bath. The components of the plating layer obtained are all within the scope of the present invention, and particularly when the content of Mg is in the range of 0.5 to 3.0% by mass, any of the plating adhesion amount, appearance, adhesion, and corrosion resistance Is good, and when Mg is contained in an amount of 3.0% by mass, the performance is further improved.
[0044]
(Example 3)
A hot-rolled steel plate with black scale having a size of 50 mm × 100 mm × 2.3 mm in thickness was immersed in 15% hydrochloric acid for 30 minutes, then pulled up, and it was confirmed that there was no scale residue. Next, a dry flux treatment was performed. In the dry flux treatment, the steel material is immersed in a flux composed of ZnCl 2 : 200 g / l and NH 4 Cl: 40 g / l at a liquid temperature of 70 ° C. for 10 seconds, then pulled up, and dried in an electric oven set at 200 ° C. for 5 minutes. The processing was performed. Then, it was immersed in a Zn-based alloy plating bath having the composition shown in Table 4 (Zn-0.2% by mass Al-0.3% by mass Mn-0.5% by mass Mg plating bath) for 2 minutes. Then, a test piece was prepared. The temperature of the plating bath was variously changed between 410 and 600 ° C. In addition, in some test materials, the immersion time in the plating bath was changed up to 90 minutes in order to change the amount of plating. The coating weight, appearance, plating adhesion, and corrosion resistance of the test pieces thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 4.
[0045]
[Table 4]
Figure 2004353022
[0046]
No. 26 to 32 are cases where the plating bath temperature was changed. When the plating bath temperature is out of the range of the present invention (Nos. 26 and 27), the amount of the obtained plating is out of the range of the present invention, and the appearance is poor. When the plating bath temperature is 430 to 550 ° C. within the range of the present invention (Nos. 28 to 32), the obtained plating compositions are all within the range of the present invention, and the amount of plating and the appearance , Adhesion and corrosion resistance are all good. In particular, when the plating bath temperature is 450 to 550 ° C. (Nos. 29 and 30), it becomes even better.
[0047]
No. Nos. 33 to 35 are cases in which the plating time was changed to intentionally change the amount of plating. When the plating time is 30 seconds (0.5 minutes) out of the range of the present invention (No. 33), the plating adhesion amount is less than 300 g / m 2, which is not suitable. Further, when the plating time is 90 minutes out of the range of the present invention (No. 34), the plating adhesion amount is more than 1000 g / m 2 and the appearance and the adhesion are poor, which is not suitable. On the other hand, No. No. 35 indicates a case where the plating time was 30 minutes, and all of the plating adhesion amount, appearance, adhesion, and corrosion resistance were good.
[0048]
【The invention's effect】
As described above, the hot-dip Zn-Al-based alloy-plated steel material of the present invention realizes a uniform, high-adhesion-weight, high-corrosion-resistant hot-dip Zn-Al-based alloy-plated steel material by a flux method, which was not possible in the past. That is, by including Mn and Mg in the Zn-Al-based alloy plating and setting the plating bath temperature within a predetermined range, the molten Zn-Al-based alloy plating having a uniform, high adhesion amount, high corrosion resistance and good appearance is provided. Steel material can be provided. Further, according to the production method of the present invention, without modifying the conventional plating equipment, only by changing the plating bath composition, a uniform, high coating weight and high corrosion resistance hot-dip Zn-Al-based alloy-plated steel material is inexpensive, It can be easily manufactured. For this reason, by applying this steel material to power transmission towers, bridges, road materials, building hardware, construction and civil engineering materials, etc., which require long-term durability, maintenance-free of these facilities can be realized, and industrial value Is extremely large.

Claims (4)

Al:0.1〜15質量%を含み、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき鋼材において、前記溶融Zn−Al系合金めっき層がMn:0.05〜1質量%、及び、Mg:0.1〜15質量%を含み、そのめっき付着量が300g/m〜1000g/mであることを特徴とする溶融Zn−Al系合金めっき鋼材。Al: In a hot-dip Zn—Al-based alloy-plated steel material containing 0.1 to 15% by mass and the balance being Zn and unavoidable impurities, the molten Zn—Al-based alloy-plated layer has a Mn of 0.05 to 1% by mass. and, Mg: 0.1 to 15 includes a mass%, the melting Zn-Al alloy coated steel material, characterized in that the coating weight is 300g / m 2 ~1000g / m 2 . 前記溶融Zn−Al系合金めっき層が、さらに、Si:0.05〜0.2質量%含有することを特徴とする請求項1に記載の溶融Zn−Al系合金めっき鋼材。The hot-dip Zn-Al-based alloy-plated steel material according to claim 1, wherein the hot-dip Zn-Al-based alloy-plated layer further contains 0.05 to 0.2% by mass of Si. フラックス処理をした鋼材を溶融Zn−Al系合金めっき浴に浸漬して溶融Zn−Al系合金めっき鋼材を製造する方法であって、前記溶融Zn−Al系合金めっき浴が、Al:0.1〜15質量%、Mn:0.05〜1質量%、及びMg:0.1〜15質量%を含有し、残部がZn及び不可避的不純物からなり、該めっき浴温が430〜550℃であることを特徴とする溶融Zn−Al系合金めっき鋼材の製造方法。A method for producing a hot-dip Zn-Al-based alloy-plated steel material by immersing a steel material subjected to a flux treatment in a hot-dip Zn-Al-based alloy-plating bath, wherein the hot-dip Zn-Al-based alloy-plated bath contains Al: 0.1 -15% by mass, Mn: 0.05-1% by mass, and Mg: 0.1-15% by mass, the balance consisting of Zn and unavoidable impurities, and the plating bath temperature is 430-550 ° C. A method for producing a hot-dip Zn-Al-based alloy-plated steel material, comprising: 前記溶融Zn−Al系合金めっき浴が、さらに、Si:0.05〜0.2質量%含有することを特徴とする請求項3に記載の溶融Zn−Al系合金めっき鋼材の製造方法。The method for producing a hot-dip Zn-Al-based alloy plated steel material according to claim 3, wherein the hot-dip Zn-Al-based alloy plating bath further contains 0.05 to 0.2% by mass of Si.
JP2003150516A 2003-05-28 2003-05-28 Hot-dip Zn-Al alloy-plated steel and method for producing the same Expired - Fee Related JP3728298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150516A JP3728298B2 (en) 2003-05-28 2003-05-28 Hot-dip Zn-Al alloy-plated steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150516A JP3728298B2 (en) 2003-05-28 2003-05-28 Hot-dip Zn-Al alloy-plated steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004353022A true JP2004353022A (en) 2004-12-16
JP3728298B2 JP3728298B2 (en) 2005-12-21

Family

ID=34046294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150516A Expired - Fee Related JP3728298B2 (en) 2003-05-28 2003-05-28 Hot-dip Zn-Al alloy-plated steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3728298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774114A (en) * 2011-05-10 2012-11-14 上海建冶科技工程股份有限公司 Metal anticorrosion coating and electric arc spraying process thereof
JP2015045088A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP2015045090A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
CN110129703A (en) * 2019-06-25 2019-08-16 中电建成都铁塔有限公司 A kind of hot dip galvanizing process and hot dip liquid system for iron tower construction member
CN114107737A (en) * 2021-11-30 2022-03-01 攀钢集团攀枝花钢铁研究院有限公司 Zinc-aluminum-magnesium alloy plated steel containing V, Ce, La and Mn and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108846A (en) * 1980-01-29 1981-08-28 Mitsubishi Metal Corp Zinc alloy for hot dipping
JP2001295018A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp High-strength Si-containing hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108846A (en) * 1980-01-29 1981-08-28 Mitsubishi Metal Corp Zinc alloy for hot dipping
JP2001295018A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp High-strength Si-containing hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774114A (en) * 2011-05-10 2012-11-14 上海建冶科技工程股份有限公司 Metal anticorrosion coating and electric arc spraying process thereof
JP2015045088A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP2015045090A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
CN110129703A (en) * 2019-06-25 2019-08-16 中电建成都铁塔有限公司 A kind of hot dip galvanizing process and hot dip liquid system for iron tower construction member
CN114107737A (en) * 2021-11-30 2022-03-01 攀钢集团攀枝花钢铁研究院有限公司 Zinc-aluminum-magnesium alloy plated steel containing V, Ce, La and Mn and preparation method thereof

Also Published As

Publication number Publication date
JP3728298B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
CN103834890B (en) Electric power pylon and fastening piece anti-corrosion alloy coating and preparation technology
CN103160765B (en) A kind of transmission line of electricity steel beam column hot dip galvanized zinc alloy coating and preparation technology thereof
JP2015531817A (en) Hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance and method for producing the same
JP2002275611A (en) Zinc alloy plated column material, method for producing the same, and flux used in the method
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
CN101775567B (en) Tombarthite zinc nickel magnesium alloy ingot for hot dip coating and preparation method thereof
CN108707852A (en) Bridge cable high intensity multiple zinc-base alloy coating wire and its hot plating technology
CN113061827A (en) Hot-dip tinned silver alloy coating and preparation method and application thereof
JP3769199B2 (en) High corrosion resistance plated steel material and method for producing the same
JP3769197B2 (en) High corrosion resistance plated steel material and method for producing the same
JP3728298B2 (en) Hot-dip Zn-Al alloy-plated steel and method for producing the same
JP4564361B2 (en) Flux composition for hot dip Zn-Al-Mg alloy plating and method for producing hot dip Zn-Al-Mg alloy plating steel using the same
JP2004244650A (en) Method for producing Zn-Al-Mg based alloy plated steel material
JP2002371343A (en) Hot-dip galvanized steel wire with high corrosion resistance and excellent workability
JP2004083950A (en) Hot-dip zinc-aluminum alloy plating method
JP2002206156A (en) Plating steel product for steel tower, method for producing the same, and flux used in the method
JP3769198B2 (en) High corrosion resistance plated steel material and method for producing the same
JP5521932B2 (en) Sn-Zn hot-dip galvanized steel sheet excellent in corrosion resistance, solder strength and spot weldability and method for producing the same
JP3854469B2 (en) Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof
JP6772724B2 (en) Plated steel with excellent corrosion resistance
JPH08188864A (en) Method for plating molten aluminum alloy by the flux method
JP2003268516A (en) Hot-dip galvanized steel product and method for producing the same
JP3494134B2 (en) Hot-dip plating method
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet
JP2010133022A (en) Metal plating material and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees